Acessibilidade / Reportar erro

Therapeutic value of bone marrow mesenchymal stem cell transplantation incorporated with milrinone on restoring cardiac function

Abstract

To explore the potential effect of bone marrow mesenchymal stem cell (BMSCs) transplantation combined with milrinone on the myocardial cell survival and cardiac function in heart failure. After isolation and culture of rat BMSCs and establishment of rat model of heart failure through intraperitoneal injection of adriamycin, the animals were administered with BMSCs through tail vein injection and/or with milrinone through the jugular vein injection. After that, echocardiography and Doppler images were used to evaluate cardiac function, and ELISA determined the milrinone concentration before and after intervention. The expression of myocardial specific proteins GATA-4, Cx43 and cTnI was determined. Compared with other treatments, administration BMSCs combined with milrinone more significantly improved cardiac function (p < 0.05). The BMSCs treatment had similar effect on the heart as milrinone (p > 0.05). The combined treatment obtained significantly increased expression of BNP levels and the highest expression levels of GATA-4, Cx43 and cTnI, compared to the BMSCs group. Combined treatment with BMSCs and milrinone effectively increase the expressions of GATA-4, Cx43, cTnI, and enhances healing of damaged myocardial cells, reducing lung resistance and plasma volume, and heart afterload. This treatment restores systolic and diastolic functions of the heart.

Keywords:
BMSCs; milrinone; heart function; BNP; myocardial specific protein

1 Introduction

Despite the significant advances in treatments (Fornasini et al., 2010Fornasini, M., Yarzebski, J., Chiriboga, D., Lessard, D., Spencer, F. A., Aurigemma, P., Gore, J. M., & Goldberg, R. J. (2010). Contemporary trends in evidence-based treatment for acute myocardial infarction. The American Journal of Medicine, 123(2), 166-172. http://dx.doi.org/10.1016/j.amjmed.2009.06.031. PMid:20103026.
http://dx.doi.org/10.1016/j.amjmed.2009....
), heart diseases remain a major threat to human’s life, such as acute myocardial infarction (AMI) (Roger et al., 2011Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., Carnethon, M. R., Dai, S., Simone, G., Ford, E. S., Fox, C. S., Fullerton, H. J., Gillespie, C., Greenlund, K. J., Hailpern, S. M., Heit, J. A., Ho, P. M., Howard, V. J., Kissela, B. M., Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Makuc, D. M., Marcus, G. M., Marelli, A., Matchar, D. B., McDermott, M. M., Meigs, J. B., Moy, C. S., Mozaffarian, D., Mussolino, M. E., Nichol, G., Paynter, N. P., Rosamond, W. D., Sorlie, P. D., Stafford, R. S., Turan, T. N., Turner, M. B., Wong, N. D., & Wylie-Rosett, J. (2011). Heart disease and stroke statistics--2011 update: a report from the American Heart Association (Vol. 123, No. 4, pp. e18-e209). Dallas: Circulation/American Heart Association. http://dx.doi.org/10.1161/CIR.0b013e3182009701. PMid:21160056.
http://dx.doi.org/10.1161/CIR.0b013e3182...
; Thygesen et al., 2007Thygesen, K., Alpert, J. S., & White, H. D. (2007). Universal definition of myocardial infarction. Circulation, 116(22), 2634-2653. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.187397. PMid:17951284.
http://dx.doi.org/10.1161/CIRCULATIONAHA...
). In AMI, almost half of all cases appear ventricular dysfunction (Esposito et al., 2010Esposito, G., Dellegrottaglie, S., & Chiariello, M. (2010). The extent of irreversible myocardial damage and the potential for left ventricular repair after primary percutaneous coronary intervention. American Heart Journal, 160(6 Suppl.), S4-S10. http://dx.doi.org/10.1016/j.ahj.2010.10.009. PMid:21147291.
http://dx.doi.org/10.1016/j.ahj.2010.10....
), usually complicated with acute heart failure (AHF). AHF imposes a burden to the medical care industry and society due to its high morbidity, high mortality, high readmission rate (Chen et al., 2013Chen, J., Hsieh, A. F., Dharmarajan, K., Masoudi, F. A., & Krumholz, H. M. (2013). National trends in heart failure hospitalization after acute myocardial infarction for Medicare beneficiaries: 1998-2010. Circulation, 128(24), 2577-2584. http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003668. PMid:24190958.
http://dx.doi.org/10.1161/CIRCULATIONAHA...
; Hunt et al., 2009Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., Jessup, M., Konstam, M. A., Mancini, D. M., Michl, K., Oates, J. A., Rahko, P. S., Silver, M. A., Stevenson, L. W., & Yancy, C. W. (2009). 2009 focused update incorporated into the ACC/AHA 2005 - guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation (Vol. 53, No. 15, pp. e1-e90). Washington: Journal of the American College of Cardiology/American College of Cardiology Foundation/American Heart Association. http://dx.doi.org/10.1016/j.jacc.2008.11.013. PMid:19358937.
http://dx.doi.org/10.1016/j.jacc.2008.11...
; Najafi et al., 2008Najafi, F., Dobson, A. J., Hobbs, M., & Jamrozik, K. (2008). Late-onset heart failure after myocardial infarction: trends in incidence and survival. European Journal of Heart Failure, 10(8), 765-771. http://dx.doi.org/10.1016/j.ejheart.2008.05.015. PMid:18585088.
http://dx.doi.org/10.1016/j.ejheart.2008...
). Therefore, even after overcoming the challenge by AMI, AHF is still a difficult task. Reducing cardiac contractility effectively functions in systolic AHF, leaving positive muscle strength an important part of treatment (Partovian et al., 2012Partovian, C., Gleim, S. R., Mody, P. S., Li, S. X., Wang, H., Strait, K. M., Allen, L. A., Lagu, T., Normand, S. L., & Krumholz, H. M. (2012). Hospital patterns of use of positive inotropic agents in patients with heart failure. Journal of the American College of Cardiology, 60(15), 1402-1409. http://dx.doi.org/10.1016/j.jacc.2012.07.011. PMid:22981548.
http://dx.doi.org/10.1016/j.jacc.2012.07...
). Milrinone, could be used to alleviate of adenosine monophosphate-camp degradation, which accumulates calcium ion and improves myocardial contractility (Alousi & Johnson, 1986Alousi, A. A., & Johnson, D. C. (1986). Pharmacology of the bipyridines: amrinone and milrinone. Circulation, 73(3 Pt 2), III10-III24. PMid:2417744.; Shipley & Hess, 1995Shipley, J. B., & Hess, M. L. (1995). Inotropic therapy for the failing myocardium. Clinical Cardiology, 18(11), 615-619. http://dx.doi.org/10.1002/clc.4960181106. PMid:8590529.
http://dx.doi.org/10.1002/clc.4960181106...
) possibly by increasing the concentration of cAMP (Silver et al., 1989Silver, P. J., Harris, A. L., Canniff, P. C., Lepore, R. E., Bentley, R. G., Hamel, L. T., & Evans, D. B. (1989). Phosphodiesterase isozyme inhibition, activation of the cAMP system, and positive inotropy mediated by milrinone in isolated guinea pig cardiac muscle. Journal of Cardiovascular Pharmacology, 13(4), 530-540. http://dx.doi.org/10.1097/00005344-198913040-00004. PMid:2470989.
http://dx.doi.org/10.1097/00005344-19891...
), which in turn causes cell relaxation and vasodilation. Milrinone has been widely applied to cases of severe AHF and acute exacerbation of chronic heart failure (HF) to facilitate circulation (Jessup et al., 2009Jessup, M., Abraham, W. T., Casey, D. E., Feldman, A. M., Francis, G. S., Ganiats, T. G., Konstam, M. A., Mancini, D. M., Rahko, P. S., Silver, M. A., Stevenson, L. W., & Yancy, C. W. (2009). 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation (Vol. 119, No. 14, pp. 1977-2016). Dallas: Circulation/American College of Cardiology Foundation/American Heart Association. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192064. PMid:19324967.
http://dx.doi.org/10.1161/CIRCULATIONAHA...
). However, it is not appropriate for AHF following AMI because of concerns that it may cause arrhythmias (DiBianco et al., 1989DiBianco, R., Shabetai, R., Kostuk, W., Moran, J., Schlant, R. C., & Wright, R. (1989). A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. The New England Journal of Medicine, 320(11), 677-683. http://dx.doi.org/10.1056/NEJM198903163201101. PMid:2646536.
http://dx.doi.org/10.1056/NEJM1989031632...
). Some previous studies have assessed the effectiveness and safety of milrinone in AHF patients after AMI, but still no trial with large sample size could support a clear conclusion.

