Acessibilidade / Reportar erro

Chemical constituents and nutritional health functions of Dendrobium nobile: a review

Abstract

Dendrobium nobile is a traditional Chinese medicine and functional food in China, containing phenanthrene, alkaloids, bibenzyl, sesquiterpenes, polysaccharides and other chemical components, with anti-aging, immunity-enhancing, glucose-lowering and lipid-lowering health functions. In recent years, the research value of D. nobile has attracted the attention of more and more experts and scholars. This paper reviews the chemical constituents isolated and identified from D. nobile and provides reference for further development and utilization of D. nobile.

Keywords:
Dendrobium nobile; isolation and identification; chemical composition

1 Introduction

Dendrobium nobile Lindl. (Orchidaceae) is a famous traditional Chinese medicine and functional food with a long history, and mainly distributed in Guizhou, Yunnan, Guangxi of China and other subtropical areas. D. nobile has the effects of promoting the body's vitality, relieving cough, moistening the lungs and stomach, strengthening the eyes and nourishing Yin and clearing heat. Relevant studies have found that most of the compounds isolated from D. nobile have good physiological activities, with significant effects in improving memory loss, improving cerebral ischaemia, anti-fatigue, anti-oxidation, hypoglycaemia, anti-tumour and anti-inflammation. Its chemical composition is complex, including phenanthrenes, alkaloids, polysaccharides, sesquiterpenoids, bibenzoids, hand ketones, phenylpropanoids and so on. This paper reviews the nutritional and chemical composition and health functions of D. nobile, in order to provide reference for its in-depth research and development.

2 Phytochemical composition

The chemical constituents in medicinal plants play a vital role in human health. Chemical composition research showed that D. nobile mainly contains phenanthrene, alkaloids, polysaccharides, flavonoids, phenols, sesquiterpenoids, coumarins and steroidal glycosides. Their structures and names are listed below.

2.1 Phenanthrene

There are numerous reports on the biological activities of phenanthrene compounds from D. nobile, which are widely used for their pharmacological activities such as antitumour and antioxidant. Up to now, 51 compounds have been identified from D. nobile. Zhou et al. (2016a)Zhou, X. M., Zheng, C. J., Gan, L. S., Chen, G. Y., Zhang, X. P., Song, X. P., Li, G. N., & Sun, C. G. (2016a). Bioactive phenanthrene and bibenzyl derivatives from the stems of Dendrobium nobile. Journal of Natural Products, 79(7), 1791-1797. http://dx.doi.org/10.1021/acs.jnatprod.6b00252. PMid:27310249.
http://dx.doi.org/10.1021/acs.jnatprod.6...
isolated and identified 21 compounds from D. nobile, including three new phenanthrenes and three new biphenanthrenes, as well as 15 known phenanthrenes (Zhou et al., 2016aZhou, X. M., Zheng, C. J., Gan, L. S., Chen, G. Y., Zhang, X. P., Song, X. P., Li, G. N., & Sun, C. G. (2016a). Bioactive phenanthrene and bibenzyl derivatives from the stems of Dendrobium nobile. Journal of Natural Products, 79(7), 1791-1797. http://dx.doi.org/10.1021/acs.jnatprod.6b00252. PMid:27310249.
http://dx.doi.org/10.1021/acs.jnatprod.6...
). In a study on the antioxidant activity of D. nobile, Zhang et al. (2008c)Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H., & Yao, X. S. (2008c). Antioxidant phenanthrenes and lignans from Dendrobium nobile. Journal of Chinese Pharmaceutical Sciences, 17(4), 314-318. found that the presence of methoxy in the neighboring position of the phenolic hydroxyl group with power supply had a positive effect on the antioxidant activity of phenolic and lignan compounds (Zhang et al., 2008cZhang, X., Xu, J. K., Wang, N. L., Kurihara, H., & Yao, X. S. (2008c). Antioxidant phenanthrenes and lignans from Dendrobium nobile. Journal of Chinese Pharmaceutical Sciences, 17(4), 314-318.). The names of the compounds are given in Table 1 and the structures are shown in Figure 1.

Table 1
Phenanthrene compounds isolated from D. nobile.
Figure 1
Chemical structure of phenanthrene compounds in D. nobile.

2.2 Alkaloids

Alkaloids are the main active compounds and characteristic of Dendrobium spp. Dendrobine was the first alkaloid component isolated from D. nobile (Deng et al., 2002Deng, Y. H., Xu, K. P., & Tan, G. S. (2002). Research progress on chemical composition and pharmacological activity of Dendrobium spp. Zhong Yao Cai, 25(9), 677-680. http://dx.doi.org/10.13863/j.issn1001-4454.2002.09.034.
http://dx.doi.org/10.13863/j.issn1001-44...
), and was currently used as a standard reference for the QC of D. nobile in Chinese Pharmacopoeia. Yan et al. (2018)Yan, S., Zhao, T. M., Zhang, X. Q., Xing, J. Y., Hu, Y. D., & Chun, Z. (2018). Comparison of polysaccharide and dendrobine content in hejiang dendrobium nobile at different harvesting time. China Pharmacy, 29(1), 73-77. http://dx.doi.org/10.6039/j.issn.1001-0408.2018.01.19.
http://dx.doi.org/10.6039/j.issn.1001-04...
determined the total alkaloid and dendrobine contents of D. nobile at different harvesting stages and found that the total alkaloid and dendrobine contents were annual (0.52%, 0.48%) > biennial (0.48%, 0.44%) > triennial (0.32%, 0.22%). It has been reported that 30 alkaloids have been isolated from D. nobile, with sesquiterpenoid alkaloids predominating. According to the structural characteristics, the sesquiterpenoid alkaloids in D. nobile can be classified into four types: dendrobine type (dendrobine type, I), dendroxine type (dendroxine type, II), nobiline type (nobiline type, III), and other types (IV), and the specific compound names are shown in Table 2 and the compound structures are shown in Figure 2.

Table 2
Alkaloids isolated from D. nobile.
Figure 2
Chemical structure of alkaloids components in D. nobile.

2.3 Bibenzyl

Bibenzyls are a class of compounds consisting of two phenylmethyl structural units linked by a C-C single bond to a methyl group. Although the parent nucleus of bibenzylates is simple, they are diverse due to variations in the aromatic ring and the substituents on the carbon of the bridge chain connecting the aromatic ring. The bibenzylates isolated from D. nobile can be divided into two major groups: simple bibenzylates and bibenzylates. In recent years, the good anticancer, antioxidant and antibacterial activities of the bibenzyl compounds have become a hot topic of research. At present, 32 bibenzyl compoundsas shown in Table 3 have been isolated from D. nobile, and their structures are shown in Figure 3.

Table 3
Bibenzyl compounds isolated from D. nobile.
Figure 3
Chemical structure of bibenzyl compounds in D. nobile.

