Acessibilidade / Reportar erro

Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics

Abstract

The Croton urucurana Baill species is known in Brazil as “sangra d’água” and is popular due to its medicinal properties. For better processing of herbal medicines, it is essential that efficient drying and storage techniques are developed and that compounds are preserved. Therefore, this study aimed to select models through multivariate cluster analysis applying Akaike (AIC) and Bayesian information criteria (BIC) to describe Croton urucurana leaves drying kinetics at different temperatures (40-70 °C). The initial moisture content in Croton urucurana leaves was 1.791, 1.841, 2.196 and 2.144 kg water kg dry matter-1, and 8.25, 7.75, 4.25 and 2 hours were required to reach hygroscopic equilibrium, with a final moisture content of 0.134, 0.105, 0.065 and 0.0601 kg water kg dry matter-1, at 40, 50, 60 and 70 °C, respectively. The models with the greatest similarity to the experimental data were Diffusion Approximation; Cavalcanti Mata; Two-term; Two-term Exponential; Modified Henderson & Pabis; Logarithmic; Midilli; Page and Verma. The multivariate cluster technique associated with AIC and BIC criteria during model selection is a great applicability tool to help decision-making when evaluating the drying plant leaves. The Cavalcanti Mata mathematical model was selected to represent the drying kinetics.

Keywords:
mathematical modeling; AIC and BIC; plant products; post-harvest

1 Introduction

The Brazilian biological diversity has aroused the international scientific community’s interest, as we search for new potential compounds to be the basis in new drug synthesis (Souza & Felfili, 2006Souza, C. D., & Felfili, J. M. (2006). Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil. Acta Botanica Brasílica, 20(1), 135-142. http://dx.doi.org/10.1590/S0102-33062006000100013.
http://dx.doi.org/10.1590/S0102-33062006...
). The Croton urucurana B. species is popularly known in Portuguese as “sangra d’água”, and it is a tall plant that has red-colored sap and is predominantly found in riparian forests or floodplains (Rao et al., 2007Rao, V. S., Gurgel, L. A., Lima-Júnior, R. C. P., Martins, D. T. O., Cechinel-Filho, V., & Santos, F. A. (2007). Dragon’s blood from Croton urucurana (Baill.) attenuates visceral nociception in mice. Journal of Ethnopharmacology, 113(2), 357-360. http://dx.doi.org/10.1016/j.jep.2007.06.009. PMid:17681724.
http://dx.doi.org/10.1016/j.jep.2007.06....
). Its sap contains a wide variety of phytochemicals that have anti-hemorrhagic, anti-inflammatory, antiseptic and healing properties, as well as potential antifungal and entomological actions (Soldera et al., 2010Soldera, C. C., Zanella, G. N., & Frasson, A. P. Z. (2010). Avaliação da atividade antibacteriana de Croton urucurana. Revista Contexto Saúde, 10, 25-31.; Carvalho et al., 2014Carvalho, S., Santana, L., Silva, L. B., Layra, M., Pavam, B. E., Terezinha, M., & Pereira, L. (2014). Mortalidade e comprometimento do desenvolvimento de Zabrotes subfasciatus Boh. (Coleoptera: Chrysomelidae), induzido pelo extrato de sangra d’água Croton urucurana Baill (Euphorbiaceae). Comunicata Scientiae, 5, 331-338.).

The main feedstocks for obtaining plant products are the medicinal and aromatic plant aerial parts, which contain the largest phytochemical amounts, and secondary metabolism products constituting the plant’s defense system (Koche et al., 2010Koche, D., Shirsat, R., Imran, S., & Bradange, D. G. (2010). Phytochemical screening of eight traditionally used ethnomedicinal plants from Akola District (MS) India. International Journal of Pharma and Bio Sciences, 1, B-253-B-256.; Silva et al., 2015Silva, L. A., Resende, O., Virgolino, Z. Z., Bessa, J. F. V., Morais, W. A., & Vidal, V. M. (2015). Cinética de secagem e difusividade efetiva em folhas de jenipapo (Genipa americana L.). Revista Brasileira de Plantas Medicinais, 17(4, Suppl. 2), 953-963. http://dx.doi.org/10.1590/1983-084X/14_106.
http://dx.doi.org/10.1590/1983-084X/14_1...
). After harvesting, the water in plant tissues keeps the metabolic and enzymatic mechanism active, which may lead to modifications in the bioactive compounds’ effectiveness present in medicinal plants (Maciel et al., 2002Maciel, M. A. M., Pinto, A. C., Veiga, V. F. Jr, Grynberg, N. F., & Echevarria, A. (2002). Plantas medicinais: a necessidade de estudos multidiciplinares. Quimica Nova, 25(3), 429-438. http://dx.doi.org/10.1590/S0100-40422002000300016.
http://dx.doi.org/10.1590/S0100-40422002...
; Morais et al., 2013Morais, S. J. S., Devilla, I. A., Ferreira, D. A., & Teixeira, I. R. (2013). Modelagem matemática das curvas de secagem e coeficiente de difusão de grãos de feijão-caupi (Vigna unguiculata (L. ) Walp. ). Ciência Agronômica, 44(3), 455-463. http://dx.doi.org/10.1590/S1806-66902013000300006.
http://dx.doi.org/10.1590/S1806-66902013...
; Silva et al., 2015Silva, L. A., Resende, O., Virgolino, Z. Z., Bessa, J. F. V., Morais, W. A., & Vidal, V. M. (2015). Cinética de secagem e difusividade efetiva em folhas de jenipapo (Genipa americana L.). Revista Brasileira de Plantas Medicinais, 17(4, Suppl. 2), 953-963. http://dx.doi.org/10.1590/1983-084X/14_106.
http://dx.doi.org/10.1590/1983-084X/14_1...
). Natural product processing requires efficient techniques for drying and storage of the plant biomass produced and for its chemical properties to be fully and effectively used (Tabaldi et al., 2012Tabaldi, L. A., Vieira, M., Zárate, N. A. H., Silva, L. R., Gonçalves, W. L. F., Pilecco, M., Formagio, A. S. N., Gassi, R. P., & Padovan, M. P. (2012). Cover crops and their effects on the biomass yield of Serjania marginata plants. Ciência Rural, 42(4), 614-620. http://dx.doi.org/10.1590/S0103-84782012000400006.
http://dx.doi.org/10.1590/S0103-84782012...
; Martins et al., 2015Martins, E. A. S., Lage, E. Z., Goneli, A. L. D., Hartmann, C. P. Fo, & Lopes, J. G. (2015). Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, 19(3), 238-244. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n3p238-244.
http://dx.doi.org/10.1590/1807-1929/agri...
).

