Acessibilidade / Reportar erro

Effects of the addition of microencapsulated aromatic herb extracts on fatty acid profile of different meat products

Abstract

The objective of this study was to evaluate the influence of addition of microencapsulated natural extracts of aromatic herbs in comparison with synthetic antioxidants on fatty acids profile of different meat products (restructured product of Tilapia mechanically separated fish meat (RP) and Fresh pork sausage (FS) stored under freezing and cold storage. Synthetic antioxidant sodium erythorbate was used in the RP and butylated hydroxytoluene (BHT) was used in the FS. Natural oregano extract (Origanum vulgare) was used in the RP, while the rosemary extract (Rosmarinus officinalis) was used in the FS. The fatty acid profiles of each formulation were obtained by gas chromatography (GC-MS). The oleic acid was the most abundant compound in both evaluated products, also, during the observed storage period there was an increase in SFA and MUFA composition (p < 0.05) in all the treatments. However, the treatments with addition of synthetic antioxidant and microcapsules loaded with different content of aromatic herb extracts showed similar behavior. Moreover, the addition of microencapsulated aromatic herb extracts increased the content of PUFA, improving the nutritional quality indexes in both RP and FS. Our results infer that the addition of oregano and rosemary extracts have antioxidant potential equivalent to synthetic antioxidants.

Keywords:
antioxidant; fish meat; oxidation; bioactive compounds; gas chromatography

1 Introduction

The lipids are compounds of vital importance for human nutrition, because although they provide energy for the biological processes in the human body, the lipids contain essential fatty acids or liposoluble vitamins that are only obtained in diet. Moreover, the lipids are responsible for many desirable characteristics of meat and meat products (Adilah & Hanani, 2016Adilah, Z. A. M., & Hanani, Z. A. N. (2016). Active packaging of fish gelatin films with Morinda citrifolia oil. Food Bioscience, 16, 66-71. http://dx.doi.org/10.1016/j.fbio.2016.10.002.
http://dx.doi.org/10.1016/j.fbio.2016.10...
; Lima et al., 2022Lima, T. L. S., Costa, G. F., Alves, R. N., Araújo, C. D. L., Silva, G. F. G., Ribeiro, N. L., Figueiredo, C. F. V., & Andrade, R. O. (2022). Vegetable oils in emulsified meat products: a new strategy to replace animal fat. Food Science and Technology, 42, e103621. http://dx.doi.org/10.1590/fst.103621.
http://dx.doi.org/10.1590/fst.103621...
), because they influence the flavor and contribute to the improvement of tenderness and succulence of meats (Ahmed et al., 2017Ahmed, I., Lin, H., Zou, L., Brody, A. L., Li, Z., Qazi, I. M., Pavase, T. R., & Lv, L. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163-178. http://dx.doi.org/10.1016/j.foodcont.2017.06.009.
http://dx.doi.org/10.1016/j.foodcont.201...
; Domínguez et al., 2018Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Kovačević, D. B., Pateiro, M., Santos, E. M., & Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: a review. Food Research International, 113, 93-101. http://dx.doi.org/10.1016/j.foodres.2018.06.073. PMid:30195551.
http://dx.doi.org/10.1016/j.foodres.2018...
; Rodrigues et al., 2022Rodrigues, B. J., Ítavo, C. C. B. F., Ítavo, L. C. V., Gomes, M. N. B., Difante, G. S., Arco, T. F. F. S., Gurgel, A. L. C., Higano, L. M., Godoy, C., Miguel, A. A. S., Souza, G. V., Luz, R. C. S., & Brixner, B. M. (2022). The lipid source can modify saturated and unsaturated fatty acids profile of meat of lambs. Food Science and Technology, 42, e91721. http://dx.doi.org/10.1590/fst.91721.
http://dx.doi.org/10.1590/fst.91721...
). The types of fatty acids (FA) in food products can influence both stability during storage and nutritional characteristics, being classified as saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) (Lucarini et al., 2018Lucarini, M., Durazzo, A., Pulgar, J. S., Gabrielli, P., & Lombardi-Boccia, G. (2018). Determination of fatty acid content in meat and meat products: the FTIR-ATR approach. Food Chemistry, 267, 223-230. http://dx.doi.org/10.1016/j.foodchem.2017.11.042. PMid:29934161.
http://dx.doi.org/10.1016/j.foodchem.201...
).

The consumption of polyunsaturated fatty acids (PUFAs), mainly the essential ones (Ꞷ-3 e Ꞷ-6) provide benefits to consumer’s health such as decreased risk of cardiovascular diseases, prevention of cancer and neurological diseases. However, despite these benefits, food rich in PUFAs are very susceptible to nutritional and sensory changes during storage, due to the higher susceptibility to oxidative reactions (Fernandes et al., 2018Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., & Melo, M. P. (2018). Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Science, 137, 244-257. http://dx.doi.org/10.1016/j.meatsci.2017.11.018. PMid:29223559.
http://dx.doi.org/10.1016/j.meatsci.2017...
; Qi et al., 2015Qi, S., Huang, H., Huang, J., Wang, Q., & Wei, Q. (2015). Lychee (Litchi chinensis Sonn.) seed water extract as potential antioxidant and anti-obese natural additive in meat products. Food Control, 50, 195-201. http://dx.doi.org/10.1016/j.foodcont.2014.08.047.
http://dx.doi.org/10.1016/j.foodcont.201...
; Alkuraieef et al., 2022Alkuraieef, A. N., Alsuhaibani, A. M., Alshawi, A. H., Aljahani, A. H., Aljobair, M. O., & Albaridi, N. A. (2022). Proximate chemical composition and lipid profile of Indian mackerel fish. Food Science and Technology, 42, e67120. http://dx.doi.org/10.1590/fst.67120.
http://dx.doi.org/10.1590/fst.67120...
), which may decrease the shelf-life and affect commercialization of fish and meat products. Meat products with fish and pork are usually rich in (PUFAs), which makes them more susceptible to peroxidation, resulting in restrictions on processing and storage possibilities (Huang et al., 2015Huang, Y., Gan, Y., Li, F., Yan, C., Li, H., & Feng, Q. (2015). Effects of high pressure in combination with thermal treatment on lipid hydrolysis and oxidation in pork. Lebensmittel-Wissenschaft + Technologie, 63(1), 136-143. http://dx.doi.org/10.1016/j.lwt.2015.03.103.
http://dx.doi.org/10.1016/j.lwt.2015.03....
; McGlone, 2013McGlone, J. J. (2013). The future of pork production in the world: towards sustainable, welfare-positive systems. Animals, 3(2), 401-415. http://dx.doi.org/10.3390/ani3020401. PMid:26487410.
http://dx.doi.org/10.3390/ani3020401...
; Xiong et al., 2020Xiong, Q., Zhang, M., Wang, T., Wang, D., Sun, C., Bian, H., Li, P., Zou, Y., & Xu, W. (2020). Lipid oxidation induced by heating in chicken meat and the relationship with oxidants and antioxidant enzymes activities. Poultry Science, 99(3), 1761-1767. http://dx.doi.org/10.1016/j.psj.2019.11.013. PMid:32111336.
http://dx.doi.org/10.1016/j.psj.2019.11....
).

The addition of antioxidants in food rich in PUFAs is essential to increase their stability during storage, retaining nutritional and sensory quality of food of animal origin (Araújo et al., 2021Araújo, L. R. S., Watanabe, P. H., Fernandes, D. R., Maia, I. R. O., Silva, E. C., Pinheiro, R. R. S., Melo, M. C. A., Santos, E. O., Owen, R. W., Trevisan, M. T. S., & Freitas, E. R. (2021). Dietary ethanol extract of mango increases antioxidant activity of pork. Animal, 15(2), 100099. http://dx.doi.org/10.1016/j.animal.2020.100099. PMid:33573964.
http://dx.doi.org/10.1016/j.animal.2020....
; Bellucci et al., 2021Bellucci, E. R. B., Munekata, P. E. S., Pateiro, M., Lorenzo, J. M., & Barretto, A. C. S. (2021). Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Science, 171, 108284. http://dx.doi.org/10.1016/j.meatsci.2020.108284. PMid:32866833.
http://dx.doi.org/10.1016/j.meatsci.2020...
; Rachtan-Janicka et al., 2021Rachtan-Janicka, J., Ponder, A., & Hallmann, E. (2021). The effect of organic and conventional cultivations on antioxidants content in blackcurrant (Ribes nigrum l.) species. Applied Sciences, 11(11), 5113. http://dx.doi.org/10.3390/app11115113.
http://dx.doi.org/10.3390/app11115113...
; Gelbe List Pharmindex, 2013Gelbe List Pharmindex. (2013). Fachinformation INFECTOTRIMET® 50 saft, 50 mg/5 ml suspension zum einnehmen. Retrieved from https://www.gelbe-liste.de/produkte/INFECTOTRIMET-50-Saft-50-mg-5-ml-Suspension-zum-Einnehmen_113832/fachinformation
https://www.gelbe-liste.de/produkte/INFE...
). In this context, the interest related to natural antioxidants and natural compounds with antioxidant activity have increased notably in recent years, since consumers are increasingly concerned with their health and with the consumption of processed food containing synthetic ingredients (Romola et al., 2021Romola, C. V. J., Meganaharshini, M., Rigby, S. P., Moorthy, I. G., Kumar, R. S., & Karthikumar, S. (2021). A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel. Renewable & Sustainable Energy Reviews, 145, 111109. http://dx.doi.org/10.1016/j.rser.2021.111109.
http://dx.doi.org/10.1016/j.rser.2021.11...
; Priol et al., 2021Priol, L., Gmur, J., Dagmey, A., Morandat, S., Kirat, K., Saleh, K., & Nesterenko, A. (2021). Co-encapsulation of vegetable oils with phenolic antioxidants and evaluation of their oxidative stability under long-term storage conditions. LWT, 142, 111033. http://dx.doi.org/10.1016/j.lwt.2021.111033.
http://dx.doi.org/10.1016/j.lwt.2021.111...
; Lorenzo et al., 2014Lorenzo, J. M., Sineiro, J., Amado, I. R., & Franco, D. (2014). Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Science, 96(1), 526-534. http://dx.doi.org/10.1016/j.meatsci.2013.08.007. PMid:24008060.
http://dx.doi.org/10.1016/j.meatsci.2013...
; Zou et al., 2021Zou, Y., Qian, Y., Rong, X., Cao, K., McClements, D. J., & Hu, K. (2021). Encapsulation of quercetin in biopolymer-coated zein nanoparticles: formation, stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids, 120, 106980. http://dx.doi.org/10.1016/j.foodhyd.2021.106980.
http://dx.doi.org/10.1016/j.foodhyd.2021...
). Therefore, many research projects have been carried out to find natural alternatives to replace the synthetic antioxidants (e.g. sodium erythorbate, butylated hydroxytoluene), and then, contribute to the development of healthier products, but maintaining the food stability during storage (Barteková et al., 2021Barteková, M., Adameová, A., Görbe, A., Ferenczyová, K., Pecháňová, O., Lazou, A., Dhalla, N. S., Ferdinandy, P., & Giricz, Z. (2021). Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radical Biology & Medicine, 169, 446-477. http://dx.doi.org/10.1016/j.freeradbiomed.2021.03.045. PMid:33905865.
http://dx.doi.org/10.1016/j.freeradbiome...
; Fernandes et al., 2018Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., & Melo, M. P. (2018). Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Science, 137, 244-257. http://dx.doi.org/10.1016/j.meatsci.2017.11.018. PMid:29223559.
http://dx.doi.org/10.1016/j.meatsci.2017...
; Munekata et al., 2017Munekata, P. E. S., Domínguez, R., Franco, D., Bermúdez, R., Trindade, M. A., & Lorenzo, J. M. (2017). Effect of natural antioxidants in Spanish salchichón elaborated with encapsulated n-3 long chain fatty acids in konjac glucomannan matrix. Meat Science, 124, 54-60. http://dx.doi.org/10.1016/j.meatsci.2016.11.002. PMid:27835835.
http://dx.doi.org/10.1016/j.meatsci.2016...
; Rodrigues et al., 2020bRodrigues, J. S., Valle, C. P., Uchoa, A. F. J., Ramos, D. M., Ponte, F. A. F., Rios, M. A. S., Malveira, J. Q., & Ricardo, N. M. P. S. (2020b). Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renewable Energy, 156, 1100-1106. http://dx.doi.org/10.1016/j.renene.2020.04.153.
http://dx.doi.org/10.1016/j.renene.2020....
).