2.4 Sesquiterpenes

Up to now, 49 known sesquiterpenes were isolated from D. nobile, most of them have more significant biological activities, such as anti-tumour, neuroprotection, immunomodulation, treatment of diabetes, improvement of acute cerebral ischaemia and other effects (Li et al., 2017aLi, L. S., Lu, Y. L., Nie, J., Xu, Y. Y., Zhang, W., Yang, W. J., Gong, Q. H., Lu, Y. F., Lu, Y., & Shi, J. S. (2017a). Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ25-35 in hippocampus neurons in vitro. CNS Neuroscience & Therapeutics, 23(4), 329-340. http://dx.doi.org/10.1111/cns.12678. PMid:28261990.
http://dx.doi.org/10.1111/cns.12678...
; Liu, 2017Liu, Y. (2017). Study on the protective effects and mechanisms of Dendrobium nobile Lindle. alkaloids on PC12 cells induced by Aβ25-35 (Master’s thesis). Zunyi Medical University, Zunyi.). Sesquiterpenes from D. nobile could be classified as picrotoxane sesquiterpenes, all-aromadendrane sesquiterpenes, cyclocopacamphane sesquiterpenes, copacamphane sesquiterpenes, juniperane sesquiterpenes, cadaverene sesquiterpenes, muurolene sesquiterpenes, axane sesquiterpenes. Picrotoxane sesquiterpenes are mainly present as Picrotoxane-type alkaloids and non-alkaloids (Wang et al., 2019bWang, X. Y., Meng, C. W., & Zhou, Q. M. (2019b). Research progress of sesquiterpenoids from Dendrobium nobile. Natural Product Research and Development, 31(10), 1837-1845. http://dx.doi.org/10.16333/j.1001-6880.2019.10.024.
http://dx.doi.org/10.16333/j.1001-6880.2...
). The specific compound names are shown in Table 4 and the structures are shown in Figure 4.

Table 4
Sesquiterpenes isolated from D. nobile.
Figure 4
Chemical structure of sesquiterpenes in D. nobile.

2.5 Phenolic acid

Phenolic acids are aromatic carboxylic acid compounds with multiple phenolic hydroxyl substitutions on a benzene ring, which are widely distributed in nature, especially in some common Chinese medicines, and exist mainly in the form of various esters and organic acids, rarely in free form (Kaska et al., 2021Kaska, A., Deniz, N., Çiçek, M., & Mammadov, R. (2021). The screening of Digitalis ferruginea L. subsp. ferruginea for toxic capacities, phenolic constituents, antioxidant properties, mineral elements and proximate analysis. Food Science and Technology, 41(2), 505-512. http://dx.doi.org/10.1590/fst.08620.
http://dx.doi.org/10.1590/fst.08620...
; Luo et al., 2022Luo, J., Fan, Z., Yang, X., Bao, Y., Liang, M., & Guo, Y. (2022). Anthocyanins and antioxidant activity of Lonicera caerulea berry wine during different processes. Food Science and Technology, 42, e25121. http://dx.doi.org/10.1590/fst.25121.
http://dx.doi.org/10.1590/fst.25121...
). The phenolic acids in D. nobile have numerous pharmacological activities. In recent years, 33 phenolic acid compounds have been isolated from D. nobile. Zhang et al. (2008b)Zhang, X., Xu, J. K., Wang, N. L., Hiroshi, K., Yao, X. S., & Wang, Z. (2008b). Studies on antioxidant activity of bibenzyls and phenolic components from Dendrobium nobile. Zhongguo Yao Xue Za Zhi, 43(11), 829-832. obtained 13 phenolic acids in the ethanolic extract of D. nobile. Secondly, the phenolic acid components of Dendrobium chinense were also including Protocatechuic acid (Ye & Zhao, 2002Ye, Q., & Zhao, W. (2002). New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from Dendrobium nobile. Planta Medica, 68(8), 723-729. http://dx.doi.org/10.1055/s-2002-33786. PMid:12221596.
http://dx.doi.org/10.1055/s-2002-33786...
), Chrysophanic acid (Zhang et al., 2006Zhang, X., Gao, H., Wang, N. L., & Yao, X. S. (2006). Phenolic components from Dendrobium nobile. Chinese Traditional and Herbal Drugs, 24, 652-655.), Naringenin (Zhou et al., 2018bZhou, W., Zeng, Q. F., Xia, J., Wang, L., Tao, L., & Shen, C. X. (2018b). Antitumor phenanthrene constituents of Dendrobium nobile. Chinese Pharmaceutical Journal, 53(20), 1722-1725.), Isoliquiritin (Luo et al., 2006aLuo, D., Zhang, C. F., Lin, P., Wang, Z. T., & Xu, L. S. (2006a). Study on the chemical composition of Dendrobium chrysanthemum. Chinese Traditional and Herbal Drugs, 37(1), 36-38.). The composition and structure are shown in Table 5 and Figure 5.

Table 5
Phenolic acids isolated from D. nobile.
Figure 5
Chemical structure of phenolic acids in D. nobile.

2.6 Lignans

Lignans are a kind of natural products formed by oxidative polymerization of phenylpropanoid, and D. nobile contains a small amount of lignans. Zhang et al. (2008b)Zhang, X., Xu, J. K., Wang, N. L., Hiroshi, K., Yao, X. S., & Wang, Z. (2008b). Studies on antioxidant activity of bibenzyls and phenolic components from Dendrobium nobile. Zhongguo Yao Xue Za Zhi, 43(11), 829-832. separated and identified the chemical components of 60% ethanol extract of D. nobile by modern chromatography and spectroscopy, and obtained four compounds. The antioxidant activity of these four compounds was evaluated by DPPH free radical scavenging method. See Table 6 and Figure 6 for chemical composition and structure.

Table 6
Lignans isolated from D. nobile.
Figure 6
Chemical structure of lignans in D. nobile.

2.7 Fluorenones

At present, six fluorenones were isolated from D. nobile. Among them, four fluorenone compounds were isolated from ethyl acetate of D. nobile, including Nobilone,Denchrysan A,Dengibsin and Dengibsinin F (Zhou et al., 2018aZhou, W., Shen, X., Zeng, Q., Luo, C., Maoqiu, H., & Liang, Y. (2018a). Fluorenone constituents in Dendrobium nobile. Zhong Yao Cai, 41(8). http://dx.doi.org/10.13863/j.issn1001-4454.2018.08.023.
http://dx.doi.org/10.13863/j.issn1001-44...
). Two new fluorenones were discovered for the first time during the study of the chemical composition of D. nobile by Yang & Xin (2006)Yang, W. W., & Xin, H. (2006). Investigation on chemical constituents of Dendrobium nobile. Analysis and Testing Technology and Instruments, 12(2), 98-100.. The name of the compound is shown in Table 7, and the chemical composition and structure is shown in Figure 7.

Table 7
Fluorenone compounds isolated from D. nobile.
Figure 7
Chemical structure of fluorenones in D. nobile.