Drying is the most recommended process to ensure post-harvest quality and stability. It is defined as a single operation to remove water, or any other liquid contained in a solid, to a minimum moisture content level in which plant products can be stored for long periods, without losses or alterations in the characteristics obtained at harvest (Matias et al., 2010Matias, E. F. F., Santos, K. K. A., Almeida, T. S., Costa, J. G. M., & Coutinho, H. D. M. (2010). Atividade antibacteriana In vitro de Croton campestris A., Ocimum gratissimum L. e Cordia verbenacea DC. Revista Brasileira de Biociências, 8, 294-298.; Gadelha-Neto et al., 2013Gadelha-Neto, P. C., Barbosa, M. R. de V., Menezes, M., Wartchow, F., Lima, J. R., Barbosa, M. A., Pôrto, K. C., & Gibertoni, T. B. (2013). Manual de procedimentos para herbários. Recife: Editora Universitária UFPE.). Drying can also be defined, according to Brooker et al. (1992)Brooker, D. B., Bakker-Arkema, F. W., & Hall, C. W. (1992). Drying and storage of grains and oilseeds. Westport: The AVI Publishing Company. 450 p., as a process that involves the simultaneous transfer of energy in the form of heat and mass between the product and the drying air.

Drying system studies, dimensioning and commercial application viability determination can be conducted through mathematical simulations, satisfactorily representing product moisture loss during the drying process (Martinazzo et al., 2010Martinazzo, A. P., Melo, E. C., Corrêa, P. C., & Santos, R. H. S. (2010). Modelagem matemática e parâmetros qualitativos da secagem de folhas de capim- limão [Cymbopogon citratus (DC.) Stapf]. Revista Brasileira de Plantas Medicinais, 12(4), 488-498. http://dx.doi.org/10.1590/S1516-05722010000400013.
http://dx.doi.org/10.1590/S1516-05722010...
). The physical description of mathematical models has great relevance in the drying equipment dimensioning and improvement, providing information and time estimates required to reach the ideal product moisture content at different drying curve points (Vilela & Artur, 2008Vilela, C. A. A., & Artur, P. O. (2008). Secagem do açafrão (Curcuma longa L.) em diferentes cortes geométricos. Food Science and Technology, 28(2), 387-394. http://dx.doi.org/10.1590/S0101-20612008000200018.
http://dx.doi.org/10.1590/S0101-20612008...
; Andrade et al., 2010Andrade, E. T., Corrêa, P. C., Teixeira, L. P., Pereira, R. G., & Calomeni, J. F. (2010). Cinética de secagem e qualidade de sementes de feijão. Engevista, 8(2), 83-95. http://dx.doi.org/10.22409/engevista.v8i2.195.
http://dx.doi.org/10.22409/engevista.v8i...
).

In some situations, more than one model can describe the same phenomenon, since there is not only one methodology to follow, and a good model should have a balance between adjustment quality and complexity, which is usually measured by the number of parameters in the model (Mazerolle, 2004; Emiliano, 2013Emiliano, P. C. (2013). Critérios de informação: como eles se comportam em diferentes modelos. (PhD thesis). Universidade Federal de Lavras, Lavras.). When fitted to the same dataset, the adjustment quality evaluators are used to compare different nonlinear regression models and indicate which best represent the studied situation (Emiliano, 2013Emiliano, P. C. (2013). Critérios de informação: como eles se comportam em diferentes modelos. (PhD thesis). Universidade Federal de Lavras, Lavras.; Dias, 2014Dias, A. (2014). Seleção multivariada e identidade de modelos não lineares para o crescimento e acúmulo de nutrientes em frutos de mangueira (PhD thesis). Universidade Federal de Lavras, Lavras.; Varanis et al., 2016Varanis, L. F. M., Silva, N. A. M., & Teixeira, A. M. (2016). Seleção de modelos não lineares para estimação da curva de lactação de vacas mestiças pelo método de análise de agrupamento. Caderno de Ciências Agrárias, 8, 28-37.).

Using a large evaluator number may transform the model choice into a complex activity, and since each evaluator has a specific characteristic, the same model may exhibit high or low performance depending on the evaluator (Silva et al., 2011Silva, N. A. M., Lana, A. M. Q., Silva, F. F., Silveira, F. G., Bergmann, J. A. G., Silva, M. A., & Toral, F. L. B. (2011). Seleção e classificação multivariada de modelos de crescimento não lineares para bovinos Nelore. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(2), 364-371. http://dx.doi.org/10.1590/S0102-09352011000200014.
http://dx.doi.org/10.1590/S0102-09352011...
).

Clustering by multivariate classification methods allows for grouping of models with similar results for all evaluators considered and indicates a model that best fits all or most of the studied conditions. The magnitude of the coefficient of determination, mean relative error, mean estimated error and chi-square test have been used (Goneli et al., 2016Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H. H., Resende, O., & Mauad, M. (2016). Moisture sorption isotherms of castor beans. Part 1: mathematical modeling and hysteresis. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(8), 751-756. http://dx.doi.org/10.1590/1807-1929/agriambi.v20n8p751-756.
http://dx.doi.org/10.1590/1807-1929/agri...
; Smaniotto et al., 2017Smaniotto, T. A. de S., Resende, O., Sousa, K. A., Oliveira, D. E. C., & Campos, R. C. (2017). Drying kinetics of sunflower grains. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(3), 203-208. http://dx.doi.org/10.1590/1807-1929/agriambi.v21n3p203-208.
http://dx.doi.org/10.1590/1807-1929/agri...
; Guimarães et al., 2018Guimarães, R. M., Oliveira, D. E. C., Resende, O., Silva, J. de S., Rezende, T. A. M., & Egea, M. B. (2018). Thermodynamic properties and drying kinetics of ‘okara’. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(6), 418-423. http://dx.doi.org/10.1590/1807-1929/agriambi.v22n6p418-423.
http://dx.doi.org/10.1590/1807-1929/agri...
; Resende et al., 2018Resende, O., Oliveira, D. E. C., Costa, L. M., & Ferreira-Júnior, W. N. (2018). Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, 38(1), 103-109. http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018.
http://dx.doi.org/10.1590/1809-4430-eng....
; Xavier et al., 2018Xavier, W. D., Silva, D. D. A., Resende, O., Guimarães, C. M., Bastos, A. V. S., & Ferreira, W. N. Jr. (2018). Drying kinetics of chives (Allium fistulosum L.). Journal of Experimental Agriculture International, 29(1), 1-10. http://dx.doi.org/10.9734/JEAI/2019/45463.
http://dx.doi.org/10.9734/JEAI/2019/4546...
; Beigi & Ahmadi, 2019Beigi, M., & Ahmadi, I. (2019). Artificial neural networks modeling of kinetic curves of celeriac (Apium graveolens L.) in vacuum drying. Food Science and Technology, 39(Suppl. 1), 35-40. http://dx.doi.org/10.1590/fst.35717.
http://dx.doi.org/10.1590/fst.35717...
; Quequeto et al., 2019Quequeto, W. D., Siqueira, V. C., Mabasso, G. A., Isquierdo, E. P., Leite, R. A., Ferraz, L. R., Hoscher, R. H., Schoeninger, V., Jordan, R. A., Goneli, A. L. D., & Martins, E. A. S. (2019). Mathematical modeling of thin-layer drying kinetics of Piper aduncum L. leaves. The Journal of Agricultural Science, 11(8), 225-235. http://dx.doi.org/10.5539/jas.v11n8p225.
http://dx.doi.org/10.5539/jas.v11n8p225...
; Cavalcante et al., 2020Cavalcante, M. D., Belisário, C. M., Oliveira, D. E. C., Maia, G. P. A. G., Ferreira, W. N. Jr, & Resende, O. (2020). Adjustment of mathematical models in the drying of cagaita pulp in foam-layer.Food Science and Technology [Ahead of print].; Aydar, 2021Aydar, A. Y. (2021). Investigation of ultrasound pretreatment time and microwave power level on drying and rehydration kinetics of green olives. Food Science and Technology, 41(1), 238-244. http://dx.doi.org/10.1590/fst.15720.
http://dx.doi.org/10.1590/fst.15720...
; Silva et al., 2021Silva, P. C., Resende, O., Ferreira Jr, W. N., Silva, L. C. M., Quequeto, W. D., & Silva, F. A. S. (2021). Drying kinetics of Brazil nuts. Food Science and Technology, 41, 1-7.). Since these methods have some limitations, it is necessary to adopt other criteria to increase the accuracy in the model selection and further support decision-making. The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) consist of evaluating the models according to the parsimony principle, penalizing models according to the variation in the number of parameters (Gomes et al., 2018Gomes, F. P., Osvaldo, R., Sousa, E. P., Oliveira, D. E. C., & Araújo, F. R. No. (2018). Drying kinetics of crushed mass of ‘jambu’: effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. http://dx.doi.org/10.1590/1807-1929/agriambi.v22n7p499-505.
http://dx.doi.org/10.1590/1807-1929/agri...
).