The potential of aromatic herbs as source of antioxidant compounds, its health benefits and industrial applications are well documented in literature, representing an attractive innovation for the food sector, aiming the increased shelf-life and nutritional value of food (Abeysinghe et al., 2021Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G., & Alwis, D. D. D. H. (2021). Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon, 7(7), E07449. http://dx.doi.org/10.1016/j.heliyon.2021.e07449. PMid:34286127.
http://dx.doi.org/10.1016/j.heliyon.2021...
; Celano et al., 2017Celano, R., Piccinelli, A. L., Pagano, I., Roscigno, G., Campone, L., Falco, E., Russo, M., & Rastrelli, L. (2017). Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Research International, 99(Pt 1), 298-307. http://dx.doi.org/10.1016/j.foodres.2017.05.036. PMid:28784486.
http://dx.doi.org/10.1016/j.foodres.2017...
; Chiappero et al., 2021Chiappero, J., Cappellari, L. R., Palermo, T. B., Giordano, W., Khan, N., & Banchio, E. (2021). Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Industrial Crops and Products, 167, 113541. http://dx.doi.org/10.1016/j.indcrop.2021.113541.
http://dx.doi.org/10.1016/j.indcrop.2021...
; Gonçalves et al., 2020Gonçalves, S., Mansinhos, I., & Romano, A. (2020). Aromatic plants: A source of compounds with antioxidant and neuroprotective effects. In C. R. Martin & V. R. Preedy (Eds.), Oxidative stress and dietary antioxidants in neurological diseases (pp. 155-173). London: Academic Press. http://dx.doi.org/10.1016/B978-0-12-817780-8.00011-6.
http://dx.doi.org/10.1016/B978-0-12-8177...
; Mahajan et al., 2020Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100255. http://dx.doi.org/10.1016/j.jarmap.2020.100255.
http://dx.doi.org/10.1016/j.jarmap.2020....
; Byun et al., 2021Byun, N. Y., Cho, J. H., & Yim, S. H. (2021). Correlation between antioxidant activity and anti-wrinkle effect of ethanol extracts of Sanguisorba Officinalis L. Food Science and Technology, 41(Suppl. 2), 791-798. http://dx.doi.org/10.1590/fst.10921.
http://dx.doi.org/10.1590/fst.10921...
). However, the biologically active compounds of aromatic herbs are relatively unstable, which may induce the release of strong aroma, present low solubility in water and degrade quickly during processing and storage (Homayonpour et al., 2021Homayonpour, P., Jalali, H., Shariatifar, N., & Amanlou, M. (2021). Effects of nano-chitosan coatings incorporating with free /nano-encapsulated cumin (Cuminum cyminum L.) essential oil on quality characteristics of sardine fillet. International Journal of Food Microbiology, 341, 109047. http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109047. PMid:33515813.
http://dx.doi.org/10.1016/j.ijfoodmicro....
; Pabast et al., 2018Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control, 91, 185-192. http://dx.doi.org/10.1016/j.foodcont.2018.03.047.
http://dx.doi.org/10.1016/j.foodcont.201...
; Thakur & Kumar, 2021Thakur, M., & Kumar, R. (2021). Microclimatic buffering on medicinal and aromatic plants: a review. Industrial Crops and Products, 160(6), 113144. http://dx.doi.org/10.1016/j.indcrop.2020.113144.
http://dx.doi.org/10.1016/j.indcrop.2020...
). Therefore, the technology of encapsulation may be used to avoid these technological problems, providing protection and a controlled and directed release of the encapsulated bioactive compounds (Santos et al., 2021Santos, P. D. F., Rubio, F. T. V., Silva, M. P., Pinho, L. S., & Favaro-Trindade, C. S. (2021). Microencapsulation of carotenoid-rich materials: a review. Food Research International, 147, 110571. http://dx.doi.org/10.1016/j.foodres.2021.110571. PMid:34399544.
http://dx.doi.org/10.1016/j.foodres.2021...
; Mendes et al., 2021Mendes, D., Asquieri, E. R., Batista, R. D., Morais, C. C., Ascheri, D. P. R., Macêdo, I. Y. L., & Gil, E. S. (2021). Microencapsulation of jabuticaba extracts (Myrciaria cauliflora): evaluation of their bioactive and thermal properties in cassava starch biscuits. LWT, 137, 110460. http://dx.doi.org/10.1016/j.lwt.2020.110460.
http://dx.doi.org/10.1016/j.lwt.2020.110...
; Ribeiro et al., 2020Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2020). Microencapsulation of polyphenols - the specific case of the microencapsulation of Sambucus Nigra L. extracts - a review. Trends in Food Science & Technology, 105, 454-467. http://dx.doi.org/10.1016/j.tifs.2019.03.011.
http://dx.doi.org/10.1016/j.tifs.2019.03...
). Furthermore, such technology is constantly evolving, providing new methods of preparation and application of delivery systems of encapsulated bioactive compounds (Dumitraşcu et al., 2021Dumitraşcu, L., Stănciuc, N., Borda, D., Neagu, C., Enachi, E., Barbu, V., & Aprodu, I. (2021). Microencapsulation of bioactive compounds from cornelian cherry fruits using different biopolymers with soy proteins. Food Bioscience, 41, 101032. http://dx.doi.org/10.1016/j.fbio.2021.101032.
http://dx.doi.org/10.1016/j.fbio.2021.10...
; Smaoui et al., 2021Smaoui, S., Hlima, H. B., Braïek, O. B., Ennouri, K., Mellouli, L., & Khaneghah, A. M. (2021). Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Science, 181, 108585. http://dx.doi.org/10.1016/j.meatsci.2021.108585. PMid:34119890.
http://dx.doi.org/10.1016/j.meatsci.2021...
; Vinceković et al., 2020Vinceković, M., Jurić, S., Marijan, M., Viskić, M., Vlahoviček-Kahlina, K., & Bandić, L. M. (2020) Encapsulation of herb extracts (Aromatic and medicinal herbs). In: C. M. Galanakis, (Ed.), Aromatic herbs in food: bioactive compounds, processing, and applications (pp. 263-300). London: Academic Press.).

The objective of this study was to evaluate the influence of addition of microencapsulated natural extracts of aromatic herbs in comparison with synthetic antioxidants on fatty acids profile of different meat products (restructured product of Tilapia mechanically separated fish meat (RP) and Fresh pork sausage (FS).

2 Material and methods

2.1 Aromatic herbs preparation

The aerial parts of oregano (Origanum vulgare) and rosemary (Rosmarinus officinalis) cultivated in the horticulture sector of Instituto Federal Goiano - Campus Morrinhos, were collected always in the morning (between 8 and 10 h). The plants were washed, sanitized with a solution of sodium hypochlorite at 100 µL.L-1 for 15 min, rinsed with ultrapure water, and dried in stove (40 ºC with forced air circulation). Then, they were grinded in a knife mill (Fortnox FT 50) and sifted using a 30-mesh stainless steel sieve to obtain a homogeneous powder.

2.2 Extracts production

For the obtainment of the extracts, the methodology described by (Vieitez et al., 2018Vieitez, I., Maceiras, L., Jachmanián, I., & Alborés, S. (2018). Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. The Journal of Supercritical Fluids, 133, 58-64. http://dx.doi.org/10.1016/j.supflu.2017.09.025.
http://dx.doi.org/10.1016/j.supflu.2017....
) was used with some modifications. It was used the conventional technique at an initial proportion of 1:20 (5 g of aromatic herbs powder and 100 mL of an aqueous solvent). For the oregano extract, ultrapure water was used as a solvent, while a hydroethanolic solvent (50% water and 50% absolute ethanol) was used for rosemary, then, the solutions were shaken at ambient temperature for 1 h using the shaker Q261-22 (Quimis, São Paulo, Brasil). Then, the solutions were filtered in Whatman no 4 paper and the final volumes were adjusted to 100 mL with their respective solvent. Finally, the extracts were evaporated in rotary evaporator (Fisatom 802, São Paulo, Brasil) (vacuum pressure of 600 mm Hg at 40 °C), bottled in amber glass flasks, sealed and stored in freezer (-18 ºC) for further analysis.

2.3 Microcapsules preparation

The microspheres were obtained according to Dallabona et al. (2020)Dallabona, I. D., Lima, G. G., Cestaro, B. I., Tasso, I. S., Paiva, T. S., Laureanti, E. J. G., Jorge, L. M. M., Silva, B. J. G., Helm, C. V., Mathias, A. L., & Jorge, R. M. M. (2020). Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. International Journal of Biological Macromolecules, 163, 1421-1432. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.256. PMid:32738324.
http://dx.doi.org/10.1016/j.ijbiomac.202...
with modifications. The sodium alginate (2 g) was mixed with 100 mL of the respective extract under magnetic agitation. Once homogenized, the solution (alginate + extract) was kept still for 2 h to remove the air bubbles. Then, the alginate solution with the active compounds was poured using a burette into 80 mL of 1.5% (w/v) calcium chloride solution. The extrusion speed was 30 mL/h, and the distance between the burette tip and the surface of the collection solution was adjusted to 7 cm. The capsules formed in this process were kept in the CaCl2 solution for 15 min with agitation. Then, they were filtered through Whatman paper filter and washed three times with ultrapure water. Finally, the microspheres were dried spontaneously in ambient air (25 °C) for 24 h and kept in desiccator at 25 °C for further use.

2.4 Manufacturing of the Restructured Product (RP) based on tilapia mechanically separated fish meat (MSM) with microencapsulated oregano extract

The MSM were obtained right after the tilapia filleting, which were transported in isothermal container to the meat laboratory from Instituto Federal Goiano - Campus Morrinhos, where the products were manufactured. Five formulations for the restructured product were elaborated with tilapia MSM.

The fresh MSM was homogenized for 5 min with sodium chloride (1.5%), garlic and onion powder (1%) and microbial transglutaminase (0.5%) ® (MTGM) ACTIVA WM by Ajinomoto Co. Inc. (Barentz, Poland). This basic formula was divided into five batches. The first was called RP0 and no additional ingredient was included. The second (RP1) was added synthetic antioxidant sodium erythorbate (0.5%). The third (RP2) received the oregano aqueous extract (0.5%). The fourth (RP3) received the microencapsulated oregano aqueous extract (0.5%) and the Fifth (RP4) received the microencapsulated oregano aqueous extract (1%).

After the complete homogenization of the ingredients, the obtained mass was molded in a cylindrical shape (Ø 6 cm) using a polyvinyl chloride film (PVC) according to the procedure described by Monteiro et al. (2015)Monteiro, M. L. G., Mársico, E. T., Lázaro, C. A., Canto, A. C. V. C. S., Lima, B. R. C. C., Cruz, A. G., & Conte-Júnior, C. A. (2015). Effect of transglutaminase on quality characteristics of a value-added product tilapia wastes. Journal of Food Science and Technology, 52(5), 2598-2609. http://dx.doi.org/10.1007/s13197-014-1327-5. PMid:25892758.
http://dx.doi.org/10.1007/s13197-014-132...
. Some holes were made with assistance of a syringe throughout the product to allow the release of retained air and keep uniform the product surface. Then, the samples were stored under refrigeration (4 ± 2 °C) for 24 h to obtain firmness following the transglutaminase manufacturer recommendations. After the storage period, the PVC was removed and the samples cut into medallion shape of 1 cm thickness. Finally, the treatments were packed separately in low-density Polyethylene (LDPE) packaging and kept under frozen storage (-20 ± 2 ºC). All the analysis were carried out at days 0, 30, 60, 90 and 120.

2.5 Manufacturing of the fresh pork sausage with microencapsulated rosemary extract

The sausages preparation was carried out to the Brazilian standard for this product (Brasil, 1999Brasil, Ministério da Saúde, Agência Nacional de Vigilância Sanitária – ANVISA. (1999, May 3). Resolução n° 19, de 30 de abril de 1999 - Dispõe sobre o regulamento de procedimentos para registro de alimento com alegação de propriedades funcionais e ou de saúde em sua rotulagem. Diário Oficial da República Federativa do Brasil, seção 1.). The fresh pork meat trimmings and the dorsal subcutaneous fat were ground into plates with holes of 0.8 and 0.6 cm, respectively. Then, the blend was homogenized for 5 min with sodium chloride (1.5%), garlic and onion powder (1%).

This basic formula was divided into five batches. The first was called FS0 and no additional ingredient was included. The second (FS1) was added synthetic antioxidant BHT (0.01%). The third (FS2) received the rosemary aqueous extract (0.5%). The fourth (FS3) received the microencapsulated rosemary aqueous extract (0.5%) and the Fifth (FS4) received the microencapsulated rosemary aqueous extract (1%).