2.8 Coumarins

Coumarin is one of the active ingredients of D. nobile. Coumarins are a group of substances with benzoic α-pyrone as the parent nucleus, coumarins have antibacterial, antitumour, vasodilating and anticoagulant effects. At present, the coumarins isolated from D. nobile are dendrocoumarinh and itolide A (Zhou et al., 2018cZhou, X. M., Zhang, B., Chen, G. Y., Han, C. R., Jiang, K. C., Luo, M. Y., Meng, B. Z., Li, W. X., & Lin, S. D. (2018c). Dendrocoumarin: a new benzocoumarin derivative from the stem of Dendrobium nobile. Natural Product Research, 32(20), 2464-2467. http://dx.doi.org/10.1080/14786419.2017.1419241. PMid:29308678.
http://dx.doi.org/10.1080/14786419.2017....
). Their names, formula and molecular weights are shown in Table 8 and their structures are shown in Figure 8.

Table 8
Coumarins isolated from D. nobile.
Figure 8
Chemical structure of coumarins in D. nobile.

2.9 Amides

Five amides were separated and purified from D. nobile by normal phase and reversed phase silica gel column chromatography, gel column chromatography and preparative high performance liquid chromatography. Their names and structures are shown in Table 9 and Figure 9 (Wang et al., 2012Wang, D. F., Chou, G. X., Zhao, N. Y., Zhang, T., & Xu, H. (2012). Study on chemical constituents in stems of Dendrobium nobile. Chinese Traditional and Herbal Drugs, 43(8), 1492-1495.).

Table 9
Amides isolated from D. nobile.
Figure 9
Chemical structures of amides in D. nobile.

2.10 Phenylpropanoids

Phenylpropanoids is a naturally occurring compound composed of benzene ring and three straight-chain carbon groups (C6-C3 groups) to form the precursor of lignans. It mainly includes chlorogenic acid, eugenin, caffeic acid, cypress and so on. The name and molecular size of Phenylpropanoids are shown in Table 10, and the structural formula is shown in Figure 10.

Table 10
Phenylpropanoids isolated from D. nobile.
Figure 10
Chemical structure of phenylpropanoids in D. nobile.

2.11 Polysaccharides

The chemical structure of polysaccharides includes the composition of monosaccharide residues, the order of monosaccharide residues, the heterocapital carbon configuration, the way of connecting adjacent sugar residues, the branching of sugar chains, etc., and the resulting spatial structure, which is the basis for the pharmacological activity of polysaccharides (Li et al., 2022Li, Q., Qin, X., Yu, Y., Quan, S., & Xiao, P. (2022). Schisandra chinensis polysaccharides exerts anti-oxidative effect in vitro through Keap1-Nrf2-ARE pathway. Food Science and Technology, 42, e44621. http://dx.doi.org/10.1590/fst.44621.
http://dx.doi.org/10.1590/fst.44621...
; Wu et al., 2022Wu, J., Zhang, X., Hu, S., Pan, S., & Wang, C. (2022). Polygonatum sibiricum polysaccharide inhibits IL-1β-induced inflammation in human chondrocytes. Food Science and Technology, 42, e44021. http://dx.doi.org/10.1590/fst.44021.
http://dx.doi.org/10.1590/fst.44021...
). Due to the complexity of the chemical structure, the current research on the chemical structure of D. nobile is only limited to the simple composition and molecular weight distribution of monosaccharides and the preliminary primary structure. Modern pharmacological studies have shown that D. nobile polysaccharides have immune modulating, anti-tumour and antioxidant functions, and relevant studies have shown that D. nobile crude polysaccharides also have certain anti-cataract effects in vitro, which has attracted extensive attention from many experts and scholars. The composition and preparation method of D. nobile polysaccharide are shown in Table 11.

Table 11
Polysaccharides isolated from D. nobile.

2.12 Others

In addition to the above chemical constituents, some scholars have also isolated butyl phthalate, trans-2-heptenal, nonenal, 2-n-pentylfuran, linalool, tearberry alcohol, and violetone from D. nobile. Their structures are shown in Table 12 and Figure 11.

Table 12
Other compounds isolated from D. nobile.
Figure 11
Chemical structures of other compounds in D. nobile.

3 Nutritional health functions

3.1 Main nutrient composition

D. nobile is rich in nutrition and contains a variety of amino acids, proteins, reducing sugars, trace elements and other important nutrients. Amino acids play an important role in the growth and development of human body, and the composition of amino acids is balanced, which will be beneficial to human health. According to analysis, D. nobile contains all kinds of amino acids, including 17 kinds of amino acids, including 7 essential amino acids and 5 semi-essential amino acids (Qu et al., 2018Qu, J. X., He, Y. X., Chen, L., & Sun, Z. R. (2018). Determination of amino acids in three Dendrobium species and nutritional evaluation. Journal of Liaoning University of TCM, 20(2), 60-62. http://dx.doi.org/10.13194/j.issn.1673-842x.2018.02.017.
http://dx.doi.org/10.13194/j.issn.1673-8...
). The total amount of amino acids in different Dendrobium was different, D. nobile was the highest, D. candidum was the second, and D. drumstick was the lowest. According to the analysis of nutritional composition of D. nobile, it was found that there was little difference in general nutritional composition among different cultivation models, with the highest water content, between 90.1% and 91.1%, ash 0.5% and 0.6%, total dietary fiber about 4.6%. Crude protein is between 0.27% and 0.36%, crude fat between 0.2% and 0.4%. It also contains major elements such as phosphorus, calcium, magnesium and trace elements such as zinc, iron and manganese needed by the human body (Reng et al., 2019Reng, H., Liu, Y., Bai, D. J., & Li, H. Y. (2019). Analysis of the main nutrients of Dendrobium chrysogenum under different cultivation patterns. Resource Development, 3(88), 34-36.). By analyzing the nutritional components of D. nobile in Chishui City, Guizhou Province, Lu et al. (2013)Lu, L. H., Du, Y. L., Zhang, Y., Hong, C. Q., He, Y. P., & Li, C. (2013). Analysis of nutrients in Dendrobium nobile lindl. Journal of Yunnan Normal University, 33(1), 60-63. identified 6 fatty acids from the fatty acids of D. nobile, which were palmitic acid, stearic acid, oleic acid, linoleic acid, eicosenoic acid and erucic acid (Lu et al., 2013Lu, L. H., Du, Y. L., Zhang, Y., Hong, C. Q., He, Y. P., & Li, C. (2013). Analysis of nutrients in Dendrobium nobile lindl. Journal of Yunnan Normal University, 33(1), 60-63.). In addition, the mature fresh stem of D. nobile planted in the fourth year contains 4.34% crude ash, 0.832% calcium, 0.019% magnesium, 0.227% total nitrogen and 0.154% phosphorus (Li et al., 2017bLi, Z. S., Li, G. L., Bai, Y. B., Yao, Z. J., Zhou, H. G., Luo, K., Gao, Y., & Zhang, L. P. (2017b). Quality evaluation of dendrobium nobile in vitr. Tropical Agricultural Science & Technology, 40(3), 17-21. http://dx.doi.org/10.16005/j.cnki.tast.2017.03.006.
http://dx.doi.org/10.16005/j.cnki.tast.2...
). Comprehensive analysis showed that D. nobile has potential value in the development and utilization of health products.