Thereby, the objective of this study was to select, through multivariate cluster analysis applying Akaike (AIC) and Bayesian information criteria (BIC), models to describe the drying kinetics of Croton urucurana B. leaves at temperatures of 40, 50, 60 and 70 °C.

2 Material and methods

2.1 Obtaining plant material

The experiment was carried out at Pós-Colheita de Produtos Vegetais Laboratory in Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde. The first steps were leaves removal and plant material selection. Raw material consisted of leaves detached from the middle third of Croton urucurana B. plants, collected between 7:30 and 8:00 a.m. in January 2017 from the Santo Antônio da Barra – GO, Brazil (17°33’05.7”S and 50°36’19.5”W). The exsiccates were registered at the Instituto Federal Goiano Herbarium – Campus Rio Verde, under the number 602.

2.2 Drying study

Drying was completed in a forced air circulation oven, Marconi MA35 (Piracicaba, São Paulo, Brazil), at air temperatures of 40, 50, 60 and 70 °C, and air circulation of 2.0 ± 0.2 m/s, where the average relative humidity values were 33.74, 20.01, 12.37 and 7.95%, respectively. The trays containing the plant product with an approximately 0.15-cm thin layer were removed and weighed periodically. To construct the drying curves, the material was weighed every 15 minutes until hygroscopic equilibrium and constant mass. In the final moisture content determination, the material was placed in metal capsules and dried in a forced air circulation oven at 103 ºC for 24 hours (American Society of Agricultural Engineers, 2000American Society of Agricultural Engineers – ASAE. (2000). Moisture measurement - Unground grain and seeds. St. Joseph: ASAE.). The external environment temperature and relative humidity were monitored by a datalogger, LogBox-DA Novus model (Canoas, Rio Grande do Sul, Brazil), during the drying period at each temperature, and the relative humidity inside the dryer was obtained by the basic psychrometry principles with the GRAPSI program (Melo et al., 2004Melo, E. C., Lopes, D. C., & Corrêa, P. C. (2004). GRAPSI: programa computacional para o cálculo das propriedades psicrométricas do ar. Engenharia na Agricultura, 12(2), 154-162.).

2.3 Mathematical modeling of drying

Moisture content ratios in Croton urucurana B. leaves during drying were determined using the following expression (Equation 1):

MR = X - X e X i - X e (1)

where MR: Moisture Ratio (dimensionless); X: product moisture content (kg water kg dry matter-1); Xi: product initial moisture content (kg water kg dry matter-1); and Xe: product equilibrium moisture content (kg water kg dry matter-1).

Fourteen mathematical models (Table 1) were tested to represent the Croton urucurana B. leaves drying process. The mathematical models were set for the experimental drying data through nonlinear regression analysis using the Gauss-Newton method. The mathematical model parameters were estimated using the STATISTICA 7.0® program (Equations 2-15).

Table 1
Mathematical models used to predict the plant product drying.

For the multivariate analysis, the models estimated the moisture content ratio values. The cluster optimal number selection was made according to hierarchical clustering methods through the level of change in the dendrograms. The best model cluster determination was performed according to the clusters optimal number defined by the Duda & Hart (1973)Duda, R. O., & Hart, P. E. (1973).Pattern classification and scene analysis, 3, 731-739. New York: Wiley. index, based on the similarities of the experimental values ​​in relation to the values ​​obtained by the tested models. The cluster analysis was used to identify the models whose estimated theorical data were closest to the experimental data, and the dissimilarity measure adopted was the Euclidean distance. The multivariate analysis was carried out using the FactoMineR package (Lê et al., 2008Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R Package for multivariate analysis. Journal of Statistical Software, 25(1), 1-18. http://dx.doi.org/10.18637/jss.v025.i01. PMid:19777145.
http://dx.doi.org/10.18637/jss.v025.i01...
), present in R® software.

The magnitude of the coefficient of determination (R2), relative error (P%), estimated mean error (SE), and chi-square test (χ2) were used to compare and select the mathematical models that best represented the Croton urucurana B. leaves drying. Akaike (AIC) and Bayesian information criteria (BIC), which use the parsimony principle in the best model selection, were also used (Akaike, 1974Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. http://dx.doi.org/10.1109/TAC.1974.1100705.
http://dx.doi.org/10.1109/TAC.1974.11007...
; Schwarz 1978Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464. http://dx.doi.org/10.1214/aos/1176344136.
http://dx.doi.org/10.1214/aos/1176344136...
). All of these selection criteria are presented in Equations 16-20:

P = 100 N | Y - Y ^ | Y (16)
SE = |Y - Y ^ | 2 DF (17)
χ 2 = Y - Y ^ 2 DF (18)
AIC = -2 . log L+2p (19)
BIC = -2 . log L + p . ln(N - r) (20)

where, R2: coefficient of determination; p: parameter number; Y: observed values; Ŷ: model estimated values; DF: residual degrees of freedom (number of observations minus the number of parameters of the models); L: Maximum likelihood; N: number of experimental observations; r: rank of the matrix X (incidence matrix for fixed effects).