The meat blends of each treatment were stuffed in natural pork intestine (caliber 32/34), packed in plastic bags and stored at 4 ± 2 °C. All the analysis were carried out at days 0, 5, 10, 15 and 20.

2.6 Fatty acids profile

Lipid extraction and analysis by Gas Chromatography Mass Spectroscopy (GC-MS)

The total lipids content was cold extracted according to Bligh & Dyer (1959)Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. http://dx.doi.org/10.1139/o59-099. PMid:13671378.
http://dx.doi.org/10.1139/o59-099...
, with some modifications. In short, 5 g of sample were mixed in a falcon tube with 4 mL of ultrapure water, 16 mL of methanol and 8 mL of chloroform. The mechanical agitation was carried out in a shaker during 30 min. Then, 8 mL of chloroform and Na2SO4 at 1.5% were added to promote a biphasic system. This blend was shaken for 2 min and centrifuged for 5 min at 3000 rpm.

The lower phase (chloroform) was evaporated, then, 15 mg of the lipid phase were extracted for the performance of the methylation process under acid conditions, in which 6 mL of HCL were added to methanol 10%, followed by heating bath (60 °C for 20 min) and ice bath for 5 min. Thereafter, 1 mL of ultrapure water and 1 mL of hexane were added and shaken in vortex for 1 min. The upper phase containing fatty acid methyl ester (FAME) (Chin et al., 1992Chin, S. F., Liu, W., Storkson, J. M., Ha, Y. L., & Pariza, M. W. (1992). Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. Journal of Food Composition and Analysis, 5(3), 185-197. http://dx.doi.org/10.1016/0889-1575(92)90037-K.
http://dx.doi.org/10.1016/0889-1575(92)9...
; Conte-Junior & Soncin, 2007Conte-Junior, C. A., & Soncin, S. (2007). Estudio de la producción de ácido linoleico conjugado por cepas de Lactobacillus y Enterococcus de distintos orígenes. Revista Complutense de Ciencias Veterinarias, 1(2), 482-489.; Kishino et al., 2002Kishino, S., Ogawa, J., Ando, A., Omura, Y., & Shimizu, S. (2002). Ricinoleic acid and castor oil as substrates for conjugated linoleic acid production by washed cells of lactobacillu. Bioscience, Biotechnology, and Biochemistry, 66(10), 2283-2286. http://dx.doi.org/10.1271/bbb.66.2283. PMid:12450151.
http://dx.doi.org/10.1271/bbb.66.2283...
) was injected (split ratio of 1:20) in a gas chromatograph (model Clarus 680-Perkin Elmer) attached to mass spectrometer (SQ8S), split injector and capillary column Elite 5MS (30 m x 0,25 mm x 0,5 mm).

The injector temperature was adjusted to 250 ºC, using helium as carrier gas. After the injection of 2 μL, the initial temperature of the oven was kept in 60 °C, followed by an increase to 180 °C for 15 min, 245 °C for 2.5 min, then 280 °C, in which the sample is maintained for 1 min. The peaks identification was carried out by comparison of the retention times and the samples peak areas with a commercial standard containing 37 fatty acid methyl esters (Supelco CRM 47885, Sigma-Aldrich, St. Louis, Mo., USA). The temperatures of EI+ ion sources and transference lines of the MS were 220 °C.The m/z scanning range was 50 to 450 in MS Scan mode. Mass spectra were compared with reference compounds from the NIST library. The identified fatty acid peaks were expressed as mg of individual fatty acids/g of total fatty acid.

2.7 Statistical analysis

The experiments were carried out following an entirely casual experimental design, performed in triplicate. The data were submitted to variance analysis (ANOVA) and the means evaluated by Tukey test at a level of 5% of significance (p < 0.05) using the Action Stat software.

3 Results and discussion

3.1 Fatty acid profile of the Restructured Product (RP) based on tilapia mechanically separated fish meat (MSM) with microencapsulated oregano extract

The fatty acids (FAs) composition (mg of individual fatty acid/g of total fatty acid) of RP after 0, 30, 60, 90 and 120 days of frozen storage is shown in Table 1. The results show 19 FAs, being 5 saturated fatty acids (SFA), 6 monounsaturated fatty acids (MUFA) and 8 polyunsaturated fatty acids (PUFA).

Table 1
FA composition (mg of individual fatty acid/g of total fatty acid) of restructured product based on tilapia mechanically separated fish meat (MSM) formulations, stored at -20 ± 2 °C for up to 120 days.

The oleic acid (C18:1n9) was the major FA found in the restructured products, followed by linoleic acid (C18:2) and palmitic acid (C16:0), which is in accordance with other studies that evaluated the fatty acid composition of fresh water fish species (Baldissera et al., 2020Baldissera, M. D., Souza, C. F., Zeppenfeld, C. C., Velho, M. C., Klein, B., Abbad, L. B., Ourique, A. F., Wagner, R., Silva, A. S., & Baldisserotto, B. (2020). Dietary supplementation with nerolidol nanospheres improves growth, antioxidant status and fillet fatty acid profiles in Nile tilapia: benefits of nanotechnology for fish health and meat quality. Aquaculture, 516, 734635. http://dx.doi.org/10.1016/j.aquaculture.2019.734635.
http://dx.doi.org/10.1016/j.aquaculture....
; Memon et al., 2011Memon, N. N., Talpur, F. N., Bhanger, M. I., & Balouch, A. (2011). Changes in fatty acid composition in muscle of three farmed carp fish species (Labeo rohita, Cirrhinus mrigala, Catla catla) raised under the same conditions. Food Chemistry, 126(2), 405-410. http://dx.doi.org/10.1016/j.foodchem.2010.10.107.
http://dx.doi.org/10.1016/j.foodchem.201...
; Rebolé et al., 2015Rebolé, A., Velasco, S., Rodríguez, M. L., Treviño, J., Alzueta, C., Tejedor, J. L., & Ortiz, L. T. (2015). Nutrient content in the muscle and skin of fillets from farmed rainbow trout (Oncorhynchus mykiss). Food Chemistry, 174, 614-620. http://dx.doi.org/10.1016/j.foodchem.2014.11.072. PMid:25529727.
http://dx.doi.org/10.1016/j.foodchem.201...
). It is important to emphasize that the lipid content of fish is variable, depending on the specie, the food availability, the sexual maturation and the nutritional handling (Correia et al., 2020Correia, B. S. B., Ortin, G. G. D., Mor, N. C., Santos, M. S., Torrinhas, R. S., Val, A. L., & Tasic, L. (2020). NMR in analysis of the nutritional value of lipids from muscles and livers of wild Amazonian fishes with different eating habits over seasonal variation. Journal of the Brazilian Chemical Society, 31(12), 2531-2543. http://dx.doi.org/10.21577/0103-5053.20200130.
http://dx.doi.org/10.21577/0103-5053.202...
).

In relation to the storage period, the main significant changes in FA composition were observed in RP0 (most of detected FAs). Treatments RP1, RP3 and RP4 showed similar behavior (p > 0.05), indicating that the addition of oregano extracts microcapsules, as well as the synthetic antioxidant, could preserve the fatty acids composition of fish products.

Taking into consideration the storage period, at the end of 120 days was observed that the myristic acid (C14:0) showed lower proportions in treatments RP1, RP3 and RP4 compared to RP0 and RP2, which may indicate a positive result, since this FA is associated with induction of hypocholesterolemia in humans (Fernandes et al., 2014Fernandes, R. P. P., Freire, M. T. A., Paula, E. S. M., Kanashiro, A. L. S., Catunda, F. A. P., Rosa, A. F., Balieiro, J. C. C., & Trindade, M. A. (2014). Stability of lamb loin stored under refrigeration and packed in different modified atmosphere packaging systems. Meat Science, 96(1), 554-561. http://dx.doi.org/10.1016/j.meatsci.2013.08.005. PMid:24018275.
http://dx.doi.org/10.1016/j.meatsci.2013...
; Rodrigues et al., 2020aRodrigues, B. L., Monteiro, M. L. G., Canto, A. C. V. C. S., Costa, M. P., & Conte-Junior, C. A. (2020a). Proximate composition, fatty acids and nutritional indices of promising freshwater fish species from Serrasalmidae family. CYTA: Journal of Food, 18(1), 591-598. http://dx.doi.org/10.1080/19476337.2020.1804463.
http://dx.doi.org/10.1080/19476337.2020....
).

At a nutritional point of view, the oleic acid (C18:1n9), found in higher quantity in this product, have a lipid-lowering effect due to its capacity to reduce the LDL cholesterol (Bowen et al., 2019Bowen, K. J., Kris-Etherton, P. M., West, S. G., Fleming, J. A., Connelly, P. W., Lamarche, B., Couture, P., Jenkins, D. J. A., Taylor, C. G., Zahradka, P., Hammad, S. S., Sihag, J., Chen, X., Guay, V., Maltais-Giguère, J., Perera, D., Wilson, A., Juan, S. C. S., Rempel, J., & Jones, P. J. H. (2019). Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a western fatty acid profile in adults with central adiposity. The Journal of Nutrition, 149(3), 471-478. http://dx.doi.org/10.1093/jn/nxy307. PMid:30773586.
http://dx.doi.org/10.1093/jn/nxy307...
; Tarté et al., 2020Tarté, R., Paulus, J. S., Acevedo, N. C., Prusa, K. J., & Lee, S. L. (2020). High-oleic and conventional soybean oil oleogels structured with rice bran wax as alternatives to pork fat in mechanically separated chicken-based bologna sausage. LWT, 131, 109659. http://dx.doi.org/10.1016/j.lwt.2020.109659.
http://dx.doi.org/10.1016/j.lwt.2020.109...
), indicating a benefit of the restructured product. The oleic acid in every treatment increased during storage (p < 0.05), therefore, the antioxidant additives used in this study did not affect the stability of these fatty acids, since all the treatments showed similar values at the end of the storage period (p > 0.05).

In relation to the linoleic acid (C18:2), its composition maintained stable during the whole storage period in treatment RP4 (p > 0.05). Meanwhile, the FA composition of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased in all the treatments (p < 0.05). However, at the end of storage period, this increase was more pronounced in treatments RP3 and RP4, which may be beneficial, since EPA and DHA are widely known as essential for human health and development, including the neural function and reduction of cardiovascular and inflammatory diseases (Setty et al., 2019Setty, B. N. Y., Betal, S. G., Miller, R. E., Brown, D. S., Meier, M., Cahill, M., Lerner, N. B., Apollonsky, N., & Stuart, M. J. (2019). Relationship of omega-3 fatty acids DHA and EPA with the inflammatory biomarker hs-CRP in children with sickle cell anemia. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 146, 11-18. http://dx.doi.org/10.1016/j.plefa.2019.05.004. PMid:31186149.
http://dx.doi.org/10.1016/j.plefa.2019.0...
; So et al., 2021So, J., Wu, D., Lichtenstein, A. H., Tai, A. K., Matthan, N. R., Maddipati, K. R., & Lamon-Fava, S. (2021). EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: a randomized, double-blind, crossover study. Atherosclerosis, 316, 90-98. http://dx.doi.org/10.1016/j.atherosclerosis.2020.11.018. PMid:33303222.
http://dx.doi.org/10.1016/j.atherosclero...
; Sprague et al., 2020Sprague, M., Fawcett, S., Betancor, M. B., Struthers, W., & Tocher, D. R. (2020). Variation in the nutritional composition of farmed Atlantic salmon (Salmo salar L.) fillets with emphasis on EPA and DHA contents. Journal of Food Composition and Analysis, 94, 103618. http://dx.doi.org/10.1016/j.jfca.2020.103618.
http://dx.doi.org/10.1016/j.jfca.2020.10...
).

There are no reports in literature about the effect of natural antioxidant on FA profile of restructured products of tilapia MSM, and studies evaluating the effect of addition of vegetable extracts on FA composition of fish products are scarce.

