Acessibilidade / Reportar erro

Pitaya [Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose] effect on glycemia and oxidative stress in aloxan-induced diabetic mice

Abstract

Pitaya is a rich source of bioactive compounds, such as polyphenols and betalains. Moreover, these compounds has been associated with reduced risk of type 2 diabetes mellitus. The aim of this study is to evaluate the effect of this fruit on glycemia and oxidative stress in aloxan-induced diabetic mice. Thus, considering that In the in vivo assays, the mice were divided into 5 groups (n = 6): (a) healthy group treated with water; (b) diabetic mice treated with metformin at 200 mg/kg body weight diluted in water; (c) untreated diabetic mice; (d) diabetic mice treated with pitaya at 200 mg/kg and (e) diabetic mice treated with pitaya at 400 mg/kg of body weight diluted in water. The results shows that pitaya was able significantly to reduce blood glucose (p < 0.05) (200 mg/kg); significantly reduce cholesterol (200 and 400 mg/kg) and significantly increase HDL-c (400 mg/kg) levels. In the oxidative stress experiment, Malondialdehyde levels in the liver were significantly reduced (p < 0.05) in the groups treated with pitaya, when compared to the other groups, suggesting lower lipid peroxidation. The consumption of pitaya reduced the blood glucose and cholesterol and increase the HDL, in addition, the lipid peroxidation - which is common in diabetic patients, was reduced.

Keywords:
diabetes mellitus; pitaya; Hylocereus polyrhizus; oxidative stress

1 Introduction

Diabetes is a metabolic disorder characterized by chronic hyperglycemia (Ayua et al., 2021Ayua, E. O., Nkhata, S. G., Namaumbo, S. J., Kamau, E. H., Ngoma, T. N., & Aduol, K. O. (2021). Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems. Heliyon, 7(2), e06245. http://dx.doi.org/10.1016/j.heliyon.2021.e06245. PMid:33659753.
http://dx.doi.org/10.1016/j.heliyon.2021...
) and is one of the most common causes of death in the world (Takım, 2021Takım, K. (2021). Bioactive component analysis and investigation of antidiabetic effect of Jerusalem thorn (Paliurus spina-christi) fruits in diabetic rats induced by streptozotocin. Journal of Ethnopharmacology, 264, 113263. http://dx.doi.org/10.1016/j.jep.2020.113263. PMid:32818572.
http://dx.doi.org/10.1016/j.jep.2020.113...
).

Between 1980 and 2014, there was a global increase in diabetes cases, from 108 to 422 million, with a higher incidence in low- and middle-income nations (World Health Organization, 2020World Health Organization - WHO. (2020). Diabetes: key facts. Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes
https://www.who.int/news-room/fact-sheet...
). It still stands out, a huge expenditure by the government, affected individuals and their families on diabetes treatment (International Diabetes Federation, 2019International Diabetes Federation. (2019). IDF diabetes atlas (7th ed.). Brussels: International Diabetes Federation.). Therefore, there is a growing interest in decreasing and controlling diabetes and its effects.

Currently, for the treatment of diabetes, medical and nutritional approaches are made. For nutritional treatment, diets that help in the low production of postprandial glucose in the blood are recommended, while medical treatment has used drugs such as metformin, thiazolidinediones, meglitinides, miglitol, among other medications. However, most of these drugs used have side effects such as diarrhea, hypoglycemia, weight gain, flatulence, stomach distension and are not recommended for people with liver disease (Maideen, 2019Maideen, N. M. P. (2019). Pharmacologically relevant drug interactions of α-glucosidase inhibitors. Journal of Diabetes and Metabolic Disorders, 6(2), 28-30. http://dx.doi.org/10.15406/jdmdc.2019.06.00178.
http://dx.doi.org/10.15406/jdmdc.2019.06...
; Wang et al., 2019Wang, L., Voss, E. A., Weaver, J., Hester, L., Yuan, Z., DeFalco, F., Schuemie, M. J., Ryan, P. B., Sun, D., Freedman, A., Alba, M., Lind, J., Meininger, G., Berlin, J. A., & Rosenthal, N. (2019). Cetoacidose diabética em pacientes com diabetes tipo 2 tratados com inibidor do co-transportador de sódio 2 versus outros agentes anti-hiperglicêmicos: um estudo observacional de quatro bancos de dados de reivindicações administrativas dos EUA. Pharmacoepidemiology and Drug Safety, 28, 1620-1628. http://dx.doi.org/10.1002/pds.4887. PMid:31456304.
http://dx.doi.org/10.1002/pds.4887...
).

There has been growing interest in recent years in the beneficial effects of plant-based diets for the prevention of chronic non-communicable diseases (Gao et al., 2021Gao, Q., Zhong, C., Zhou, X., Chen, R., Xiong, T., Hong, M., Li, Q., Kong, M., Xiong, G., Han, W., Sun, G., Yang, X., Yang, N., & Hao, L. (2021). Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: a prospective cohort study. Clinical Nutrition, 40(2), 550-559. http://dx.doi.org/10.1016/j.clnu.2020.05.053. PMid:32593522.
http://dx.doi.org/10.1016/j.clnu.2020.05...
). There are a large number of studies suggesting dietary intake of polyphenols, especially flavonoids, associated with reduced risk of type 2 diabetes mellitus (DM2) (Guasch-Ferré et al., 2017Guasch-Ferré, M., Merino, J., Sun, Q., Fitó, M., & Salas-Salvadó, J. (2017). Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxidative Medicine and Cellular Longevity, 2017, 6723931. http://dx.doi.org/10.1155/2017/6723931. PMid:28883903.
http://dx.doi.org/10.1155/2017/6723931...
; Guo et al., 2019Guo, X. F., Ruan, Y., Li, Z. H., & Li, D. (2019). Flavonoid subclasses and type 2 diabetes mellitus risk: a meta-analysis of prospective cohort studies. Critical Reviews in Food Science and Nutrition, 59(17), 2850-2862. http://dx.doi.org/10.1080/10408398.2018.1476964. PMid:29768032.
http://dx.doi.org/10.1080/10408398.2018....
; Zhou et al., 2018Zhou, Y., Wang, T., Song, D., & Wang, A. (2018). Dietary intake of flavonoid subclasses and risk of type 2 diabetes in prospective cohort studies: a dose-response meta-analysis. Clinical Nutrition, 37(6), 2294-2298. http://dx.doi.org/10.1016/j.clnu.2018.08.024. PMid:30195577.
http://dx.doi.org/10.1016/j.clnu.2018.08...
). These studies shows an antioxidant and anti-inflammatory effects of these compounds (cellular and tissue level), which influence glucose metabolism through several mechanisms (Gao et al., 2021Gao, Q., Zhong, C., Zhou, X., Chen, R., Xiong, T., Hong, M., Li, Q., Kong, M., Xiong, G., Han, W., Sun, G., Yang, X., Yang, N., & Hao, L. (2021). Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: a prospective cohort study. Clinical Nutrition, 40(2), 550-559. http://dx.doi.org/10.1016/j.clnu.2020.05.053. PMid:32593522.
http://dx.doi.org/10.1016/j.clnu.2020.05...
). Thus, it is known that the consumption of fruits and vegetables can reduce the risk of chronic degenerative diseases such as heart disease and type II diabetes, due to the presence of secondary metabolites such as phenolic compounds and betalains (Montiel-Sánchez et al., 2021Montiel-Sánchez, M., García-Cayuela, T., Gómez-Maqueo, A., García, H. S., & Cano, M. P. (2021). In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chemistry, 342, 128087. http://dx.doi.org/10.1016/j.foodchem.2020.128087. PMid:33077279.
http://dx.doi.org/10.1016/j.foodchem.202...
).