Mesenchymal stem cells (MSCs) have been used for tissue regeneration. This kind of cells has low immunogenicity and is not prone to rejection. MSCs could differentiate into cardiomyocytes in vitro and have unique immunomodulatory effects. The therapeutic potential of MSCs for HF has been frequently reported and the effectiveness has been confirmed (Jessup et al., 2009Jessup, M., Abraham, W. T., Casey, D. E., Feldman, A. M., Francis, G. S., Ganiats, T. G., Konstam, M. A., Mancini, D. M., Rahko, P. S., Silver, M. A., Stevenson, L. W., & Yancy, C. W. (2009). 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation (Vol. 119, No. 14, pp. 1977-2016). Dallas: Circulation/American College of Cardiology Foundation/American Heart Association. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192064. PMid:19324967.
http://dx.doi.org/10.1161/CIRCULATIONAHA...
). Therefore, this study intended to examine their potential to alleviate heart damage. Compared with other stem cells like embryonic stem cells, MSCs own potentials of self-renewal, proliferation, and differentiation (Caplan, 2009Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. The Journal of Pathology, 217(2), 318-324. http://dx.doi.org/10.1002/path.2469. PMid:19023885.
http://dx.doi.org/10.1002/path.2469...
; Caplan & Correa, 2011Caplan, A. I., & Correa, D. (2011). PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. Journal of Orthopaedic Research, 29(12), 1795-1803. http://dx.doi.org/10.1002/jor.21462. PMid:21618276.
http://dx.doi.org/10.1002/jor.21462...
). They also have low immunogenicity and rarely express MHC II and T cell stimulating molecules (Jiang et al., 2008Jiang, S., Haider, H. K., Ahmed, R. P. H., Idris, N. M., Salim, A., & Ashraf, M. (2008). Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 44(3), 582-596. http://dx.doi.org/10.1016/j.yjmcc.2007.11.014. PMid:18199451.
http://dx.doi.org/10.1016/j.yjmcc.2007.1...
), indicating that they are immunologically inert. Easy collection, and less sensitivity to genetic mutations and proliferative capacity leaves MSCs available for cell therapy. Animal experiments have demonstrated that MSC transplantation would enhance neovascularization, increase cell survial and restore heart functions in AMI (Amado et al., 2005Amado, L. C., Saliaris, A. P., Schuleri, K. H., John, M. S., Xie, J.-S., Cattaneo, S., Durand, D. J., Fitton, T., Kuang, J. Q., Stewart, G., Lehrke, S., Baumgartner, W. W., Martin, B. J., Heldman, A. W., & Hare, J. M. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474-11479. http://dx.doi.org/10.1073/pnas.0504388102. PMid:16061805.
http://dx.doi.org/10.1073/pnas.050438810...
; Nagaya et al., 2005Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., Fujii, T., Uematsu, M., Ohgushi, H., Yamagishi, M., Tokudome, T., Mori, H., Miyatake, K., & Kitamura, S. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112(8), 1128-1135. http://dx.doi.org/10.1161/CIRCULATIONAHA.104.500447. PMid:16103243.
http://dx.doi.org/10.1161/CIRCULATIONAHA...
; Schuleri et al., 2009Schuleri, K. H., Feigenbaum, G. S., Centola, M., Weiss, E. S., Zimmet, J. M., Turney, J., Kellner, J., Zviman, M. M., Hatzistergos, K. E., Detrick, B., Conte, J. V., McNiece, I., Steenbergen, C., Lardo, A. C., & Hare, J. M. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30(22), 2722-2732. http://dx.doi.org/10.1093/eurheartj/ehp265. PMid:19586959.
http://dx.doi.org/10.1093/eurheartj/ehp2...
; Silva et al., 2005Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., Coulter, S. C., Lin, J., Ober, J., Vaughn, W. K., Branco, R. V., Oliveira, E. M., He, R., Geng, Y. J., Willerson, J. T., & Perin, E. C. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111(2), 150-156. http://dx.doi.org/10.1161/01.CIR.0000151812.86142.45. PMid:15642764.
http://dx.doi.org/10.1161/01.CIR.0000151...
; Toma et al., 2002Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93-98. http://dx.doi.org/10.1161/hc0102.101442. PMid:11772882.
http://dx.doi.org/10.1161/hc0102.101442...
; Valina et al., 2007Valina, C., Pinkernell, K., Song, Y.-H., Bai, X., Sadat, S., Campeau, R. J., Jemtel, T. H., & Alt, E. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28(21), 2667-2677. http://dx.doi.org/10.1093/eurheartj/ehm426. PMid:17933755.
http://dx.doi.org/10.1093/eurheartj/ehm4...
). Additionally, MSCs can repair DNA damage (Sugrue et al., 2013Sugrue, T., Brown, J. A., Lowndes, N. F., & Ceredig, R. (2013). Multiple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines. Stem Cells, 31(1), 137-145. http://dx.doi.org/10.1002/stem.1222. PMid:22961695.
http://dx.doi.org/10.1002/stem.1222...
). In a recent study using two cloned mouse MSC lines MS5 and ST2, MSCs essentially express DDR proteins, such as ATM to enhance healing of strand breaks and improve survival after heavy ion irradiation (Yu et al., 2018Yu, J., Shi, J., Zhang, Y., Zhang, Y., Huang, Y., Chen, Z., & Yang, J. (2018). The replicative senescent mesenchymal stem / stromal cells defect in DNA damage response and anti-oxidative capacity. International Journal of Medical Sciences, 15(8), 771-781. http://dx.doi.org/10.7150/ijms.24635. PMid:30008586.
http://dx.doi.org/10.7150/ijms.24635...
). MSCs effectively improve DNA DSB through activation of signaling pathways.