The sum of total fatty acids (TFA), the SFA, the MUFA and PUFA, of restructured tilapia MSM products stored for 0, 30, 60, 90 and 120 days are presented in Figure 1. In Figure 1A can be seen that the level of TFA increased significantly (p < 0.05) during storage in all treatments, however, treatments RP0 (from 56.05 to 99.40 mg/g of fat) and RP2 (from 58.21 to 94.08 mg/g of fat) presented higher values at the end of the storage period. It can also be observed that that RP1 was similar to RP3 and RP4 (p > 0.05), being in accordance with the results obtained by Aguirrezábal et al. (2000)Aguirrezábal, M. M., Mateo, J., Domínguez, M. C., & Zumalacárregui, J. M. (2000). The effect of paprika, garlic and salt on rancidity in dry sausages. Meat Science, 54(1), 77-81. http://dx.doi.org/10.1016/S0309-1740(99)00074-1. PMid:22063715.
http://dx.doi.org/10.1016/S0309-1740(99)...
and Fernandes et al. (2018)Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., & Melo, M. P. (2018). Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Science, 137, 244-257. http://dx.doi.org/10.1016/j.meatsci.2017.11.018. PMid:29223559.
http://dx.doi.org/10.1016/j.meatsci.2017...
. These authors evaluated the effect addition of paprika and garlic to chorizo and the stability of sheep sausages with addition of different content of Origanum vulgare extract, respectively. Both studies described that the level of TFA increased in all treatments for 96 and 135 days, also that the spices showed antioxidant effect as effective as synthetic additives.

Figure 1
Fatty Acid (FA) composition (mg of individual fatty acids/g of total fatty acid) of restructured product without ingredients addition (RP0), with 0.5% sodium erythorbate addition (RP1), with 0.5% oregano (Origanum vulgare) extract addition (RP2), with 0.5% oregano (Origanum vulgare) extract microcapsules addition (RP3) and with 1% oregano (Origanum vulgare) extract microcapsules addition. (A) ∑ TFA: sum of the composition of all fatty acids; (B) ∑ SFA: sum of saturated fatty acids; (C) ∑ MUFA: sum of monounsaturated fatty acids; (D) ∑ PUFA: sum of polyunsaturated fatty acids. A-D: different uppercase letters indicate significant difference (p < 0.05) between treatments of the same storage period; a-d: different lowercase letters indicate significant difference (p < 0.05) between storage periods of the same treatment.

As can be seen in the Figure 1B-1C, there was an increase over time for the fractions SFA and MUFA (p < 0.05) in all treatments, however, at the end of storage, the lowest values in fatty acids composition were obtained in RP1, RP3 and RP4 (p < 0.05). A similar behavior was observed by Fernandes et al. (2018)Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., & Melo, M. P. (2018). Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Science, 137, 244-257. http://dx.doi.org/10.1016/j.meatsci.2017.11.018. PMid:29223559.
http://dx.doi.org/10.1016/j.meatsci.2017...
while evaluating the influence of addition of different concentrations of natural extract of oregano in comparison with sodium erythorbate in lamb sausage stored for 135 days at -20 ± 2 °C. The findings of Serdaroğlu & Felekoğlu (2005)Serdaroğlu, M., & Felekoğlu, E. (2005). Effects of using rosemary extract and onion juice on oxidative stability of sardine (Sardina pilchardus) mince. Journal of Food Quality, 28(2), 109-120. http://dx.doi.org/10.1111/j.1745-4557.2005.00016.x.
http://dx.doi.org/10.1111/j.1745-4557.20...
, also showed similar results while studying the effect of frozen storage on oxidative quality of Sardina pilchardus meat added with rosemary extract and onion juice.

The highest content of SFA was also observed by Bitalebi et al. (2019)Bitalebi, S., Nikoo, M., Rahmanifarah, K., Noori, F., & Gavlighi, H. A. (2019). Effect of apple peel extract as natural antioxidant on lipid and protein oxidation of rainbow trout (Oncorhynchus mykiss) mince. International Aquatic Research, 11(2), 135-146. http://dx.doi.org/10.1007/s40071-019-0224-y.
http://dx.doi.org/10.1007/s40071-019-022...
in samples of cold stored minced rainbow trout (Oncorhynchus mykiss) without treatment, compared to samples added with synthetic antioxidant or apple peel extract.

In general, the oxidative reactions occur mainly in PUFA (Álvarez et al., 2009Álvarez, I., Fuente, J., Cañeque, V., Lauzurica, S., Pérez, C., & Díaz, M. T. (2009). Changes in the fatty acid composition of M. longissimus dorsi of lamb during storage in a high-oxygen modified atmosphere at different levels of dietary vitamin E supplementation. Journal of Agricultural and Food Chemistry, 57(1), 140-146. http://dx.doi.org/10.1021/jf801940c. PMid:19093867.
http://dx.doi.org/10.1021/jf801940c...
), which act as excellent substrates for beginning of oxidation (Gobert et al., 2010Gobert, M., Gruffat, D., Habeanu, M., Parafita, E., Bauchart, D., & Durand, D. (2010). Plant extracts combined with vitamin E in PUFA-rich diets of cull cows protect processed beef against lipid oxidation. Meat Science, 85(4), 676-683. http://dx.doi.org/10.1016/j.meatsci.2010.03.024. PMid:20416810.
http://dx.doi.org/10.1016/j.meatsci.2010...
), reacting with oxygen reactive species, leading to a series of secondary reactions that, in turn, drive to lipid degradation and oxidative rancidity (Amaral et al., 2018Amaral, A. B., Silva, M. V., & Lannes, S. C. S. (2018). Lipid oxidation in meat: mechanisms and protective factors - a review. Food Science and Technology, 38(Suppl. 1), 1-15. http://dx.doi.org/10.1590/fst.32518.
http://dx.doi.org/10.1590/fst.32518...
).

In Figure 1D, there was a decrease in PUFA during storage for RP0 (13.94 to 3.70 mg/g of fat) and RP2 (14.10 to 6.75 mg/g of fat) (p < 0.05). Despite the trend to decrease, the reduction was not significant in RP1 (13.80 to 12.21 mg/g of fat), RP3 (14.21 to 13.99 mg/g of fat) and RP4 (14.45 to 14.44 mg/g of fat) (p > 0.05). This behavior confirm the higher susceptibility to oxidation of PUFA (Alfaia et al., 2010Alfaia, C. M., Alves, S. P., Lopes, A. F., Fernandes, M. J., Costa, A. S., Fontes, C. M., Castro, M. L. F., Bessa, R. J. B., & Prates, J. A. (2010). Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Science, 84(4), 769-777. http://dx.doi.org/10.1016/j.meatsci.2009.11.014.
http://dx.doi.org/10.1016/j.meatsci.2009...
), generating less compounds in comparison with SFA and MUFA, similarly observed by Martín et al. (2000)Martín, L., Timón, M. L., Petrón, M. J., Ventanas, J., & Antequera, T. (2000). Evolution of volatile aldehydes in Iberian ham matured under different processing conditions. Meat Science, 54(4), 333-337. http://dx.doi.org/10.1016/S0309-1740(99)00107-2. PMid:22060789.
http://dx.doi.org/10.1016/S0309-1740(99)...
during the manufacture of ripened ham under different processing conditions. Therefore, at the end of storage period, it was possible to observe the efficacy of the addition of oregano extract microcapsules as natural antioxidants (RP3 and RP4) and their equivalence with the synthetic antioxidant (RP1). This result indicating the lower PUFA oxidation is important because this fatty acid is associated with several health benefits (Boroski et al., 2012Boroski, M., Giroux, H. J., Sabik, H., Petit, H. V., Visentainer, J. V., Matumoto-Pintro, P. T., & Britten, M. (2012). Use of oregano extract and oregano essential oil as antioxidants in functional dairy beverage formulations. Lebensmittel-Wissenschaft + Technologie, 47(1), 167-174. http://dx.doi.org/10.1016/j.lwt.2011.12.018.
http://dx.doi.org/10.1016/j.lwt.2011.12....
; Cheng et al., 2021Cheng, C., Li, H., Liang, L., Jin, T., Zhang, G., Bradley, J. L., Peberdy, M. A., Ornato, J. P., Wijesinghe, D. S., & Tang, W. (2021). Effects of ω-3 PUFA and ascorbic acid combination on post-resuscitation myocardial function. Biomedicine and Pharmacotherapy, 133, 110970. http://dx.doi.org/10.1016/j.biopha.2020.110970. PMid:33166763.
http://dx.doi.org/10.1016/j.biopha.2020....
; Pérez et al., 2021Pérez, J. A., Castro, A., Rolo, C., Torres, A., Dorta-Guerra, R., Acosta, N. G., & Rodríguez, C. (2021). Fatty acid profiles and omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis capacity of three dual purpose chicken breeds. Journal of Food Composition and Analysis, 102, 104005. http://dx.doi.org/10.1016/j.jfca.2021.104005.
http://dx.doi.org/10.1016/j.jfca.2021.10...
). Furthermore, our results are similar to the fatty acid profile found by Fernandes et al. (2016)Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., Munekata, P. E. S., & Melo, M. P. (2016). Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control, 63, 65-75. http://dx.doi.org/10.1016/j.foodcont.2015.11.027.
http://dx.doi.org/10.1016/j.foodcont.201...
while studying ovine hamburgers added with oregano extract and packed in modified atmosphere.

This effect in FA composition during storage of restructured products added of natural and synthetic antioxidants is associated with lipid oxidation that occurs naturally by incrementing a radical to a double bond or by abstracting hydrogen from unsaturated fatty acids, thus increasing the degree of lipid saturation (Frankel et al., 1996Frankel, E. N., Huang, S. W., Prior, E., & Aeschbach, R. (1996). Evaluation of antioxidant activity of rosemary extracts, carnosol and carnosic acid in bulk vegetable oils and fish oil and their emulsions. Journal of the Science of Food and Agriculture, 72(2), 201-208. http://dx.doi.org/10.1002/(SICI)1097-0010(199610)72:2<201::AID-JSFA632>3.0.CO;2-Q.
http://dx.doi.org/10.1002/(SICI)1097-001...
; Monteiro et al., 2017Monteiro, M. L. G., Mársico, E. T., Canto, A. C. V. C. S., Costa-Lima, B. R. C., Costa, M. P., Viana, F. M., Silva, T. J. P., & Conte-Junior, C. A. (2017). Impact of UV-C light on the fatty acid profile and oxidative stability of Nile tilapia (Oreochromis niloticus) fillets. Journal of Food Science, 82(4), 1028-1036. http://dx.doi.org/10.1111/1750-3841.13685. PMid:28295293.
http://dx.doi.org/10.1111/1750-3841.1368...
) leading to a decrease in the content of unsaturated fatty acids. Moreover, the raw oregano extract added to the RO2 may have induced a pro oxidant effect due to the characteristic of its components (Seck et al., 2021Seck, I., Hosu, A., Cimpoiu, C., Ndoye, S. F., Ba, L. A., Sall, C., & Seck, M. (2021). Phytochemicals content, screening and antioxidant/pro-oxidant activities of Carapa procera (barks) (Meliaceae). South African Journal of Botany, 137, 369-376. http://dx.doi.org/10.1016/j.sajb.2020.11.019.
http://dx.doi.org/10.1016/j.sajb.2020.11...
). In this situation, many reactions may occur with the chemical structure of the phenolic compounds or their dispersion in the system, which change its efficacy to prevent oxidation (Wong & Kitts, 2002Wong, P. Y. Y., & Kitts, D. D. (2002). The effects of herbal pre-seasoning on microbial and oxidative changes in irradiated beef steaks. Food Chemistry, 76(2), 197-205. http://dx.doi.org/10.1016/S0308-8146(01)00265-5.
http://dx.doi.org/10.1016/S0308-8146(01)...
).

Jasour & Rahimabadi (2011)Jasour, M. S., & Rahimabadi, E. Z. (2011). Effects of refrigerated storage on fillet lipid quality of rainbow trout (Oncorhynchus Mykiss) supplemented by α-tocopheryl acetate through diet and direct addition after slaughtering. Journal of Food Processing & Technology, 2(5). http://dx.doi.org/10.4172/2157-7110.1000124.
http://dx.doi.org/10.4172/2157-7110.1000...
and Šimat et al. (2015)Šimat, V., Bogdanović, T., Poljak, V., & Petričević, S. (2015). Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: effect of fish farming activities. Journal of Food Composition and Analysis, 40, 120-125. http://dx.doi.org/10.1016/j.jfca.2014.12.026.
http://dx.doi.org/10.1016/j.jfca.2014.12...
observed similar tendency in fatty acid profile during cold and frozen storage of Oncorhynchus Mykiss and Boops boops fillets, respectively.

3.2 Fatty acids profile of fresh pork sausage with microencapsulated rosemary extract

The results of FA composition (mg of individual fatty acids/g of total fatty acid) of the pork sausage formulations stored at 4 ± 2 °C for up to 20 days are presented in Table 2. It was detected 16 FA, being 4 SFA, 6 MUFA and 6 PUFA.