Pitaya has also been considered a rich source of bioactive compounds. Pitaya or dragon fruit comprises a group of exotic cactus species of the genus Hylocereus (Paśko et al., 2021Paśko, P., Galanty, A., Zagrodzki, P., Ku, Y. G., Luksirikul, P., Weisz, M., & Gorinstein, S. (2021). Bioactivity and cytotoxicity of different species of pitaya fruits - a comparative study with advanced chemometric analysis. Food Bioscience, 40, 100888. http://dx.doi.org/10.1016/j.fbio.2021.100888.
http://dx.doi.org/10.1016/j.fbio.2021.10...
) and is originally from the tropical and subtropical Americas. The most commercialized species are Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose (Angonese et al., 2021Angonese, M., Motta, G. E., Farias, N. S., Molognoni, L., Daguer, H., Brugnerotto, P., Costa, A. C. O., & Müller, C. M. O. (2021). Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: comparison of phenolic and organic acids profiles and antioxidant activities. LWT, 149, 111924. http://dx.doi.org/10.1016/j.lwt.2021.111924.
http://dx.doi.org/10.1016/j.lwt.2021.111...
), characterized by pulp and peel of intense red color. Recent research suggests that pitaya exibihit biological properties, including antioxidant, hypocholesterolemic (Holanda et al., 2021Holanda, M. O., Lira, S. M., Silva, J. Y. G., Marques, C. G., Coelho, L. C., Lima, C. L. S., Costa, J. T. G., Silva, G. S., Santos, G. B. M., Zocolo, G. J., Dionísio, A. P., & Guedes, M. I. F. (2021). Intake of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) beneficially affects the cholesterolemic profile of dyslipidemic C57BL/ 6 mice. Food Bioscience, 42, 101181. http://dx.doi.org/10.1016/j.fbio.2021.101181.
http://dx.doi.org/10.1016/j.fbio.2021.10...
), cytotoxic (Paśko et al., 2021Paśko, P., Galanty, A., Zagrodzki, P., Ku, Y. G., Luksirikul, P., Weisz, M., & Gorinstein, S. (2021). Bioactivity and cytotoxicity of different species of pitaya fruits - a comparative study with advanced chemometric analysis. Food Bioscience, 40, 100888. http://dx.doi.org/10.1016/j.fbio.2021.100888.
http://dx.doi.org/10.1016/j.fbio.2021.10...
; Luo et al., 2014Luo, H., Cai, Y., Peng, Z., Liu, T., & Yang, S. (2014). Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaia (dragon fruit) peel. Chemistry Central Journal, 8(1), 1. http://dx.doi.org/10.1186/1752-153X-8-1. PMid:24386928.
http://dx.doi.org/10.1186/1752-153X-8-1...
), antimicrobial, prebiotic (Choo et al., 2016Choo, J. C., Koh, R. Y., & Ling, A. P. K. (2016). Medicinal properties of pitaya: a review. Spatula DD, 6(2), 69-76. http://dx.doi.org/10.5455/spatula.20160413015353.
http://dx.doi.org/10.5455/spatula.201604...
) and anxiolytic activities (Lira et al., 2020Lira, S. M., Dionísio, A. P., Holanda, M. O., Marques, C. G., Silva, G. S., Correa, L. C., Santos, G. B. M., Abreu, F. A. P., Magalhães, F. E. A., Rebouças, E. L., Guedes, J. A. C., Oliveira, D. F., Guedes, M. I. F., & Zocolo, G. J. (2020). Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MSE and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Research International, 127, 108701. http://dx.doi.org/10.1016/j.foodres.2019.108701. PMid:31882110.
http://dx.doi.org/10.1016/j.foodres.2019...
). It is known that dragon fruit has several bioactive compounds, such as betalains, polyphenols and flavonoids (Arivalagan et al., 2021Arivalagan, M., Karunakaran, G., Roy, T. K., Dinsha, M., Sindhu, B. C., Shilpashree, V. M., Satisha, G. C., & Shivashankara, K. S. (2021). Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry, 353, 129426. http://dx.doi.org/10.1016/j.foodchem.2021.129426. PMid:33774520.
http://dx.doi.org/10.1016/j.foodchem.202...
). Several of these compounds have shown protective effects in experimental diabetes by enhancing the activity of antioxidant enzymes (Sharma et al., 2021Sharma, S., Katoch, V., Kumar, S., & Chatterjee, S. (2021). Functional relationship of vegetable colors and bioactive compounds: implications in human health. The Journal of Nutritional Biochemistry, 92, 108615. http://dx.doi.org/10.1016/j.jnutbio.2021.108615. PMid:33705954.
http://dx.doi.org/10.1016/j.jnutbio.2021...
). Thus, the aim of this study was to investigate the effect of pitaya on glycemia and oxidative stress in aloxan-induced diabetic mice

2 Materials and methods

2.1 Plant material

Pitaya [Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose] was obtained from Frutacor, which is located in Vale do Jaguaribe - CE (05º 53' 26” S; 38º 37' 19” W). The fruits were washed, sanitized, and processed in Embrapa Agroindústria Tropical (Fortaleza-CE). Thus, the pitaya was processed using a pulp-finisher (ITAMETAL/BONINA 0.25 DF) equipped with sieves of different meshes (2.5 and 0.8 mm) to separate the pulp (containing seeds) and the peel, which was discarded. In the end, the pulp and seed (edible portion) was obtained, frozen at −20 °C, lyophilized (LIOTOP LP 510) and tritured using and a mortar/pestle. This lyophilized material was used in all the experiments.

2.2 Pitaya characterization

The moisture, protein, and ash contents were determined, respectively, using the Association of Official Analytical Chemists (2005)Association of Official Analytical Chemists - AOAC. (2005). Official methods of analysis of AOAC International (18th ed.). Washington: AOAC. methods no. 934.01, 984.13, and 923.03. The lipids were determined by analyzing the ethereal extract using a ANKOM model XT15 high-temperature extractor, using the Am 5-04 method proposed by of the American Oil Chemists’ Society (Association of Official Analytical Chemists, 2005Association of Official Analytical Chemists - AOAC. (2005). Official methods of analysis of AOAC International (18th ed.). Washington: AOAC.). The total amount of carbohydrates was calculated using the following Equation 1

D i f f e r e n c e = 1 0 0 % w a t e r + % p r o t e i n + % l i p i d s + % a s h (1)

The insoluble (FDI) and soluble (SDF) fractions of the food dietary fiber were determined according to AOAC method 991.43 (Association of Official Analytical Chemists, 2005Association of Official Analytical Chemists - AOAC. (2005). Official methods of analysis of AOAC International (18th ed.). Washington: AOAC.) using an ANKOM Automatic Nutrient TDF analyzer (Ankon Technology Corporation). The total dietary fiber (TDF) was calculated as the sum of the insoluble and soluble fractions.

2.3 Pancreatic α-amylase inhibition assay

The pancreatic α-amylase inhibition assay was adapted from Sudha et al. (2011)Sudha, P., Zinjarde, S. S., Bhargava, S. Y., & Kumar, A. R. (2011). Potent a-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary and Alternative Medicine, 11(1), 5. http://dx.doi.org/10.1186/1472-6882-11-5. PMid:21251279.
http://dx.doi.org/10.1186/1472-6882-11-5...
. The assay was performed in a microtiter plate based on the starch- iodine test where absorbance was read at 620 nm in a microplate reader, and 5 mg/mL of pitaya was used. The control reaction represented 100% of the enzyme activity did not contain any lyophilized pulp from the pitaya. The inhibition assay was performed using the chromogenic DNSA (3,5- dinitrosalicylic acid) method.

2.4 Animals and treatments

Thirty mice (Mus musculus) Swiss, adult, female, with an average weight of 25-30 g and age of 8-12 weeks were used. They were kept in collective cages, at a controlled temperature of 22 ± 2 °C, in light-dark cycles of 12/12 h for twenty eight days. The animals received water and feed ad libitum.