Bone mesenchymal stem cells (BMSCs) have attracted much attentions from researchers because of their great differential potentials and rare immune and rejection reactions (Gnecchi et al., 2012Gnecchi, M., Danieli, P., & Cervio, E. (2012). Mesenchymal stem cell therapy for heart disease. Vascular Pharmacology, 57(1), 48-55. http://dx.doi.org/10.1016/j.vph.2012.04.002. PMid:22521741.
http://dx.doi.org/10.1016/j.vph.2012.04....
; Hatzistergos et al., 2010Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., Mazhari, R., Boyle, A. J., Zambrano, J. P., Rodriguez, J. E., Dulce, R., Pattany, P. M., Valdes, D., Revilla, C., Heldman, A. W., McNiece, I., & Hare, J. M. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107(7), 913-922. http://dx.doi.org/10.1161/CIRCRESAHA.110.222703. PMid:20671238.
http://dx.doi.org/10.1161/CIRCRESAHA.110...
; Wei et al., 2012Wei, H., Tan, G., Manasi, Qiu, S., Kong, G., Yong, P., Koh, C., Ooi, T. H., Lim, S. Y., Wong, P., Gan, S. U., & Shim, W. (2012). One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells. Stem Cell Research, 9(2), 87-100. http://dx.doi.org/10.1016/j.scr.2012.04.003. PMid:22683798.
http://dx.doi.org/10.1016/j.scr.2012.04....
). In recent years, animal experiments have confirmed that BMSC transplantation obtained improved heart function (Li et al., 2012Li, X.-H., Fu, Y.-H., Lin, Q.-X., Liu, Z.-Y., Shan, Z.-X., Deng, C.-Y., Zhu, J.-N., Yang, M., Lin, S.-G., Li, Y., & Yu, X.-Y. (2012). Induced bone marrow mesenchymal stem cells improve cardiac performance of infarcted rat hearts. Molecular Biology Reports, 39(2), 1333-1342. http://dx.doi.org/10.1007/s11033-011-0867-2. PMid:21667244.
http://dx.doi.org/10.1007/s11033-011-086...
; Tokunaga et al., 2010Tokunaga, M., Liu, M. L., Nagai, T., Iwanaga, K., Matsuura, K., Takahashi, T., Kanda, M., Kondo, N., Wang, P., Naito, A. T., & Komuro, I. (2010). Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. Journal of Molecular and Cellular Cardiology, 49(6), 972-983. http://dx.doi.org/10.1016/j.yjmcc.2010.09.015. PMid:20869968.
http://dx.doi.org/10.1016/j.yjmcc.2010.0...
; Vassalli & Moccetti, 2011Vassalli, G., & Moccetti, T. (2011). Cardiac repair with allogeneic mesenchymal stem cells after myocardial infarction. Swiss Medical Weekly, 141, w13209. http://dx.doi.org/10.4414/smw.2011.13209. PMid:21607881.
http://dx.doi.org/10.4414/smw.2011.13209...
; Wen et al., 2011Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15(5), 1032-1043. http://dx.doi.org/10.1111/j.1582-4934.2010.01255.x. PMid:21199333.
http://dx.doi.org/10.1111/j.1582-4934.20...
). However, the efficacy of BMSC transplantation in previous clinical studies is not satisfactory. BMSCs used for transplantation are not purely cultured; therefore, less transplanted cells survive to differentiate (Hilfiker et al., 2011Hilfiker, A., Kasper, C., Hass, R., & Haverich, A. (2011). Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbeck’s Archives of Surgery, 396(4), 489-497. http://dx.doi.org/10.1007/s00423-011-0762-2. PMid:21373941.
http://dx.doi.org/10.1007/s00423-011-076...
; Menasche, 2011Menasche, P. (2011). Cardiac cell therapy: lessons from clinical trials. Journal of Molecular and Cellular Cardiology, 50(2), 258-265. http://dx.doi.org/10.1016/j.yjmcc.2010.06.010. PMid:20600097.
http://dx.doi.org/10.1016/j.yjmcc.2010.0...
). Therefore, many studies on the treatment of heart disease are trying to improve cell survial and affect differentiation into cardiomyocytes. In this study, we established a rat HF model and administered milrinone and BMSCs to the animals, and then examined the effect of combined treatment on heart function. Assays were carried out to assess cell survial and examine the level of myocardial proteins, providing new ideas for the treatment of HF.