3.2 Health and medicinal functions

Anti-ageing

Ageing is a continuous and complex process that occurs spontaneously in the body. Free radical reactions and lipid peroxidation within the body can reduce cellular function and are key factors in causing ageing (Miwa et al., 2022Miwa, S., Kashyap, S., Chini, E., & von Zglinicki, T. (2022). Mitochondrial dysfunction in cell senescence and aging. The Journal of Clinical Investigation, 132(13), e158447. http://dx.doi.org/10.1172/JCI158447. PMid:35775483.
http://dx.doi.org/10.1172/JCI158447...
). D. nobile can scavenge oxygen free radicals, delay DNA damage, inhibit apoptosis and alter DNA methylation, thus exhibiting important activities to delay ageing. Jin et al. (2008)Jin, J., Liang, Y., Xie, H., Zhang, X., Yao, X., & Wang, Z. (2008). Dendroflorin retards the senescence of MRC-5 cells. Die Pharmazie, 63(4), 321-323. PMid:18468396. found that Dendroflorin, the active compound extracted from D. nobile, contributes to the degradation of reactive oxygen species and is a potential drug for antioxidant activity.

Immunity boosting

Polysaccharides from D. nobile can promote lymphocyte mitosis. Related studies have found that D. nobile can inhibit the expression of cytokines, protein signaling pathways and immune cells, thus improving the inflammatory symptoms of mice (Hong et al., 2022Hong, S., Kim, E. Y., Lim, S. E., Kim, J. H., Sohn, Y., & Jung, H. S. (2022). Dendrobium nobile Lindley administration attenuates atopic dermatitis-like lesions by modulating immune cells. International Journal of Molecular Sciences, 23(8), 4470. http://dx.doi.org/10.3390/ijms23084470. PMid:35457288.
http://dx.doi.org/10.3390/ijms23084470...
). In addition, D. nobile can restore the balance of intestinal flora in mice with allergic rhinitis, improve pulmonary inflammation in mice with allergic rhinitis, and predict a new treatment method of using traditional Chinese medicine to improve allergic rhinitis (Duan et al., 2022Duan, F. P., Li, Y. S., Hu, T. Y., Pan, X. Q., Ma, F., Feng, Y., Qiu, S. Q., & Zheng, Y. Q. (2022). Dendrobium nobile protects against ovalbumin-induced allergic rhinitis by regulating intestinal flora and suppressing lung inflammation. Chinese Journal of Natural Medicines, 20(6), 443-457. http://dx.doi.org/10.1016/S1875-5364(22)60168-7. PMid:35750384.
http://dx.doi.org/10.1016/S1875-5364(22)...
). And polysaccharides from D. nobile can also enhance its immunity (Fan et al., 2020Fan, Y., Yu, Q., Wang, G., Tan, J., Liu, S., Pu, S., Chen, W., Xie, P., Zhang, Y., Zhang, J., Liao, Y., & Luo, A. (2020). Effects of non-thermal plasma treatment on the polysaccharide from Dendrobium nobile Lindl. and its immune activities in vitro. International Journal of Biological Macromolecules, 153, 942-950. http://dx.doi.org/10.1016/j.ijbiomac.2019.10.260. PMid:31758995.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). Therefore, it is of great significance to develop the health food of D. nobile.

Hypoglycemic and lipid lowering

Diabetes is a metabolic disease caused by absolute and relative deficiency of insulin secretion. At present, it is still a research hotspot (Bailes, 2002Bailes, B. K. (2002). Diabetes mellitus and its chronic complications. AORN Journal, 76(2), 266-286. http://dx.doi.org/10.1016/S0001-2092(06)61065-X. PMid:12194653.
http://dx.doi.org/10.1016/S0001-2092(06)...
). Related studies have shown that polysaccharides from D. nobile can significantly reduce the increase of blood glucose induced by epinephrine, promote the uptake and utilization of glucose in peripheral tissue, and thus reduce blood glucose (Pan et al., 2014Pan, L. H., Li, X. F., Wang, M. N., Zha, X. Q., Yang, X. F., Liu, Z. J., Luo, Y. B., & Luo, J. P. (2014). Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. International Journal of Biological Macromolecules, 64, 420-427. http://dx.doi.org/10.1016/j.ijbiomac.2013.12.024. PMid:24370475.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). In addition, it was found that D. nobile could improve the abnormal lipid profile in the liver of HFD-fed mice in two ways: (1) enhance taurine binding to bile acid, which is highly hydrophilic and contribute to cholesterol excretion; (2) reduce the CA/CDCA ratio, which is positively correlated with cholesterol absorption (Huang et al., 2019Huang, S., Wu, Q., Liu, H., Ling, H., He, Y., Wang, C., Wang, Z., Lu, Y., & Lu, Y. (2019). Alkaloids of dendrobium nobile lindl. altered hepatic lipid homeostasis via regulation of bile acids. Journal of Ethnopharmacology, 241, 111976. http://dx.doi.org/10.1016/j.jep.2019.111976. PMid:31132462.
http://dx.doi.org/10.1016/j.jep.2019.111...
).

4 Conclusion

D. nobile is one of the most valuable traditional Chinese medicines and functional food in China, and it is rich in resources and contains a variety of chemical components. Up to now, 13 polysaccharides and 244 small molecular compounds have been isolated from D. nobile, including alkaloids, sesquiterpenes, bibenzyl, phenanthrene, phenolic acids and so on. It is found that the stem of D. nobile is one of the main components to obtain chemical constituents, and this part is also rich in nutrient and mineral elements, which can be developed and utilized as a new resource food and cosmetics. Although the chemical composition of D. nobile has been studied for many years, the mechanism and effective parts of D. nobile have not been fully studied, and the relationship between chemical composition and efficacy needs to be further studied. Modern studies have also shown that it has a variety of structural types of pharmacological active components, with antihypertensive and lipid-lowering, anti-inflammatory, anti-aging, antibacterial and immunomodulatory effects, so it is worth further studying its potential utilization value.

Acknowledgements

This work was financially supported by the Department of Science and Technology of Guizhou Province (Nos. QKHZC [2021] general 476, QKHZC [2019]2953, QKHZC[2021]420, QKHZC [2020]4Y072, QKHPTRC [2018]5772-001), Department of Education of Guizhou Province (QJHKY [2021]049), Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile (QJJ [2022]048 and QJJ [2022]006) and the Science and Technology Innovation Action Plan of Domestic Science and Technology Cooperation Projects in Shanghai (20025800400).

  • Practical Application: The review provides a comprehensive information for consumers and researchers to understand D. nobile Chemical constituents and nutritional health functions.