The mice were distributed into 5 groups (n = 6), which were called: SAUD (healthy group): treated with water (0.2 mL of water); MET 200: diabetic mice treated with metformin at 200 mg/kg body weight diluted in water; DNT: untreated diabetic mice; PIT 200: diabetic mice treated with pitaya at 200 mg/kg of body weight diluted in water; PIT 400: diabetic mice treated with lyophilized pitaya at 400 mg/kg of body weight diluted in water. Dosages were adjusted according to the weight of each animal, with daily preparation. The groups received the pitaya, via gavage, according to the adapted protocol of Barbosa et al. (2013)Barbosa, A. P. O., Silveira, G. O., Menezes, I. A., Rezende, J. M. No., Bitencurt, J. L., Estavam, C. S., Lima, A. C., Thomazzi, S. M., Guimarães, A. G., Quintans, L. J. Jr., & Santos, M. R. (2013). Antidiabetic effect of the Chrysobalanus icacoL. aqueous extract in rats. Journal of Medicinal Food, 16(6), 538-543. http://dx.doi.org/10.1089/jmf.2012.0084. PMid:23734998.
http://dx.doi.org/10.1089/jmf.2012.0084...
.

All protocols described in this research were submitted to the Animal Research Ethics Committee of the State University of Ceara, under protocol nº 7255099/2018, according to the precepts of law nº 11,794, of October 8, 2008, of Decree No. 6,899, of July 15, 2009, and with the rules issued by the National Council for the Control of Animal Experimentation.

2.5 Diabetes induction

Diabetes induction was performed through a single injection of alloxane monohydrate (Sigam® - St. Louis, MO) at a dose of 150 mg/kg of animal weight. Alloxane was dissolved in a sterile saline solution (0.9% NaCl) and administered intraperitoneally. The animals were fasted for 12 hours before alloxane injection [adapted from Vareda (2013)Vareda, P. M. P. (2013). Avaliação da atividade hipoglicemiante do extrato de Myrcia bella em camundongos diabéticos induzidos por estreptozotocina (Master’s thesis). Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu.]. After a period of 7 days, the mice were again fasted for eight hours for blood collection through the retroorbital plexus and subsequent determination of blood glucose. Animals with blood glucose equal to or greater than 200 mg/dL were considered diabetic (Aragão et al., 2010Aragão, D. M. O., Guarize, L., Lanini, J., Costa, J. C., Garcia, R. M. G., & Scio, E. (2010). Hypoglycemic effects of Cecropia pachystachya in normal and alloxan-induced diabetic rats. Journal of Ethnopharmacology, 128(3), 629-633. http://dx.doi.org/10.1016/j.jep.2010.01.008. PMid:20064597.
http://dx.doi.org/10.1016/j.jep.2010.01....
). Healthy animals, in order to suffer the same stress as alloxane-induced mice, received intraperitoneally the same volume of saline solution.

2.6 Biochemistry determinations

Blood samples were collected from the orbital plexus of mice, fasted for 4 h, in two moments: after the induction period (0 days) and at the end of the treatment period (28 days). The samples were centrifuged immediately after collection (11000 rpm for 3 min and 28 °C), the supernatant was removed and the samples were again centrifuged at 11000 rpm for only 1 min (28 °C). The serum was separated for analysis, which was subjected to standardized techniques of commercial kits based on kinetic, enzymatic and colorimetric methods (Bioclin/Quibasa, Minas Gerais, Brazil) in a spectrophotometer with a multimode ELISA microplate reader (BioTek, Winooski, USA), according to adaptation by Arruda et al. (2017)Arruda, A. C. V. Fo., Rodrigues, P. A. S., Benjamin, S. R., Paim, R. T. T., Holanda, M. O., Silva, J. Y. G., Milo, T. S., Vieira, I. G. P., Queiroz, M. G. R., & Guedes, M. I. F. (2017). Hypolipidemic activity of P-methoxycinnamic diester (PCO-C) isolated from Copernicia prunífera against Triton WR-1339 and hyperlipidemic diet in mice. Environmental Toxicology and Pharmacology, 56, 198-203. http://dx.doi.org/10.1016/j.etap.2017.09.015. PMid:28961514.
http://dx.doi.org/10.1016/j.etap.2017.09...
. The parameters analyzed were glycemia, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, triglycerides, urea, total cholesterol and HDL cholesterol.

The serum atherogenic index (AI) is a measure of the extent of atherosclerotic lesions based on serum lipids. It was determined in all groups. The atherogenic index is calculated by the formula IA = CT/HDL (Balzan et al., 2013Balzan, S., Hernandes, A., Reichert, C. L., Donaduzzi, C., Pires, V. A., Gasparotto, A. Jr., & Cardozo, E. L. Jr. (2013). Lipid-lowering effects of standardized extracts of Ilex paraguariensis in high-fat-diet rats. Fitoterapia, 86, 115-122. http://dx.doi.org/10.1016/j.fitote.2013.02.008. PMid:23422228.
http://dx.doi.org/10.1016/j.fitote.2013....
).

Determination of lipid peroxidation

Liver samples (up to 150 mg) were cut and then homogenized in ice-cold 50 mM phosphate buffer, pH 7.4 to give 10% homogenate. Lipid peroxidation was determined by measuring thiobarbituric acid reactive species (TBARS) through Malondialdehyde (MDA), the results were expressed in nmol/g of wet tissue. The method used was described by Ohkawa et al. (1979)Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. http://dx.doi.org/10.1016/0003-2697(79)90738-3. PMid:36810.
http://dx.doi.org/10.1016/0003-2697(79)9...
.

Determination of non-protein sulfide groups (GSH)

Reduced glutathione (GSH) was determined according to the method described by Sedlak & Lindsay (1968)Sedlak, J., & Lindsay, R. H. (1968). Estimation total, protein boundand nonprotein sulfhydryl groups in tissue with Elman’s reagent. Analytical Biochemistry, 25(1), 192-205. http://dx.doi.org/10.1016/0003-2697(68)90092-4. PMid:4973948.
http://dx.doi.org/10.1016/0003-2697(68)9...
. Aliquots (2 mL) of liver tissue homogenate were mixed with 1.6 mL of distilled water and 0.4 mL of 50% (w/v) trichloroacetic acid (TCA) in glass tubes and centrifuged at 3000 rpm for 15 min. The supernatants (2 mL) were then mixed with 4 mL of Tris buffer (40 mM, pH 8.9) and 5,5'-dithiobis (2-nitrobenzoic acid) (10 mM DTNB) was added. After the lesions were evaluated by mixing reactions, their absorbance at 412 nm was measured within 5 min of the addition of DTNB against the blank without homogenate. The GSH concentration (μg/g of wet tissue) was calculated from a standard curve constructed using different GSH standard concentrations.

3 Statistical analysis

For biochemical analysis and lipid peroxidation and the determination of non-protein sulfide groups (GSH) measurement, the data were expressed as mean ± standard error of the mean (EPM). One-Way Analysis of Variance (ANOVA) was used to analyze the significance of the differences between the animals in the groups, followed by the Tukey test, with a significance level of p < 0.05. The statistical comparisons, creation and editing of the graphs were performed using the GraphPad Prism version 5.0 program.

