Acessibilidade / Reportar erro

In vitro studies for the antiparasitic activities of Azadirachta indica extract

Abstract

Coccidiosis and helminthiasis are two parasitic diseases that harm both health and the economy. The present study aimed to assess the effect of Azadirachta indica leaf extracts (AILE) as an anti-parasitic modulator during murine coccidiosis as well as helminthic infection. Phytochemical analysis using FT-IR showed the presence of eleven compounds. A dose-dependent efficacy was observed in all experiments. At the highest concentration (200 mg/mL), time consumed to induce paralysis and death for worms was recorded at 9.329 ± 2.183 and 10.024 ± 1.542 min, respectively. Histological study revealed conspicuous deformity of surface architecture in all treated worms. SEM also revealed cuticular shrinkage of the body surface in all treated worms. In vitro study showed that incubation with AILE (100 mg/mL) for 96 hr inhibited sporulation by approximately 60%. AILE (50 and 25 mg/mL), amprolium, DettolTM, phenol, and formalin-induced variable inhibition levels at 96 hr of 28%, 44%, 37.33%, 81.33%, 89.33%, and 0% respectively. In addition, IC50 of AILE was obtained at 66.214 µg/mL with a percentage of antioxidant activity to be 74.76 ± 2.23. Our results indicate that AILE exhibits powerful anthelmintic and anticoccidial activities and it could be exploited further for the development of a novel therapeutic agent.

Keywords:
Azadirachta indica; helminths; coccidiosis; medicinal plants

1 Introduction

Coccidiosis is considered the most important intestinal disease caused by apicomplexan protozoan parasites belonging to the genus Eimeria (family Eimeriidae) which spends its life cycle invasive multiplication within the intestinal tract of many species of farm and domestic animals (Allen & Fetterer, 2002Allen, P. C., & Fetterer, R. H. (2002). Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clinical Microbiology Reviews, 15(1), 58-65. http://dx.doi.org/10.1128/CMR.15.1.58-65.2002. PMid:11781266.
http://dx.doi.org/10.1128/CMR.15.1.58-65...
; Mehlhorn, 2014Mehlhorn, H. (2014). Encyclopedic reference of parasitology (6th ed.). Berlin: Springer Press.; Lai et al., 2018Lai, A., Dong, G., Song, D., Yang, T., & Zhang, X. (2018). Responses to dietary levels of methionine in broilers medicated or vaccinated against coccidia under Eimeria tenella-challenged condition. BMC Veterinary Research, 14(1), 140. http://dx.doi.org/10.1186/s12917-018-1470-8. PMid:29699573.
http://dx.doi.org/10.1186/s12917-018-147...
). Gastrointestinal helminths also affect farming systems worldwide (Alzahrani et al., 2016Alzahrani, F., Al-Shaebi, E. M., Dkhil, M. A., & Al-Quraishy, S. (2016). In vivo anti-Eimeria and in vitro anthelmintic activity of Ziziphus spina-christi leaf extracts fares. Pakistan Journal of Zoology, 48(2), 409-413.). These parasitic infections disrupt nutrient uptake for animals, resulting in reduced body weight and increased susceptibility to secondary infections (López-Osorio et al., 2020López-Osorio, S., Chaparro-Gutiérrez, J. J., & Gómez-Osorio, L. M. (2020). Overview of Poultry Eimeria life cycle and host-parasite interactions. Frontiers in Veterinary Science, 7, 384. http://dx.doi.org/10.3389/fvets.2020.00384. PMid:32714951.
http://dx.doi.org/10.3389/fvets.2020.003...
). The economic importance of coccidiosis and helminthiasis is due to production losses and high mortality rates of animals (McDougald, 2003McDougald, L. R. (2003) Coccidiosis. In: Y.M. Saif, H.J. Barnes, A.M. Fadly, J.R. Glisson, L.R. McDouglad, D.E. Swayne (Eds.), Poultry diseases (pp. 947-991). Iowa: Iowa State Press. ; Dkhil et al., 2013Dkhil, M. A., Al-Quraishy, S., Abdel Moneim, A. E., & Delic, D. (2013). Protective effect of Azadirachta indica extract against Eimeria papillata-induced coccidiosis. Parasitology Research, 112(1), 101-106. http://dx.doi.org/10.1007/s00436-012-3109-1. PMid:22972359.
http://dx.doi.org/10.1007/s00436-012-310...
). Most of the research programs for parasite control are focused on the use of anti-parasitic drugs. However, indiscriminate and long-time use of these drugs has led to the emergence of drug resistance and adverse side effects (Abbas et al., 2011Abbas, R. Z., Munawar, S. H., Manzoor, Z. A., Iqbal, Z., Khan, M. N., Saleemi, M. K., Zia, M. A., & Yousaf, A. (2011). Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with Eimeria tenella. Pesquisa Veterinária Brasileira, 31(2), 99-103. http://dx.doi.org/10.1590/S0100-736X2011000200001.
http://dx.doi.org/10.1590/S0100-736X2011...
; Dkhil, 2013Dkhil, M. A. (2013). Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitology Research, 112(7), 2639-2646. http://dx.doi.org/10.1007/s00436-013-3430-3. PMid:23609599.
http://dx.doi.org/10.1007/s00436-013-343...
). Plant-derived compounds have been developed as an alternative approach to control parasitic infections (Klimpel et al. 2011Klimpel, S., Abdel-Ghaffar, F., Al-Rasheid, K. A. S., Aksu, G., Fischer, K., Strassen, B., & Mehlhorn, H. (2011). The effects of different plant extracts on nematodes. Parasitology Research, 108(4), 1047-1054. http://dx.doi.org/10.1007/s00436-010-2168-4. PMid:21110041.
http://dx.doi.org/10.1007/s00436-010-216...
; Amer et al., 2015Amer, O. S. O., Dkhil, M. A., Hikal, W. M., & Al-Quraishy, S. (2015). Antioxidant and Anti-Inflammatory Activities of Pomegranate (Punica granatum) on Eimeria papillata-Induced Infection in Mice. BioMed Research International, 2015, 219670. http://dx.doi.org/10.1155/2015/219670. PMid:25654088.
http://dx.doi.org/10.1155/2015/219670...
; Elkhadragy et al., 2022Elkhadragy, M. F., Al Aqeel, N. S. M., Yehia, H. M., Abdel-Gaber, R., & Hamed, S. S. (2022). Histological and molecular characterization of the protective effect of Eugenia caryophyllata against renal toxicity induced by vitamin D in male wistar rats. Food Science and Technology (Campinas), 42, e97522. http://dx.doi.org/10.1590/fst.97522.
http://dx.doi.org/10.1590/fst.97522...
). These agents do not target only the parasites but may also have organ-protective properties in the parasite-infected target hosts (Masood et al., 2013Masood, S., Abbas, R. Z., Iqbal, Z., Mansoor, M. K., Sindhu, Z. D., Zia, M. A., & Khan, J. (2013). Role of natural antioxidants for the control of coccidiosis in poultry. Pakistan Veterinary Journal, 33(4), 401-407.; Wunderlich et al., 2014Wunderlich, F., Al-Quraishy, S., Steinbrenner, H., Sies, H., & Dkhil, M. A. (2014). Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant based natural products. Parasitology Research, 113(10), 3547-3556. http://dx.doi.org/10.1007/s00436-014-4101-8. PMid:25185667.
http://dx.doi.org/10.1007/s00436-014-410...
).