Table 2
FA composition (mg of individual fatty acid/g of total fatty acid) of fresh pork sausage formulations, stored at 4 ± 2 °C for up to 20 days.

The oleic acid (C18:1 n9) was the most representative FA in the fresh pork sausage, which agrees with evaluations of fatty acid composition in swine of previous studies Kim et al. (2020)Kim, J. A., Cho, E. S., Jeong, Y. D., Choi, Y. H., Kim, Y. S., Choi, J. W., Kim, J. S., Jang, A., Hong, J. K., & Sa, S. J. (2020). The effects of breed and gender on meat quality of Duroc, Pietrain, and their crossbred. Journal of Animal Science and Technology, 62(3), 409-419. http://dx.doi.org/10.5187/jast.2020.62.3.409. PMid:32568265.
http://dx.doi.org/10.5187/jast.2020.62.3...
, Vehovský et al. (2018)Vehovský, K., Zadinová, K., Stupka, R., Čítek, J., Lebedová, N., Okrouhlá, M., & Šprysl, M. (2018). Fatty acid composition in pork fat: de-novo synthesis, fatty acid sources and influencing factors - a review. Agronomy Research, 16(5), 2211-2228. and Wood et al. (2008)Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., & Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: a review. Meat Science, 78(4), 343-358. http://dx.doi.org/10.1016/j.meatsci.2007.07.019. PMid:22062452.
http://dx.doi.org/10.1016/j.meatsci.2007...
. These authors found similar profile, highlighting that the FA composition can be influenced by genetic and environmental factors, including race, diet, maturity stage, among others (Kim et al., 2020Kim, J. A., Cho, E. S., Jeong, Y. D., Choi, Y. H., Kim, Y. S., Choi, J. W., Kim, J. S., Jang, A., Hong, J. K., & Sa, S. J. (2020). The effects of breed and gender on meat quality of Duroc, Pietrain, and their crossbred. Journal of Animal Science and Technology, 62(3), 409-419. http://dx.doi.org/10.5187/jast.2020.62.3.409. PMid:32568265.
http://dx.doi.org/10.5187/jast.2020.62.3...
).

During the fresh sausage storage was possible to observe changes related to the content of different FA between treatments. The main significant changes were observed in sample FS0 in most FA detected. During the entire conservation period, the fatty acid composition of treatments FS1, FS3 and FS4 changed similarly, indicating a similar behavior of the rosemary extract microcapsules in comparison with the synthetic additive. Fernandes et al. (2018)Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., & Melo, M. P. (2018). Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Science, 137, 244-257. http://dx.doi.org/10.1016/j.meatsci.2017.11.018. PMid:29223559.
http://dx.doi.org/10.1016/j.meatsci.2017...
also observed significant changes during storage in control sample and similarity between natural and synthetic antioxidants, when evaluating the stability of sheep sausage with addition of different concentrations of oregano (Origanum vulgare) extract.

Taking into consideration the storage period, at the end of 20 days, the composition of palmitic acid (C16: 0), margaric acid (C17:0), stearic acid (C18:0) and heneicosanoic acid (C21:0) showed higher values (p < 0.05), in treatments FS0 and FS 2, while the treatments FS1, FS3 and FS4 decreased significantly (p < 0.05), considering that these FA are associated with negative changes in lipid profile of blood (Ye et al., 2020Ye, Z., Cao, C., Li, Q., Xu, Y.-j., & Liu, Y. (2020). Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats. Food Research International, 132, 109117. http://dx.doi.org/10.1016/j.foodres.2020.109117. PMid:32331659.
http://dx.doi.org/10.1016/j.foodres.2020...
), this decrease can be evaluated as positive.

The linoleic (C18:2) and linolenic (C18:3) acids showed reduction (p < 0.05) during storage period in treatments FS0 and FS2, while in treatments FS1, FS3 and FS4 showed increase (p < 0.05). Gawlik-Dziki (2012)Gawlik-Dziki, U. (2012). Dietary spices as a natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. Lebensmittel-Wissenschaft + Technologie, 47(1), 138-146. http://dx.doi.org/10.1016/j.lwt.2011.12.022.
http://dx.doi.org/10.1016/j.lwt.2011.12....
evaluating the antioxidant activity of spices confirmed that the oregano (Origanum vulgare L.) and rosemary (Rosemarinus officinalis L.) extracts were more efficient to prevent linoleic acid peroxidation in comparison with thyme (Thymus vulgaris L.), white and black pepper (Piper nigrum L.), tarragon (Artemisia dracunculus L.), basil (Ocimium basilicum L.) and cinnamon (Cinamomum sp.) extracts, which consequently improve the enzymatic and non-enzymatic antioxidant system, due to its anti-inflammatory properties.

The composition of EPA and DHA acids presented decreased values (p < 0.05) during the storage period in treatments FS0 and FS2, while the treatments FS1, FS3 and FS4 remained stable at the end of 20 days of cold storage. Higher concentrations of EPA and DHA are desired due to their several health benefits (Khan et al., 2021Khan, S. U., Lone, A. N., Khan, M. S., Virani, S. S., Blumenthal, R. S., Nasir, K., Miller, M., Michos, E. D., Ballantyne, C. M., Boden, W. E., & Bhatt, D. L. (2021). Effect of omega-3 fatty acids on cardiovascular outcomes: a systematic review and meta-analysis. EclinicalMedicine, 38, 100997. http://dx.doi.org/10.1016/j.eclinm.2021.100997. PMid:34505026.
http://dx.doi.org/10.1016/j.eclinm.2021....
; Lorente-Cebrián et al., 2013Lorente-Cebrián, S., Costa, A. G. V., Navas-Carretero, S., Zabala, M., Martínez, J. A., & Moreno-Aliaga, M. J. (2013). Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. Journal of Physiology and Biochemistry, 69(3), 633-651. http://dx.doi.org/10.1007/s13105-013-0265-4. PMid:23794360.
http://dx.doi.org/10.1007/s13105-013-026...
; Rodrigues et al., 2020bRodrigues, J. S., Valle, C. P., Uchoa, A. F. J., Ramos, D. M., Ponte, F. A. F., Rios, M. A. S., Malveira, J. Q., & Ricardo, N. M. P. S. (2020b). Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renewable Energy, 156, 1100-1106. http://dx.doi.org/10.1016/j.renene.2020.04.153.
http://dx.doi.org/10.1016/j.renene.2020....
).

In relation to the total FA showed in Figure 2A, it was observed that treatments FS3 and FS4 showed satisfactory results compared to BHT synthetic antioxidant (FS1). Our results are in accordance with the findings of Berasategi et al. (2011)Berasategi, I., Legarra, S., Ciriano, M. G.-I., Rehecho, S., Calvo, M. I., Cavero, R. Y., Navarro-Blasco, Í., Ansorena, D., & Astiasarán, I. (2011). “High in omega-3 fatty acids” bologna-type sausages stabilized with an aqueous-ethanol extract of Melissa officinalis. Meat Science, 88(4), 705-711. http://dx.doi.org/10.1016/j.meatsci.2011.02.035. PMid:21439735.
http://dx.doi.org/10.1016/j.meatsci.2011...
, whom evaluated the efficacy of Melissa officinalis natural antioxidant extract in formulations of Bologna enriched with omega-3, which was also similar to the formulation with BHT. Meanwhile, the treatments FS0 and FS2 showed higher susceptibility to oxidation during storage (p < 0.05).

Figure 2
Fatty Acid (FA) composition (mg of individual fatty acids/g of total fatty acid) of fresh pork sausage without ingredients addition (RP0), with 0.5% BHT addition (RP1), with 0.5% rosemary (Rosmarinus officinalis) extract addition (RP2), with 0.5% rosemary (Rosmarinus officinalis) extract microcapsules addition (RP3) and with 1% rosemary (Rosmarinus officinalis) extract microcapsules addition. (A) ∑ TFA: sum of the composition of all fatty acids; (B) ∑ SFA: sum of saturated fatty acids; (C) ∑ MUFA: sum of monounsaturated fatty acids; (D) ∑ PUFA: sum of polyunsaturated fatty acids. A-D: different uppercase letters indicate significant difference (p < 0.05) between treatments of the same storage period; a-d: different lowercase letters indicate significant difference (p < 0.05) between storage periods of the same treatment.

The SFA composition (Figure 2B) increased during the cold storage period for all treatments. However, the treatments remained unaltered (p > 0.05) from the 10th day except in treatment FS0, which presented a constant increase during the whole storage. For the composition of MUFA, also occurred an increase over time (p < 0.05) in all treatments, but at the end of the storage, was not observed significant difference between treatments FS1, FS3 and FS4 (p > 0.05).

A significant reduction (p < 0.05) in levels of PUFAs was observed at the end of storage for treatments FS0 (16.26 to 5.22 mg/g of fat) and FS2 (14.91 to 8.49 mg/g of fat), and these changes were not observed in the treatments with synthetic antioxidant (FS1) and rosemary extract microcapsules (FS3 and FS4). Despite the presumption that these PUFAs would decrease, it showed a significant increase (p < 0.05) in treatments with synthetic antioxidant and the herb extract microcapsules. The reduction in PUFAs may have been caused by oxidative and hydrolytic reactions that occurred during storage (Amaral et al., 2018Amaral, A. B., Silva, M. V., & Lannes, S. C. S. (2018). Lipid oxidation in meat: mechanisms and protective factors - a review. Food Science and Technology, 38(Suppl. 1), 1-15. http://dx.doi.org/10.1590/fst.32518.
http://dx.doi.org/10.1590/fst.32518...
). Long chain hydrocarbons and the high unsaturation of the PUFA turned them more susceptible to oxidation and hydrolysis than SFA (Wójciak et al., 2015Wójciak, K. M., Karwowska, M., & Dolatowski, Z. J. (2015). Fatty acid profile, color and lipid oxidation of organic fermented sausage during chilling storage as influenced by acid whey and probiotic strains addition. Scientia Agricola, 72(2), 124-131. http://dx.doi.org/10.1590/0103-9016-2014-0110.
http://dx.doi.org/10.1590/0103-9016-2014...
). The similar behavior between treatments FS0 and FS2 may be related to the increase of lipolysis resulted from the enzymatic action (Fernandes et al., 2018Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., & Melo, M. P. (2018). Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Science, 137, 244-257. http://dx.doi.org/10.1016/j.meatsci.2017.11.018. PMid:29223559.
http://dx.doi.org/10.1016/j.meatsci.2017...
; Wang et al., 2014Wang, D., Zhang, M., Bian, H., Xu, W., Xu, X., Zhu, Y., Liu, F., Geng, Z., & Zhou, G. (2014). Changes of phospholipase A2 and C activities during dry-cured duck processing and their relationship with intramuscular phospholipid degradation. Food Chemistry, 145, 997-1001. http://dx.doi.org/10.1016/j.foodchem.2013.09.007. PMid:24128575.
http://dx.doi.org/10.1016/j.foodchem.201...
).

The higher levels of MUFA and SFA compared to PUFA, are probably derived from the lipid composition of the meat product. In swine meat, the triglycerides are mainly constituted of high levels of saturated fatty acids instead of polyunsaturated (Ma & Sun, 2020Ma, J., & Sun, D. W. (2020). Prediction of monounsaturated and polyunsaturated fatty acids of various processed pork meats using improved hyperspectral imaging technique. Food Chemistry, 321, 126695. http://dx.doi.org/10.1016/j.foodchem.2020.126695. PMid:32247889.
http://dx.doi.org/10.1016/j.foodchem.202...
; Navarro et al., 2021Navarro, M., Dunshea, F. R., Lisle, A., & Roura, E. (2021). Feeding a high oleic acid (C18:1) diet improves pleasing flavor attributes in pork. Food Chemistry, 357, 129770. http://dx.doi.org/10.1016/j.foodchem.2021.129770. PMid:33866241.
http://dx.doi.org/10.1016/j.foodchem.202...
).

The higher susceptibility to oxidation in treatments FS0 and FS2 may be justified by the low antioxidant efficiency influenced by the increased release of heme iron, present in high concentration in swine meat. The heme or non-heme iron can act as a catalyzer accelerating the lipid oxidation, which reduce the quality of meat and meat products (Ma et al., 2016Ma, F., Qin, H., Shi, K., Zhou, C., Chen, C., Hu, X., & Zheng, L. (2016). Feasibility of combining spectra with texture data of multispectral imaging to predict heme and non-heme iron contents in pork sausages. Food Chemistry, 190, 142-149. http://dx.doi.org/10.1016/j.foodchem.2015.05.084. PMid:26212953.
http://dx.doi.org/10.1016/j.foodchem.201...
; Zhou et al., 2019Zhou, F., Jongberg, S., Zhao, M., Sun, W., & Skibsted, L. H. (2019). Antioxidant efficiency and mechanisms of green tea, rosemary or maté extracts in porcine Longissimus dorsi subjected to iron-induced oxidative stress. Food Chemistry, 298, 125030. http://dx.doi.org/10.1016/j.foodchem.2019.125030. PMid:31260978.
http://dx.doi.org/10.1016/j.foodchem.201...
).