4 Results and discussion

4.1 Diabetes

The chemical and physico-chemical composition of pitaya (pulp and seeds) is shown in Table 1. Results from the total carbohydrates and fibers (total, soluble and insoluble) were 11.03% ± 0.12 for carbohydrates, and 13.36% ± 0.45 for total fiber, soluble and insoluble, respectively. This is in accordance with Santos et al. (2020)Santos, G. B. M., Dionísio, A. P., Magalhães, H. C. R., Abreu, F. A. P., Lira, S. M., Lima, A. C. V., Silva, G. S. D., Guedes, J. A. C., Araujo, I. M. S., Artur, A. G., Pontes, D. F., & Zocolo, G. J. (2020). Effects of processing on the chemical, physicochemical, enzymatic and volatile metabolic composition of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose). Food Research International, 127, 108710. http://dx.doi.org/10.1016/j.foodres.2019.108710. PMid:31882103.
http://dx.doi.org/10.1016/j.foodres.2019...
, that shows that the pitaya pulp was mainly composed of carbohydrates, mostly consisting of dietary fiber. As expected, the protein levels was low, and lipid (mainly concentrated in the seed) shows 0.69% levels. Santos et al. (2020)Santos, G. B. M., Dionísio, A. P., Magalhães, H. C. R., Abreu, F. A. P., Lira, S. M., Lima, A. C. V., Silva, G. S. D., Guedes, J. A. C., Araujo, I. M. S., Artur, A. G., Pontes, D. F., & Zocolo, G. J. (2020). Effects of processing on the chemical, physicochemical, enzymatic and volatile metabolic composition of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose). Food Research International, 127, 108710. http://dx.doi.org/10.1016/j.foodres.2019.108710. PMid:31882103.
http://dx.doi.org/10.1016/j.foodres.2019...
shows that the predominant saturated fatty acids (FAs) in pitaya seed oil were palmitic, stearic, arachidic, and meristic acids, representing around 22% of the total FAs. Up to 86% of the total FAs identified in seed oil consisted of unsaturated FAs, and linoleic and oleic acids were the majority compounds found in the seeds.

Table 1
Effect of pitaya and metformin on the wet weight of diabetes-induced swiss mice organs.

After pitaya characterization, the in vivo assays were performed. The results of the biochemical parameters shows that pitaya was able to reduce blood glucose (200 mg/kg); reduce cholesterol (200 and 400 mg/kg) and increase HDL-c (400 mg/kg) in aloxan-induced diabetic mice (see Figure 1 and Table 2).

Figure 1
Effect of pitaya on bood glucose levels. SAUD: healthy group; DNT: untreated group; MET: Metformin; PIT200 and PIT 400: pitaya at a dose of 200 and 400 mg/kg/day, respectively. Data are expressed as mean ± standard error of the mean of 6 mice and each group. To analyze the significance of the differences between the groups, we used the analysis of variance (ANOVA) followed by Tukey's comparison test, with *p ˂ 0.05 versus SAUD group; #p ˂ 0.05 versus DNT group.
Table 2
Effect of pitaya on biochemical parameters of diabetes-induced swiss mice.

For glucose results, it is observed that the group treated with pitaya at a dose of 200 mg/kg significantly decreased glycemia, compared to the untreated group and metformin. Several authors suggest that betalains, phenolic compounds (quercetin, for instance) and oligossacharides may exert a beneficial effect on glycemia. Thus, these compounds may be related to the decrease of glucose blood levels after pitaya treatment, since it is a rich source of these bioactive compounds, as demonstrated by our group recently (Lira et al., 2020Lira, S. M., Dionísio, A. P., Holanda, M. O., Marques, C. G., Silva, G. S., Correa, L. C., Santos, G. B. M., Abreu, F. A. P., Magalhães, F. E. A., Rebouças, E. L., Guedes, J. A. C., Oliveira, D. F., Guedes, M. I. F., & Zocolo, G. J. (2020). Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MSE and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Research International, 127, 108701. http://dx.doi.org/10.1016/j.foodres.2019.108701. PMid:31882110.
http://dx.doi.org/10.1016/j.foodres.2019...
; Holanda et al., 2021Holanda, M. O., Lira, S. M., Silva, J. Y. G., Marques, C. G., Coelho, L. C., Lima, C. L. S., Costa, J. T. G., Silva, G. S., Santos, G. B. M., Zocolo, G. J., Dionísio, A. P., & Guedes, M. I. F. (2021). Intake of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) beneficially affects the cholesterolemic profile of dyslipidemic C57BL/ 6 mice. Food Bioscience, 42, 101181. http://dx.doi.org/10.1016/j.fbio.2021.101181.
http://dx.doi.org/10.1016/j.fbio.2021.10...
). Lugo-Radillo et al. (2012)Lugo-Radillo, A., Delgado-Enciso, I., & Peña-Beltrán, E. (2012). Betanidin significantly reduces blood glucose levels in BALB/c mice fed with an atherogenic diet. Natural Products and Bioprospecting, 2(4), 154-155. http://dx.doi.org/10.1007/s13659-012-0034-z.
http://dx.doi.org/10.1007/s13659-012-003...
shows that the betanidin significantly reduces blood glucose levels in BALB/c mice fed with an atherogenic diet, in addition Sadowska-Bartosz & Bartosz (2021)Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. http://dx.doi.org/10.3390/molecules26092520. PMid:33925891.
http://dx.doi.org/10.3390/molecules26092...
which also showed that betalains reduce blood glucose and Wootton-Beard et al. (2014)Wootton-Beard, P. C., Brandt, K., Fell, D., Warner, S., & Ryan, L. (2014). Effects of a beetroot juice with high neobetanin content on the early-phase insulin response in healthy volunteers. Journal of Nutritional Science, 3, e9. http://dx.doi.org/10.1017/jns.2014.7. PMid:25191617.
http://dx.doi.org/10.1017/jns.2014.7...
shows the effect of a beetroot juice with high neobetanin content on the early-phase insulin response in healthy volunteers. For phenolic compounds, Mahesh & Menon (2004)Mahesh, T., & Menon, V. P. (2004). Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytotherapy Research, 18(2), 123-127. http://dx.doi.org/10.1002/ptr.1374. PMid:15022163.
http://dx.doi.org/10.1002/ptr.1374...
and Vessal et al. (2003)Vessal, M., Hemmati, M., & Vasei, M. (2003). Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 135(3), 357-364. http://dx.doi.org/10.1016/S1532-0456(03)00140-6. PMid:12927910.
http://dx.doi.org/10.1016/S1532-0456(03)...
demonstrate that quercetin allievates oxidative stress and has antidiabetic effects in streptozocin-induced diabetic rats; and Kobori et al. (2011)Kobori, M., Masumoto, S., Akimoto, Y., & Oike, H. (2011). Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Molecular Nutrition & Food Research, 55(4), 530-540. http://dx.doi.org/10.1002/mnfr.201000392. PMid:21462320.
http://dx.doi.org/10.1002/mnfr.201000392...
shows that a chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Furthermore, Kim et al. (2011)Kim, J. H., Kang, M. J., Choi, H. N., Jeong, S. M., Lee, Y. M., & Kim, J. I. (2011). Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutrition Research and Practice, 5(2), 107-111. http://dx.doi.org/10.4162/nrp.2011.5.2.107. PMid:21556223.
http://dx.doi.org/10.4162/nrp.2011.5.2.1...
shows that quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Finally, oligosaccharides of pitaya were identified by Wichienchot et al. (2010)Wichienchot, S., Jatupornpipat, M., & Rastall, R. A. (2010). Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, Barking, 120(3), 850-857. http://dx.doi.org/10.1016/j.foodchem.2009.11.026.
http://dx.doi.org/10.1016/j.foodchem.200...
and their prebiotic properties were demonstrated by in vitro assays.