Data were submitted to ANOVA and when significant effects were observed, the data were compared with each other by Tukey test at 5% probability (p ≤ 0.05).

3 Results and discussion

3.1 Moisture content during drying

The initial moisture content of Croton urucurana B. leaves was 1.791, 1.841, 2.196 and 2.144 kg water kg dry matter-1 for the temperatures of 40, 50, 60 and 70 °C, respectively (Figure 1). To reach hygroscopic equilibrium, the times required were 8.25, 7.75, 4.25 and 2 hours with 0.134, 0.105, 0.065 and 0.0601 kg water kg dry matter-1 moisture content at temperatures of 40, 50, 60 and 70 °C, respectively. An increase in the drying air temperature generates a vapor pressure gradient between air and the leaves surface, provoking a reduction in Croton urucurana B. leaves drying time as the drying temperature increases (Castiglioni et al., 2013Castiglioni, G. L., Silva, F. A. D., Caliari, M., & Soares, M. S. Jr. (2013). Modelagem matemática do processo de secagem da massa fibrosa de mandioca. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(9), 987-994. http://dx.doi.org/10.1590/S1415-43662013000900012.
http://dx.doi.org/10.1590/S1415-43662013...
; Soares et al., 2016Soares, M. A. B., Jorge, L. M. D. M., & Montanuci, F. D. (2016). Drying kinetics of barley grains and effects on the germination index. Food Science and Technology, 36(4), 638-645. http://dx.doi.org/10.1590/1678-457x.11916.
http://dx.doi.org/10.1590/1678-457x.1191...
).

Figure 1
Croton urucurana B. leaves moisture ratio during drying in a forced air circulation oven at temperatures of 40, 50, 60 and 70 ºC as a function of time.

A reduction in drying time has also been observed in studies evaluating an increase in drying air temperature on water removal time from Cymbopogon citratus (Martinazzo et al., 2010Martinazzo, A. P., Melo, E. C., Corrêa, P. C., & Santos, R. H. S. (2010). Modelagem matemática e parâmetros qualitativos da secagem de folhas de capim- limão [Cymbopogon citratus (DC.) Stapf]. Revista Brasileira de Plantas Medicinais, 12(4), 488-498. http://dx.doi.org/10.1590/S1516-05722010000400013.
http://dx.doi.org/10.1590/S1516-05722010...
; Gomes et al., 2017Gomes, N. H. F., Neto, H. C. S., Alves, J. J. L., Rodovalho, R. S., & Sousa, C. M. (2017). Cinética de secagem de folhas de Cymbopogon citratus. Engevista, 19(2), 328-338. http://dx.doi.org/10.22409/engevista.v19i2.837.
http://dx.doi.org/10.22409/engevista.v19...
), Ziziphus joazeiro (Sousa et al., 2015Sousa, F., Martins, J. J., Rocha, A. P., Gomes, J., Pessoa, T., & Martins, J. N. (2015). Predição de modelos sobre a cinética de secagem de folhas de Ziziphus joazeiro Mart. Revista Brasileira de Plantas Medicinais, 17(2), 195-200. http://dx.doi.org/10.1590/1983-084X/12_071.
http://dx.doi.org/10.1590/1983-084X/12_0...
) and Genipa americana (Silva et al., 2015Silva, L. A., Resende, O., Virgolino, Z. Z., Bessa, J. F. V., Morais, W. A., & Vidal, V. M. (2015). Cinética de secagem e difusividade efetiva em folhas de jenipapo (Genipa americana L.). Revista Brasileira de Plantas Medicinais, 17(4, Suppl. 2), 953-963. http://dx.doi.org/10.1590/1983-084X/14_106.
http://dx.doi.org/10.1590/1983-084X/14_1...
) leaves. At high temperatures, this process occurs rapidly, reducing the material’s surface water amount and causing the products to adapt to the drying conditions. In the decreasing rate period, the moisture would be proportional to the instantaneous difference between the product moisture content and the equilibrium moisture content (Akpinar et al., 2003Akpinar, E. K., Bicer, Y., & Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59(1), 99-104. http://dx.doi.org/10.1016/S0260-8774(02)00425-9.
http://dx.doi.org/10.1016/S0260-8774(02)...
).

3.2 Mathematical modeling

The experimental moisture content ratio values of Croton urucurana B. leaves during drying and the estimated values by the models converged to the formation of five, eight, six and eight groups for 40, 50, 60 and 70 ºC, respectively (Figure 2).

Figure 2
Model clustering fitting to the observed and estimated data describing the Croton urucurana B. leaves drying kinetics in a forced air circulation oven at A) 40 ºC, B) 50 °C, C) 60 °C and D) 70 °C.

From the fourteen models proposed to describe the Croton urucurana B. leaves drying kinetics, only nine showed greater similarity to the experimental data and presented shorter distances between the experimental values and the mathematical estimated values.

At 40 °C (Figure 2A), the Modified Henderson & Pabis, Midilli and Cavalcanti Mata models, belonging to group 5, had the highest similarity to the observed values. A value of 0.045 was observed with the Cavalcanti Mata model, which was the shortest distance between estimated and experimental data.

Drying at 50 °C the groups (Figure 2B) in which the Cavalcanti Mata, Modified Henderson & Pabis, Two-term Exponential and Page models were the most similar to the observed values. The shortest Euclidean distance between estimated and experimental data, 0.035, was found with the Cavalcanti Mata model.

Higher model numbers that showed greater similarity to the experimental values were found for 60 and 70 °C. When the drying air temperature is increased, the relative humidity is lower and water removal from agricultural products occurs faster (Silva et al., 2017Silva, F. P., Siqueira, V. C., Quinzani, G. A., Martins, E. A. S., & Goneli, A. L. D. (2017). Drying kinetics of niger seeds. Engenharia Agrícola, 37(4), 727-738. http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n4p727-738/2017.
http://dx.doi.org/10.1590/1809-4430-eng....
). These changes influence the number of points sampled and lead to a rise in model number with similarity to the sampled values, that is, the greater the number of points collected during the experiment, the greater the similarity with the values ​​presented by the models.

For the 60 °C drying air temperature (Figure 2C) the Page, Midilli, Two-term Exponential, Diffusion Approximation and Cavalcanti Mata models were the most similar to the observed values. The shortest distance between the models and the experimental data was observed for the Cavalcanti Mata model, with values of 0.023.