4 Conclusion

Among the fatty acids concentrations evaluated in this study, in general, the composition of SFA and MUFA increased at the end of the storage period in samples without any treatment with antioxidant or with addition of only the herb extract. Furthermore, the addition of microencapsulated aromatic herbs extracts prevented the oxidation of PUFA and consequently its reduction, improving the nutritional quality indicators in both the restructured product based on tilapia MSM and the fresh pork sausage.

Our results suggest that the application of aromatic herbs extracts, more specifically Origanum vulgare and Rosmarinus officinalis in combination with techniques of microencapsulation may be an interesting natural alternative to improve the stability of fish and pork meat products by preventing oxidative rancidity as well as improve the nutritional quality of these products.

These findings open new perspectives for the application of microencapsulated herb extracts in substitution to synthetic antioxidants, aiming the manufacturing of products with a natural and health claim in order to achieve the new trends in the consumer market.

  • Practical application: This work reveals the influence of the addition of microencapsulated natural extracts of herbs in comparison with synthetic antioxidants on the fatty acid profile of different meat products.

References

  • Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G., & Alwis, D. D. D. H. (2021). Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon, 7(7), E07449. http://dx.doi.org/10.1016/j.heliyon.2021.e07449 PMid:34286127.
    » http://dx.doi.org/10.1016/j.heliyon.2021.e07449
  • Adilah, Z. A. M., & Hanani, Z. A. N. (2016). Active packaging of fish gelatin films with Morinda citrifolia oil. Food Bioscience, 16, 66-71. http://dx.doi.org/10.1016/j.fbio.2016.10.002
    » http://dx.doi.org/10.1016/j.fbio.2016.10.002
  • Aguirrezábal, M. M., Mateo, J., Domínguez, M. C., & Zumalacárregui, J. M. (2000). The effect of paprika, garlic and salt on rancidity in dry sausages. Meat Science, 54(1), 77-81. http://dx.doi.org/10.1016/S0309-1740(99)00074-1 PMid:22063715.
    » http://dx.doi.org/10.1016/S0309-1740(99)00074-1
  • Ahmed, I., Lin, H., Zou, L., Brody, A. L., Li, Z., Qazi, I. M., Pavase, T. R., & Lv, L. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163-178. http://dx.doi.org/10.1016/j.foodcont.2017.06.009
    » http://dx.doi.org/10.1016/j.foodcont.2017.06.009
  • Alfaia, C. M., Alves, S. P., Lopes, A. F., Fernandes, M. J., Costa, A. S., Fontes, C. M., Castro, M. L. F., Bessa, R. J. B., & Prates, J. A. (2010). Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Science, 84(4), 769-777. http://dx.doi.org/10.1016/j.meatsci.2009.11.014.
    » http://dx.doi.org/10.1016/j.meatsci.2009.11.014.
  • Alkuraieef, A. N., Alsuhaibani, A. M., Alshawi, A. H., Aljahani, A. H., Aljobair, M. O., & Albaridi, N. A. (2022). Proximate chemical composition and lipid profile of Indian mackerel fish. Food Science and Technology, 42, e67120. http://dx.doi.org/10.1590/fst.67120
    » http://dx.doi.org/10.1590/fst.67120
  • Álvarez, I., Fuente, J., Cañeque, V., Lauzurica, S., Pérez, C., & Díaz, M. T. (2009). Changes in the fatty acid composition of M. longissimus dorsi of lamb during storage in a high-oxygen modified atmosphere at different levels of dietary vitamin E supplementation. Journal of Agricultural and Food Chemistry, 57(1), 140-146. http://dx.doi.org/10.1021/jf801940c PMid:19093867.
    » http://dx.doi.org/10.1021/jf801940c
  • Amaral, A. B., Silva, M. V., & Lannes, S. C. S. (2018). Lipid oxidation in meat: mechanisms and protective factors - a review. Food Science and Technology, 38(Suppl. 1), 1-15. http://dx.doi.org/10.1590/fst.32518
    » http://dx.doi.org/10.1590/fst.32518
  • Araújo, L. R. S., Watanabe, P. H., Fernandes, D. R., Maia, I. R. O., Silva, E. C., Pinheiro, R. R. S., Melo, M. C. A., Santos, E. O., Owen, R. W., Trevisan, M. T. S., & Freitas, E. R. (2021). Dietary ethanol extract of mango increases antioxidant activity of pork. Animal, 15(2), 100099. http://dx.doi.org/10.1016/j.animal.2020.100099 PMid:33573964.
    » http://dx.doi.org/10.1016/j.animal.2020.100099
  • Baldissera, M. D., Souza, C. F., Zeppenfeld, C. C., Velho, M. C., Klein, B., Abbad, L. B., Ourique, A. F., Wagner, R., Silva, A. S., & Baldisserotto, B. (2020). Dietary supplementation with nerolidol nanospheres improves growth, antioxidant status and fillet fatty acid profiles in Nile tilapia: benefits of nanotechnology for fish health and meat quality. Aquaculture, 516, 734635. http://dx.doi.org/10.1016/j.aquaculture.2019.734635
    » http://dx.doi.org/10.1016/j.aquaculture.2019.734635
  • Barteková, M., Adameová, A., Görbe, A., Ferenczyová, K., Pecháňová, O., Lazou, A., Dhalla, N. S., Ferdinandy, P., & Giricz, Z. (2021). Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radical Biology & Medicine, 169, 446-477. http://dx.doi.org/10.1016/j.freeradbiomed.2021.03.045 PMid:33905865.
    » http://dx.doi.org/10.1016/j.freeradbiomed.2021.03.045
  • Bellucci, E. R. B., Munekata, P. E. S., Pateiro, M., Lorenzo, J. M., & Barretto, A. C. S. (2021). Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Science, 171, 108284. http://dx.doi.org/10.1016/j.meatsci.2020.108284 PMid:32866833.
    » http://dx.doi.org/10.1016/j.meatsci.2020.108284
  • Berasategi, I., Legarra, S., Ciriano, M. G.-I., Rehecho, S., Calvo, M. I., Cavero, R. Y., Navarro-Blasco, Í., Ansorena, D., & Astiasarán, I. (2011). “High in omega-3 fatty acids” bologna-type sausages stabilized with an aqueous-ethanol extract of Melissa officinalis. Meat Science, 88(4), 705-711. http://dx.doi.org/10.1016/j.meatsci.2011.02.035 PMid:21439735.
    » http://dx.doi.org/10.1016/j.meatsci.2011.02.035
  • Bitalebi, S., Nikoo, M., Rahmanifarah, K., Noori, F., & Gavlighi, H. A. (2019). Effect of apple peel extract as natural antioxidant on lipid and protein oxidation of rainbow trout (Oncorhynchus mykiss) mince. International Aquatic Research, 11(2), 135-146. http://dx.doi.org/10.1007/s40071-019-0224-y
    » http://dx.doi.org/10.1007/s40071-019-0224-y
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. http://dx.doi.org/10.1139/o59-099 PMid:13671378.
    » http://dx.doi.org/10.1139/o59-099
  • Boroski, M., Giroux, H. J., Sabik, H., Petit, H. V., Visentainer, J. V., Matumoto-Pintro, P. T., & Britten, M. (2012). Use of oregano extract and oregano essential oil as antioxidants in functional dairy beverage formulations. Lebensmittel-Wissenschaft + Technologie, 47(1), 167-174. http://dx.doi.org/10.1016/j.lwt.2011.12.018
    » http://dx.doi.org/10.1016/j.lwt.2011.12.018
  • Bowen, K. J., Kris-Etherton, P. M., West, S. G., Fleming, J. A., Connelly, P. W., Lamarche, B., Couture, P., Jenkins, D. J. A., Taylor, C. G., Zahradka, P., Hammad, S. S., Sihag, J., Chen, X., Guay, V., Maltais-Giguère, J., Perera, D., Wilson, A., Juan, S. C. S., Rempel, J., & Jones, P. J. H. (2019). Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a western fatty acid profile in adults with central adiposity. The Journal of Nutrition, 149(3), 471-478. http://dx.doi.org/10.1093/jn/nxy307 PMid:30773586.
    » http://dx.doi.org/10.1093/jn/nxy307
  • Brasil, Ministério da Saúde, Agência Nacional de Vigilância Sanitária – ANVISA. (1999, May 3). Resolução n° 19, de 30 de abril de 1999 - Dispõe sobre o regulamento de procedimentos para registro de alimento com alegação de propriedades funcionais e ou de saúde em sua rotulagem. Diário Oficial da República Federativa do Brasil, seção 1.
  • Byun, N. Y., Cho, J. H., & Yim, S. H. (2021). Correlation between antioxidant activity and anti-wrinkle effect of ethanol extracts of Sanguisorba Officinalis L. Food Science and Technology, 41(Suppl. 2), 791-798. http://dx.doi.org/10.1590/fst.10921
    » http://dx.doi.org/10.1590/fst.10921
  • Celano, R., Piccinelli, A. L., Pagano, I., Roscigno, G., Campone, L., Falco, E., Russo, M., & Rastrelli, L. (2017). Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Research International, 99(Pt 1), 298-307. http://dx.doi.org/10.1016/j.foodres.2017.05.036 PMid:28784486.
    » http://dx.doi.org/10.1016/j.foodres.2017.05.036
  • Cheng, C., Li, H., Liang, L., Jin, T., Zhang, G., Bradley, J. L., Peberdy, M. A., Ornato, J. P., Wijesinghe, D. S., & Tang, W. (2021). Effects of ω-3 PUFA and ascorbic acid combination on post-resuscitation myocardial function. Biomedicine and Pharmacotherapy, 133, 110970. http://dx.doi.org/10.1016/j.biopha.2020.110970 PMid:33166763.
    » http://dx.doi.org/10.1016/j.biopha.2020.110970
  • Chiappero, J., Cappellari, L. R., Palermo, T. B., Giordano, W., Khan, N., & Banchio, E. (2021). Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Industrial Crops and Products, 167, 113541. http://dx.doi.org/10.1016/j.indcrop.2021.113541
    » http://dx.doi.org/10.1016/j.indcrop.2021.113541
  • Chin, S. F., Liu, W., Storkson, J. M., Ha, Y. L., & Pariza, M. W. (1992). Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. Journal of Food Composition and Analysis, 5(3), 185-197. http://dx.doi.org/10.1016/0889-1575(92)90037-K
    » http://dx.doi.org/10.1016/0889-1575(92)90037-K
  • Conte-Junior, C. A., & Soncin, S. (2007). Estudio de la producción de ácido linoleico conjugado por cepas de Lactobacillus y Enterococcus de distintos orígenes. Revista Complutense de Ciencias Veterinarias, 1(2), 482-489.
  • Correia, B. S. B., Ortin, G. G. D., Mor, N. C., Santos, M. S., Torrinhas, R. S., Val, A. L., & Tasic, L. (2020). NMR in analysis of the nutritional value of lipids from muscles and livers of wild Amazonian fishes with different eating habits over seasonal variation. Journal of the Brazilian Chemical Society, 31(12), 2531-2543. http://dx.doi.org/10.21577/0103-5053.20200130
    » http://dx.doi.org/10.21577/0103-5053.20200130
  • Dallabona, I. D., Lima, G. G., Cestaro, B. I., Tasso, I. S., Paiva, T. S., Laureanti, E. J. G., Jorge, L. M. M., Silva, B. J. G., Helm, C. V., Mathias, A. L., & Jorge, R. M. M. (2020). Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. International Journal of Biological Macromolecules, 163, 1421-1432. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.256 PMid:32738324.
    » http://dx.doi.org/10.1016/j.ijbiomac.2020.07.256
  • Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Kovačević, D. B., Pateiro, M., Santos, E. M., & Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: a review. Food Research International, 113, 93-101. http://dx.doi.org/10.1016/j.foodres.2018.06.073 PMid:30195551.
    » http://dx.doi.org/10.1016/j.foodres.2018.06.073