Neem (Azadirachta indica), which belongs to the family Meliaceae, is one of the most versatile medicinal plants, with a broad spectrum of agricultural and medicinal applications (Anyaehie, 2009Anyaehie, U. B. (2009). Medicinal properties of fractionated acetone/water neem (Azadirachta indica) leaf extract from Nigeria: a review. Nigerian Journal of Physiological Sciences; Official Publication of the Physiological Society of Nigeria, 24(2), 157-159. PMid:20234757.; Britto & Gracelin, 2011Britto, A. J., & Gracelin, D. H. S. (2011). Phytochemical screening and antibacterial activity of a few medicinal plants against Xanthomonas campestris. Pharmacologyonline, 2, 271-277.). This plant has been reported to exert insecticidal, pesticidal, and agrochemical properties. In addition, the active constituents of neem and its derivatives are applied in alternative and modern therapy, such as the treatment of diverse infectious, metabolic, and cancer diseases (Brahmachari, 2004Brahmachari, G. (2004). Neem-an omnipotent plant: a retrospection. ChemBioChem, 5(4), 408-421. http://dx.doi.org/10.1002/cbic.200300749. PMid:15185362.
http://dx.doi.org/10.1002/cbic.200300749...
; Ezz-Din et al., 2011Ezz-Din, D., Gabry, M. S., Farrag, A. H., & Abdel Moneim, A. E. (2011). Physiological and histological impact of Azadirachta indica (neem) leaves extract in a rat model of cisplatin-induced hepato and nephrotoxicity. Journal of Medicinal Plants Research, 5, 5499-5506.; Dkhil et al., 2012Dkhil, M. A., Abdel-Maksoud, M. A., Al-Quraishy, S., Abdel-Baki, A. S., & Wunderlich, F. (2012). Gene expression in rabbit appendices infected with Eimeria coecicola. Veterinary Parasitology, 186(3-4), 222-228. http://dx.doi.org/10.1016/j.vetpar.2011.11.031. PMid:22154972.
http://dx.doi.org/10.1016/j.vetpar.2011....
; Gotep et al., 2016Gotep, J. G., Tanko, J. T., Forcados, G. E., Muraina, I. A., Ozele, N., Dogonyaro, B. B., Oladipo, O. O., Makoshi, M. S., Akanbi, O. B., Kinjir, H., Samuel, A. L., Onyiche, T. E., Ochigbo, G. O., Aladelokun, O. B., Ozoani, H. A., Viyoff, V. Z., Dapuliga, C. C., Atiku, A. A., Okewole, P. A., Shamaki, D., Ahmed, M. S., & Nduaka, C. I. (2016). Therapeutic and safety evaluation of combined aqueous extracts of Azadirachta indica and Khaya senegalensis in chickens experimentally infected with Eimeria oocysts. Journal of Parasitology Research, 2016, 4692424. http://dx.doi.org/10.1155/2016/4692424. PMid:26989496.
http://dx.doi.org/10.1155/2016/4692424...
; Mohamed et al., 2021Mohamed, E. R. A., Elazab, M. F., El-Habashi, N., Elhawary, N., & Mokhbatly, A. A. (2021). Anticoccidial effect of Origanum majoranum aqueous extract on Eimeria tenella- infected chicken. Tropical Biomedicine, 38(1), 62-72. http://dx.doi.org/10.47665/tb.38.1.011. PMid:33797526.
http://dx.doi.org/10.47665/tb.38.1.011...
; Ishaq et al., 2022Ishaq, R., Chand, N., Khan, R. U., Saeed, M., Laudadio, V., & Tufarelli, V. (2022). Methanolic extract of neem (Azadirachta indica) leaves mitigates experimentally induced coccidiosis challenge in Japanese quails. Journal of Applied Animal Research, 50(1), 498-503. http://dx.doi.org/10.1080/09712119.2022.2096037.
http://dx.doi.org/10.1080/09712119.2022....
). Previous studies demonstrated the various multi-targeted biological activities of neem, such as hypoglycemic (Murty et al., 1978Murty, K. S., Rao, D. N., Rao, D. K., & Murty, L. B. G. (1978). A preliminary study on hypoglycaemic and antihyperglycaemic effects of Azadirachta indica. International Journal of Pharmacology, 10, 247-250.), anti-ulcer (Pillai & Santhakumari, 1984Pillai, N. R., & Santhakumari, G. (1984). Effects on nimbidin on acute and chronic gastro-duodenal ulcer models in experimental animals. Planta Medica, 50(2), 143-146. http://dx.doi.org/10.1055/s-2007-969654. PMid:6473546.
http://dx.doi.org/10.1055/s-2007-969654...
), anti-inflammatory (van der Nat et al., 1991van der Nat, J. M., van der Sluis, W. G., tHart, L. A., van Dijk, H., Silva, K. T., & Labadie, R. P. (1991). Activity-guided isolation and identification of Azadirachta indica bark extract constituents which specifically inhibit chemiluminescence production by activated human polymorphonuclear leukocytes. Planta Medica, 57(1), 65-68. http://dx.doi.org/10.1055/s-2006-960021. PMid:2062961.
http://dx.doi.org/10.1055/s-2006-960021...
), antimalarial (MacKinnon et al., 1997MacKinnon, S., Durst, T., Arnason, J. T., Angerhofer, C., Pezzuto, J., Sanchez-Vindas, P. E., Poveda, L. J., & Gbeassor, M. (1997). Antimalarial activity of tropical Meliaceae extracts and gedunin derivatives. Journal of Natural Products, 60(4), 336-341. http://dx.doi.org/10.1021/np9605394. PMid:9134742.
http://dx.doi.org/10.1021/np9605394...
), chemopreventive (Tepsuwan et al., 2002Tepsuwan, A., Kupradinun, P., & Kusamran, W. R. (2002). Chemopreventive potential of neem flowers on carcinogen-induced rat mammary and liver carcinogenesis. Asian Pacific Journal of Cancer Prevention, 3(3), 231-238. PMid:12718580.), chemotherapeutic (Paliwal et al., 2005Paliwal, S., Sundaram, J., & Mitragotri, S. (2005). Induction of cancer specific cytotoxicity towards human prostate and skin cells using quercetin and ultrasound. British Journal of Cancer, 92(3), 499-502. http://dx.doi.org/10.1038/sj.bjc.6602364. PMid:15685239.
http://dx.doi.org/10.1038/sj.bjc.6602364...
), and antibacterial (Thakurta et al., 2007Thakurta, P., Bhowmik, P., Mukherjee, S., Hajra, T. K., Patra, A., & Bag, P. K. (2007). Antibacterial, antisecretory and antihemorrhagic activity of Azadirachta indica used to treat cholera and diarrhea in India. Journal of Ethnopharmacology, 111(3), 607-612. http://dx.doi.org/10.1016/j.jep.2007.01.022. PMid:17314018.
http://dx.doi.org/10.1016/j.jep.2007.01....
) properties, as well as an antioxidant (Yanpallewar et al., 2003Yanpallewar, S. U., Sen, S., Tapas, S., Kumar, M., Raju, S. S., & Acharya, S. B. (2003). Effect of Azadirachta indica on paracetamol-induced hepatic damage in albino rats. Phytomedicine, 10(5), 391-396. http://dx.doi.org/10.1078/0944-7113-00230. PMid:12834004.
http://dx.doi.org/10.1078/0944-7113-0023...
), and cardioprotective (Peer et al., 2008Peer, P. A., Trivedi, P. C., Nigade, P. B., Ghaisas, M. M., & Deshpande, A. D. (2008). Cardioprotective effect of Azadirachta indica A. Juss. On isoprenaline induced myocardial infarction in rats. International Journal of Cardiology, 126(1), 123-126. http://dx.doi.org/10.1016/j.ijcard.2007.01.108. PMid:17467089.
http://dx.doi.org/10.1016/j.ijcard.2007....
) effects. Previous studies were recorded for the evaluation of anthelmintic effect of neem leaves on Haemonchus contortus in goats (Radhakrishnan et al., 2007Radhakrishnan, L., Gomathinayagam, S., & Balakrishnan, V. (2007). Evaluation of anthelmintic effect of neem (Azadirachta indica) leaves on Haemonchus contortus in Goats. Research Journal of Parasitology, 2, 57-62. http://dx.doi.org/10.3923/jp.2007.57.62.
http://dx.doi.org/10.3923/jp.2007.57.62...
; Rahman et al., 2011Rahman, W., Lee, R., & Sulaiman, S. F. (2011). In vitro anthelmintic activity of Neem plant (Azadirachta indica) extract against third-stage Haemonchus contortus larvae form goats. Global Veterinaria, 7, 22-26.; Sakti et al., 2018Sakti, A. A., Kustantinah, K., & Nurcahyo, R. W. (2018). In vitro and in vivo anthelmintic activities of aqueous leaf infusion of Azadirachta indica against Haemonchus contortus. Tropical Animal Science Journal, 41(3), 185-190. http://dx.doi.org/10.5398/tasj.2018.41.3.185.
http://dx.doi.org/10.5398/tasj.2018.41.3...
), and bovine strongylosis (Jamra et al., 2015Jamra, N., Das, G., Singh, P., & Haque, M. (2015). Anthelmintic efficacy of crude neem (Azadirachta indica) leaf powder against bovine strongylosis. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology, 39(4), 786-788. http://dx.doi.org/10.1007/s12639-014-0423-9. PMid:26688654.
http://dx.doi.org/10.1007/s12639-014-042...
). Moreover, Rabiu and Subhasish (2011)Rabiu, H., & Subhasish, M. (2011). Investigation of in vitro anthelmintic activity of Azadirachta indica leaves. International Journal of Drug Development & Research, 3, 94-100. reported the effect of aqueous extract of neem leaves on the adult earthworm (Pheretima posthuma), roundworm (Ascaridia galli) and tapworms (Raillietina spiralis).

The present study has been designed to evaluate the potential role of A. indica leaf extracts as an anticoccidial agent against Eimeria papillata, as well as its in vitro anthelmintic activity.