The positive effect shows in the animals glicemia levels can be reinforced by the alpha amylase inhibition assay, where a 100% inhibition of this enzyme was observed. These results shows that one of the mechanisms of blood glucose reduction that pitaya promotes is through the reduction of digestion and absorption of carbohydrates, which delays the release of glucose to the body, consequently reducing blood glucose (Kazeem et al., 2013Kazeem, M. I., Abimbola, S. G., & Ashafa, A. O. T. (2013). Inhibitory potential of Gssypium arboreum leaf extracts on diabetes key enzymes, alpha- amylase and alpha- glucosidase. Bangladesh Journal of Pharmacology, 8(2), 149-155. http://dx.doi.org/10.3329/bjp.v8i2.14152.
http://dx.doi.org/10.3329/bjp.v8i2.14152...
; Gautam et al., 2013Gautam, K., Kumar, P., & Jain, C. (2013). Comparative study of alpha amylase inhibitory activity of flavonoids of Vitex negundo Linn. and Andrographis paniculata Nees. International Journal of Green Pharmacy, 7(1), 25-28. http://dx.doi.org/10.4103/0973-8258.111602.
http://dx.doi.org/10.4103/0973-8258.1116...
; Ademiluyi & Oboh, 2013Ademiluyi, A. O., & Oboh, G. (2013). Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit alpha- amylase and alpha- glucosidase activities in vitro. Journal of Medicinal Food, 16(1), 88-93. http://dx.doi.org/10.1089/jmf.2012.0004. PMid:23216107.
http://dx.doi.org/10.1089/jmf.2012.0004...
; Zheng et al., 2020Zheng, Y., Liu, S., Xie, J., Chen, Y., Dong, R., Zhang, X., Liu, S., Xie, J., Hu, X., & Yu, Q. (2020). Antioxidant, α-amylase and α-glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber. LWT, 132, 109943. http://dx.doi.org/10.1016/j.lwt.2020.109943.
http://dx.doi.org/10.1016/j.lwt.2020.109...
). Therefore, as discussed previously, these effects could be related to the quercetin (Najafian, 2015Najafian, M. (2015). The effects of curcumin on alpha amylase in diabetics rats. Journal of Research in Medical Sciences, 17(12), e5198.) and the oligossacharides (Wichienchot et al., 2010Wichienchot, S., Jatupornpipat, M., & Rastall, R. A. (2010). Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, Barking, 120(3), 850-857. http://dx.doi.org/10.1016/j.foodchem.2009.11.026.
http://dx.doi.org/10.1016/j.foodchem.200...
), both constituints of pitaya. Due to the negative side effects of synthetic products for the treatment of diabetes (Najafian, 2015Najafian, M. (2015). The effects of curcumin on alpha amylase in diabetics rats. Journal of Research in Medical Sciences, 17(12), e5198.) this result of the pitaya is relevant, showing this fruit as an hypoglycemic potential.

There are some common abnormalities in diabetic individuals, such as hypertriglyceridemia and hypercholesterolemia (Hosseini et al., 2015Hosseini, A., Shafiee-Nick, R., & Ghorbani, A. (2015). Proteção de células beta pancreáticas/regeneração com fitoterapia. Brazilian Journal of Pharmaceutical Sciences, 51(1), 1-16. http://dx.doi.org/10.1590/S1984-82502015000100001.
http://dx.doi.org/10.1590/S1984-82502015...
). However, in this study, hypercholesterolemia was not observed in the group treated with pitaya. Total cholesterol decrease in the groups treated with pitaya at doses of 200 and 400 mg/kg (p ˂ 0.05) when compared to the untreated group, which was not observed when comparing with metformin. On the other hand, there was an increase in the HDL level in the 400 mg/kg group (p ˂ 0.05). Considering that cholesterol and HDL are a risk criteria for coronary heart disease (Bock, 2012Bock, J. L. (2012). Avaliação de lesão e função cardíaca. In: J. B. Henry (Ed.), Diagnósticos clínico e tratamentos por métodos laboratoriais (21th ed., pp. 255-267). Barueri: Manole.; Chang & Robidoux, 2017Chang, Y., & Robidoux, J. (2017). Dyslipidemia management update. Current Opinion in Pharmacology, 33, 47-55. http://dx.doi.org/10.1016/j.coph.2017.04.005. PMid:28527325.
http://dx.doi.org/10.1016/j.coph.2017.04...
), the pitaya can help to reverse the cholesterol pathways. These results are in agreement with the literature, since Sani et al. (2009)Sani, H. A., Baharoom, A., Ahmad, M. A., & Ismail, I. I. (2009). Effectiveness of Hylocereus polyrhizus extract in decreasing serum lipids and liver MDA-TBAR level in hypercholesterolemic rats. Sains Malaysiana, 38, 271-279. shows the effectiveness of Hylocereus polyrhizus extract in decreasing serum lipids and liver MDA-TBAR level in hypercholesterolemic rats. Moreover, Wroblewska et al. (2011)Wroblewska, M., Juskiewicz, J., & Wiczkowski, W. (2011). Physiological properties of beetroot crisps applied in standard and dyslipidaemic diets of rats. Lipids in Health and Disease, 10(1), 178. http://dx.doi.org/10.1186/1476-511X-10-178. PMid:21995671.
http://dx.doi.org/10.1186/1476-511X-10-1...
shows the effect of beetroot crisps (a importante souce of betalains) in dyslipidaemic diets of rats. And, Jeong et al. (2012)Jeong, S.-M., Kang, M.-J., Choi, H.-N., Kim, J.-H., & Kim, J.-I. (2012). Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutrition Research and Practice, 6(3), 201-207. http://dx.doi.org/10.4162/nrp.2012.6.3.201. PMid:22808343.
http://dx.doi.org/10.4162/nrp.2012.6.3.2...
shows that quercetin was able to ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice.