  • Dumitraşcu, L., Stănciuc, N., Borda, D., Neagu, C., Enachi, E., Barbu, V., & Aprodu, I. (2021). Microencapsulation of bioactive compounds from cornelian cherry fruits using different biopolymers with soy proteins. Food Bioscience, 41, 101032. http://dx.doi.org/10.1016/j.fbio.2021.101032
    » http://dx.doi.org/10.1016/j.fbio.2021.101032
  • Fernandes, R. P. P., Freire, M. T. A., Paula, E. S. M., Kanashiro, A. L. S., Catunda, F. A. P., Rosa, A. F., Balieiro, J. C. C., & Trindade, M. A. (2014). Stability of lamb loin stored under refrigeration and packed in different modified atmosphere packaging systems. Meat Science, 96(1), 554-561. http://dx.doi.org/10.1016/j.meatsci.2013.08.005 PMid:24018275.
    » http://dx.doi.org/10.1016/j.meatsci.2013.08.005
  • Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., & Melo, M. P. (2018). Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Science, 137, 244-257. http://dx.doi.org/10.1016/j.meatsci.2017.11.018 PMid:29223559.
    » http://dx.doi.org/10.1016/j.meatsci.2017.11.018
  • Fernandes, R. P. P., Trindade, M. A., Lorenzo, J. M., Munekata, P. E. S., & Melo, M. P. (2016). Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control, 63, 65-75. http://dx.doi.org/10.1016/j.foodcont.2015.11.027
    » http://dx.doi.org/10.1016/j.foodcont.2015.11.027
  • Frankel, E. N., Huang, S. W., Prior, E., & Aeschbach, R. (1996). Evaluation of antioxidant activity of rosemary extracts, carnosol and carnosic acid in bulk vegetable oils and fish oil and their emulsions. Journal of the Science of Food and Agriculture, 72(2), 201-208. http://dx.doi.org/10.1002/(SICI)1097-0010(199610)72:2<201::AID-JSFA632>3.0.CO;2-Q
    » http://dx.doi.org/10.1002/(SICI)1097-0010(199610)72:2<201::AID-JSFA632>3.0.CO;2-Q
  • Gawlik-Dziki, U. (2012). Dietary spices as a natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. Lebensmittel-Wissenschaft + Technologie, 47(1), 138-146. http://dx.doi.org/10.1016/j.lwt.2011.12.022
    » http://dx.doi.org/10.1016/j.lwt.2011.12.022
  • Gelbe List Pharmindex. (2013). Fachinformation INFECTOTRIMET® 50 saft, 50 mg/5 ml suspension zum einnehmen Retrieved from https://www.gelbe-liste.de/produkte/INFECTOTRIMET-50-Saft-50-mg-5-ml-Suspension-zum-Einnehmen_113832/fachinformation
    » https://www.gelbe-liste.de/produkte/INFECTOTRIMET-50-Saft-50-mg-5-ml-Suspension-zum-Einnehmen_113832/fachinformation
  • Gobert, M., Gruffat, D., Habeanu, M., Parafita, E., Bauchart, D., & Durand, D. (2010). Plant extracts combined with vitamin E in PUFA-rich diets of cull cows protect processed beef against lipid oxidation. Meat Science, 85(4), 676-683. http://dx.doi.org/10.1016/j.meatsci.2010.03.024 PMid:20416810.
    » http://dx.doi.org/10.1016/j.meatsci.2010.03.024
  • Gonçalves, S., Mansinhos, I., & Romano, A. (2020). Aromatic plants: A source of compounds with antioxidant and neuroprotective effects. In C. R. Martin & V. R. Preedy (Eds.), Oxidative stress and dietary antioxidants in neurological diseases (pp. 155-173). London: Academic Press. http://dx.doi.org/10.1016/B978-0-12-817780-8.00011-6
    » http://dx.doi.org/10.1016/B978-0-12-817780-8.00011-6
  • Homayonpour, P., Jalali, H., Shariatifar, N., & Amanlou, M. (2021). Effects of nano-chitosan coatings incorporating with free /nano-encapsulated cumin (Cuminum cyminum L.) essential oil on quality characteristics of sardine fillet. International Journal of Food Microbiology, 341, 109047. http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109047 PMid:33515813.
    » http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109047
  • Huang, Y., Gan, Y., Li, F., Yan, C., Li, H., & Feng, Q. (2015). Effects of high pressure in combination with thermal treatment on lipid hydrolysis and oxidation in pork. Lebensmittel-Wissenschaft + Technologie, 63(1), 136-143. http://dx.doi.org/10.1016/j.lwt.2015.03.103
    » http://dx.doi.org/10.1016/j.lwt.2015.03.103
  • Jasour, M. S., & Rahimabadi, E. Z. (2011). Effects of refrigerated storage on fillet lipid quality of rainbow trout (Oncorhynchus Mykiss) supplemented by α-tocopheryl acetate through diet and direct addition after slaughtering. Journal of Food Processing & Technology, 2(5). http://dx.doi.org/10.4172/2157-7110.1000124
    » http://dx.doi.org/10.4172/2157-7110.1000124
  • Khan, S. U., Lone, A. N., Khan, M. S., Virani, S. S., Blumenthal, R. S., Nasir, K., Miller, M., Michos, E. D., Ballantyne, C. M., Boden, W. E., & Bhatt, D. L. (2021). Effect of omega-3 fatty acids on cardiovascular outcomes: a systematic review and meta-analysis. EclinicalMedicine, 38, 100997. http://dx.doi.org/10.1016/j.eclinm.2021.100997 PMid:34505026.
    » http://dx.doi.org/10.1016/j.eclinm.2021.100997
  • Kim, J. A., Cho, E. S., Jeong, Y. D., Choi, Y. H., Kim, Y. S., Choi, J. W., Kim, J. S., Jang, A., Hong, J. K., & Sa, S. J. (2020). The effects of breed and gender on meat quality of Duroc, Pietrain, and their crossbred. Journal of Animal Science and Technology, 62(3), 409-419. http://dx.doi.org/10.5187/jast.2020.62.3.409 PMid:32568265.
    » http://dx.doi.org/10.5187/jast.2020.62.3.409
  • Kishino, S., Ogawa, J., Ando, A., Omura, Y., & Shimizu, S. (2002). Ricinoleic acid and castor oil as substrates for conjugated linoleic acid production by washed cells of lactobacillu. Bioscience, Biotechnology, and Biochemistry, 66(10), 2283-2286. http://dx.doi.org/10.1271/bbb.66.2283 PMid:12450151.
    » http://dx.doi.org/10.1271/bbb.66.2283
  • Lima, T. L. S., Costa, G. F., Alves, R. N., Araújo, C. D. L., Silva, G. F. G., Ribeiro, N. L., Figueiredo, C. F. V., & Andrade, R. O. (2022). Vegetable oils in emulsified meat products: a new strategy to replace animal fat. Food Science and Technology, 42, e103621. http://dx.doi.org/10.1590/fst.103621
    » http://dx.doi.org/10.1590/fst.103621
  • Lorente-Cebrián, S., Costa, A. G. V., Navas-Carretero, S., Zabala, M., Martínez, J. A., & Moreno-Aliaga, M. J. (2013). Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. Journal of Physiology and Biochemistry, 69(3), 633-651. http://dx.doi.org/10.1007/s13105-013-0265-4 PMid:23794360.
    » http://dx.doi.org/10.1007/s13105-013-0265-4
  • Lorenzo, J. M., Sineiro, J., Amado, I. R., & Franco, D. (2014). Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Science, 96(1), 526-534. http://dx.doi.org/10.1016/j.meatsci.2013.08.007 PMid:24008060.
    » http://dx.doi.org/10.1016/j.meatsci.2013.08.007
  • Lucarini, M., Durazzo, A., Pulgar, J. S., Gabrielli, P., & Lombardi-Boccia, G. (2018). Determination of fatty acid content in meat and meat products: the FTIR-ATR approach. Food Chemistry, 267, 223-230. http://dx.doi.org/10.1016/j.foodchem.2017.11.042 PMid:29934161.
    » http://dx.doi.org/10.1016/j.foodchem.2017.11.042
  • Ma, F., Qin, H., Shi, K., Zhou, C., Chen, C., Hu, X., & Zheng, L. (2016). Feasibility of combining spectra with texture data of multispectral imaging to predict heme and non-heme iron contents in pork sausages. Food Chemistry, 190, 142-149. http://dx.doi.org/10.1016/j.foodchem.2015.05.084 PMid:26212953.
    » http://dx.doi.org/10.1016/j.foodchem.2015.05.084
  • Ma, J., & Sun, D. W. (2020). Prediction of monounsaturated and polyunsaturated fatty acids of various processed pork meats using improved hyperspectral imaging technique. Food Chemistry, 321, 126695. http://dx.doi.org/10.1016/j.foodchem.2020.126695 PMid:32247889.
    » http://dx.doi.org/10.1016/j.foodchem.2020.126695
  • Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100255. http://dx.doi.org/10.1016/j.jarmap.2020.100255
    » http://dx.doi.org/10.1016/j.jarmap.2020.100255
  • Martín, L., Timón, M. L., Petrón, M. J., Ventanas, J., & Antequera, T. (2000). Evolution of volatile aldehydes in Iberian ham matured under different processing conditions. Meat Science, 54(4), 333-337. http://dx.doi.org/10.1016/S0309-1740(99)00107-2 PMid:22060789.
    » http://dx.doi.org/10.1016/S0309-1740(99)00107-2
  • McGlone, J. J. (2013). The future of pork production in the world: towards sustainable, welfare-positive systems. Animals, 3(2), 401-415. http://dx.doi.org/10.3390/ani3020401 PMid:26487410.
    » http://dx.doi.org/10.3390/ani3020401
  • Memon, N. N., Talpur, F. N., Bhanger, M. I., & Balouch, A. (2011). Changes in fatty acid composition in muscle of three farmed carp fish species (Labeo rohita, Cirrhinus mrigala, Catla catla) raised under the same conditions. Food Chemistry, 126(2), 405-410. http://dx.doi.org/10.1016/j.foodchem.2010.10.107
    » http://dx.doi.org/10.1016/j.foodchem.2010.10.107
  • Mendes, D., Asquieri, E. R., Batista, R. D., Morais, C. C., Ascheri, D. P. R., Macêdo, I. Y. L., & Gil, E. S. (2021). Microencapsulation of jabuticaba extracts (Myrciaria cauliflora): evaluation of their bioactive and thermal properties in cassava starch biscuits. LWT, 137, 110460. http://dx.doi.org/10.1016/j.lwt.2020.110460
    » http://dx.doi.org/10.1016/j.lwt.2020.110460
  • Monteiro, M. L. G., Mársico, E. T., Canto, A. C. V. C. S., Costa-Lima, B. R. C., Costa, M. P., Viana, F. M., Silva, T. J. P., & Conte-Junior, C. A. (2017). Impact of UV-C light on the fatty acid profile and oxidative stability of Nile tilapia (Oreochromis niloticus) fillets. Journal of Food Science, 82(4), 1028-1036. http://dx.doi.org/10.1111/1750-3841.13685 PMid:28295293.
    » http://dx.doi.org/10.1111/1750-3841.13685
  • Monteiro, M. L. G., Mársico, E. T., Lázaro, C. A., Canto, A. C. V. C. S., Lima, B. R. C. C., Cruz, A. G., & Conte-Júnior, C. A. (2015). Effect of transglutaminase on quality characteristics of a value-added product tilapia wastes. Journal of Food Science and Technology, 52(5), 2598-2609. http://dx.doi.org/10.1007/s13197-014-1327-5 PMid:25892758.
    » http://dx.doi.org/10.1007/s13197-014-1327-5
  • Munekata, P. E. S., Domínguez, R., Franco, D., Bermúdez, R., Trindade, M. A., & Lorenzo, J. M. (2017). Effect of natural antioxidants in Spanish salchichón elaborated with encapsulated n-3 long chain fatty acids in konjac glucomannan matrix. Meat Science, 124, 54-60. http://dx.doi.org/10.1016/j.meatsci.2016.11.002 PMid:27835835.
    » http://dx.doi.org/10.1016/j.meatsci.2016.11.002
  • Navarro, M., Dunshea, F. R., Lisle, A., & Roura, E. (2021). Feeding a high oleic acid (C18:1) diet improves pleasing flavor attributes in pork. Food Chemistry, 357, 129770. http://dx.doi.org/10.1016/j.foodchem.2021.129770 PMid:33866241.
    » http://dx.doi.org/10.1016/j.foodchem.2021.129770
  • Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control, 91, 185-192. http://dx.doi.org/10.1016/j.foodcont.2018.03.047
    » http://dx.doi.org/10.1016/j.foodcont.2018.03.047