2 Materials and methods

2.1 Plant collection and preparation and characterization

Leaves of Azadirachta indica were collected from the botanical gardens in Riyadh, Saudi Arabia. Herbal plant identification was made by a botanist at the herbarium of the Botany Department (King Saud University, Riyadh, Saudi Arabia). Methanolic extract of A. indica leaves was prepared according to the method of Manikandan et al. (2008)Manikandan, P., Letchoumy, P. V., Gopalakrishnan, M., & Nagini, S. (2008). Evaluation of Azadirachta indica leaf fractions for in vitro antioxidant potential and in vivo modulation of biomarkers of chemoprevention in the hamster buccal pouch carcinogenesis model. Food and Chemical Toxicology, 46(7), 2332-2343. http://dx.doi.org/10.1016/j.fct.2008.03.013. PMid:18442880.
http://dx.doi.org/10.1016/j.fct.2008.03....
with some modifications, as follows: A. indica leaves were washed with water, shade dried, and coarsely powdered using an electric blender (Senses, MG-503T, Korea). The dried powder (100 g) of neem leaves was subjected to maceration extraction technique using 70% methanol at 4 ºC for 24 hr followed by percolation 5-7 times till complete extraction. After filtration, methanol was removed from the extract under reduced pressure using a vacuum evaporator at 50 ºC. The crude extract obtained was lyophilized and stored at -20 ºC until subsequent use.

2.2 Fourier-transform infrared spectroscopy (FT-IR)

Plant extract was analyzed using KBr pellet method with a range of 400-4000 cm-1 on NICOLET 6700 (Thermo Scientific, Waltham, USA) FT-IR spectroscopy (Al-Quraishy et al., 2020Al-Quraishy, S., Qasem, M. A. A., Al-Shaebi, E. M., Murshed, M., Mares, M. M., & Dkhil, M. A. (2020). Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. Journal of King Saud University. Science, 32(3), 2207-2211. http://dx.doi.org/10.1016/j.jksus.2020.02.034.
http://dx.doi.org/10.1016/j.jksus.2020.0...
).

2.3 The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity

The activity of AILE was determined to scavenge DPPH radicals. Briefly, fresh DPPH radical solution (0.08 mM) in methanol was produced, and 950 mL of DPPH solution was combined with 50 mL of AILE and incubated at 25 ºC for 5 min in dark. The absorbance was measured at 515 nm using a microplate reader. The antioxidant activity is expressed as the percent suppression of DPPH radicals according to Akillioglu & Karakaya (2010)Akillioglu, H. G., & Karakaya, S. (2010). Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Science and Biotechnology, 19(3), 633-639. http://dx.doi.org/10.1007/s10068-010-0089-8.
http://dx.doi.org/10.1007/s10068-010-008...
.

2.4 Anthelmintic activity of A. indica

The anthelmintic study was carried out using three doses (200, 100, and 50 mg/mL) of methanolic A. indica leaves extract (AILE) against the earthworm, Allolobophora caliginosa, according to Ajaiyeoba et al. (2001)Ajaiyeoba, E. O., Onocha, P. A., & Olarenwaju, O. T. (2001). In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts. Pharmaceutical Biology, 39(3), 217-220. http://dx.doi.org/10.1076/phbi.39.3.217.5936.
http://dx.doi.org/10.1076/phbi.39.3.217....
. Mebendazole (10 mg/mL) was used as the reference drug. Worms in distilled water were used as a control. Five worms of nearly the same body size were used per dose. The time to reach paralysis and death state was expressed in minutes (Dkhil, 2013Dkhil, M. A. (2013). Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitology Research, 112(7), 2639-2646. http://dx.doi.org/10.1007/s00436-013-3430-3. PMid:23609599.
http://dx.doi.org/10.1007/s00436-013-343...
).

2.5 Histological examinations

Immediately after paralysis and death experiment, the treated and control worms were prepared for histological study following the method of Drury & Wallington (1973)Drury, R. A., & Wallington, E. A. (1973). Carletons histological technique. New York: Oxford University Press.. Briefly, specimens were fixed in 10% formalin for 24 h, then dehydrated by graded ethanol series and embedded in paraffin. Tissues were then cut into thin sections using a microtome, stained with hematoxylin and eosin (H & E), and examined and photography using an Olympus B×61 microscope (Tokyo, Japan).

2.6 Scanning electron microscopy (SEM)

Immediately after paralysis, the treated and control worms were fixed for SEM following a standard method of Roy & Tandon (1991)Roy, B., & Tandon, V. (1991). Usefulness of tetramethylsilane in the preparation of helminth parasites for scanning electron microscopy. Rivista di Parassitologia, 8, 207-215.. Briefly, worms were fixed in 3% buffered glutaraldehyde at 4 °C for 2 h, then dehydrated with ascending grades of acetone, air-dried in tetramethylsilane (TMS), and mounted on metal stubs and coated with gold-palladium. Specimens were examined and photographed in Jeol JSM-6060LV at an accelerating voltage of 15 kV.

2.7 Parasite

E. papillata was used as a model coccidial murine parasite. For the propagation of oocysts, five laboratory mice were inoculated with 1 × 105 sporulated oocysts by oral gavage. Feces were collected at 5 days post-infection (p.i.), and oocysts were separated by floatation technique (Kumar et al., 2014Kumar, S., Garg, R., Moftah, A., Clark, E. L., Macdonald, S. E., Chaudhry, A. S., Sparagano, O., Banerjee, P. S., Kundu, K., Tomley, F. M., & Blake, D. P. (2014). An optimised protocol for molecular identification of Eimeria from chickens. Veterinary Parasitology, 199(1-2), 24-31. http://dx.doi.org/10.1016/j.vetpar.2013.09.026. PMid:24138724.
http://dx.doi.org/10.1016/j.vetpar.2013....
). Part of these unsporulated oocysts was used in the in vitro study. The remaining oocysts were preserved for further studies.

2.8 In vitro oocyst sporulation

The unsporulated oocysts (1×105) were incubated for 72 and 96 hr at 25-29 ºC in 5 mL Dist. H2O (negative control), 5 mL 2.5% K2Cr2O7 (positive control), and finally in 5 mL K2Cr2O7 containing one of the following: AILE (100, 50, and 25 mg/mL), 8.3 mg amprolium, 109 µL Dettol TM, 25 µL phenol, and 5% formalin. Sporulation of the oocysts was monitored by examining sporocysts using an Olympus compound microscope (Olympus Co., Tokyo, Japan). A total of 100 oocysts were counted per treatment and control group to estimate the sporulation and inhibition (%) of oocysts according to Thagfan et al. (2020)Thagfan, F. A., Al-Megrin, W. A., Al-Quraishy, S., & Dkhil, M. A. M. (2020). Mulberry extract as an ecofriendly anticoccidial agent: in vitro and in vivo application. Revista Brasileira de Parasitologia Veterinária, 29(4), e009820. http://dx.doi.org/10.1590/s1984-29612020072. PMid:33111843.
http://dx.doi.org/10.1590/s1984-29612020...
.

2.9 In vitro cytotoxicity

The cytotoxicity of AILE was assessed on the human colorectal carcinoma (HCT116) cell line using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoilum bromide (MTT) assay. Cells were cultured in 96-well plates at 2 × 105 cells per well for 24 h at 37 ºC and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum. Cells were then treated with different extract concentrations of 0.0565, 0.1694, 0.5081, 1.5242, 4.5725, 13.7174, 41.1523, and 123.4568 µg/mL. Thereafter, 20 µL of MTT (5 mg/mL) was added to each well and the plate was incubated for another 4 hr at 37 ºC. Formazan crystals were dissolved in 100 µL of dimethyl sulfoxide (DMSO). Absorbance was recorded at 570 nm measured by a microplate reader (Spectra MAX 190). Untreated cells were used as a control group. Cell viability (%) was calculated according to Shirley & Lillehoj (2012)Shirley, M. W., & Lillehoj, H. (2012). The long view: a selective review of 40 years of coccidiosis research. Avian Pathology, 41(2), 111-121. http://dx.doi.org/10.1080/03079457.2012.666338. PMid:22515530.
http://dx.doi.org/10.1080/03079457.2012....
.

2.10 Statistical analysis

Data were analyzed using one-way analysis of variance (ANOVA) with SigmaPlot® version 11.0 (Systat Software, Inc., Chicago, IL, USA) and presented as mean ± SD. Differences among groups were considered significant at p-value ≤ 0.05.

3 Results

3.1 Infrared spectroscopy

The analysis of AILE using FT-IR showed major bands at 3390.78 cm-1, 2930.29 cm-1, 1622.98 cm-1, 1516.17 cm-1, 1380.62 cm-1, 1273.10 cm-1, 1070.93 cm-1, 852.33 cm-1, 816.67 cm-1, 775.86 cm-1 and 598.93 cm-1 (Figure 1 and Table 1). N-H stretching was indicated by the band at 3390.78 cm-1 confirming the presence of an aliphatic primary amine. The band at 2930.29 cm-1 implied C-H stretching for the presence of alkane. C=C stretching at 1622.98 cm-1 confirms the presence of conjugated ketone. The band at 1516.17 cm-1 corresponds to N-O stretching for the presence of the nitro compound. C-H stretching at the band 1380.62 cm-1 confirmed the presence of an aldehyde. The band 1273.10 cm-1 (C-N stretching), 1070.93 cm-1 (S=O stretching), 852.33 cm-1 (C=C stretching), 816.67 cm-1 (C-CI stretching), 775.86 cm-1 (C-H stretching), and 598.93 cm-1 (C-I stretching) assigned to aromatic amine, sulfoxide, alkene, halo compound, and 1,2-disubstituted, respectively (Table 1). In addition, the percentage of DPPH assay was 74.76 ± 2.23.