In addition, it is observed in this study that there was a decrease in the atherogenicity index, mainly in the group treated with pitaya at doses of 200 and 400 mg/kg and in the group treated with metformin, as shows in Figure 2 (p ˂ 0.05). Atherosclerosis is determined by chronic inflammation in the arterial wall, resulting from a series of specific cellular responses (Koenen et al., 2009Koenen, R. R., von Hundelshausen, P., Nesmelova, I. V., Zernecke, A., Liehn, E. A., Sarabi, A., Kramp, B. K., Piccinini, A. M., Paludan, S. R., Kowalska, M. A., Kungl, A. J., Hackeng, T. M., Mayo, K. H., & Weber, C. (2009). Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine, 15(1), 97-103. http://dx.doi.org/10.1038/nm.1898. PMid:19122657.
http://dx.doi.org/10.1038/nm.1898...
). Atheromas are the formation of plaques or streaks fats that are originated by the large amount of inflammatory cells, fibrous elements and lipids that are deposited in the artery walls and that normally cause the obstruction of these plaques. When these plaques rupture, they usually trigger thrombus formation. Some factors may contribute to this thrombus formation, such as arterial hypertension, diabetes mellitus and hypercholesterolemia (Gottlieb et al., 2005Gottlieb, M. G. V., Bonardi, G., & Moriguchi, E. H. (2005). Fisiopatologia e aspectos inflamatórios da aterosclerose. Scientia Medica, 15, 203.; Stein et al., 2002Stein, O., Thiery, J., & Stein, Y. (2002). Is there a genetic basis for resistance to atherosclerosis? Atherosclerosis, 160(1), 1-10. http://dx.doi.org/10.1016/S0021-9150(01)00664-5. PMid:11755917.
http://dx.doi.org/10.1016/S0021-9150(01)...
; Hulthe & Fagerberg, 2002Hulthe, J., & Fagerberg, B. (2002). Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arteriosclerosis, Thrombosis, and Vascular Biology, 22(7), 1162-1167. http://dx.doi.org/10.1161/01.ATV.0000021150.63480.CD. PMid:12117732.
http://dx.doi.org/10.1161/01.ATV.0000021...
). It is known that pitaya (Hylocereus polyrhizus) has some constituents such as quercetin and betalain, which may influence these results. Quercetin plays an important role in protecting blood vessels, reducing the risk of heart disease and atherosclerosis (Bischoff, 2008Bischoff, S. C. (2008). Quercetin: potentials in the prevention and therapy of disease. Current Opinion in Clinical Nutrition and Metabolic Care, 11(6), 733-740. http://dx.doi.org/10.1097/MCO.0b013e32831394b8. PMid:18827577.
http://dx.doi.org/10.1097/MCO.0b013e3283...
). Studies showed that betanidine and betanin were able to inhibit LOX (Kanner et al., 2001Kanner, J., Harel, S., & Granit, R. (2001). Betalains: a new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry, 49(11), 5178-5185. http://dx.doi.org/10.1021/jf010456f. PMid:11714300.
http://dx.doi.org/10.1021/jf010456f...
; Silva et al., 2022Silva, D. V. T., Baião, D. S., Ferreira, V. F., & Paschoalin, V. M. F. (2022). Betanin as a multipath oxidative stress and inflammation modulator: a beetroot pigment with protective effects on cardiovascular disease pathogenesis. Critical Reviews in Food Science and Nutrition, 62(2), 539-554. http://dx.doi.org/10.1080/10408398.2020.1822277. PMid:32997545.
http://dx.doi.org/10.1080/10408398.2020....
). Betanin and betaxanthines were also able to inhibit COX-1 and COX-2 (Reddy et al., 2005Reddy, M. K., Alexander-Lindo, R. L., & Nair, M. G. (2005). Relative inhibition of lipid peroxidation, cyclooxygenase enzymes and human tumor cell proliferation by natural food colors. Journal of Agricultural and Food Chemistry, 53(23), 9268-9273. http://dx.doi.org/10.1021/jf051399j. PMid:16277432.
http://dx.doi.org/10.1021/jf051399j...
). The anti-inflammatory activity of betalains can be justified due to their action against cellular mediators of inflammation, such as the intercellular adhesion molecule-1 (ICAM-1) (Gentile et al., 2004Gentile, C., Tesoriere, L., Allegra, M., Livrea, M. A., & D’Alessio, P. (2004). Antioxidant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1 expression. Annals of the New York Academy of Sciences, 1028(1), 481-486. http://dx.doi.org/10.1196/annals.1322.057. PMid:15650274.
http://dx.doi.org/10.1196/annals.1322.05...
; Silva et al., 2022Silva, D. V. T., Baião, D. S., Ferreira, V. F., & Paschoalin, V. M. F. (2022). Betanin as a multipath oxidative stress and inflammation modulator: a beetroot pigment with protective effects on cardiovascular disease pathogenesis. Critical Reviews in Food Science and Nutrition, 62(2), 539-554. http://dx.doi.org/10.1080/10408398.2020.1822277. PMid:32997545.
http://dx.doi.org/10.1080/10408398.2020....
). All these facts justify the reduction in the atherogenicity index presented by pitaya. In relation to hypertriglyceridemia, common in diabetes, the lyophilized pitaya pulp at a dose of 200 mg/kg (p ˂ 0.05) reduced the level of triglycerides when compared to the untreated animal, although this difference is not statistically significant. On the other hand, the group treated at the dose of 400 mg/kg failed to reduce the level of plasma triglycerides. This effect is possibly due to the impairment of the triglyceride hydrolysis process caused by alloxane, which may favor the mobilization of lipids into the plasma, as shown by Oliveira et al. (2002)Oliveira, T. T., Nagem, T. J., Pinto, A. S., Message, D., Tinoco, A. L. A., Magalhães, N. M., Silva, J. F., Huertas, A. G., Pinto, J. G., Pezerico, G. B., & Tsiomis, A. C. (2002). Efeito de antocianina e própolis em diabetes induzida em coelhos. Medicina, 35, 464-469.. To assess renal function, urea and creatinine were measured. Creatinine did not differ between the groups treated with pitaya and the healthy group, only differed from the untreated animal. This may suggest that this untreated group had diabetic nephropathy, since creatinine is a widely used marker for the non-invasive measurement of glomerular filtration rate (GFR) (Parreira, 2008Parreira, L. (2008). Avaliação da função renal em doentes diabéticos. Revista Portuguesa de Diabetes, 3(3), 154-156.). The urea dosage in the present study increased, both in the untreated animal groups and in the groups treated with pitaya, this may have been due to several factors, such as renal failure or a nephropathy, which is common in diabetics (Cardenas, 2005Cardenas, V. M. A. (2005). Identificação dos ativos e o efeito das frações hidroalcóolica e acetate de etila de folhas de Smallathus sonchifolis (yacon) sobre parametros bioquímicos em ratos wistar normais e com diabetes induzido por estreptozotocina (Master’s thesis). Faculdade de Ciências Farmacêuticas, Universidade do Paraná, Curitiba.), or due to the inducer causing this change. Urea is an indirect and approximate measure of kidney function and glomerular filtration rate (if there is normal liver function). It is partially excreted by the kidneys (Oh, 2012Oh, M. S. (2012). Avaliação da função renal, da água, dos eletrólitos e do equilíbrio acidobásico. In: J. B. Henry (Ed.), Diagnósticos clínico e tratamentos por métodos laboratoriais (21th ed., pp. 255-267). Barueri: Manole.). The high level of urea in plasma is related to the level of protein catabolism, which in diabetics increases when there is hypoinsulinemia, impaired renal function and the hydration status, which is altered because of hyperglycemia (Wyckoff & Abrahamson, 2005Wyckoff, J., & Abrahamson, M. J. (2005). Diabetic ketoacidosis and the hyperglycemic hyperosmolar nonketotic state. In: C. R. Kahn & G. C. Weir (Eds.),Joslin’s diabetes mellitus (14th ed., pp. 887-900). Philadelphia: Lippincott Williams & Wilkins.; Motta, 2003Motta, V. T. (2003). Bioquímica clínica para laboratório: princípios e interpretações (4th ed.). Caxias do Sul: Editora Médica Missau/EDUCS.), as it was observed at the end of the experiment that there was an increase in water consumption. Pitaya failed to reduce the damage caused by the inducing drug, but this does not mean that it is toxic, as studies show that it did not show toxicity (Hor et al., 2012Hor, S. Y., Ahmad, M., Farsi, E., Yam, M. F., Hashim, M. A., Lim, C. P., Sadikun, A., & Asmawi, M. Z. (2012). Safety assessment of methanol extract of red dragon fruit (Hylocereus polyrhizus): acute and subchronic toxicity studies. Regulatory Toxicology and Pharmacology, 63(1), 106-114. http://dx.doi.org/10.1016/j.yrtph.2012.03.006. PMid:22440551.
http://dx.doi.org/10.1016/j.yrtph.2012.0...
; Luo et al., 2014Luo, H., Cai, Y., Peng, Z., Liu, T., & Yang, S. (2014). Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaia (dragon fruit) peel. Chemistry Central Journal, 8(1), 1. http://dx.doi.org/10.1186/1752-153X-8-1. PMid:24386928.
http://dx.doi.org/10.1186/1752-153X-8-1...
) and that it was also seen by previous studies carried out by our team (Lira et al., 2020Lira, S. M., Dionísio, A. P., Holanda, M. O., Marques, C. G., Silva, G. S., Correa, L. C., Santos, G. B. M., Abreu, F. A. P., Magalhães, F. E. A., Rebouças, E. L., Guedes, J. A. C., Oliveira, D. F., Guedes, M. I. F., & Zocolo, G. J. (2020). Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MSE and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Research International, 127, 108701. http://dx.doi.org/10.1016/j.foodres.2019.108701. PMid:31882110.
http://dx.doi.org/10.1016/j.foodres.2019...
).

Figure 2
Effect of pitaya on the atherogenicity index. SAUD: healthy group; DNT: untreated groups; MET: Metformin; PIT200 and PIT 400: pitaya at a dose of 200 and 400 mg/kg/day, respectively. Data are expressed as mean ± standard error of the mean of 6 mice in each group. Analyze the significance of the differences between the groups, the analysis of variance (ANOVA) was used, followed by the Tukey test, with *p ˂ 0.05 versus DNT group.