At groups formed for 70 ºC (Figure 2D) the Cavalcanti Mata, Verma, Diffusion Approximation, Two-term and Logarithmic models were the most similar to the observed values. The shortest distances between the models and the experimental data were observed for Cavalcanti Mata (0.056), and Verma and Diffusion Approximation (0.046) models.

Thus, the models with greatest similarity to the experimental data, considering all Croton urucurana B. leaves drying temperatures were the Diffusion Approximation, Cavalcanti Mata, Two-term, Two-term Exponential, Modified Henderson & Pabis, Logarithmic, Midilli, Page and Verma.

Evaluating the models’ coefficients of determination (R2), they showed greater similarity to the experimental data and were above 99.12% (Table 2). According to Kashaninejad et al. (2007)Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98-108. http://dx.doi.org/10.1016/j.jfoodeng.2005.09.007.
http://dx.doi.org/10.1016/j.jfoodeng.200...
, models with coefficients of determination above 98% can satisfactorily represent the drying phenomenon. Nevertheless, Mohapatra & Rao (2005)Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. http://dx.doi.org/10.1016/j.jfoodeng.2004.04.023.
http://dx.doi.org/10.1016/j.jfoodeng.200...
report that the coefficient of determination as single criterion of evaluation to select drying models is not a good parameter to represent the drying phenomenon.

Table 2
Evaluators to determine model adjustment quality through the coefficient of determination (R2), relative error (P, %), estimated mean error (SE) and chi-square (χ2) calculated for nine models grouped according to the maximum similarity method, using the observed MR values as reference, to represent the Croton urucurana B. leaves drying kinetics at temperatures of 40, 50, 60 and 70 ºC, as a function of time.

P values indicate the observed values’ deviation from the model estimated curve, and values lower than 10% are recommended for model selection (Mohapatra & Rao, 2005Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. http://dx.doi.org/10.1016/j.jfoodeng.2004.04.023.
http://dx.doi.org/10.1016/j.jfoodeng.200...
). Among the models with the shortest distance from the experimental values, the Cavalcanti Mata model was the only one with a P value lower than 10% for all drying temperatures (Table 2).

Through the SE and χ2 results, it is observed that all nine models obtained values close to zero for all temperatures, in which, the lower the SE and χ2 values, the smaller the discrepancy between the experimental and estimated values by the models (Siqueira et al., 2012Siqueira, V. C., Resende, O., & Chaves, T. H. (2012). Determination of the volumetric shrinkage in jatropha seeds during drying. Acta Scientiarum. Agronomy, 34(3). http://dx.doi.org/10.4025/actasciagron.v34i3.14402.
http://dx.doi.org/10.4025/actasciagron.v...
).

Estimated value analysis using AIC and BIC information criteria showed that the Cavalcanti Mata model had the lowest values among all models tested (Table 3). The AIC and BIC information criteria assist model selection by penalizing the difference between the equation terms, where the classical estimation procedure would not be adequate (Akaike, 1974Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. http://dx.doi.org/10.1109/TAC.1974.1100705.
http://dx.doi.org/10.1109/TAC.1974.11007...
; Schwarz 1978Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464. http://dx.doi.org/10.1214/aos/1176344136.
http://dx.doi.org/10.1214/aos/1176344136...
). These information criteria have been used for model selection when describing ‘jambu’ leaves (Gomes et al., 2018Gomes, F. P., Osvaldo, R., Sousa, E. P., Oliveira, D. E. C., & Araújo, F. R. No. (2018). Drying kinetics of crushed mass of ‘jambu’: effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. http://dx.doi.org/10.1590/1807-1929/agriambi.v22n7p499-505.
http://dx.doi.org/10.1590/1807-1929/agri...
), Piper aduncum leaves (Quequeto et al., 2019Quequeto, W. D., Siqueira, V. C., Mabasso, G. A., Isquierdo, E. P., Leite, R. A., Ferraz, L. R., Hoscher, R. H., Schoeninger, V., Jordan, R. A., Goneli, A. L. D., & Martins, E. A. S. (2019). Mathematical modeling of thin-layer drying kinetics of Piper aduncum L. leaves. The Journal of Agricultural Science, 11(8), 225-235. http://dx.doi.org/10.5539/jas.v11n8p225.
http://dx.doi.org/10.5539/jas.v11n8p225...
), ‘Prata’ and ‘D’água’ banana fruit (Furtado et al., 2019Furtado, T. D. R., Muniz, J. A., Silva, E. M., Frühauf, A. C., & Fernandes, T. J. (2019). Natural convection drying kinetics of ‘Prata’and ’D’água’banana cultivars (Musa ssp) by nonlinear regression models. Revista Brasileira de Fruticultura, 41(5), e-426. http://dx.doi.org/10.1590/0100-29452019426.
http://dx.doi.org/10.1590/0100-294520194...
) and ‘jabuticaba’ fruit (López-Vidaña et al., 2015López-Vidaña, E. C., Rojano, B. A., Figueroa, I. P., Zapata, K., & Cortés, F. B. (2015). Evaluation of the sorption equilibrium and effect of drying temperature on the antioxidant capacity of the jaboticaba (Myrciaria Cauliflora), Chemical Engineering Communications, 203(6), 809-821. http://dx.doi.org/10.1080/00986445.2015.1107721.
http://dx.doi.org/10.1080/00986445.2015....
) drying kinetics. Thus, the Cavalcanti Mata model was the best model for representing the Croton urucurana B. leaves drying kinetics at 40, 50, 60 and 70 ºC (Figure 3).

Table 3
Akaike (AIC) and Bayesian Information Criteria (BIC) for the nine models grouped according to the maximum similarity method, using the observed MR values as reference, to represent Croton urucurana B. leaves drying kinetics.
Figure 3
Moisture ratios obtained experimentally and estimated by the Cavalcanti Mata model for Croton urucurana B. leaves drying in a forced air circulation oven, at 40, 50, 60 and 70 ºC, as a function of time.

Therefore, it is possible to describe most thin-layer drying processes as a function of temperature and initial moisture content. Therefore, it is possible to describe most thin-layer drying processes with as function of temperature and initial moisture content. The Cavalcanti Mata model is able to describe adequately the parameters of drying proposed, enabling the visualization of the three drying periods (constant, decreasing and equilibrium moisture content). The model maintained higher similarity with the moisture content ratio values when compared to the experimental data for the Croton urucurana B. leaves drying.

An increase in the k1 values for the Cavalcanti Mata model was observed with the drying air temperature changes, while for the other parameters, there was no clear trend as a function of temperature (Table 4). According to Goneli et al. (2009)Goneli, A. L. D., Corrêa, P. C., Afonso, P. C. Jr, & Oliveira, G. D. (2009). Cinética de secagem dos grãos de café descascados em camada delgada. Revista Brasileira de Armazenamento, 11, 64-73., the magnitude of the drying constant (k), represents the effect of external drying conditions and tends to increase with the elevation of the drying air temperature.