Figure 1
FTIR of Azadirachta indica leaf extracts in an aqueous medium showing the functional characteristic of the material.
Table 1
FT-IR for Azadirachta indica leaves extract.

3.2 Anthelmintic activity of A. indica

The methanolic extract of A. indica produced a relatively comparable anthelmintic activity with the conventional anthelmintic agent (mebendazole) against live adult A. caliginosa worms (Figure 2). The most efficient dose, 200 mg/kg showed the time to paralysis and death were 9.328 ± 2.183 and 10.024 ± 1.542 min, respectively. However, the reference drug mebendazole (10 mg/mL) showed less effect (9.074 ± 1.355 and 16.748 ± 5.622 for paralysis and death time, respectively) compared to the 200 mg/kg AILE (Table 2).

Figure 2
In vitro anthelmintic effect of crude extracts of leaves of Azadirachta indica against Allolobophora caliginosa in comparison to the reference drug (mebendazole).
Table 2
In vitro anthelmintic activity of crude extracts of Azadirachta indica leaves.

3.3 Microscopic examinations

LM and SEM studies revealed uniform normal body architecture for control worms, without any alterations to the surface of worms (Figures 3, 4). On the other hand, all worms treated with AILE showed changes in the general topography including a reduction in size through the length and the homogenous body wall shrinkage accompanied by cuticular thickness (Figures 3, 4). All worms treated with the reference drug mebendazole implicated similar kinds of disruption (Figures 3, 4).

Figure 3
Cuticle thickness of A. caliginose with various treatments. (A) worms in dist. H2O (control). (B) worms in 200 mg/mL A. indica leaf extracts. (C) worms in the reference drug (mebendazole). (D) Bar chart is thickness of worm cuticle (µm) among three groups, control group, AILE-treated group, and drug-treated group. Each group represents an average of five different fields of cuticle sections stained with hematoxylin and eosin, Scale bar = 25 µm. * significance change with respect to control group.
Figure 4
SEM of Allolobophora caliginose with various treatments. (A) worms in dist. H2O (control). (B) worms treated with 200 mg/mL A. indica leaf extracts. (C) worms treated with the reference drug mebendazole.

3.4 Effect of AILE on oocyst sporulation in vitro

There was no change for oocysts incubation in dist. H2O (negative control) at both 72 and 96 hr. Oocyst incubation with K2Cr2O7 (2.5%), AILE (100, 50, 25 mg/mL), amprolium, phenol, and DettolTM showed different levels of sporulation (Table 3). After incubation with formalin, the unsporulated E. papillata oocysts showed no rate of sporulation. Incubation with AILE (100 mg/mL) for 72 and 96 hr inhibited oocysts sporulation by 23.07% and 60%, respectively. AILE (50 and 25 mg/mL), amprolium, DettolTM, and phenol induced variable inhibition levels at 96 hr of 28%, 44%, 37.33%, 81.33%, and 89.33%, respectively (Table 3).

Table 3
In vitro anti-coccidial effects of the methanolic extract of Azadirachta indica leaves on the sporulation percentage of Eimeria papillata oocysts.

3.5 AILE cytotoxicity by MTT assay

The cytotoxic effect of AILE on the HCT116 cell line was tested using an MTT assay (Figure 5). The viability of cells has a direct dose-dependent manner. The IC50 of AILE was obtained at 66.214 µg/mL. The cell viability was decreased with increasing the AILE dose.

Figure 5
Cytocompatibility evaluation of AILE. * significance change with respect to control group (values are mean ± SD).

4 Discussion

Search for alternatives to anticoccidial drugs to treat and control coccidiosis is an important field of study. Several studies used plant extracts as antiparasitic agents with minimum side effects different in vitro and in vivo studies (Aljedaie & Al-Malki, 2020Aljedaie, M. M., & Al-Malki, E. S. (2020). Anticoccidial activities of Salvadora persica (arak), Zingiber officinale (ginger) and Curcuma longa (turmeric) extracts on the control of chicken coccidiosis. Journal of King Saud University. Science, 32(6), 2810-2817. http://dx.doi.org/10.1016/j.jksus.2020.07.002.
http://dx.doi.org/10.1016/j.jksus.2020.0...
; Yousaf et al., 2021Yousaf, A. A., Abbasi, K. S., Ahmad, A., Hassan, I., Sohail, A., Qayyum, A., & Akram, M. A. (2021). Physico-chemical and nutraceutical characterization of selected indigenous Guava (Psidium guajava L.) cultivars. Food Science and Technology (Campinas), 41(1), 47-58. http://dx.doi.org/10.1590/fst.35319.
http://dx.doi.org/10.1590/fst.35319...
; Qaid et al., 2022Qaid, M. M., Mansour, L., Al-Garadi, M. A., Alqhtani, A. H., Al-Abdullatif, A. A., Qasem, M. A., & Murshed, M. A. (2022). Evaluation of the anticoccidial effect of traditional medicinal plants, Cinnamomum verum bark and Rumex nervosus leaves in experimentally infected broiler chickens with Eimeria tenella. Italian Journal of Animal Science, 21(1), 408-421. http://dx.doi.org/10.1080/1828051X.2022.2033139.
http://dx.doi.org/10.1080/1828051X.2022....
). This study assessed the potential role of AILE as anthelmintic and anticoccidial effectors.

Several studies have reported the anthelmintic role of AILE (Radhakrishnan et al., 2007Radhakrishnan, L., Gomathinayagam, S., & Balakrishnan, V. (2007). Evaluation of anthelmintic effect of neem (Azadirachta indica) leaves on Haemonchus contortus in Goats. Research Journal of Parasitology, 2, 57-62. http://dx.doi.org/10.3923/jp.2007.57.62.
http://dx.doi.org/10.3923/jp.2007.57.62...
; Priscilla et al., 2014Priscilla, F. X., Amin, M. R., & Rahman, S. (2014). Comparative study of neem (Azadirachta indica), bitter gourd (Momordica charantia) extract as herbal anthelmintic and albendazole as chemical anthelmintic in controlling gastrointestinal nematodes in goats. IOSR Journal of Agriculture and Veterinary Science, 7(2), 33-37. http://dx.doi.org/10.9790/2380-07233337.
http://dx.doi.org/10.9790/2380-07233337...
; Jamra et al., 2015Jamra, N., Das, G., Singh, P., & Haque, M. (2015). Anthelmintic efficacy of crude neem (Azadirachta indica) leaf powder against bovine strongylosis. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology, 39(4), 786-788. http://dx.doi.org/10.1007/s12639-014-0423-9. PMid:26688654.
http://dx.doi.org/10.1007/s12639-014-042...
). Herein, earthworms were used as a model for the anthelmintic activity of AILE. In the current in vitro study, 200 mg/mL concentration of AILE produced a significant anthelmintic activity that is comparable with the conventional anthelmintic agent, mebendazole. This finding is in line with Adjorlolo et al. (2016)Adjorlolo, L. K., Timpong-Jones, E. C., Boadu, S., & Adogla-Bessa, T. (2016). Potential contribution of neem (Azadirachta indica) leaves to dry season feeding of ruminants in West Africa. Livestock Research for Rural Development, 28(5), 75. and Salma et al. (2021)Salma, S. K., Anvitha, R. M., Indupriya, J., Sireesha, B., Kumar, B. V., & Nagalakshmi, G. (2021). Biological evalution of (Azadirachta Indica) neem flower for anthelmintic activity on earth worm (Pheretima posthuma). Journal of Pharmaceutical Sciences and Research, 13(2), 92-94. confirmed the efficacy of AILE due to the presence of active constituents, i.e. alkaloids, phenolics, flavonoids, saponins, tannins. Roy et al. (2010)Roy, S., Gurusubramanian, G., & Mukhopadhyay, A. (2010). Neem-based integrated approaches for the management of tea mosquito bug, Helopeltis theivora Waterhouse Miridae: Heteroptera) in tea. Journal of Pest Science, 83(2), 143-148. http://dx.doi.org/10.1007/s10340-009-0280-y.
http://dx.doi.org/10.1007/s10340-009-028...
reported that alkaloids may act on the central nervous system to cause paralysis of the parasite and death. Mustafa et al. (2010)Mustafa, R. A., Abdul Hamid, A., Mohamed, S., & Bakar, F. A. (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. Journal of Food Science, 75(1), C28-C35. http://dx.doi.org/10.1111/j.1750-3841.2009.01401.x. PMid:20492146.
http://dx.doi.org/10.1111/j.1750-3841.20...
confirmed the antioxidant role of phenolic compounds referred to their redox properties which are considered free radical scavengers. Stepek et al. (2005)Stepek, G., Buttle, D. J., Duce, I. R., Lowe, A., & Behnke, J. M. (2005). Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro. Parasitology, 130(2), 203-211. http://dx.doi.org/10.1017/S0031182004006225. PMid:15727070.
http://dx.doi.org/10.1017/S0031182004006...
and Fan et al. (2023)Fan, Y., Pei, Y., Chen, J., Zha, X., & Wu, Y. (2023). Structural characterization and stability of microencapsulated flavonoids from Lycium barbarum L. leaves. Food Science and Technology (Campinas), 43, e100922. http://dx.doi.org/10.1590/fst.100922.
http://dx.doi.org/10.1590/fst.100922...
showed that flavonoid inhibits the enzyme of glycolysis and disturbs the calcium homeostasis and nitrous oxide activity and eventual death of the parasite. Melzig et al. (2001)Melzig, M. F., Bader, G., & Loose, R. (2001). Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Medica, 67(1), 43-48. http://dx.doi.org/10.1055/s-2001-10632. PMid:11270721.
http://dx.doi.org/10.1055/s-2001-10632...
stated that saponin affects the permeability of the cell membrane of the parasite and causes vacuolization, the disintegration of teguments, and eventual death. Tresia et al. (2016)Tresia, G. E., Evvyernie, D., & Tiuria, R. (2016). Phytochemical screening and in vitro ovicidal, larvacidal, and nematicidal effects of Murraya paniculata (L.) jack extract on gastrointestinal parasites of goats. Med. Pet., 39(3), 173-179. http://dx.doi.org/10.5398/medpet.2016.39.3.173.
http://dx.doi.org/10.5398/medpet.2016.39...
reported that the fatal intracellular consistency occurred due to the inhibition of the enzyme secretion by tannins that would cause paralysis of parasites.