The pitaya 200 and 400 mg/kg failed to reverse the loss of albumin in diabetic mice when compared to control groups, a common situation in diabetics (Wang et al., 2019Wang, L., Voss, E. A., Weaver, J., Hester, L., Yuan, Z., DeFalco, F., Schuemie, M. J., Ryan, P. B., Sun, D., Freedman, A., Alba, M., Lind, J., Meininger, G., Berlin, J. A., & Rosenthal, N. (2019). Cetoacidose diabética em pacientes com diabetes tipo 2 tratados com inibidor do co-transportador de sódio 2 versus outros agentes anti-hiperglicêmicos: um estudo observacional de quatro bancos de dados de reivindicações administrativas dos EUA. Pharmacoepidemiology and Drug Safety, 28, 1620-1628. http://dx.doi.org/10.1002/pds.4887. PMid:31456304.
http://dx.doi.org/10.1002/pds.4887...
). This reduction may be associated with non-enzymatic glycations caused by the hyperglycemic state of diabetes mellitus, or it may also be justified by microalbuminuria caused by diabetic nephropathy presented by diabetic mice (Vilar et al., 2001Vilar, L., Castellar, E., Moura, E., Leal, E., Machado, A. C., Teixeira, L., & Campos, R. (2001). Endocrinologia clínica (2nd ed.). São Paulo: Grupo Gen. Diagnóstico e tratamento da nefropatia diabética, pp. 625-636.). Diabetes also has consequences on liver tissue. The enzyme ALT (alanine amino transferase) did not differ from the healthy group. In relation to AST (aspartate amino transferase), the dose used in this study of 200 and 400 mg/kg (p ˂ 0.05) of the pitaya pulp reduced the level of this enzyme when compared to the control groups. It is suggested with this result that there was no liver damage, since there is no increase in these two enzymes and that AST is an enzyme present in higher concentrations in skeletal muscle cells and in hepatocytes (Meyer et al., 1995Meyer, D. J., Coles, E. H., & Rich, L. J. (1995). Medicina de laboratório veterinário: interpretação e diagnóstico. São Paulo: Rocca.; Dzoyem et al., 2014Dzoyem, J. P., Kuete, V., & Eloff, J. N. (2014). Biochemical parameters in toxicological studies in Africa: significance, principle of methods, data interpretation, and use in plant screenings. In V. Kuete (Ed.), Toxicological survey of African medicinal plants (pp. 659-715). London: Elsevier. http://dx.doi.org/10.1016/B978-0-12-800018-2.00023-6.
http://dx.doi.org/10.1016/B978-0-12-8000...
). As they are intracellular enzymes, serum levels of AST and ALT are generally very low. Therefore, any significant tissue alteration gives rise to high levels of serum transaminase (Rosa, 2009Rosa, C. O. B. (2009). Avaliação do efeito de compostos naturais- Curcumina e Hieridina- na hiperlipidemia induzida em coelhos (Doctoral dissertation). Programa de Pós-graduação em Bioquímica, Universidade Federal de Viçosa, Viçosa.).

Regarding the weight of the organs of mice that was performed, it can be seen in the results presented in Table 2 that there was an increase in liver weight, in the untreated, metformin and PLP (pitaya pulp)-treated groups at a concentration of 200 mg/kg (p ˂ 0.05) this effect could probably have been caused due to the diabetes inducer alloxane that often causes this damage (Mahmoud & Al-Salahy, 2004Mahmoud, A. B., & Al-Salahy, M. B. (2004). Physiological and histolological studies on the effect of lupine seeds on the fish, Clarias lazera treated with glucose and alloxan. Fish Physiology and Biochemistry, 30(3-4), 213-229. http://dx.doi.org/10.1007/s10695-005-8243-6.
http://dx.doi.org/10.1007/s10695-005-824...
; Can et al., 2005Can, B., Ulusu, N. N., Kilinç, K., Leyla-Acan, N., Saran, Y., & Turan, B. (2005). Selenium treatment protects diabetes-induced biochemical and ultrastructural alteration in liver tissue. Biological Trace Element Research, 105(1-3), 135-150. http://dx.doi.org/10.1385/BTER:105:1-3:135. PMid:16034159.
http://dx.doi.org/10.1385/BTER:105:1-3:1...
; Dornas et al., 2006Dornas, W. C., Nagem, T. J., Oliveira, T. T., & Contelli, R. (2006). Alloxan and diabetes. Revista Brasileira de Toxicologia, 19, 81-87.). The liver is an organ that performs numerous vital functions, highlighting the regulation of the metabolism of various nutrients, protein synthesis and other molecules, hormonal degradation and inactivation and excretion of drugs and toxins, essential purposes for body homeostasis (Nunes & Moreira, 2007Nunes, P. P., & Moreira, A. L. (2007). Fisiologia hepática: texto de apoio. Porto: Faculdade de Medicina da Universidade do Porto. Retrieved from doencasdofigado.com.br/fisiologia%20hepatica.pdf), so it is not interesting to change this body. The kidneys perform numerous functions, such as filtration, reabsorption, homeostasis, metabolic and endocrine functions (Sodré et al., 2007Sodré, F. L., Costa, J. C. B., & Lima, J. C. C. (2007). Avaliação da função e da lesão renal: um desafio laboratorial. Jornal Brasileiro de Patologia e Medicina Laboratorial, 43(5), 43. http://dx.doi.org/10.1590/S1676-24442007000500005.
http://dx.doi.org/10.1590/S1676-24442007...
). The kidneys did not show a significant difference in weight in the untreated animal groups and in the groups treated with pitaya, there was only a difference in the group treated with meformin, as there was an increase in them. This renal change may indicate a chronic progressive nephropathy (Greaves, 2012Greaves, P. (2012). Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation. Amsterdam: Elsevier.). In relation to the spleen, there was no difference between any of the analyzed groups. The results in this study show that there was no weight change in the pancreas of animals fed with the lyophilized pulp of pitaya, when compared with the pancreas of healthy animals and standard drug. On the other hand, there is a significant reduction in the pancreas of untreated sick animals. It is suggested that these changes may have been caused by alloxane, as reported in other studies (Dunn et al., 1943Dunn, J. S., Sheehan, H. L., & Mcletchie, N. E. D. (1943). Necrosis of islets of Langerhans produced experimentally. Lancet, 1, 484-487.; Junod et al., 1967Junod, A., Lambert, A. E., Orci, L., Pictet, R., Gonet, A. E., & Renold, A. E. (1967). Studies of the diabetogenic action of streptozotocin. Proceedings of the Society for Experimental Biology and Medicine, 126(1), 201-205. http://dx.doi.org/10.3181/00379727-126-32401. PMid:4864021.
http://dx.doi.org/10.3181/00379727-126-3...
).

4.2 Level of Reactive Oxygen Species (ROS) in the liver

And finally, in the oxidative stress levels experiment, MDA (malondialdehyde) levels in the liver were significantly reduced in the groups treated with the lyophilized pulp, when compared to the other groups, suggesting lower lipid peroxidation (Figure 3B) (p ˂ 0.05) (Yigit et al., 2018Yigit, M., Sogut, O., Tataroglu, Ö., Yamanoglu, A., Yigit, E., Güler, E. M., Ozer, O. F., & Kocyigit, A. (2018). Oxidative/antioxidative status, lymphocyte DNA damage, and urotensin-2 receptor level in patients with migraine attacks. Neuropsychiatric Disease and Treatment, 14, 367-374. http://dx.doi.org/10.2147/NDT.S156710. PMid:29416338.
http://dx.doi.org/10.2147/NDT.S156710...
). This result is relevant since the reduction of MDA suggests a decrease in liver oxidative stress (ROS) relieving inflammation (Rio et al., 2005Rio, D. D., Stewart, A. J., & Pellegrini, N. (2005). A review of recente studies on malondial dehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism, and Cardiovascular Diseases, 15(4), 316-328. http://dx.doi.org/10.1016/j.numecd.2005.05.003. PMid:16054557.
http://dx.doi.org/10.1016/j.numecd.2005....
). It was also observed that animals treated with PLP showed a tendency to increase GSH levels (Figure 3A). In this sense, it can be suggested that PLP helps to reduce oxidative stress and cardiovascular diseases (Sies, 1999Sies, H. (1999). Glutathione and its role in celular functions. Free Radical Biology & Medicine, 27(9-10), 916-921. http://dx.doi.org/10.1016/S0891-5849(99)00177-X. PMid:10569624.
http://dx.doi.org/10.1016/S0891-5849(99)...
). The increase in oxidative stress is very common in diabetics, causing several complications (Ighodaro, 2018Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine and Pharmacotherapy, 108, 656-662. http://dx.doi.org/10.1016/j.biopha.2018.09.058. PMid:30245465.
http://dx.doi.org/10.1016/j.biopha.2018....
), soon the importance of consuming antioxidant foods is realized. Flavonoids, which are present in pitaya, play a role in gene regulation of several molecules and enzymes involved in atherogenesis, promoting a decrease in lipid peroxidation (Kaliora et al., 2006Kaliora, A. C., Dedoussis, G. V. Z., & Schmidt, H. (2006). Dietary antioxidants in preventing atherogenesis. Atherosclerosis, 187(1), 1-17. http://dx.doi.org/10.1016/j.atherosclerosis.2005.11.001. PMid:16313912.
http://dx.doi.org/10.1016/j.atherosclero...
). Betanin and betanidine present in pitaya are also efficient inhibitors of lipid peroxidation (Kanner et al., 2001Kanner, J., Harel, S., & Granit, R. (2001). Betalains: a new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry, 49(11), 5178-5185. http://dx.doi.org/10.1021/jf010456f. PMid:11714300.
http://dx.doi.org/10.1021/jf010456f...
).