References

  • Bailes, B. K. (2002). Diabetes mellitus and its chronic complications. AORN Journal, 76(2), 266-286. http://dx.doi.org/10.1016/S0001-2092(06)61065-X PMid:12194653.
    » http://dx.doi.org/10.1016/S0001-2092(06)61065-X
  • Chen, X. Y., Gong, D. Y., Guo, S. X., & Li, B. (2021). Advances in the synthetic biology of Dendrobium alkaloids and Dendrobium bases. Journal of Chongqing Technology and Business University, 38(3), 8-18. http://dx.doi.org/10.16055/j.issn.1672-058X.2021.0003.002
    » http://dx.doi.org/10.16055/j.issn.1672-058X.2021.0003.002
  • Cheng, L., Guo, D. L., Zhang, M. S., Linghu, L., Fu, S. B., Deng, Y., He, Y. Q., & Xiao, S. J. (2020). Dihydrophenanthrofurans and bisbibenzyl derivatives from the stems of Dendrobium nobile. Fitoterapia, 143, 104586. http://dx.doi.org/10.1016/j.fitote.2020.104586 PMid:32247772.
    » http://dx.doi.org/10.1016/j.fitote.2020.104586
  • Deng, Y. H., Xu, K. P., & Tan, G. S. (2002). Research progress on chemical composition and pharmacological activity of Dendrobium spp. Zhong Yao Cai, 25(9), 677-680. http://dx.doi.org/10.13863/j.issn1001-4454.2002.09.034
    » http://dx.doi.org/10.13863/j.issn1001-4454.2002.09.034
  • Duan, F. P., Li, Y. S., Hu, T. Y., Pan, X. Q., Ma, F., Feng, Y., Qiu, S. Q., & Zheng, Y. Q. (2022). Dendrobium nobile protects against ovalbumin-induced allergic rhinitis by regulating intestinal flora and suppressing lung inflammation. Chinese Journal of Natural Medicines, 20(6), 443-457. http://dx.doi.org/10.1016/S1875-5364(22)60168-7 PMid:35750384.
    » http://dx.doi.org/10.1016/S1875-5364(22)60168-7
  • Fan, Y., Yu, Q., Wang, G., Tan, J., Liu, S., Pu, S., Chen, W., Xie, P., Zhang, Y., Zhang, J., Liao, Y., & Luo, A. (2020). Effects of non-thermal plasma treatment on the polysaccharide from Dendrobium nobile Lindl. and its immune activities in vitro. International Journal of Biological Macromolecules, 153, 942-950. http://dx.doi.org/10.1016/j.ijbiomac.2019.10.260 PMid:31758995.
    » http://dx.doi.org/10.1016/j.ijbiomac.2019.10.260
  • Hedman, K., & Leander, K. (1972). Studies on orchidaceae alkaloids. XXVII. Quaternary salts of the dendrobine type from Dendrobium nobile Lindl. Acta Chemica Scandinavica, 26(8), 3177-3180. http://dx.doi.org/10.3891/acta.chem.scand.26-3177 PMid:4647669.
    » http://dx.doi.org/10.3891/acta.chem.scand.26-3177
  • Hong, S., Kim, E. Y., Lim, S. E., Kim, J. H., Sohn, Y., & Jung, H. S. (2022). Dendrobium nobile Lindley administration attenuates atopic dermatitis-like lesions by modulating immune cells. International Journal of Molecular Sciences, 23(8), 4470. http://dx.doi.org/10.3390/ijms23084470 PMid:35457288.
    » http://dx.doi.org/10.3390/ijms23084470
  • Huang, S., Wu, Q., Liu, H., Ling, H., He, Y., Wang, C., Wang, Z., Lu, Y., & Lu, Y. (2019). Alkaloids of dendrobium nobile lindl. altered hepatic lipid homeostasis via regulation of bile acids. Journal of Ethnopharmacology, 241, 111976. http://dx.doi.org/10.1016/j.jep.2019.111976 PMid:31132462.
    » http://dx.doi.org/10.1016/j.jep.2019.111976
  • Hwang, J. S., Lee, S. A., Hong, S. S., Han, X. H., Lee, C., Kang, S. J., Lee, D., Kim, Y., Hong, J. T., Lee, M. K., & Hwang, B. Y. (2010). Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorganic & Medicinal Chemistry Letters, 20(12), 3785-3787. http://dx.doi.org/10.1016/j.bmcl.2010.04.054 PMid:20483604.
    » http://dx.doi.org/10.1016/j.bmcl.2010.04.054
  • Jin, J., Liang, Y., Xie, H., Zhang, X., Yao, X., & Wang, Z. (2008). Dendroflorin retards the senescence of MRC-5 cells. Die Pharmazie, 63(4), 321-323. PMid:18468396.
  • Kaska, A., Deniz, N., Çiçek, M., & Mammadov, R. (2021). The screening of Digitalis ferruginea L. subsp. ferruginea for toxic capacities, phenolic constituents, antioxidant properties, mineral elements and proximate analysis. Food Science and Technology, 41(2), 505-512. http://dx.doi.org/10.1590/fst.08620
    » http://dx.doi.org/10.1590/fst.08620
  • Lee, Y. H., Park, J. D., Beak, N. I., Kim, S. I., & Ahn, B. Z. (1995). In vitro and in vivo antitumoral phenanthrenes from the aerial parts of Dendrobium nobile. Planta Medica, 61(2), 178-180. http://dx.doi.org/10.1055/s-2006-958043 PMid:7753927.
    » http://dx.doi.org/10.1055/s-2006-958043
  • Li, L. S., Lu, Y. L., Nie, J., Xu, Y. Y., Zhang, W., Yang, W. J., Gong, Q. H., Lu, Y. F., Lu, Y., & Shi, J. S. (2017a). Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ25-35 in hippocampus neurons in vitro. CNS Neuroscience & Therapeutics, 23(4), 329-340. http://dx.doi.org/10.1111/cns.12678 PMid:28261990.
    » http://dx.doi.org/10.1111/cns.12678
  • Li, Q., Qin, X., Yu, Y., Quan, S., & Xiao, P. (2022). Schisandra chinensis polysaccharides exerts anti-oxidative effect in vitro through Keap1-Nrf2-ARE pathway. Food Science and Technology, 42, e44621. http://dx.doi.org/10.1590/fst.44621
    » http://dx.doi.org/10.1590/fst.44621
  • Li, Y. P., Jiang, J. H., Liu, Y., & Chen, Y. G. (2010). Studies on the chemical constituents from Dendrobium nobile Lindl. Lishizhen Medicine and Materia Medica Research, 21(1), 39-40.
  • Li, Z. S., Li, G. L., Bai, Y. B., Yao, Z. J., Zhou, H. G., Luo, K., Gao, Y., & Zhang, L. P. (2017b). Quality evaluation of dendrobium nobile in vitr. Tropical Agricultural Science & Technology, 40(3), 17-21. http://dx.doi.org/10.16005/j.cnki.tast.2017.03.006
    » http://dx.doi.org/10.16005/j.cnki.tast.2017.03.006
  • Liu, Q. F., & Zhao, W. M. (2003). A new dendrobine-type alkaloid from Dendrobium nobile. Chinese Chemical Letters, 14(3), 278-279.