2 Materials and methods

2.1 Animals

Forty male (6-7 weeks old, 200-220 g) were purchased to establish a model of HF as previous description (13). Briefly, the animals received intraperitoneal injection of adriamycin 2.5 mg/kg 3 times in one week. After an interval of two weeks, doxorubicin was given for another week with total dosage of 15 mg/kg. This study followed the Guide for the Care and Use of Laboratory Animals from the National Institutes of Health and obtained approval by the IACUC of the First Affiliated Hospital.

2.2 Cell culture

The rat femur and tibia were dissected, and the epiphyseal plates were exposed. Following rinsing the bone marrow with PBS, the marrow was blown into the cell suspension and centrifuged at 1500 rpm. The pellet was incubated in DMEM and prepared into the cell suspension, and placed it in a culture flask. When the confluency reached > 80%, the cells were digested and passaged, as the cell morphology was detected by a phase-contrast microscope, and cells were labeled. The cells were seeded in a 25 mm petri dish. When the confluence reached 60%, bromodeoxyuridine was added to the cells (10 mol/L). After 48 h of incubation, the mixture was subjected to centrifugation and the cells were kept in ice.

2.3 Grouping

With some healthy rats untreated (normal group) and HF rats treated with normal saline (HF group), other rats were administered with BMSCs through tail vein injection (BMSCs group) and/or 15 g/kg/day of milrinone (milrinone group and BMSCs + milrinone group) through the jugular vein injection (n = 8) for 4 weeks. .

2.4 Echocardiogram

An 11.4 MHz high-frequency ultrasound examination was performed along the chest wall with an l0S probe, with depth of 2.0 cm and total dose of intraperitoneal injection 800 mg/kg (20%). Two-dimensional ultrasound and m-mode ultrasound were used to detect LVSD, LVDD, LVSV, and LVDV. Each parameter was measured three times under a continuous full heartbeat cycle and the average value was calculated. Simpson method measured LVEF and LVFS.

2.5 Detection of heart function

Under anesthesia, the catheter was inserted into the left ventricle after separation of the right common carotid artery. A Doppler recorder examined the LVSP, LVDP, heart rate and left ventricular pressure (dp/dtmax).

2.6 Detection of serum BNP

Blood sample was collected from the tail vein of fasting rats in the morning before and after 4 weeks of treatment. The sample was centrifuged and the serum was collected. The serum BNP level was detected by ELISA (Boster Company, Wuhan, China).

2.7 Western blot

Proteins extracted from tissues were subjected to Western blot analysis with primary antibodies against cTnI (1:3000), Cx43 (1:300) and GATA-4 (1:200) (Wuhan Bobst Company).

2.8 Statistical analysis

Data were analyzed by SPSS 16.0 software. The measurement data were analyzed by paired-sample Student's t test and Spearman rank test assessed the correlation between the data. p < 0.05 indicates significant difference.

3 Results

3.1 Animal model

Of all rats, only 34 ones survived for further experiments and 4 rats died suddenly of unknown reasons, and the other 2 died of massive ascites. The echocardiography revealed insignificant difference on LVDD and LVSD before and after modeling (p ≥ 0.05) as well as LVEF and LVFS with significant difference. According to the standard of HF model, LVEF and LVFS shall decrease by 20-30%. The ventricles of the 5 rats did not show significant dilation, and their LVEF value did not decrease significantly, so these animals were excluded. 29 rats meeting the criteria survived.

3.2 Comparison of cardiac function

The echocardiogram of the heart failure group confirmed the impaired left ventricular function with increased LVSD and LVDD, and decreased LVFS and LVEF. Treatment with either BMSCs, milrinone or the combination of them resulted in significant differences in LVSD, LVDD, LVEF, LVFS and HF (p < 0.05), improving the ventricular function. Among the three groups, the BMSCs + Milrinone group most significantly improved the contractile function (p < 0.05). However, the difference between the BMSCs group and the milrinone group did not reach significance (p ≥ 0.05; Table 1).

Table 1
Echocardiographic analysis of heart function in rats with heart failure 4 weeks after injection (mean ± sd).