Table 4
Cavalcanti Mata model parameters adjusted to Croton urucurana B. leaves drying in a forced air circulation oven at 40, 50, 60 and 70 ºC.

The increment in the k1 coefficient with increasing temperature indicates that the water viscosity decreases, and the water found inside the leaves can easily migrate when compared to lower drying temperatures. Hence, the higher the k1 parameter magnitude, the higher is the effective diffusivity in the drying process (Martins et al., 2015Martins, E. A. S., Lage, E. Z., Goneli, A. L. D., Hartmann, C. P. Fo, & Lopes, J. G. (2015). Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, 19(3), 238-244. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n3p238-244.
http://dx.doi.org/10.1590/1807-1929/agri...
). The increment in drying air temperature increased vibration at the water molecule level, reducing the fluid viscosity and favoring its movement through the Croton urucurana B. leaves (Alves et al., 2017Alves, J. J. L., Resende, O., Oliveira, D. E. C., & Branquinho, N. A. A. (2017). Cinética de secagem das folhas de Hyptis suaveolens. Revista Brasileira de Plantas Medicinais, 19, 168-176.), accelerating the drying process.

4 Conclusions

The application of multivariate clustering techniques to select models is a great applicability tool to evaluate the drying of Croton urucurana B. leaves, just as the AIC and BIC information criteria can be used to assist in the decision-making, when more than one model overlaps each other. The Cavalcanti Mata mathematical model was selected to represent the drying kinetics of Croton urucurana B. leaves.

Acknowledgements

The authors thank IF Goiano, CAPES, FAPEG, FINEP and CNPq for the indispensable financial support to conduct this study.

  • Practical Application: Contribute to estimate the drying process of the Croton urucurana B. leaves in different temperatures.