  • Liu, Q. F., Chen, W. L., Tang, J., & Zhao, W.-M. (2007). Novel Bis(bibenzyl) and (Propylphenyl)bibenzyl derivatives from Dendrobium nobile. Helvetica Chimica Acta, 90(9), 1745-1750. http://dx.doi.org/10.1002/hlca.200790183
    » http://dx.doi.org/10.1002/hlca.200790183
  • Liu, Y. (2017). Study on the protective effects and mechanisms of Dendrobium nobile Lindle. alkaloids on PC12 cells induced by Aβ25-35 (Master’s thesis). Zunyi Medical University, Zunyi.
  • Lu, L. H., Du, Y. L., Zhang, Y., Hong, C. Q., He, Y. P., & Li, C. (2013). Analysis of nutrients in Dendrobium nobile lindl. Journal of Yunnan Normal University, 33(1), 60-63.
  • Luo, A. X., He, X. J., Zhou, S. D., Fan, Y. J., Luo, A. S., & Chun, Z. (2010). Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydrate Polymers, 79(4), 1014-1019. http://dx.doi.org/10.1016/j.carbpol.2009.10.033
    » http://dx.doi.org/10.1016/j.carbpol.2009.10.033
  • Luo, D., Zhang, C. F., Lin, P., Wang, Z. T., & Xu, L. S. (2006a). Study on the chemical composition of Dendrobium chrysanthemum. Chinese Traditional and Herbal Drugs, 37(1), 36-38.
  • Luo, J., Fan, Z., Yang, X., Bao, Y., Liang, M., & Guo, Y. (2022). Anthocyanins and antioxidant activity of Lonicera caerulea berry wine during different processes. Food Science and Technology, 42, e25121. http://dx.doi.org/10.1590/fst.25121
    » http://dx.doi.org/10.1590/fst.25121
  • Luo, W. J., Wang, G. H., Zhang, X., Chen, Z. N., Wang, N. L., & Yao, X. S. (2006b). Inhibitory effect of bibenzyls from Dendrobium Nobile on the proliferation of high invasive hepatoma cell line FHCC-98. Zhongguo Linchuang Kangfu, 10(43), 150-152.
  • Ma, C., Meng, C. W., Zhou, Q. M., Peng, C., Liu, F., Zhang, J. W., Zhou, F., & Xiong, L. (2019). New sesquiterpenoids from the stems of Dendrobium nobile and their neuroprotective activities. Fitoterapia, 138, 104351. http://dx.doi.org/10.1016/j.fitote.2019.104351 PMid:31476401.
    » http://dx.doi.org/10.1016/j.fitote.2019.104351
  • Meng, C. W., He, Y. L., Peng, C., Ding, X. J., Guo, L., & Xiong, L. (2017). Picrotoxane sesquiterpenoids from the stems of Dendrobium nobile and their absolute configurations and angiogenesis effect. Fitoterapia, 121, 206-211. http://dx.doi.org/10.1016/j.fitote.2017.07.017 PMid:28778562.
    » http://dx.doi.org/10.1016/j.fitote.2017.07.017
  • Miwa, S., Kashyap, S., Chini, E., & von Zglinicki, T. (2022). Mitochondrial dysfunction in cell senescence and aging. The Journal of Clinical Investigation, 132(13), e158447. http://dx.doi.org/10.1172/JCI158447 PMid:35775483.
    » http://dx.doi.org/10.1172/JCI158447
  • Miyazawa, M., Shimamura, H., Nakamura, S., Sugiura, W., Kosaka, H., & Kameoka, H. (1999). Moscatilin from Dendrobium nobile, a naturally occurring bibenzyl compound with potential antimutagenic activity. Journal of Agricultural and Food Chemistry, 47(5), 2163-2167. http://dx.doi.org/10.1021/jf970930a PMid:10552513.
    » http://dx.doi.org/10.1021/jf970930a
  • Okamoto, T., Natsume, M., Onaka, T., Uchimaru, F., & Shimizu, M. (1966a). The structure of dendroxine. The third alkaloid from Dendrobium nobile. Chemical & Pharmaceutical Bulletin, 14(6), 672-675. http://dx.doi.org/10.1248/cpb.14.672 PMid:5964635.
    » http://dx.doi.org/10.1248/cpb.14.672
  • Okamoto, T., Natsume, M., Onaka, T., Uchimaru, F., & Shimizu, M. (1972). Further studies on the alkaloidal constituents of Dendrobium nobile (Orchidaceae)-structure determination of 4-hydroxy-dendroxine and nobilomethylene. Chemical & Pharmaceutical Bulletin, 20(2), 418-421. http://dx.doi.org/10.1248/cpb.20.418
    » http://dx.doi.org/10.1248/cpb.20.418
  • Okamoto, T., Natsume, M., Onaka, T., Uchimaru, F., & Shimizu, M. (1966b). The structure of dendramine (6-oxydendrobine) and 6-oxydendroxine. The fourth and fifth alkaloid from Dendrobium nobile. Chemical & Pharmaceutical Bulletin, 14(6), 676-680. http://dx.doi.org/10.1248/cpb.14.676 PMid:5964636.
    » http://dx.doi.org/10.1248/cpb.14.676
  • Pan, L. H., Li, X. F., Wang, M. N., Zha, X. Q., Yang, X. F., Liu, Z. J., Luo, Y. B., & Luo, J. P. (2014). Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. International Journal of Biological Macromolecules, 64, 420-427. http://dx.doi.org/10.1016/j.ijbiomac.2013.12.024 PMid:24370475.
    » http://dx.doi.org/10.1016/j.ijbiomac.2013.12.024
  • Qu, J. X., He, Y. X., Chen, L., & Sun, Z. R. (2018). Determination of amino acids in three Dendrobium species and nutritional evaluation. Journal of Liaoning University of TCM, 20(2), 60-62. http://dx.doi.org/10.13194/j.issn.1673-842x.2018.02.017
    » http://dx.doi.org/10.13194/j.issn.1673-842x.2018.02.017
  • Reng, H., Liu, Y., Bai, D. J., & Li, H. Y. (2019). Analysis of the main nutrients of Dendrobium chrysogenum under different cultivation patterns. Resource Development, 3(88), 34-36.
  • Shu, Y., Zhang, D. M., & Guo, S. X. (2004). A new sesquiterpene glycoside from Dendrobium nobile Lindl. Journal of Asian Natural Products Research, 6(4), 311-314. http://dx.doi.org/10.1080/10286020310001595971 PMid:15621593.
    » http://dx.doi.org/10.1080/10286020310001595971
  • Talapatra, B., Mukhopadhyay, P., Chaudhury, P., & Talapatra, S. K. (1982). Denbinobin, a new phenanthraquinone from Dendrobium nobile Lindl. (Orchidaceae). Indian Journal of Chemistry, 21(4), 386-387.
  • Wang, D. F., Chou, G. X., Zhao, N. Y., Zhang, T., & Xu, H. (2012). Study on chemical constituents in stems of Dendrobium nobile. Chinese Traditional and Herbal Drugs, 43(8), 1492-1495.