  • Pérez, J. A., Castro, A., Rolo, C., Torres, A., Dorta-Guerra, R., Acosta, N. G., & Rodríguez, C. (2021). Fatty acid profiles and omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis capacity of three dual purpose chicken breeds. Journal of Food Composition and Analysis, 102, 104005. http://dx.doi.org/10.1016/j.jfca.2021.104005
    » http://dx.doi.org/10.1016/j.jfca.2021.104005
  • Priol, L., Gmur, J., Dagmey, A., Morandat, S., Kirat, K., Saleh, K., & Nesterenko, A. (2021). Co-encapsulation of vegetable oils with phenolic antioxidants and evaluation of their oxidative stability under long-term storage conditions. LWT, 142, 111033. http://dx.doi.org/10.1016/j.lwt.2021.111033
    » http://dx.doi.org/10.1016/j.lwt.2021.111033
  • Qi, S., Huang, H., Huang, J., Wang, Q., & Wei, Q. (2015). Lychee (Litchi chinensis Sonn.) seed water extract as potential antioxidant and anti-obese natural additive in meat products. Food Control, 50, 195-201. http://dx.doi.org/10.1016/j.foodcont.2014.08.047
    » http://dx.doi.org/10.1016/j.foodcont.2014.08.047
  • Rachtan-Janicka, J., Ponder, A., & Hallmann, E. (2021). The effect of organic and conventional cultivations on antioxidants content in blackcurrant (Ribes nigrum l.) species. Applied Sciences, 11(11), 5113. http://dx.doi.org/10.3390/app11115113
    » http://dx.doi.org/10.3390/app11115113
  • Rebolé, A., Velasco, S., Rodríguez, M. L., Treviño, J., Alzueta, C., Tejedor, J. L., & Ortiz, L. T. (2015). Nutrient content in the muscle and skin of fillets from farmed rainbow trout (Oncorhynchus mykiss). Food Chemistry, 174, 614-620. http://dx.doi.org/10.1016/j.foodchem.2014.11.072 PMid:25529727.
    » http://dx.doi.org/10.1016/j.foodchem.2014.11.072
  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2020). Microencapsulation of polyphenols - the specific case of the microencapsulation of Sambucus Nigra L. extracts - a review. Trends in Food Science & Technology, 105, 454-467. http://dx.doi.org/10.1016/j.tifs.2019.03.011
    » http://dx.doi.org/10.1016/j.tifs.2019.03.011
  • Rodrigues, B. J., Ítavo, C. C. B. F., Ítavo, L. C. V., Gomes, M. N. B., Difante, G. S., Arco, T. F. F. S., Gurgel, A. L. C., Higano, L. M., Godoy, C., Miguel, A. A. S., Souza, G. V., Luz, R. C. S., & Brixner, B. M. (2022). The lipid source can modify saturated and unsaturated fatty acids profile of meat of lambs. Food Science and Technology, 42, e91721. http://dx.doi.org/10.1590/fst.91721
    » http://dx.doi.org/10.1590/fst.91721
  • Rodrigues, B. L., Monteiro, M. L. G., Canto, A. C. V. C. S., Costa, M. P., & Conte-Junior, C. A. (2020a). Proximate composition, fatty acids and nutritional indices of promising freshwater fish species from Serrasalmidae family. CYTA: Journal of Food, 18(1), 591-598. http://dx.doi.org/10.1080/19476337.2020.1804463
    » http://dx.doi.org/10.1080/19476337.2020.1804463
  • Rodrigues, J. S., Valle, C. P., Uchoa, A. F. J., Ramos, D. M., Ponte, F. A. F., Rios, M. A. S., Malveira, J. Q., & Ricardo, N. M. P. S. (2020b). Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renewable Energy, 156, 1100-1106. http://dx.doi.org/10.1016/j.renene.2020.04.153
    » http://dx.doi.org/10.1016/j.renene.2020.04.153
  • Romola, C. V. J., Meganaharshini, M., Rigby, S. P., Moorthy, I. G., Kumar, R. S., & Karthikumar, S. (2021). A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel. Renewable & Sustainable Energy Reviews, 145, 111109. http://dx.doi.org/10.1016/j.rser.2021.111109
    » http://dx.doi.org/10.1016/j.rser.2021.111109
  • Santos, P. D. F., Rubio, F. T. V., Silva, M. P., Pinho, L. S., & Favaro-Trindade, C. S. (2021). Microencapsulation of carotenoid-rich materials: a review. Food Research International, 147, 110571. http://dx.doi.org/10.1016/j.foodres.2021.110571 PMid:34399544.
    » http://dx.doi.org/10.1016/j.foodres.2021.110571
  • Seck, I., Hosu, A., Cimpoiu, C., Ndoye, S. F., Ba, L. A., Sall, C., & Seck, M. (2021). Phytochemicals content, screening and antioxidant/pro-oxidant activities of Carapa procera (barks) (Meliaceae). South African Journal of Botany, 137, 369-376. http://dx.doi.org/10.1016/j.sajb.2020.11.019
    » http://dx.doi.org/10.1016/j.sajb.2020.11.019
  • Serdaroğlu, M., & Felekoğlu, E. (2005). Effects of using rosemary extract and onion juice on oxidative stability of sardine (Sardina pilchardus) mince. Journal of Food Quality, 28(2), 109-120. http://dx.doi.org/10.1111/j.1745-4557.2005.00016.x
    » http://dx.doi.org/10.1111/j.1745-4557.2005.00016.x
  • Setty, B. N. Y., Betal, S. G., Miller, R. E., Brown, D. S., Meier, M., Cahill, M., Lerner, N. B., Apollonsky, N., & Stuart, M. J. (2019). Relationship of omega-3 fatty acids DHA and EPA with the inflammatory biomarker hs-CRP in children with sickle cell anemia. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 146, 11-18. http://dx.doi.org/10.1016/j.plefa.2019.05.004 PMid:31186149.
    » http://dx.doi.org/10.1016/j.plefa.2019.05.004
  • Šimat, V., Bogdanović, T., Poljak, V., & Petričević, S. (2015). Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: effect of fish farming activities. Journal of Food Composition and Analysis, 40, 120-125. http://dx.doi.org/10.1016/j.jfca.2014.12.026
    » http://dx.doi.org/10.1016/j.jfca.2014.12.026
  • Smaoui, S., Hlima, H. B., Braïek, O. B., Ennouri, K., Mellouli, L., & Khaneghah, A. M. (2021). Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Science, 181, 108585. http://dx.doi.org/10.1016/j.meatsci.2021.108585 PMid:34119890.
    » http://dx.doi.org/10.1016/j.meatsci.2021.108585
  • So, J., Wu, D., Lichtenstein, A. H., Tai, A. K., Matthan, N. R., Maddipati, K. R., & Lamon-Fava, S. (2021). EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: a randomized, double-blind, crossover study. Atherosclerosis, 316, 90-98. http://dx.doi.org/10.1016/j.atherosclerosis.2020.11.018 PMid:33303222.
    » http://dx.doi.org/10.1016/j.atherosclerosis.2020.11.018
  • Sprague, M., Fawcett, S., Betancor, M. B., Struthers, W., & Tocher, D. R. (2020). Variation in the nutritional composition of farmed Atlantic salmon (Salmo salar L.) fillets with emphasis on EPA and DHA contents. Journal of Food Composition and Analysis, 94, 103618. http://dx.doi.org/10.1016/j.jfca.2020.103618
    » http://dx.doi.org/10.1016/j.jfca.2020.103618
  • Tarté, R., Paulus, J. S., Acevedo, N. C., Prusa, K. J., & Lee, S. L. (2020). High-oleic and conventional soybean oil oleogels structured with rice bran wax as alternatives to pork fat in mechanically separated chicken-based bologna sausage. LWT, 131, 109659. http://dx.doi.org/10.1016/j.lwt.2020.109659
    » http://dx.doi.org/10.1016/j.lwt.2020.109659
  • Thakur, M., & Kumar, R. (2021). Microclimatic buffering on medicinal and aromatic plants: a review. Industrial Crops and Products, 160(6), 113144. http://dx.doi.org/10.1016/j.indcrop.2020.113144
    » http://dx.doi.org/10.1016/j.indcrop.2020.113144
  • Vehovský, K., Zadinová, K., Stupka, R., Čítek, J., Lebedová, N., Okrouhlá, M., & Šprysl, M. (2018). Fatty acid composition in pork fat: de-novo synthesis, fatty acid sources and influencing factors - a review. Agronomy Research, 16(5), 2211-2228.
  • Vieitez, I., Maceiras, L., Jachmanián, I., & Alborés, S. (2018). Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. The Journal of Supercritical Fluids, 133, 58-64. http://dx.doi.org/10.1016/j.supflu.2017.09.025
    » http://dx.doi.org/10.1016/j.supflu.2017.09.025
  • Vinceković, M., Jurić, S., Marijan, M., Viskić, M., Vlahoviček-Kahlina, K., & Bandić, L. M. (2020) Encapsulation of herb extracts (Aromatic and medicinal herbs). In: C. M. Galanakis, (Ed.), Aromatic herbs in food: bioactive compounds, processing, and applications (pp. 263-300). London: Academic Press.
  • Wang, D., Zhang, M., Bian, H., Xu, W., Xu, X., Zhu, Y., Liu, F., Geng, Z., & Zhou, G. (2014). Changes of phospholipase A2 and C activities during dry-cured duck processing and their relationship with intramuscular phospholipid degradation. Food Chemistry, 145, 997-1001. http://dx.doi.org/10.1016/j.foodchem.2013.09.007 PMid:24128575.
    » http://dx.doi.org/10.1016/j.foodchem.2013.09.007
  • Wójciak, K. M., Karwowska, M., & Dolatowski, Z. J. (2015). Fatty acid profile, color and lipid oxidation of organic fermented sausage during chilling storage as influenced by acid whey and probiotic strains addition. Scientia Agricola, 72(2), 124-131. http://dx.doi.org/10.1590/0103-9016-2014-0110
    » http://dx.doi.org/10.1590/0103-9016-2014-0110
  • Wong, P. Y. Y., & Kitts, D. D. (2002). The effects of herbal pre-seasoning on microbial and oxidative changes in irradiated beef steaks. Food Chemistry, 76(2), 197-205. http://dx.doi.org/10.1016/S0308-8146(01)00265-5
    » http://dx.doi.org/10.1016/S0308-8146(01)00265-5
  • Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., & Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: a review. Meat Science, 78(4), 343-358. http://dx.doi.org/10.1016/j.meatsci.2007.07.019 PMid:22062452.
    » http://dx.doi.org/10.1016/j.meatsci.2007.07.019
  • Xiong, Q., Zhang, M., Wang, T., Wang, D., Sun, C., Bian, H., Li, P., Zou, Y., & Xu, W. (2020). Lipid oxidation induced by heating in chicken meat and the relationship with oxidants and antioxidant enzymes activities. Poultry Science, 99(3), 1761-1767. http://dx.doi.org/10.1016/j.psj.2019.11.013 PMid:32111336.
    » http://dx.doi.org/10.1016/j.psj.2019.11.013
  • Ye, Z., Cao, C., Li, Q., Xu, Y.-j., & Liu, Y. (2020). Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats. Food Research International, 132, 109117. http://dx.doi.org/10.1016/j.foodres.2020.109117 PMid:32331659.
    » http://dx.doi.org/10.1016/j.foodres.2020.109117
  • Zhou, F., Jongberg, S., Zhao, M., Sun, W., & Skibsted, L. H. (2019). Antioxidant efficiency and mechanisms of green tea, rosemary or maté extracts in porcine Longissimus dorsi subjected to iron-induced oxidative stress. Food Chemistry, 298, 125030. http://dx.doi.org/10.1016/j.foodchem.2019.125030 PMid:31260978.
    » http://dx.doi.org/10.1016/j.foodchem.2019.125030
  • Zou, Y., Qian, Y., Rong, X., Cao, K., McClements, D. J., & Hu, K. (2021). Encapsulation of quercetin in biopolymer-coated zein nanoparticles: formation, stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids, 120, 106980. http://dx.doi.org/10.1016/j.foodhyd.2021.106980
    » http://dx.doi.org/10.1016/j.foodhyd.2021.106980

Publication Dates

  • Publication in this collection
    19 Aug 2022
  • Date of issue
    2022

History

  • Received
    28 May 2022
  • Accepted
    12 July 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br