3.3 Hemodynamic index

After 4 weeks of treatment, hemodynamic indicators varied among the groups (p < 0.05). The BMSCs, milrinone and BMSCs + milrinone groups all had increased LVSP and dp/dtmax, and decreased LVDP value (P<0.01), indicating improvements in the heart function, but there is no significant improvement compared with the normal group (p ≥ 0.05). Of all groups, the dp/dtmax of the BMSCs with milrinone group was the highest, as the difference between the BMSCss group and the milrinone group was not significant (p ≥ 0.05; Table 2)

Table 2
Hemodynamic index of rats with HF 4 (mean ± sd).

3.4 Changes in serum BNP levels

The BNP level of each group decreased, and it restored significantly after treatments. Before treatment, the BNP levels of the BMSCs group, the milrinone group, and the BMSCs + milrinone group did not vary significantly (p > 0.05). After the intervention, the level of BNP increased (p < 0.05) with lowest level indicated in the BMSCs + milrinone group (p < 0.05) (Table 3).

Table 3
Serum BNP levels (ng/L, mean ± sd) 4 weeks after injection.

3.5 Specific proteins

After 4 weeks, we checked up the level of proteins. Treatment with BMSCs and/or milrinone restored the expressions of GATA-4, cTnI, and Cx43 (p < 0.05), especially BMSCss + milrinone group having the highest expressions (p < 0.05). The expression level of GATA-4 in the BMSCs group increased more significantly (p < 0.05; Figure 1).

Figure 1
Western blot detection of rat GATA-4, Cx43 and cTnI protein expression. (A) GATA-4 protein; (B) Cx43 protein; (C) cTNI protein; (D) β-actin. Group 1: HF group; group 2: milrinone group; group 3: BMSC group; group 4: BMSC + milrinone group.

3.6 Discussion

Heart function changes following cardiac diseases are essentially caused by degeneration and necrosis of myocardial cells. Conventional treatments for heart failure can only alleviate the symptoms instead of preventing the progression. Considering the insufficient donors and transplant rejection, heart transplantation is not available enough. Myocardial tissue to replace the damaged tissues has a broader application prospect. Therefore, repair and replacement of cardiomyocytes and stem cells is expected as a promising option (Arnous et al., 2012Arnous, S., Mozid, A., Martin, J., & Mathur, A. (2012). Bone marrow mononuclear cells and acute myocardial infarction. Stem Cell Research & Therapy, 3(1), 2. http://dx.doi.org/10.1186/scrt93. PMid:22264393.
http://dx.doi.org/10.1186/scrt93...
; Hoover-Plow & Gong, 2012Hoover-Plow, J., & Gong, Y. (2012). Challenges for heart disease stem cell therapy. Vascular Health and Risk Management, 8, 99-113. http://dx.doi.org/10.2147/VHRM.S25665. PMid:22399855.
http://dx.doi.org/10.2147/VHRM.S25665...
; Oh et al., 2012Oh, Y., Wei, H., Ma, D., Sun, X., & Liew, R. (2012). Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicine. Heart, 98(6), 443-449. http://dx.doi.org/10.1136/heartjnl-2011-301317. PMid:22285968.
http://dx.doi.org/10.1136/heartjnl-2011-...
).

Though Milrinone does not damage heart, it might accumulate cGMP relaxing smooth muscle cells and decreasing pressures on vessels and heart, thereby improving cardiac function. Additionally, milrinone hinders the reabsorption of sodium relieving load through enhancement of filtration (Bocchi et al., 2013Bocchi, E. A., Moura, L. Z., Issa, V. S., Cruz, F., Carvalho, V. O., & Guimarães, G. V. (2013). Effects of the recombinant form of the natural human B-type natriuretic peptide and levosimendan on pulmonary hyperventilation and chemosensivity in heart failure. Cardiovascular Therapeutics, 31(2), 100-107. http://dx.doi.org/10.1111/j.1755-5922.2011.00297.x. PMid:21884030.
http://dx.doi.org/10.1111/j.1755-5922.20...
; Iglesias et al., 2006Iglesias, J., Hom, D., Antoniotti, M., Ayoub, S., & Levine, J. S. (2006). Predictors of worsening renal function in adult patients with congestive heart failure receiving recombinant human B-type brain natriuretic peptide (nesiritide). Nephrology, Dialysis, Transplantation, 21(12), 3458-3465. http://dx.doi.org/10.1093/ndt/gfl428. PMid:16877484.
http://dx.doi.org/10.1093/ndt/gfl428...
; Mills et al., 1999Mills, R. M., LeJemtel, T. H., Horton, D. P., Liang, C.-S., Lang, R., Silver, M. A., Lui, C., & Chatterjee, K. (1999). Sustained hemodynamic effects of an infusion of nesiritide (human b-type natriuretic peptide) in heart failure: a randomized, double-blind, placebo-controlled clinical trial. Journal of the American College of Cardiology, 34(1), 155-162. http://dx.doi.org/10.1016/S0735-1097(99)00184-9. PMid:10400005.
http://dx.doi.org/10.1016/S0735-1097(99)...
). Milrinone impacts the blood pressure, volume, and electrolyte balance, restoring cardiac function. With no positive inotropic effect, milrinone hardly imposes oxygen consumption.

Dobutamine mainly improves cardiac contractility and mitigates resistance through agonistic effect with significantly cardioprotective effect. Nevertheless, in the case of increased cardiac contractility, administration of high-dose dobutamine might accelerate the ventricular rate and blood pressure will increase, which might affect the condition of AMI.

4 Conclusion

Rats with a 20-30% reduction in LVEF were selected as experimental models. In this study, our results indicated that BMSCs transplantation could restore heart function, but the degree was limited. BMSCs exerted similar effect on the heart function as milrinone with no significant difference. Compared with simple cell transplantation, BMSCs transplantation incorporated with milrinone more significantly improved HF.