  • Wang, J. H. (2011). Study on structures and anti-cataract activities of polysaccharids from Dendrobium nobile Lindl. (Doctoral dissertation). Hefei University of Technology, Hefei.
  • Wang, J. H., Luo, J. P., & Zha, X. Q. (2010a). Structural features of a pectic polysaccharide from the stems of Dendrobium nobile Lindl. Carbohydrate Polymers, 81(1), 1-7. http://dx.doi.org/10.1016/j.carbpol.2010.01.040
    » http://dx.doi.org/10.1016/j.carbpol.2010.01.040
  • Wang, J. H., Luo, J. P., Yang, X. F., & Zha, X. Q. (2010b). Structural analysis of a rhamnoarabinogalactan from the stems of Dendrobium nobile Lindl. Food Chemistry, 122(3), 572-576. http://dx.doi.org/10.1016/j.foodchem.2010.03.012
    » http://dx.doi.org/10.1016/j.foodchem.2010.03.012
  • Wang, J. H., Luo, J. P., Zha, X. Q., & Feng, B.-J. (2010c). Comparison of antitumor activities of different polysaccharide fractions from the stems of Dendrobium mobile Lindl. Carbohydrate Polymers, 79(1), 114-118. http://dx.doi.org/10.1016/j.carbpol.2009.07.032
    » http://dx.doi.org/10.1016/j.carbpol.2009.07.032
  • Wang, J. H., Zha, X. Q., Luo, J. P., & Yang, X. F. (2010d). An acetylated galactomannoglucan from the stems of Dendrobium nobile Lindl. Carbohydrate Research, 345(8), 1023-1027. http://dx.doi.org/10.1016/j.carres.2010.03.005 PMid:20382377.
    » http://dx.doi.org/10.1016/j.carres.2010.03.005
  • Wang, J.-H., Zuo, S.-R., & Luo, J.-P. (2017). Structural analysis and immuno-stimulating activity of an acidic polysaccharide from the stems of Dendrobium nobile Lindl. Molecules, 22(4), 611. http://dx.doi.org/10.3390/molecules22040611 PMid:28394301.
    » http://dx.doi.org/10.3390/molecules22040611
  • Wang, P., Chen, X., Cai, C. H., Kong, F. D., Huang, S. Z., Yuan, J. Z., Xu, X. L., Mei, W. L., & Dai, H. F. (2022). A new picrotoxane-type sesquiterpene from Dendrobium nobile Lindl. Natural Product Research, 36(8), 2112-2117. http://dx.doi.org/10.1080/14786419.2020.1851224 PMid:33331167.
    » http://dx.doi.org/10.1080/14786419.2020.1851224
  • Wang, P., Chen, X., Wang, H., Huang, S., Cai, C., Yuan, J., Zhu, G., Xu, X., Mei, W., & Dai, H. (2019a). Four new picrotoxane-type sesquiterpenes from Dendrobium nobile Lindl. Frontiers in Chemistry, 7, 812. http://dx.doi.org/10.3389/fchem.2019.00812 PMid:31850306.
    » http://dx.doi.org/10.3389/fchem.2019.00812
  • Wang, X. K., & Zhao, T. F. (1986). Chemical composition of Dendrobium spp. and the Chinese herb Dendrobium. Zhongguo Yao Xue Za Zhi, 21(11), 666-669.
  • Wang, X. Y., Meng, C. W., & Zhou, Q. M. (2019b). Research progress of sesquiterpenoids from Dendrobium nobile. Natural Product Research and Development, 31(10), 1837-1845. http://dx.doi.org/10.16333/j.1001-6880.2019.10.024
    » http://dx.doi.org/10.16333/j.1001-6880.2019.10.024
  • Wang, Y. H., Avula, B., Abe, N., Wei, F., Wang, M., Ma, S. C., Ali, Z., Elsohly, M. A., & Khan, I. A. (2016). Tandem mass spectrometry for structural identification of sesquiterpene alkaloids from the stems of Dendrobium nobile using LC-QToF. Planta Medica, 82(7), 662-670. http://dx.doi.org/10.1055/s-0042-103031 PMid:27054915.
    » http://dx.doi.org/10.1055/s-0042-103031
  • Wu, J., Zhang, X., Hu, S., Pan, S., & Wang, C. (2022). Polygonatum sibiricum polysaccharide inhibits IL-1β-induced inflammation in human chondrocytes. Food Science and Technology, 42, e44021. http://dx.doi.org/10.1590/fst.44021
    » http://dx.doi.org/10.1590/fst.44021
  • Wu, T., Zhang, M. S., Zhang, J. Y., Li, X. F., Xu, D. L., & Xiao, S. J. (2019). A new cadalene sesquiterpene glycoside from Dendrobium nobile. Yao Xue Xue Bao, 54(7), 1257-1259. http://dx.doi.org/10.16438/j.0513-4870.2019-0234
    » http://dx.doi.org/10.16438/j.0513-4870.2019-0234
  • Xia, J., Yang, Z., Zeng, Q. F., Liang, Y., Hao, X. Y., & Zhou, W. (2018). Analysis of chemical constituents in Dendrobium nobile by UPLC-Q-TOF. Zhong Yao Cai, 41(3), 600-607. http://dx.doi.org/10.13863/j.issn1001-4454.2018.03.020
    » http://dx.doi.org/10.13863/j.issn1001-4454.2018.03.020
  • Xiao, S. J., Liu, Z., Zhang, M. S., Chen, Y. Z., Nie, X. Q., Zhang, J. Y., He, Y. Q., & Shi, J. S. (2016a). A new bibenzyl compound from Dendrobium nobile. Yao Xue Xue Bao, 51(7), 1117-1120. http://dx.doi.org/10.16438/j.0513-4870.2016-0059 PMid:29897210.
    » http://dx.doi.org/10.16438/j.0513-4870.2016-0059
  • Xiao, S. J., Qian, Y., Zhang, L., Tang, Y. F., Zhu, X. M., Zhou, H. X., Zhao, Z. N., Zhang, M. S., & Xu, D. L. (2016b). A new sesquiterpene from Dendrobium nobile. Chinese Traditional and Herbal Drugs, 47(17), 2972-2974. http://dx.doi.org/10.7501/j.issn.0253-2670.2016.17.002
    » http://dx.doi.org/10.7501/j.issn.0253-2670.2016.17.002
  • Xu, L., Wang, J. R., Guo, L., & Zhang, T. M. (2018). Chemical constituents from Dendrobium nobile. Zhongchengyao, 40(5), 1110-1112.
  • Xu, Q., Chen, S. H., & Lv, G. Y. (2010). Advances in chemical composition and related pharmacological studies of three different Dendrobium species. Asia-Pacific Traditional Medicine, 6(4), 115-118.
  • Yan, S., Zhao, T. M., Zhang, X. Q., Xing, J. Y., Hu, Y. D., & Chun, Z. (2018). Comparison of polysaccharide and dendrobine content in hejiang dendrobium nobile at different harvesting time. China Pharmacy, 29(1), 73-77. http://dx.doi.org/10.6039/j.issn.1001-0408.2018.01.19
    » http://dx.doi.org/10.6039/j.issn.1001-0408.2018.01.19
  • Yang, H., Sung, S. H., & Kim, Y. C. (2007). Antifibrotic phenanthrenes of Dendrobium nobile stems. Journal of Natural Products, 70(12), 1925-1929. http://dx.doi.org/10.1021/np070423f PMid:18052323.
    » http://dx.doi.org/10.1021/np070423f