For evaluating anthelmintic action, histopathology and SEM have proved the in vitro study and analyzed the topographical effects of AILE on the worms. The cuticle is an important structure of annelids because it provides covering and protection for the worm’s body and supports internal organs (Meyer et al., 2021Meyer, C., André, T., & Purschke, G. (2021). Ultrastructure and functional morphology of the appendages in the reef-building sedentary polychaete Sabellaria alveolate (Annelida, Sedentaria, Sabellida). BMC Zoology, 6(1), 1-25. http://dx.doi.org/10.1186/s40850-021-00068-8.
http://dx.doi.org/10.1186/s40850-021-000...
). In the present study, microscopic observations for AILE-treated parasites revealed that remarkable changes occurred on the cuticular surface, with extensive shrinkage. This agreed with Kundu et al. (2012)Kundu, S., Roy, S., Nandi, S., Ukil, B., & Lyndem, L. M. (2012). In vitro anthelmintic effects of Senna occidentalis (L.) link (Leguminosae) on rat tapeworm Hymenolepis diminuta. International Journal of Pharmacy and Pharmaceutical Sciences, 7(6), 268-271. stated that the cuticle of parasites has associated with one of several target sites by which the anthelmintic products act. Sambodo et al. (2018)Sambodo, P., Prastowo, J., Kurniasih, K., & Indarjulianto, S. (2018). In vitro potential anthelmintic activity of Biophytum petersianum on Haemonchus contortus. Veterinary World, 11(1), 1-4. http://dx.doi.org/10.14202/vetworld.2018.1-4. PMid:29479148.
http://dx.doi.org/10.14202/vetworld.2018...
, and Mrifag et al. (2021)Mrifag, R., Lemrabott, M. A., El Kharrim, K., Belghyti, D., & Basco, L. K. (2021). Setaria labiatopapillosa (Filarioidea, Nematoda) in Moroccan cattle: atypical localization and morphological characterization of females and microfilariae by light and scanning electron microscopy. Parasitology Research, 120(3), 911-918. http://dx.doi.org/10.1007/s00436-020-06966-z. PMid:33188488.
http://dx.doi.org/10.1007/s00436-020-069...
reported the changes in the body surface of the parasites due to anthelmintic agents. Therefore, any destruction caused to the body surface of the parasite due to the treatment of a drug or extract may lead to paralysis and death of the parasite.

Our study demonstrated in vitro anticoccidial activity of AILE on the oocyst’s sporulation in a dose-dependent manner, which is attributable to numerous bioactive phytochemical constituents studied by Gnanakalai & Gopal (2016)Gnanakalai, K., & Gopal, R. (2016). Phytochemical constituents and in vitro antibacterial activity of various extract of Azadirachta indica (Neem). International Journal of Current Pharmaceutical Research, 8, 52-55., Ibrahim et al. (2017)Ibrahim, B., Ndukwe, G. I., Nock, I. H., Audu, P. A., Momoh, H., & Dambatta, M. (2017). Phytochemical analysis and in vitro anti-coccidial efficacy of methanolic extracts of the stem bark of Azadirachta indica A. Juss and Solanum dasyphyllum Schumach. Katsina Journal of Natural and Applied Sciences, 6(2), 137-143., Abdul Rahman et al. (2020)Abdul Rahman, N. A., Musa, M., Yusmaidi, N., & On, S. (2020). Phytochemical screening and study of antioxidant and antimicrobial activities of leaf extracts of Azadirachta indica. ASM Sc J, 13(6), 90-95. . It is also demonstrated that the commonly used disinfectant formalin (5%) is the most effective in the inhibition of the oocyst’s sporulation of E. papillata, which agreed with Thagfan et al. (2020)Thagfan, F. A., Al-Megrin, W. A., Al-Quraishy, S., & Dkhil, M. A. M. (2020). Mulberry extract as an ecofriendly anticoccidial agent: in vitro and in vivo application. Revista Brasileira de Parasitologia Veterinária, 29(4), e009820. http://dx.doi.org/10.1590/s1984-29612020072. PMid:33111843.
http://dx.doi.org/10.1590/s1984-29612020...
. DettolTM and Phenol have been reported to inhibit sporulation by 81.33% and 89.33%, respectively, which is consistent with Mai et al. (2009)Mai, K., Sharman, A. P., Walker, A. R., Katrib, M., Souza, D. D., McConville, J. M., Wallach, M., Belli, S., Ferguson, D. J., & Smith, N. C. (2009). Oocyst wall formation and composition in coccidian parasites. Memorias do Instituto Oswaldo Cruz, 104(2), 281-289. http://dx.doi.org/10.1590/S0074-02762009000200022. PMid:19430654.
http://dx.doi.org/10.1590/S0074-02762009...
and Gadelhaq et al. (2018)Gadelhaq, S. M., Arafa, W. M., & Abolhadid, S. M. (2018). In vitro activity of natural and chemical products on sporulation of Eimeria species oocysts of chickens. Veterinary Parasitology, 251, 12-16. http://dx.doi.org/10.1016/j.vetpar.2017.12.020. PMid:29426468.
http://dx.doi.org/10.1016/j.vetpar.2017....
that the oocyst wall is impermeable to water-soluble substances and resistant to proteolysis.

Govarthanan et al. (2016)Govarthanan, M., Mythili, R., Selvankumar, T., Kamala-Kannan, S., Rajasekar, A., & Chang, Y. C. (2016). Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech, 6(2), 242. PMid:28330314. stated the importance of the cytotoxicity test for toxicology investigation to explain the cellular response to toxic material and provide information about cell death and survival. In this study, the cell survival rate was measured by MTT assay. Thus, in vitro cytotoxicity of AILE was evaluated against the HCT116 cell line at different concentrations and our results confirmed that cell viability has a direct dose-dependent manner. The cell viability for AILE was found to be 66.214 µg/mL which exhibited no cytotoxic effect on the HCT116 cell line. This study agreed with Ngure et al. (2009)Ngure, R. M., Ongeri, B., Karori, S. M., Wachira, W., Maathai, G. R., Kibugu, K. J., & Wachira, N. F. (2009). Anti-trypanosomal effects of Azadiracta indica (neem) extract on Trypanosoma brucei rhodesiense-infected mice. Eastern Journal of Medicine, 14, 2-9., Chaudhary et al. (2017)Chaudhary, S., Kanwar, R. K., Sehgal, A., Cahill, D. M., Barrow, C. J., Sehgal, R., & Kanwar, J. R. (2017). Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Frontiers in Plant Science, 8, 610. http://dx.doi.org/10.3389/fpls.2017.00610. PMid:28533783.
http://dx.doi.org/10.3389/fpls.2017.0061...
, and Njoga et al. (2022)Njoga, U. J., Jaja, I. F., Onwuka, O. S., Ilo, S. U., Eke, I. G., Abah, K. O., Oguejiofor, C. F., & Ochiogu, I. S. (2022). Reproductive effects of medicinal plant (Azadirachta indica) used as forage and for ethnoveterinary practices: new insights from animal models. Challenges, 13(2), 40. http://dx.doi.org/10.3390/challe13020040.
http://dx.doi.org/10.3390/challe13020040...
stated that AILE showed no observable signs of toxicity and proved to be safe for medical use.