A controversial issue on cell transplantation is the possibility of transplanted cells to be induced into cardiomyocytes. BMSCs transplantation is confirmed to exert protective effect on heart. But this approach hardly cures the condition and its long-term efficacy remains elusive. Few evidences indicated the potential of BMSCs to differentiate into cardiomyocytes, but it has been acceptable that cell transplantation can angiogenesis and resist myocardial apoptosis through paracrine instead of differentiation. In this study, BMSCs transplantation induced increased expression of GATA-4 in myocardial tissue which correlates to cardiomyocyte differentiation. The lower level of GATA-4 expression in HF model rats treated with milrinone may be due to the presence of cell division. In the presence of BMSCs and milrinone, the expression of GATA-4 as well as Cx43 and cTnI increased. Whether the above changes result from enhancing the differentiation of BMSCs into cardiomyocytes, or enhancing BMSC survival and whether the efficacy of combined treatment is the sum of the two approaches or the synergistic effect deserves further analysis.

  • Practical Application: Our study shows that combined treatment with BMSCs and milrinone effectively enhances healing of damaged myocardial cells and restores systolic and diastolic functions of the heart. However, whether it exerts the same role in patients with cardiovascular disease remains to be further investigated.

References

  • Alousi, A. A., & Johnson, D. C. (1986). Pharmacology of the bipyridines: amrinone and milrinone. Circulation, 73(3 Pt 2), III10-III24. PMid:2417744.
  • Amado, L. C., Saliaris, A. P., Schuleri, K. H., John, M. S., Xie, J.-S., Cattaneo, S., Durand, D. J., Fitton, T., Kuang, J. Q., Stewart, G., Lehrke, S., Baumgartner, W. W., Martin, B. J., Heldman, A. W., & Hare, J. M. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474-11479. http://dx.doi.org/10.1073/pnas.0504388102 PMid:16061805.
    » http://dx.doi.org/10.1073/pnas.0504388102
  • Arnous, S., Mozid, A., Martin, J., & Mathur, A. (2012). Bone marrow mononuclear cells and acute myocardial infarction. Stem Cell Research & Therapy, 3(1), 2. http://dx.doi.org/10.1186/scrt93 PMid:22264393.
    » http://dx.doi.org/10.1186/scrt93
  • Bocchi, E. A., Moura, L. Z., Issa, V. S., Cruz, F., Carvalho, V. O., & Guimarães, G. V. (2013). Effects of the recombinant form of the natural human B-type natriuretic peptide and levosimendan on pulmonary hyperventilation and chemosensivity in heart failure. Cardiovascular Therapeutics, 31(2), 100-107. http://dx.doi.org/10.1111/j.1755-5922.2011.00297.x PMid:21884030.
    » http://dx.doi.org/10.1111/j.1755-5922.2011.00297.x
  • Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. The Journal of Pathology, 217(2), 318-324. http://dx.doi.org/10.1002/path.2469 PMid:19023885.
    » http://dx.doi.org/10.1002/path.2469
  • Caplan, A. I., & Correa, D. (2011). PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. Journal of Orthopaedic Research, 29(12), 1795-1803. http://dx.doi.org/10.1002/jor.21462 PMid:21618276.
    » http://dx.doi.org/10.1002/jor.21462
  • Chen, J., Hsieh, A. F., Dharmarajan, K., Masoudi, F. A., & Krumholz, H. M. (2013). National trends in heart failure hospitalization after acute myocardial infarction for Medicare beneficiaries: 1998-2010. Circulation, 128(24), 2577-2584. http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003668 PMid:24190958.
    » http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003668
  • DiBianco, R., Shabetai, R., Kostuk, W., Moran, J., Schlant, R. C., & Wright, R. (1989). A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. The New England Journal of Medicine, 320(11), 677-683. http://dx.doi.org/10.1056/NEJM198903163201101 PMid:2646536.
    » http://dx.doi.org/10.1056/NEJM198903163201101
  • Esposito, G., Dellegrottaglie, S., & Chiariello, M. (2010). The extent of irreversible myocardial damage and the potential for left ventricular repair after primary percutaneous coronary intervention. American Heart Journal, 160(6 Suppl.), S4-S10. http://dx.doi.org/10.1016/j.ahj.2010.10.009 PMid:21147291.
    » http://dx.doi.org/10.1016/j.ahj.2010.10.009
  • Fornasini, M., Yarzebski, J., Chiriboga, D., Lessard, D., Spencer, F. A., Aurigemma, P., Gore, J. M., & Goldberg, R. J. (2010). Contemporary trends in evidence-based treatment for acute myocardial infarction. The American Journal of Medicine, 123(2), 166-172. http://dx.doi.org/10.1016/j.amjmed.2009.06.031 PMid:20103026.
    » http://dx.doi.org/10.1016/j.amjmed.2009.06.031
  • Gnecchi, M., Danieli, P., & Cervio, E. (2012). Mesenchymal stem cell therapy for heart disease. Vascular Pharmacology, 57(1), 48-55. http://dx.doi.org/10.1016/j.vph.2012.04.002 PMid:22521741.
    » http://dx.doi.org/10.1016/j.vph.2012.04.002
  • Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., Mazhari, R., Boyle, A. J., Zambrano, J. P., Rodriguez, J. E., Dulce, R., Pattany, P. M., Valdes, D., Revilla, C., Heldman, A. W., McNiece, I., & Hare, J. M. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107(7), 913-922. http://dx.doi.org/10.1161/CIRCRESAHA.110.222703 PMid:20671238.