  • Yang, W. W., & Xin, H. (2006). Investigation on chemical constituents of Dendrobium nobile. Analysis and Testing Technology and Instruments, 12(2), 98-100.
  • Ye, Q., & Zhao, W. (2002). New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from Dendrobium nobile. Planta Medica, 68(8), 723-729. http://dx.doi.org/10.1055/s-2002-33786 PMid:12221596.
    » http://dx.doi.org/10.1055/s-2002-33786
  • Ye, Q., Qin, G., & Zhao, W. (2002). Immunomodulatory sesquiterpene glycosides from Dendrobium nobile. Phytochemistry, 61(8), 885-890. http://dx.doi.org/10.1016/S0031-9422(02)00484-3 PMid:12453511.
    » http://dx.doi.org/10.1016/S0031-9422(02)00484-3
  • Zhang, M., Linghu, H., Zhang, J., Nie, X., Li, X., Guo, D., & Xiao, S. (2019a). Bibenzyl derivatives from Dendrobium nobile. Youji Huaxue, 39(11), 3289-3293. http://dx.doi.org/10.6023/cjoc201903035
    » http://dx.doi.org/10.6023/cjoc201903035
  • Zhang, X., Gao, H., Han, H. Y., Liu, H. W., Wang, N. L., Yao, X. S., & Wang, Z. (2007a). Sesquiterpenes from Dendrobium nobile. Chinese Traditional and Herbal Drugs, 38(12), 1771-1774.
  • Zhang, X., Gao, H., Wang, N. L., & Yao, X. S. (2006). Phenolic components from Dendrobium nobile. Chinese Traditional and Herbal Drugs, 24, 652-655.
  • Zhang, X., Liu, H. W., Gao, H., Han, H.-Y., Wang, N.-L., Wu, H.-M., Yao, X.-S., & Wang, Z. (2007b). Nine new sesquiterpenes from Dendrobium nobile. Helvetica Chimica Acta, 90(12), 2386-2394. http://dx.doi.org/10.1002/hlca.200790245
    » http://dx.doi.org/10.1002/hlca.200790245
  • Zhang, X., Tu, F. J., Yu, H. Y., Wang, N. L., Wang, Z., & Yao, X. S. (2008a). Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from Dendrobium nobile. Chemical & Pharmaceutical Bulletin, 56(6), 854-857. http://dx.doi.org/10.1248/cpb.56.854 PMid:18520095.
    » http://dx.doi.org/10.1248/cpb.56.854
  • Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S., & Yao, X. S. (2007c). Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. Journal of Natural Products, 70(1), 24-28. http://dx.doi.org/10.1021/np060449r PMid:17253844.
    » http://dx.doi.org/10.1021/np060449r
  • Zhang, X., Xu, J. K., Wang, N. L., Hiroshi, K., Yao, X. S., & Wang, Z. (2008b). Studies on antioxidant activity of bibenzyls and phenolic components from Dendrobium nobile. Zhongguo Yao Xue Za Zhi, 43(11), 829-832.
  • Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H., & Yao, X. S. (2008c). Antioxidant phenanthrenes and lignans from Dendrobium nobile. Journal of Chinese Pharmaceutical Sciences, 17(4), 314-318.
  • Zhang, Y., Zhang, Q., Xin, W., Liu, N., & Zhang, H. (2019b). Nudol, a phenanthrene derivative from Dendrobium nobile, induces cell cycle arrest and apoptosis and inhibits migration in osteosarcoma cells. Drug Design, Development and Therapy, 13, 2591-2601. http://dx.doi.org/10.2147/DDDT.S180610 PMid:31551653.
    » http://dx.doi.org/10.2147/DDDT.S180610
  • Zhao, W., Ye, Q., Tan, X., Jiang, H., Li, X., Chen, K., & Kinghorn, A. D. (2001). Three new sesquiterpene glycosides from Dendrobium nobile with immunomodulatory activity. Journal of Natural Products, 64(9), 1196-1200. http://dx.doi.org/10.1021/np0102612 PMid:11575955.
    » http://dx.doi.org/10.1021/np0102612
  • Zheng, J. H., Wu, G. J., Wu, Y. B., Huang, R. X., Zheng, Y. Y., Liu, Z. X., & Wang, Z. Y. (2016). GC-MS analysis of the volatile oil composition of Dendrobium chrysanthemum flowers. Zhong Yao Cai, 39(8), 1797-1799. http://dx.doi.org/10.13863/j.issn1001-4454.2016.08.027
    » http://dx.doi.org/10.13863/j.issn1001-4454.2016.08.027
  • Zhou, W., Shen, X., Zeng, Q., Luo, C., Maoqiu, H., & Liang, Y. (2018a). Fluorenone constituents in Dendrobium nobile. Zhong Yao Cai, 41(8). http://dx.doi.org/10.13863/j.issn1001-4454.2018.08.023
    » http://dx.doi.org/10.13863/j.issn1001-4454.2018.08.023
  • Zhou, W., Zeng, Q. F., Xia, J., Wang, L., Tao, L., & Shen, C. X. (2018b). Antitumor phenanthrene constituents of Dendrobium nobile. Chinese Pharmaceutical Journal, 53(20), 1722-1725.
  • Zhou, X. M., Zhang, B., Chen, G. Y., Han, C. R., Jiang, K. C., Luo, M. Y., Meng, B. Z., Li, W. X., & Lin, S. D. (2018c). Dendrocoumarin: a new benzocoumarin derivative from the stem of Dendrobium nobile. Natural Product Research, 32(20), 2464-2467. http://dx.doi.org/10.1080/14786419.2017.1419241 PMid:29308678.
    » http://dx.doi.org/10.1080/14786419.2017.1419241
  • Zhou, X. M., Zheng, C. J., Gan, L. S., Chen, G. Y., Zhang, X. P., Song, X. P., Li, G. N., & Sun, C. G. (2016a). Bioactive phenanthrene and bibenzyl derivatives from the stems of Dendrobium nobile. Journal of Natural Products, 79(7), 1791-1797. http://dx.doi.org/10.1021/acs.jnatprod.6b00252 PMid:27310249.
    » http://dx.doi.org/10.1021/acs.jnatprod.6b00252
  • Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Chen, J., & Sun, C. G. (2016b). Five new lactone derivatives from the stems of Dendrobium nobile. Fitoterapia, 115, 96-100. http://dx.doi.org/10.1016/j.fitote.2016.10.002 PMid:27720924.
    » http://dx.doi.org/10.1016/j.fitote.2016.10.002
  • Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Zhang, B., & Sun, C. G. (2017). A new phenolic glycoside from the stem of Dendrobium nobile. Natural Product Research, 31(9), 1042-1046. http://dx.doi.org/10.1080/14786419.2016.1266352 PMid:27931121.
    » http://dx.doi.org/10.1080/14786419.2016.1266352

Publication Dates

  • Publication in this collection
    14 Oct 2022
  • Date of issue
    2022

History

  • Received
    20 June 2022
  • Accepted
    29 Aug 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br