5 Conclusion

Recently, medicinal plants have received much attention for their therapeutic uses as an alternative to coccidiostats. Our data indicate that A. indica leaves extract exhibited a significant anthelmintic as well as anticoccidial activity. In vivo studies on the effect of this extract and its related activities should be included in future.

Acknowledgements

This study was supported by the Researchers Supporting Project (RSP2023R25), King Saud University, Riyadh, Saudi Arabia, and also was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R23), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  • Practical Application: Efficacy of Azadirachta indica as antihelmintic and anticoccidial effectors.
  • Availability of data and material

    The data used to support the findings of this study are included within the article.

References

  • Abbas, R. Z., Munawar, S. H., Manzoor, Z. A., Iqbal, Z., Khan, M. N., Saleemi, M. K., Zia, M. A., & Yousaf, A. (2011). Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with Eimeria tenella. Pesquisa Veterinária Brasileira, 31(2), 99-103. http://dx.doi.org/10.1590/S0100-736X2011000200001
    » http://dx.doi.org/10.1590/S0100-736X2011000200001
  • Abdul Rahman, N. A., Musa, M., Yusmaidi, N., & On, S. (2020). Phytochemical screening and study of antioxidant and antimicrobial activities of leaf extracts of Azadirachta indica. ASM Sc J, 13(6), 90-95.
  • Adjorlolo, L. K., Timpong-Jones, E. C., Boadu, S., & Adogla-Bessa, T. (2016). Potential contribution of neem (Azadirachta indica) leaves to dry season feeding of ruminants in West Africa. Livestock Research for Rural Development, 28(5), 75.
  • Ajaiyeoba, E. O., Onocha, P. A., & Olarenwaju, O. T. (2001). In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts. Pharmaceutical Biology, 39(3), 217-220. http://dx.doi.org/10.1076/phbi.39.3.217.5936
    » http://dx.doi.org/10.1076/phbi.39.3.217.5936
  • Akillioglu, H. G., & Karakaya, S. (2010). Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Science and Biotechnology, 19(3), 633-639. http://dx.doi.org/10.1007/s10068-010-0089-8
    » http://dx.doi.org/10.1007/s10068-010-0089-8
  • Aljedaie, M. M., & Al-Malki, E. S. (2020). Anticoccidial activities of Salvadora persica (arak), Zingiber officinale (ginger) and Curcuma longa (turmeric) extracts on the control of chicken coccidiosis. Journal of King Saud University. Science, 32(6), 2810-2817. http://dx.doi.org/10.1016/j.jksus.2020.07.002
    » http://dx.doi.org/10.1016/j.jksus.2020.07.002
  • Allen, P. C., & Fetterer, R. H. (2002). Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clinical Microbiology Reviews, 15(1), 58-65. http://dx.doi.org/10.1128/CMR.15.1.58-65.2002 PMid:11781266.
    » http://dx.doi.org/10.1128/CMR.15.1.58-65.2002
  • Al-Quraishy, S., Qasem, M. A. A., Al-Shaebi, E. M., Murshed, M., Mares, M. M., & Dkhil, M. A. (2020). Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. Journal of King Saud University. Science, 32(3), 2207-2211. http://dx.doi.org/10.1016/j.jksus.2020.02.034
    » http://dx.doi.org/10.1016/j.jksus.2020.02.034
  • Alzahrani, F., Al-Shaebi, E. M., Dkhil, M. A., & Al-Quraishy, S. (2016). In vivo anti-Eimeria and in vitro anthelmintic activity of Ziziphus spina-christi leaf extracts fares. Pakistan Journal of Zoology, 48(2), 409-413.
  • Amer, O. S. O., Dkhil, M. A., Hikal, W. M., & Al-Quraishy, S. (2015). Antioxidant and Anti-Inflammatory Activities of Pomegranate (Punica granatum) on Eimeria papillata-Induced Infection in Mice. BioMed Research International, 2015, 219670. http://dx.doi.org/10.1155/2015/219670 PMid:25654088.
    » http://dx.doi.org/10.1155/2015/219670
  • Anyaehie, U. B. (2009). Medicinal properties of fractionated acetone/water neem (Azadirachta indica) leaf extract from Nigeria: a review. Nigerian Journal of Physiological Sciences; Official Publication of the Physiological Society of Nigeria, 24(2), 157-159. PMid:20234757.
  • Brahmachari, G. (2004). Neem-an omnipotent plant: a retrospection. ChemBioChem, 5(4), 408-421. http://dx.doi.org/10.1002/cbic.200300749 PMid:15185362.
    » http://dx.doi.org/10.1002/cbic.200300749
  • Britto, A. J., & Gracelin, D. H. S. (2011). Phytochemical screening and antibacterial activity of a few medicinal plants against Xanthomonas campestris. Pharmacologyonline, 2, 271-277.
  • Chaudhary, S., Kanwar, R. K., Sehgal, A., Cahill, D. M., Barrow, C. J., Sehgal, R., & Kanwar, J. R. (2017). Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Frontiers in Plant Science, 8, 610. http://dx.doi.org/10.3389/fpls.2017.00610 PMid:28533783.
    » http://dx.doi.org/10.3389/fpls.2017.00610
  • Dkhil, M. A. (2013). Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitology Research, 112(7), 2639-2646. http://dx.doi.org/10.1007/s00436-013-3430-3 PMid:23609599.
    » http://dx.doi.org/10.1007/s00436-013-3430-3
  • Dkhil, M. A., Abdel-Maksoud, M. A., Al-Quraishy, S., Abdel-Baki, A. S., & Wunderlich, F. (2012). Gene expression in rabbit appendices infected with Eimeria coecicola. Veterinary Parasitology, 186(3-4), 222-228. http://dx.doi.org/10.1016/j.vetpar.2011.11.031 PMid:22154972.
    » http://dx.doi.org/10.1016/j.vetpar.2011.11.031
  • Dkhil, M. A., Al-Quraishy, S., Abdel Moneim, A. E., & Delic, D. (2013). Protective effect of Azadirachta indica extract against Eimeria papillata-induced coccidiosis. Parasitology Research, 112(1), 101-106. http://dx.doi.org/10.1007/s00436-012-3109-1 PMid:22972359.
    » http://dx.doi.org/10.1007/s00436-012-3109-1
  • Drury, R. A., & Wallington, E. A. (1973). Carletons histological technique New York: Oxford University Press.
  • Elkhadragy, M. F., Al Aqeel, N. S. M., Yehia, H. M., Abdel-Gaber, R., & Hamed, S. S. (2022). Histological and molecular characterization of the protective effect of Eugenia caryophyllata against renal toxicity induced by vitamin D in male wistar rats. Food Science and Technology (Campinas), 42, e97522. http://dx.doi.org/10.1590/fst.97522
    » http://dx.doi.org/10.1590/fst.97522
  • Ezz-Din, D., Gabry, M. S., Farrag, A. H., & Abdel Moneim, A. E. (2011). Physiological and histological impact of Azadirachta indica (neem) leaves extract in a rat model of cisplatin-induced hepato and nephrotoxicity. Journal of Medicinal Plants Research, 5, 5499-5506.
  • Fan, Y., Pei, Y., Chen, J., Zha, X., & Wu, Y. (2023). Structural characterization and stability of microencapsulated flavonoids from Lycium barbarum L. leaves. Food Science and Technology (Campinas), 43, e100922. http://dx.doi.org/10.1590/fst.100922
    » http://dx.doi.org/10.1590/fst.100922
  • Gadelhaq, S. M., Arafa, W. M., & Abolhadid, S. M. (2018). In vitro activity of natural and chemical products on sporulation of Eimeria species oocysts of chickens. Veterinary Parasitology, 251, 12-16. http://dx.doi.org/10.1016/j.vetpar.2017.12.020 PMid:29426468.
    » http://dx.doi.org/10.1016/j.vetpar.2017.12.020
  • Gnanakalai, K., & Gopal, R. (2016). Phytochemical constituents and in vitro antibacterial activity of various extract of Azadirachta indica (Neem). International Journal of Current Pharmaceutical Research, 8, 52-55.