    » http://dx.doi.org/10.1161/CIRCRESAHA.110.222703
  • Hilfiker, A., Kasper, C., Hass, R., & Haverich, A. (2011). Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbeck’s Archives of Surgery, 396(4), 489-497. http://dx.doi.org/10.1007/s00423-011-0762-2 PMid:21373941.
    » http://dx.doi.org/10.1007/s00423-011-0762-2
  • Hoover-Plow, J., & Gong, Y. (2012). Challenges for heart disease stem cell therapy. Vascular Health and Risk Management, 8, 99-113. http://dx.doi.org/10.2147/VHRM.S25665 PMid:22399855.
    » http://dx.doi.org/10.2147/VHRM.S25665
  • Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., Jessup, M., Konstam, M. A., Mancini, D. M., Michl, K., Oates, J. A., Rahko, P. S., Silver, M. A., Stevenson, L. W., & Yancy, C. W. (2009). 2009 focused update incorporated into the ACC/AHA 2005 - guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation (Vol. 53, No. 15, pp. e1-e90). Washington: Journal of the American College of Cardiology/American College of Cardiology Foundation/American Heart Association. http://dx.doi.org/10.1016/j.jacc.2008.11.013 PMid:19358937.
    » http://dx.doi.org/10.1016/j.jacc.2008.11.013
  • Iglesias, J., Hom, D., Antoniotti, M., Ayoub, S., & Levine, J. S. (2006). Predictors of worsening renal function in adult patients with congestive heart failure receiving recombinant human B-type brain natriuretic peptide (nesiritide). Nephrology, Dialysis, Transplantation, 21(12), 3458-3465. http://dx.doi.org/10.1093/ndt/gfl428 PMid:16877484.
    » http://dx.doi.org/10.1093/ndt/gfl428
  • Jessup, M., Abraham, W. T., Casey, D. E., Feldman, A. M., Francis, G. S., Ganiats, T. G., Konstam, M. A., Mancini, D. M., Rahko, P. S., Silver, M. A., Stevenson, L. W., & Yancy, C. W. (2009). 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation (Vol. 119, No. 14, pp. 1977-2016). Dallas: Circulation/American College of Cardiology Foundation/American Heart Association. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192064 PMid:19324967.
    » http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192064
  • Jiang, S., Haider, H. K., Ahmed, R. P. H., Idris, N. M., Salim, A., & Ashraf, M. (2008). Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 44(3), 582-596. http://dx.doi.org/10.1016/j.yjmcc.2007.11.014 PMid:18199451.
    » http://dx.doi.org/10.1016/j.yjmcc.2007.11.014
  • Li, X.-H., Fu, Y.-H., Lin, Q.-X., Liu, Z.-Y., Shan, Z.-X., Deng, C.-Y., Zhu, J.-N., Yang, M., Lin, S.-G., Li, Y., & Yu, X.-Y. (2012). Induced bone marrow mesenchymal stem cells improve cardiac performance of infarcted rat hearts. Molecular Biology Reports, 39(2), 1333-1342. http://dx.doi.org/10.1007/s11033-011-0867-2 PMid:21667244.
    » http://dx.doi.org/10.1007/s11033-011-0867-2
  • Menasche, P. (2011). Cardiac cell therapy: lessons from clinical trials. Journal of Molecular and Cellular Cardiology, 50(2), 258-265. http://dx.doi.org/10.1016/j.yjmcc.2010.06.010 PMid:20600097.
    » http://dx.doi.org/10.1016/j.yjmcc.2010.06.010
  • Mills, R. M., LeJemtel, T. H., Horton, D. P., Liang, C.-S., Lang, R., Silver, M. A., Lui, C., & Chatterjee, K. (1999). Sustained hemodynamic effects of an infusion of nesiritide (human b-type natriuretic peptide) in heart failure: a randomized, double-blind, placebo-controlled clinical trial. Journal of the American College of Cardiology, 34(1), 155-162. http://dx.doi.org/10.1016/S0735-1097(99)00184-9 PMid:10400005.
    » http://dx.doi.org/10.1016/S0735-1097(99)00184-9
  • Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., Fujii, T., Uematsu, M., Ohgushi, H., Yamagishi, M., Tokudome, T., Mori, H., Miyatake, K., & Kitamura, S. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112(8), 1128-1135. http://dx.doi.org/10.1161/CIRCULATIONAHA.104.500447 PMid:16103243.
    » http://dx.doi.org/10.1161/CIRCULATIONAHA.104.500447
  • Najafi, F., Dobson, A. J., Hobbs, M., & Jamrozik, K. (2008). Late-onset heart failure after myocardial infarction: trends in incidence and survival. European Journal of Heart Failure, 10(8), 765-771. http://dx.doi.org/10.1016/j.ejheart.2008.05.015 PMid:18585088.
    » http://dx.doi.org/10.1016/j.ejheart.2008.05.015
  • Oh, Y., Wei, H., Ma, D., Sun, X., & Liew, R. (2012). Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicine. Heart, 98(6), 443-449. http://dx.doi.org/10.1136/heartjnl-2011-301317 PMid:22285968.
    » http://dx.doi.org/10.1136/heartjnl-2011-301317
  • Partovian, C., Gleim, S. R., Mody, P. S., Li, S. X., Wang, H., Strait, K. M., Allen, L. A., Lagu, T., Normand, S. L., & Krumholz, H. M. (2012). Hospital patterns of use of positive inotropic agents in patients with heart failure. Journal of the American College of Cardiology, 60(15), 1402-1409. http://dx.doi.org/10.1016/j.jacc.2012.07.011 PMid:22981548.
    » http://dx.doi.org/10.1016/j.jacc.2012.07.011
  • Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., Carnethon, M. R., Dai, S., Simone, G., Ford, E. S., Fox, C. S., Fullerton, H. J., Gillespie, C., Greenlund, K. J., Hailpern, S. M., Heit, J. A., Ho, P. M., Howard, V. J., Kissela, B. M., Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Makuc, D. M., Marcus, G. M., Marelli, A., Matchar, D. B., McDermott, M. M., Meigs, J. B., Moy, C. S., Mozaffarian, D., Mussolino, M. E., Nichol, G., Paynter, N. P., Rosamond, W. D., Sorlie, P. D., Stafford, R. S., Turan, T. N., Turner, M. B., Wong, N. D., & Wylie-Rosett, J. (2011). Heart disease and stroke statistics--2011 update: a report from the American Heart Association (Vol. 123, No. 4, pp. e18-e209). Dallas: Circulation/American Heart Association. http://dx.doi.org/10.1161/CIR.0b013e3182009701 PMid:21160056.
    » http://dx.doi.org/10.1161/CIR.0b013e3182009701
  • Schuleri, K. H., Feigenbaum, G. S., Centola, M., Weiss, E. S., Zimmet, J. M., Turney, J., Kellner, J., Zviman, M. M., Hatzistergos, K. E., Detrick, B., Conte, J. V., McNiece, I., Steenbergen, C., Lardo, A. C., & Hare, J. M. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30(22), 2722-2732. http://dx.doi.org/10.1093/eurheartj/ehp265 PMid:19586959.
    » http://dx.doi.org/10.1093/eurheartj/ehp265
  • Shipley, J. B., & Hess, M. L. (1995). Inotropic therapy for the failing myocardium. Clinical Cardiology, 18(11), 615-619. http://dx.doi.org/10.1002/clc.4960181106 PMid:8590529.
    » http://dx.doi.org/10.1002/clc.4960181106
  • Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., Coulter, S. C., Lin, J., Ober, J., Vaughn, W. K., Branco, R. V., Oliveira, E. M., He, R., Geng, Y. J., Willerson, J. T., & Perin, E. C. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111(2), 150-156. http://dx.doi.org/10.1161/01.CIR.0000151812.86142.45 PMid:15642764.
    » http://dx.doi.org/10.1161/01.CIR.0000151812.86142.45
  • Silver, P. J., Harris, A. L., Canniff, P. C., Lepore, R. E., Bentley, R. G., Hamel, L. T., & Evans, D. B. (1989). Phosphodiesterase isozyme inhibition, activation of the cAMP system, and positive inotropy mediated by milrinone in isolated guinea pig cardiac muscle. Journal of Cardiovascular Pharmacology, 13(4), 530-540. http://dx.doi.org/10.1097/00005344-198913040-00004 PMid:2470989.
    » http://dx.doi.org/10.1097/00005344-198913040-00004
  • Sugrue, T., Brown, J. A., Lowndes, N. F., & Ceredig, R. (2013). Multiple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines. Stem Cells, 31(1), 137-145. http://dx.doi.org/10.1002/stem.1222 PMid:22961695.
    » http://dx.doi.org/10.1002/stem.1222
  • Thygesen, K., Alpert, J. S., & White, H. D. (2007). Universal definition of myocardial infarction. Circulation, 116(22), 2634-2653. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.187397 PMid:17951284.
    » http://dx.doi.org/10.1161/CIRCULATIONAHA.107.187397
  • Tokunaga, M., Liu, M. L., Nagai, T., Iwanaga, K., Matsuura, K., Takahashi, T., Kanda, M., Kondo, N., Wang, P., Naito, A. T., & Komuro, I. (2010). Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. Journal of Molecular and Cellular Cardiology, 49(6), 972-983. http://dx.doi.org/10.1016/j.yjmcc.2010.09.015 PMid:20869968.
    » http://dx.doi.org/10.1016/j.yjmcc.2010.09.015
  • Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93-98. http://dx.doi.org/10.1161/hc0102.101442 PMid:11772882.
    » http://dx.doi.org/10.1161/hc0102.101442
  • Valina, C., Pinkernell, K., Song, Y.-H., Bai, X., Sadat, S., Campeau, R. J., Jemtel, T. H., & Alt, E. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28(21), 2667-2677. http://dx.doi.org/10.1093/eurheartj/ehm426 PMid:17933755.
    » http://dx.doi.org/10.1093/eurheartj/ehm426
  • Vassalli, G., & Moccetti, T. (2011). Cardiac repair with allogeneic mesenchymal stem cells after myocardial infarction. Swiss Medical Weekly, 141, w13209. http://dx.doi.org/10.4414/smw.2011.13209 PMid:21607881.
    » http://dx.doi.org/10.4414/smw.2011.13209
  • Wei, H., Tan, G., Manasi, Qiu, S., Kong, G., Yong, P., Koh, C., Ooi, T. H., Lim, S. Y., Wong, P., Gan, S. U., & Shim, W. (2012). One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells. Stem Cell Research, 9(2), 87-100. http://dx.doi.org/10.1016/j.scr.2012.04.003 PMid:22683798.
    » http://dx.doi.org/10.1016/j.scr.2012.04.003
  • Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15(5), 1032-1043. http://dx.doi.org/10.1111/j.1582-4934.2010.01255.x PMid:21199333.
    » http://dx.doi.org/10.1111/j.1582-4934.2010.01255.x
  • Yu, J., Shi, J., Zhang, Y., Zhang, Y., Huang, Y., Chen, Z., & Yang, J. (2018). The replicative senescent mesenchymal stem / stromal cells defect in DNA damage response and anti-oxidative capacity. International Journal of Medical Sciences, 15(8), 771-781. http://dx.doi.org/10.7150/ijms.24635 PMid:30008586.
    » http://dx.doi.org/10.7150/ijms.24635

Publication Dates

  • Publication in this collection
    27 Apr 2022
  • Date of issue
    2022

History

  • Received
    01 Feb 2022
  • Accepted
    20 Mar 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br