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. http://dx.doi.org/10.1109/TAC.1974.1100705
    » http://dx.doi.org/10.1109/TAC.1974.1100705
  • Akpinar, E. K., Bicer, Y., & Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59(1), 99-104. http://dx.doi.org/10.1016/S0260-8774(02)00425-9
    » http://dx.doi.org/10.1016/S0260-8774(02)00425-9
  • Alves, J. J. L., Resende, O., Oliveira, D. E. C., & Branquinho, N. A. A. (2017). Cinética de secagem das folhas de Hyptis suaveolens. Revista Brasileira de Plantas Medicinais, 19, 168-176.
  • American Society of Agricultural Engineers – ASAE. (2000). Moisture measurement - Unground grain and seeds St. Joseph: ASAE.
  • Andrade, E. T., Corrêa, P. C., Teixeira, L. P., Pereira, R. G., & Calomeni, J. F. (2010). Cinética de secagem e qualidade de sementes de feijão. Engevista, 8(2), 83-95. http://dx.doi.org/10.22409/engevista.v8i2.195
    » http://dx.doi.org/10.22409/engevista.v8i2.195
  • Aydar, A. Y. (2021). Investigation of ultrasound pretreatment time and microwave power level on drying and rehydration kinetics of green olives. Food Science and Technology, 41(1), 238-244. http://dx.doi.org/10.1590/fst.15720
    » http://dx.doi.org/10.1590/fst.15720
  • Beigi, M., & Ahmadi, I. (2019). Artificial neural networks modeling of kinetic curves of celeriac (Apium graveolens L.) in vacuum drying. Food Science and Technology, 39(Suppl. 1), 35-40. http://dx.doi.org/10.1590/fst.35717
    » http://dx.doi.org/10.1590/fst.35717
  • Brooker, D. B., Bakker-Arkema, F. W., & Hall, C. W. (1992). Drying and storage of grains and oilseeds. Westport: The AVI Publishing Company. 450 p.
  • Carvalho, S., Santana, L., Silva, L. B., Layra, M., Pavam, B. E., Terezinha, M., & Pereira, L. (2014). Mortalidade e comprometimento do desenvolvimento de Zabrotes subfasciatus Boh. (Coleoptera: Chrysomelidae), induzido pelo extrato de sangra d’água Croton urucurana Baill (Euphorbiaceae). Comunicata Scientiae, 5, 331-338.
  • Castiglioni, G. L., Silva, F. A. D., Caliari, M., & Soares, M. S. Jr. (2013). Modelagem matemática do processo de secagem da massa fibrosa de mandioca. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(9), 987-994. http://dx.doi.org/10.1590/S1415-43662013000900012
    » http://dx.doi.org/10.1590/S1415-43662013000900012
  • Cavalcante, M. D., Belisário, C. M., Oliveira, D. E. C., Maia, G. P. A. G., Ferreira, W. N. Jr, & Resende, O. (2020). Adjustment of mathematical models in the drying of cagaita pulp in foam-layer.Food Science and Technology [Ahead of print].
  • Cavalcanti Mata, M. E. R. M., Almeida, F. A. C., & Duarte, M. E. M. (2006). Secagem de sementes. In: F. A. C. Almeida, M. E. M. Duarte, & M. E. R. M Cavalcanti Mata. (Ed.), Tecnologia de armazenamento em sementes (pp. 271-370). Campina Grande: UFCG.
  • Chandra, P. K., & Singh, R. P. (1995). Applied numerical methods for food and agricultural engineers (pp. 163-167). Boca Raton: CRC Press.
  • Dias, A. (2014). Seleção multivariada e identidade de modelos não lineares para o crescimento e acúmulo de nutrientes em frutos de mangueira (PhD thesis). Universidade Federal de Lavras, Lavras.
  • Duda, R. O., & Hart, P. E. (1973).Pattern classification and scene analysis, 3, 731-739. New York: Wiley.
  • Emiliano, P. C. (2013). Critérios de informação: como eles se comportam em diferentes modelos (PhD thesis). Universidade Federal de Lavras, Lavras.
  • Furtado, T. D. R., Muniz, J. A., Silva, E. M., Frühauf, A. C., & Fernandes, T. J. (2019). Natural convection drying kinetics of ‘Prata’and ’D’água’banana cultivars (Musa ssp) by nonlinear regression models. Revista Brasileira de Fruticultura, 41(5), e-426. http://dx.doi.org/10.1590/0100-29452019426
    » http://dx.doi.org/10.1590/0100-29452019426
  • Gadelha-Neto, P. C., Barbosa, M. R. de V., Menezes, M., Wartchow, F., Lima, J. R., Barbosa, M. A., Pôrto, K. C., & Gibertoni, T. B. (2013). Manual de procedimentos para herbários Recife: Editora Universitária UFPE.
  • Gomes, F. P., Osvaldo, R., Sousa, E. P., Oliveira, D. E. C., & Araújo, F. R. No. (2018). Drying kinetics of crushed mass of ‘jambu’: effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. http://dx.doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
  • Gomes, N. H. F., Neto, H. C. S., Alves, J. J. L., Rodovalho, R. S., & Sousa, C. M. (2017). Cinética de secagem de folhas de Cymbopogon citratus. Engevista, 19(2), 328-338. http://dx.doi.org/10.22409/engevista.v19i2.837
    » http://dx.doi.org/10.22409/engevista.v19i2.837
  • Goneli, A. L. D., Corrêa, P. C., Afonso, P. C. Jr, & Oliveira, G. D. (2009). Cinética de secagem dos grãos de café descascados em camada delgada. Revista Brasileira de Armazenamento, 11, 64-73.
  • Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H. H., Resende, O., & Mauad, M. (2016). Moisture sorption isotherms of castor beans. Part 1: mathematical modeling and hysteresis. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(8), 751-756. http://dx.doi.org/10.1590/1807-1929/agriambi.v20n8p751-756
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v20n8p751-756
  • Guimarães, R. M., Oliveira, D. E. C., Resende, O., Silva, J. de S., Rezende, T. A. M., & Egea, M. B. (2018). Thermodynamic properties and drying kinetics of ‘okara’. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(6), 418-423. http://dx.doi.org/10.1590/1807-1929/agriambi.v22n6p418-423
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v22n6p418-423
  • Henderson, S. M., & Pabis, S. (1961). Grain drying theory I: temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6(3), 169-174.
  • Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Transactions of the ASAE. American Society of Agricultural Engineers, 17(6), 1167-1168. http://dx.doi.org/10.13031/2013.37052
    » http://dx.doi.org/10.13031/2013.37052
  • Karathanos, V. T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39(4), 337-344. http://dx.doi.org/10.1016/S0260-8774(98)00132-0
    » http://dx.doi.org/10.1016/S0260-8774(98)00132-0
  • Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98-108. http://dx.doi.org/10.1016/j.jfoodeng.2005.09.007
    » http://dx.doi.org/10.1016/j.jfoodeng.2005.09.007
  • Kassem, A. S. (1998). Comparative studies on thin layer drying models for wheat. In E. H. Bartali (Ed.), 13th International Congress on Agricultural Engineering Moroco: ANAFID.
  • Koche, D., Shirsat, R., Imran, S., & Bradange, D. G. (2010). Phytochemical screening of eight traditionally used ethnomedicinal plants from Akola District (MS) India. International Journal of Pharma and Bio Sciences, 1, B-253-B-256.
  • Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R Package for multivariate analysis. Journal of Statistical Software, 25(1), 1-18. http://dx.doi.org/10.18637/jss.v025.i01 PMid:19777145.
    » http://dx.doi.org/10.18637/jss.v025.i01
  • Lewis, W. K. (1921). The rate of drying of solid materials. Journal of Industrial and Engineering Chemistry, 13(5), 427-432. http://dx.doi.org/10.1021/ie50137a021
    » http://dx.doi.org/10.1021/ie50137a021
  • López-Vidaña, E. C., Rojano, B. A., Figueroa, I. P., Zapata, K., & Cortés, F. B. (2015). Evaluation of the sorption equilibrium and effect of drying temperature on the antioxidant capacity of the jaboticaba (Myrciaria Cauliflora), Chemical Engineering Communications, 203(6), 809-821. http://dx.doi.org/10.1080/00986445.2015.1107721
    » http://dx.doi.org/10.1080/00986445.2015.1107721
  • Maciel, M. A. M., Pinto, A. C., Veiga, V. F. Jr, Grynberg, N. F., & Echevarria, A. (2002). Plantas medicinais: a necessidade de estudos multidiciplinares. Quimica Nova, 25(3), 429-438. http://dx.doi.org/10.1590/S0100-40422002000300016
    » http://dx.doi.org/10.1590/S0100-40422002000300016
  • Martinazzo, A. P., Melo, E. C., Corrêa, P. C., & Santos, R. H. S. (2010). Modelagem matemática e parâmetros qualitativos da secagem de folhas de capim- limão [Cymbopogon citratus (DC.) Stapf]. Revista Brasileira de Plantas Medicinais, 12(4), 488-498. http://dx.doi.org/10.1590/S1516-05722010000400013
    » http://dx.doi.org/10.1590/S1516-05722010000400013