  • Gotep, J. G., Tanko, J. T., Forcados, G. E., Muraina, I. A., Ozele, N., Dogonyaro, B. B., Oladipo, O. O., Makoshi, M. S., Akanbi, O. B., Kinjir, H., Samuel, A. L., Onyiche, T. E., Ochigbo, G. O., Aladelokun, O. B., Ozoani, H. A., Viyoff, V. Z., Dapuliga, C. C., Atiku, A. A., Okewole, P. A., Shamaki, D., Ahmed, M. S., & Nduaka, C. I. (2016). Therapeutic and safety evaluation of combined aqueous extracts of Azadirachta indica and Khaya senegalensis in chickens experimentally infected with Eimeria oocysts. Journal of Parasitology Research, 2016, 4692424. http://dx.doi.org/10.1155/2016/4692424 PMid:26989496.
    » http://dx.doi.org/10.1155/2016/4692424
  • Govarthanan, M., Mythili, R., Selvankumar, T., Kamala-Kannan, S., Rajasekar, A., & Chang, Y. C. (2016). Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech, 6(2), 242. PMid:28330314.
  • Ibrahim, B., Ndukwe, G. I., Nock, I. H., Audu, P. A., Momoh, H., & Dambatta, M. (2017). Phytochemical analysis and in vitro anti-coccidial efficacy of methanolic extracts of the stem bark of Azadirachta indica A. Juss and Solanum dasyphyllum Schumach. Katsina Journal of Natural and Applied Sciences, 6(2), 137-143.
  • Ishaq, R., Chand, N., Khan, R. U., Saeed, M., Laudadio, V., & Tufarelli, V. (2022). Methanolic extract of neem (Azadirachta indica) leaves mitigates experimentally induced coccidiosis challenge in Japanese quails. Journal of Applied Animal Research, 50(1), 498-503. http://dx.doi.org/10.1080/09712119.2022.2096037
    » http://dx.doi.org/10.1080/09712119.2022.2096037
  • Jamra, N., Das, G., Singh, P., & Haque, M. (2015). Anthelmintic efficacy of crude neem (Azadirachta indica) leaf powder against bovine strongylosis. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology, 39(4), 786-788. http://dx.doi.org/10.1007/s12639-014-0423-9 PMid:26688654.
    » http://dx.doi.org/10.1007/s12639-014-0423-9
  • Klimpel, S., Abdel-Ghaffar, F., Al-Rasheid, K. A. S., Aksu, G., Fischer, K., Strassen, B., & Mehlhorn, H. (2011). The effects of different plant extracts on nematodes. Parasitology Research, 108(4), 1047-1054. http://dx.doi.org/10.1007/s00436-010-2168-4 PMid:21110041.
    » http://dx.doi.org/10.1007/s00436-010-2168-4
  • Kumar, S., Garg, R., Moftah, A., Clark, E. L., Macdonald, S. E., Chaudhry, A. S., Sparagano, O., Banerjee, P. S., Kundu, K., Tomley, F. M., & Blake, D. P. (2014). An optimised protocol for molecular identification of Eimeria from chickens. Veterinary Parasitology, 199(1-2), 24-31. http://dx.doi.org/10.1016/j.vetpar.2013.09.026 PMid:24138724.
    » http://dx.doi.org/10.1016/j.vetpar.2013.09.026
  • Kundu, S., Roy, S., Nandi, S., Ukil, B., & Lyndem, L. M. (2012). In vitro anthelmintic effects of Senna occidentalis (L.) link (Leguminosae) on rat tapeworm Hymenolepis diminuta. International Journal of Pharmacy and Pharmaceutical Sciences, 7(6), 268-271.
  • Lai, A., Dong, G., Song, D., Yang, T., & Zhang, X. (2018). Responses to dietary levels of methionine in broilers medicated or vaccinated against coccidia under Eimeria tenella-challenged condition. BMC Veterinary Research, 14(1), 140. http://dx.doi.org/10.1186/s12917-018-1470-8 PMid:29699573.
    » http://dx.doi.org/10.1186/s12917-018-1470-8
  • López-Osorio, S., Chaparro-Gutiérrez, J. J., & Gómez-Osorio, L. M. (2020). Overview of Poultry Eimeria life cycle and host-parasite interactions. Frontiers in Veterinary Science, 7, 384. http://dx.doi.org/10.3389/fvets.2020.00384 PMid:32714951.
    » http://dx.doi.org/10.3389/fvets.2020.00384
  • MacKinnon, S., Durst, T., Arnason, J. T., Angerhofer, C., Pezzuto, J., Sanchez-Vindas, P. E., Poveda, L. J., & Gbeassor, M. (1997). Antimalarial activity of tropical Meliaceae extracts and gedunin derivatives. Journal of Natural Products, 60(4), 336-341. http://dx.doi.org/10.1021/np9605394 PMid:9134742.
    » http://dx.doi.org/10.1021/np9605394
  • Mai, K., Sharman, A. P., Walker, A. R., Katrib, M., Souza, D. D., McConville, J. M., Wallach, M., Belli, S., Ferguson, D. J., & Smith, N. C. (2009). Oocyst wall formation and composition in coccidian parasites. Memorias do Instituto Oswaldo Cruz, 104(2), 281-289. http://dx.doi.org/10.1590/S0074-02762009000200022 PMid:19430654.
    » http://dx.doi.org/10.1590/S0074-02762009000200022
  • Manikandan, P., Letchoumy, P. V., Gopalakrishnan, M., & Nagini, S. (2008). Evaluation of Azadirachta indica leaf fractions for in vitro antioxidant potential and in vivo modulation of biomarkers of chemoprevention in the hamster buccal pouch carcinogenesis model. Food and Chemical Toxicology, 46(7), 2332-2343. http://dx.doi.org/10.1016/j.fct.2008.03.013 PMid:18442880.
    » http://dx.doi.org/10.1016/j.fct.2008.03.013
  • Masood, S., Abbas, R. Z., Iqbal, Z., Mansoor, M. K., Sindhu, Z. D., Zia, M. A., & Khan, J. (2013). Role of natural antioxidants for the control of coccidiosis in poultry. Pakistan Veterinary Journal, 33(4), 401-407.
  • McDougald, L. R. (2003) Coccidiosis. In: Y.M. Saif, H.J. Barnes, A.M. Fadly, J.R. Glisson, L.R. McDouglad, D.E. Swayne (Eds.), Poultry diseases (pp. 947-991). Iowa: Iowa State Press.
  • Mehlhorn, H. (2014). Encyclopedic reference of parasitology (6th ed.). Berlin: Springer Press.
  • Melzig, M. F., Bader, G., & Loose, R. (2001). Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Medica, 67(1), 43-48. http://dx.doi.org/10.1055/s-2001-10632 PMid:11270721.
    » http://dx.doi.org/10.1055/s-2001-10632
  • Meyer, C., André, T., & Purschke, G. (2021). Ultrastructure and functional morphology of the appendages in the reef-building sedentary polychaete Sabellaria alveolate (Annelida, Sedentaria, Sabellida). BMC Zoology, 6(1), 1-25. http://dx.doi.org/10.1186/s40850-021-00068-8
    » http://dx.doi.org/10.1186/s40850-021-00068-8
  • Mohamed, E. R. A., Elazab, M. F., El-Habashi, N., Elhawary, N., & Mokhbatly, A. A. (2021). Anticoccidial effect of Origanum majoranum aqueous extract on Eimeria tenella- infected chicken. Tropical Biomedicine, 38(1), 62-72. http://dx.doi.org/10.47665/tb.38.1.011 PMid:33797526.
    » http://dx.doi.org/10.47665/tb.38.1.011
  • Mrifag, R., Lemrabott, M. A., El Kharrim, K., Belghyti, D., & Basco, L. K. (2021). Setaria labiatopapillosa (Filarioidea, Nematoda) in Moroccan cattle: atypical localization and morphological characterization of females and microfilariae by light and scanning electron microscopy. Parasitology Research, 120(3), 911-918. http://dx.doi.org/10.1007/s00436-020-06966-z PMid:33188488.
    » http://dx.doi.org/10.1007/s00436-020-06966-z
  • Murty, K. S., Rao, D. N., Rao, D. K., & Murty, L. B. G. (1978). A preliminary study on hypoglycaemic and antihyperglycaemic effects of Azadirachta indica. International Journal of Pharmacology, 10, 247-250.
  • Mustafa, R. A., Abdul Hamid, A., Mohamed, S., & Bakar, F. A. (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. Journal of Food Science, 75(1), C28-C35. http://dx.doi.org/10.1111/j.1750-3841.2009.01401.x PMid:20492146.
    » http://dx.doi.org/10.1111/j.1750-3841.2009.01401.x
  • Ngure, R. M., Ongeri, B., Karori, S. M., Wachira, W., Maathai, G. R., Kibugu, K. J., & Wachira, N. F. (2009). Anti-trypanosomal effects of Azadiracta indica (neem) extract on Trypanosoma brucei rhodesiense-infected mice. Eastern Journal of Medicine, 14, 2-9.
  • Njoga, U. J., Jaja, I. F., Onwuka, O. S., Ilo, S. U., Eke, I. G., Abah, K. O., Oguejiofor, C. F., & Ochiogu, I. S. (2022). Reproductive effects of medicinal plant (Azadirachta indica) used as forage and for ethnoveterinary practices: new insights from animal models. Challenges, 13(2), 40. http://dx.doi.org/10.3390/challe13020040
    » http://dx.doi.org/10.3390/challe13020040