  • Martins, E. A. S., Lage, E. Z., Goneli, A. L. D., Hartmann, C. P. Fo, & Lopes, J. G. (2015). Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, 19(3), 238-244. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n3p238-244
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v19n3p238-244
  • Matias, E. F. F., Santos, K. K. A., Almeida, T. S., Costa, J. G. M., & Coutinho, H. D. M. (2010). Atividade antibacteriana In vitro de Croton campestris A., Ocimum gratissimum L. e Cordia verbenacea DC. Revista Brasileira de Biociências, 8, 294-298.
  • Mazerolle, M. J. (2004). Mouvements et reproduction des amphibiens en tourbières perturbées (PhD thesis). Faculté de Foresterie et de Géomatique, l’Université Laval, Quebec.
  • Melo, E. C., Lopes, D. C., & Corrêa, P. C. (2004). GRAPSI: programa computacional para o cálculo das propriedades psicrométricas do ar. Engenharia na Agricultura, 12(2), 154-162.
  • Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513. http://dx.doi.org/10.1081/DRT-120005864
    » http://dx.doi.org/10.1081/DRT-120005864
  • Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. http://dx.doi.org/10.1016/j.jfoodeng.2004.04.023
    » http://dx.doi.org/10.1016/j.jfoodeng.2004.04.023
  • Morais, S. J. S., Devilla, I. A., Ferreira, D. A., & Teixeira, I. R. (2013). Modelagem matemática das curvas de secagem e coeficiente de difusão de grãos de feijão-caupi (Vigna unguiculata (L. ) Walp. ). Ciência Agronômica, 44(3), 455-463. http://dx.doi.org/10.1590/S1806-66902013000300006
    » http://dx.doi.org/10.1590/S1806-66902013000300006
  • Overhults, D. G., White, G. M., Hamilton, H. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE. American Society of Agricultural Engineers, 16(1), 112-113. http://dx.doi.org/10.13031/2013.37459
    » http://dx.doi.org/10.13031/2013.37459
  • Page, G. E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin-layers (Msc thesis). Purdue University, West Lafayette.
  • Quequeto, W. D., Siqueira, V. C., Mabasso, G. A., Isquierdo, E. P., Leite, R. A., Ferraz, L. R., Hoscher, R. H., Schoeninger, V., Jordan, R. A., Goneli, A. L. D., & Martins, E. A. S. (2019). Mathematical modeling of thin-layer drying kinetics of Piper aduncum L. leaves. The Journal of Agricultural Science, 11(8), 225-235. http://dx.doi.org/10.5539/jas.v11n8p225
    » http://dx.doi.org/10.5539/jas.v11n8p225
  • Rao, V. S., Gurgel, L. A., Lima-Júnior, R. C. P., Martins, D. T. O., Cechinel-Filho, V., & Santos, F. A. (2007). Dragon’s blood from Croton urucurana (Baill.) attenuates visceral nociception in mice. Journal of Ethnopharmacology, 113(2), 357-360. http://dx.doi.org/10.1016/j.jep.2007.06.009 PMid:17681724.
    » http://dx.doi.org/10.1016/j.jep.2007.06.009
  • Resende, O., Oliveira, D. E. C., Costa, L. M., & Ferreira-Júnior, W. N. (2018). Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, 38(1), 103-109. http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
    » http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464. http://dx.doi.org/10.1214/aos/1176344136
    » http://dx.doi.org/10.1214/aos/1176344136
  • Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE. American Society of Agricultural Engineers, 23(5), 1261-1265. http://dx.doi.org/10.13031/2013.34757
    » http://dx.doi.org/10.13031/2013.34757
  • Silva, F. P., Siqueira, V. C., Quinzani, G. A., Martins, E. A. S., & Goneli, A. L. D. (2017). Drying kinetics of niger seeds. Engenharia Agrícola, 37(4), 727-738. http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n4p727-738/2017
    » http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n4p727-738/2017
  • Silva, L. A., Resende, O., Virgolino, Z. Z., Bessa, J. F. V., Morais, W. A., & Vidal, V. M. (2015). Cinética de secagem e difusividade efetiva em folhas de jenipapo (Genipa americana L.). Revista Brasileira de Plantas Medicinais, 17(4, Suppl. 2), 953-963. http://dx.doi.org/10.1590/1983-084X/14_106
    » http://dx.doi.org/10.1590/1983-084X/14_106
  • Silva, N. A. M., Lana, A. M. Q., Silva, F. F., Silveira, F. G., Bergmann, J. A. G., Silva, M. A., & Toral, F. L. B. (2011). Seleção e classificação multivariada de modelos de crescimento não lineares para bovinos Nelore. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(2), 364-371. http://dx.doi.org/10.1590/S0102-09352011000200014
    » http://dx.doi.org/10.1590/S0102-09352011000200014
  • Silva, P. C., Resende, O., Ferreira Jr, W. N., Silva, L. C. M., Quequeto, W. D., & Silva, F. A. S. (2021). Drying kinetics of Brazil nuts. Food Science and Technology, 41, 1-7.
  • Siqueira, V. C., Resende, O., & Chaves, T. H. (2012). Determination of the volumetric shrinkage in jatropha seeds during drying. Acta Scientiarum. Agronomy, 34(3). http://dx.doi.org/10.4025/actasciagron.v34i3.14402
    » http://dx.doi.org/10.4025/actasciagron.v34i3.14402
  • Smaniotto, T. A. de S., Resende, O., Sousa, K. A., Oliveira, D. E. C., & Campos, R. C. (2017). Drying kinetics of sunflower grains. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(3), 203-208. http://dx.doi.org/10.1590/1807-1929/agriambi.v21n3p203-208
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v21n3p203-208
  • Soares, M. A. B., Jorge, L. M. D. M., & Montanuci, F. D. (2016). Drying kinetics of barley grains and effects on the germination index. Food Science and Technology, 36(4), 638-645. http://dx.doi.org/10.1590/1678-457x.11916
    » http://dx.doi.org/10.1590/1678-457x.11916
  • Soldera, C. C., Zanella, G. N., & Frasson, A. P. Z. (2010). Avaliação da atividade antibacteriana de Croton urucurana. Revista Contexto Saúde, 10, 25-31.
  • Sousa, F., Martins, J. J., Rocha, A. P., Gomes, J., Pessoa, T., & Martins, J. N. (2015). Predição de modelos sobre a cinética de secagem de folhas de Ziziphus joazeiro Mart. Revista Brasileira de Plantas Medicinais, 17(2), 195-200. http://dx.doi.org/10.1590/1983-084X/12_071
    » http://dx.doi.org/10.1590/1983-084X/12_071
  • Souza, C. D., & Felfili, J. M. (2006). Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil. Acta Botanica Brasílica, 20(1), 135-142. http://dx.doi.org/10.1590/S0102-33062006000100013
    » http://dx.doi.org/10.1590/S0102-33062006000100013
  • Tabaldi, L. A., Vieira, M., Zárate, N. A. H., Silva, L. R., Gonçalves, W. L. F., Pilecco, M., Formagio, A. S. N., Gassi, R. P., & Padovan, M. P. (2012). Cover crops and their effects on the biomass yield of Serjania marginata plants. Ciência Rural, 42(4), 614-620. http://dx.doi.org/10.1590/S0103-84782012000400006
    » http://dx.doi.org/10.1590/S0103-84782012000400006
  • Varanis, L. F. M., Silva, N. A. M., & Teixeira, A. M. (2016). Seleção de modelos não lineares para estimação da curva de lactação de vacas mestiças pelo método de análise de agrupamento. Caderno de Ciências Agrárias, 8, 28-37.
  • Verma, L. R., Bucklin, R. A., Ednan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE. American Society of Agricultural Engineers, 28(1), 296-301. http://dx.doi.org/10.13031/2013.32245
    » http://dx.doi.org/10.13031/2013.32245
  • Vilela, C. A. A., & Artur, P. O. (2008). Secagem do açafrão (Curcuma longa L.) em diferentes cortes geométricos. Food Science and Technology, 28(2), 387-394. http://dx.doi.org/10.1590/S0101-20612008000200018
    » http://dx.doi.org/10.1590/S0101-20612008000200018
  • Wang, C. Y., & Singh, R. P. (1978). A single layer drying equation for rough rice. ASAE Paper No: 78-3001, St. Joseph: ASAE.
  • Xavier, W. D., Silva, D. D. A., Resende, O., Guimarães, C. M., Bastos, A. V. S., & Ferreira, W. N. Jr. (2018). Drying kinetics of chives (Allium fistulosum L.). Journal of Experimental Agriculture International, 29(1), 1-10. http://dx.doi.org/10.9734/JEAI/2019/45463
    » http://dx.doi.org/10.9734/JEAI/2019/45463
  • Yagcioglu, A., Degirmencioglu, A., & Cagatay, F. (1999). Drying characteristics of laurel leaves under different drying conditions. In Proceedings of the 7th International Congress on Agricultural Mechanization and Energy (pp. 565-569). Adana, Turkey.

Publication Dates

  • Publication in this collection
    27 Sept 2021
  • Date of issue
    2022

History

  • Received
    02 Mar 2021
  • Accepted
    12 July 2021
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br