  • Paliwal, S., Sundaram, J., & Mitragotri, S. (2005). Induction of cancer specific cytotoxicity towards human prostate and skin cells using quercetin and ultrasound. British Journal of Cancer, 92(3), 499-502. http://dx.doi.org/10.1038/sj.bjc.6602364 PMid:15685239.
    » http://dx.doi.org/10.1038/sj.bjc.6602364
  • Peer, P. A., Trivedi, P. C., Nigade, P. B., Ghaisas, M. M., & Deshpande, A. D. (2008). Cardioprotective effect of Azadirachta indica A. Juss. On isoprenaline induced myocardial infarction in rats. International Journal of Cardiology, 126(1), 123-126. http://dx.doi.org/10.1016/j.ijcard.2007.01.108 PMid:17467089.
    » http://dx.doi.org/10.1016/j.ijcard.2007.01.108
  • Pillai, N. R., & Santhakumari, G. (1984). Effects on nimbidin on acute and chronic gastro-duodenal ulcer models in experimental animals. Planta Medica, 50(2), 143-146. http://dx.doi.org/10.1055/s-2007-969654 PMid:6473546.
    » http://dx.doi.org/10.1055/s-2007-969654
  • Priscilla, F. X., Amin, M. R., & Rahman, S. (2014). Comparative study of neem (Azadirachta indica), bitter gourd (Momordica charantia) extract as herbal anthelmintic and albendazole as chemical anthelmintic in controlling gastrointestinal nematodes in goats. IOSR Journal of Agriculture and Veterinary Science, 7(2), 33-37. http://dx.doi.org/10.9790/2380-07233337
    » http://dx.doi.org/10.9790/2380-07233337
  • Qaid, M. M., Mansour, L., Al-Garadi, M. A., Alqhtani, A. H., Al-Abdullatif, A. A., Qasem, M. A., & Murshed, M. A. (2022). Evaluation of the anticoccidial effect of traditional medicinal plants, Cinnamomum verum bark and Rumex nervosus leaves in experimentally infected broiler chickens with Eimeria tenella. Italian Journal of Animal Science, 21(1), 408-421. http://dx.doi.org/10.1080/1828051X.2022.2033139
    » http://dx.doi.org/10.1080/1828051X.2022.2033139
  • Radhakrishnan, L., Gomathinayagam, S., & Balakrishnan, V. (2007). Evaluation of anthelmintic effect of neem (Azadirachta indica) leaves on Haemonchus contortus in Goats. Research Journal of Parasitology, 2, 57-62. http://dx.doi.org/10.3923/jp.2007.57.62
    » http://dx.doi.org/10.3923/jp.2007.57.62
  • Rahman, W., Lee, R., & Sulaiman, S. F. (2011). In vitro anthelmintic activity of Neem plant (Azadirachta indica) extract against third-stage Haemonchus contortus larvae form goats. Global Veterinaria, 7, 22-26.
  • Rabiu, H., & Subhasish, M. (2011). Investigation of in vitro anthelmintic activity of Azadirachta indica leaves. International Journal of Drug Development & Research, 3, 94-100.
  • Roy, S., Gurusubramanian, G., & Mukhopadhyay, A. (2010). Neem-based integrated approaches for the management of tea mosquito bug, Helopeltis theivora Waterhouse Miridae: Heteroptera) in tea. Journal of Pest Science, 83(2), 143-148. http://dx.doi.org/10.1007/s10340-009-0280-y
    » http://dx.doi.org/10.1007/s10340-009-0280-y
  • Roy, B., & Tandon, V. (1991). Usefulness of tetramethylsilane in the preparation of helminth parasites for scanning electron microscopy. Rivista di Parassitologia, 8, 207-215.
  • Salma, S. K., Anvitha, R. M., Indupriya, J., Sireesha, B., Kumar, B. V., & Nagalakshmi, G. (2021). Biological evalution of (Azadirachta Indica) neem flower for anthelmintic activity on earth worm (Pheretima posthuma). Journal of Pharmaceutical Sciences and Research, 13(2), 92-94.
  • Sakti, A. A., Kustantinah, K., & Nurcahyo, R. W. (2018). In vitro and in vivo anthelmintic activities of aqueous leaf infusion of Azadirachta indica against Haemonchus contortus. Tropical Animal Science Journal, 41(3), 185-190. http://dx.doi.org/10.5398/tasj.2018.41.3.185
    » http://dx.doi.org/10.5398/tasj.2018.41.3.185
  • Sambodo, P., Prastowo, J., Kurniasih, K., & Indarjulianto, S. (2018). In vitro potential anthelmintic activity of Biophytum petersianum on Haemonchus contortus. Veterinary World, 11(1), 1-4. http://dx.doi.org/10.14202/vetworld.2018.1-4 PMid:29479148.
    » http://dx.doi.org/10.14202/vetworld.2018.1-4
  • Shirley, M. W., & Lillehoj, H. (2012). The long view: a selective review of 40 years of coccidiosis research. Avian Pathology, 41(2), 111-121. http://dx.doi.org/10.1080/03079457.2012.666338 PMid:22515530.
    » http://dx.doi.org/10.1080/03079457.2012.666338
  • Stepek, G., Buttle, D. J., Duce, I. R., Lowe, A., & Behnke, J. M. (2005). Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro. Parasitology, 130(2), 203-211. http://dx.doi.org/10.1017/S0031182004006225 PMid:15727070.
    » http://dx.doi.org/10.1017/S0031182004006225
  • Tepsuwan, A., Kupradinun, P., & Kusamran, W. R. (2002). Chemopreventive potential of neem flowers on carcinogen-induced rat mammary and liver carcinogenesis. Asian Pacific Journal of Cancer Prevention, 3(3), 231-238. PMid:12718580.
  • Thagfan, F. A., Al-Megrin, W. A., Al-Quraishy, S., & Dkhil, M. A. M. (2020). Mulberry extract as an ecofriendly anticoccidial agent: in vitro and in vivo application. Revista Brasileira de Parasitologia Veterinária, 29(4), e009820. http://dx.doi.org/10.1590/s1984-29612020072 PMid:33111843.
    » http://dx.doi.org/10.1590/s1984-29612020072
  • Thakurta, P., Bhowmik, P., Mukherjee, S., Hajra, T. K., Patra, A., & Bag, P. K. (2007). Antibacterial, antisecretory and antihemorrhagic activity of Azadirachta indica used to treat cholera and diarrhea in India. Journal of Ethnopharmacology, 111(3), 607-612. http://dx.doi.org/10.1016/j.jep.2007.01.022 PMid:17314018.
    » http://dx.doi.org/10.1016/j.jep.2007.01.022
  • Tresia, G. E., Evvyernie, D., & Tiuria, R. (2016). Phytochemical screening and in vitro ovicidal, larvacidal, and nematicidal effects of Murraya paniculata (L.) jack extract on gastrointestinal parasites of goats. Med. Pet., 39(3), 173-179. http://dx.doi.org/10.5398/medpet.2016.39.3.173
    » http://dx.doi.org/10.5398/medpet.2016.39.3.173
  • van der Nat, J. M., van der Sluis, W. G., tHart, L. A., van Dijk, H., Silva, K. T., & Labadie, R. P. (1991). Activity-guided isolation and identification of Azadirachta indica bark extract constituents which specifically inhibit chemiluminescence production by activated human polymorphonuclear leukocytes. Planta Medica, 57(1), 65-68. http://dx.doi.org/10.1055/s-2006-960021 PMid:2062961.
    » http://dx.doi.org/10.1055/s-2006-960021
  • Wunderlich, F., Al-Quraishy, S., Steinbrenner, H., Sies, H., & Dkhil, M. A. (2014). Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant based natural products. Parasitology Research, 113(10), 3547-3556. http://dx.doi.org/10.1007/s00436-014-4101-8 PMid:25185667.
    » http://dx.doi.org/10.1007/s00436-014-4101-8
  • Yanpallewar, S. U., Sen, S., Tapas, S., Kumar, M., Raju, S. S., & Acharya, S. B. (2003). Effect of Azadirachta indica on paracetamol-induced hepatic damage in albino rats. Phytomedicine, 10(5), 391-396. http://dx.doi.org/10.1078/0944-7113-00230 PMid:12834004.
    » http://dx.doi.org/10.1078/0944-7113-00230
  • Yousaf, A. A., Abbasi, K. S., Ahmad, A., Hassan, I., Sohail, A., Qayyum, A., & Akram, M. A. (2021). Physico-chemical and nutraceutical characterization of selected indigenous Guava (Psidium guajava L.) cultivars. Food Science and Technology (Campinas), 41(1), 47-58. http://dx.doi.org/10.1590/fst.35319
    » http://dx.doi.org/10.1590/fst.35319

Publication Dates

  • Publication in this collection
    20 Jan 2023
  • Date of issue
    2023

History

  • Received
    20 Oct 2022
  • Accepted
    04 Dec 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br