Figure 3
Effect of pitaya and metformin on GSH and lipid peroxidation. SAUD: healthy group; DNT: untreated groups; MET: Metformin; PIT200 and PIT 400: pitaya at a dose of 200 and 400 mg/kg/day, respectively. A- GSH; B- TBARS. Data are expressed as mean ± standard error of the mean of 6 mice in each group. To analyze the significance of the differences between the groups, we used the analysis of variance (ANOVA) followed by the Tukey test, with *p ˂ 0.05 versus DNT group.

5 Conclusion

The consumption of pitaya promoted a reduction in blood glucose and cholesterol and an increase in HDL, in addition reduce the lipid peroxidation, which is common in diabetic patients. These results are possibly associated with constituents present in pitaya, such as betalain, phenolic compounds (such as quercetin), and oligossacharides, with prebiotic properties. However, more studies are needed to elucidate the mechanism of action of the pitaya to help in an alternative treatment for diabetes, in order to encourage its regular consumption.

Acknowledgements

We thank the Biotechnology Post-graduation Program (RENORBIO) focal point of State University of Ceará and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

  • Practical Application: Effect of pitaya concentrations on glycemia and oxidative stress
  • Funding

    This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • Ademiluyi, A. O., & Oboh, G. (2013). Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit alpha- amylase and alpha- glucosidase activities in vitro. Journal of Medicinal Food, 16(1), 88-93. http://dx.doi.org/10.1089/jmf.2012.0004 PMid:23216107.
    » http://dx.doi.org/10.1089/jmf.2012.0004
  • Angonese, M., Motta, G. E., Farias, N. S., Molognoni, L., Daguer, H., Brugnerotto, P., Costa, A. C. O., & Müller, C. M. O. (2021). Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: comparison of phenolic and organic acids profiles and antioxidant activities. LWT, 149, 111924. http://dx.doi.org/10.1016/j.lwt.2021.111924
    » http://dx.doi.org/10.1016/j.lwt.2021.111924
  • Aragão, D. M. O., Guarize, L., Lanini, J., Costa, J. C., Garcia, R. M. G., & Scio, E. (2010). Hypoglycemic effects of Cecropia pachystachya in normal and alloxan-induced diabetic rats. Journal of Ethnopharmacology, 128(3), 629-633. http://dx.doi.org/10.1016/j.jep.2010.01.008 PMid:20064597.
    » http://dx.doi.org/10.1016/j.jep.2010.01.008
  • Arivalagan, M., Karunakaran, G., Roy, T. K., Dinsha, M., Sindhu, B. C., Shilpashree, V. M., Satisha, G. C., & Shivashankara, K. S. (2021). Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry, 353, 129426. http://dx.doi.org/10.1016/j.foodchem.2021.129426 PMid:33774520.
    » http://dx.doi.org/10.1016/j.foodchem.2021.129426
  • Arruda, A. C. V. Fo., Rodrigues, P. A. S., Benjamin, S. R., Paim, R. T. T., Holanda, M. O., Silva, J. Y. G., Milo, T. S., Vieira, I. G. P., Queiroz, M. G. R., & Guedes, M. I. F. (2017). Hypolipidemic activity of P-methoxycinnamic diester (PCO-C) isolated from Copernicia prunífera against Triton WR-1339 and hyperlipidemic diet in mice. Environmental Toxicology and Pharmacology, 56, 198-203. http://dx.doi.org/10.1016/j.etap.2017.09.015 PMid:28961514.
    » http://dx.doi.org/10.1016/j.etap.2017.09.015
  • Association of Official Analytical Chemists - AOAC. (2005). Official methods of analysis of AOAC International (18th ed.). Washington: AOAC.
  • Ayua, E. O., Nkhata, S. G., Namaumbo, S. J., Kamau, E. H., Ngoma, T. N., & Aduol, K. O. (2021). Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems. Heliyon, 7(2), e06245. http://dx.doi.org/10.1016/j.heliyon.2021.e06245 PMid:33659753.
    » http://dx.doi.org/10.1016/j.heliyon.2021.e06245
  • Balzan, S., Hernandes, A., Reichert, C. L., Donaduzzi, C., Pires, V. A., Gasparotto, A. Jr., & Cardozo, E. L. Jr. (2013). Lipid-lowering effects of standardized extracts of Ilex paraguariensis in high-fat-diet rats. Fitoterapia, 86, 115-122. http://dx.doi.org/10.1016/j.fitote.2013.02.008 PMid:23422228.
    » http://dx.doi.org/10.1016/j.fitote.2013.02.008
  • Barbosa, A. P. O., Silveira, G. O., Menezes, I. A., Rezende, J. M. No., Bitencurt, J. L., Estavam, C. S., Lima, A. C., Thomazzi, S. M., Guimarães, A. G., Quintans, L. J. Jr., & Santos, M. R. (2013). Antidiabetic effect of the Chrysobalanus icacoL. aqueous extract in rats. Journal of Medicinal Food, 16(6), 538-543. http://dx.doi.org/10.1089/jmf.2012.0084 PMid:23734998.
    » http://dx.doi.org/10.1089/jmf.2012.0084
  • Bischoff, S. C. (2008). Quercetin: potentials in the prevention and therapy of disease. Current Opinion in Clinical Nutrition and Metabolic Care, 11(6), 733-740. http://dx.doi.org/10.1097/MCO.0b013e32831394b8 PMid:18827577.
    » http://dx.doi.org/10.1097/MCO.0b013e32831394b8
  • Bock, J. L. (2012). Avaliação de lesão e função cardíaca. In: J. B. Henry (Ed.), Diagnósticos clínico e tratamentos por métodos laboratoriais (21th ed., pp. 255-267). Barueri: Manole.
  • Can, B., Ulusu, N. N., Kilinç, K., Leyla-Acan, N., Saran, Y., & Turan, B. (2005). Selenium treatment protects diabetes-induced biochemical and ultrastructural alteration in liver tissue. Biological Trace Element Research, 105(1-3), 135-150. http://dx.doi.org/10.1385/BTER:105:1-3:135 PMid:16034159.
    » http://dx.doi.org/10.1385/BTER:105:1-3:135
  • Cardenas, V. M. A. (2005). Identificação dos ativos e o efeito das frações hidroalcóolica e acetate de etila de folhas de Smallathus sonchifolis (yacon) sobre parametros bioquímicos em ratos wistar normais e com diabetes induzido por estreptozotocina (Master’s thesis). Faculdade de Ciências Farmacêuticas, Universidade do Paraná, Curitiba.
  • Chang, Y., & Robidoux, J. (2017). Dyslipidemia management update. Current Opinion in Pharmacology, 33, 47-55. http://dx.doi.org/10.1016/j.coph.2017.04.005 PMid:28527325.
    » http://dx.doi.org/10.1016/j.coph.2017.04.005
  • Choo, J. C., Koh, R. Y., & Ling, A. P. K. (2016). Medicinal properties of pitaya: a review. Spatula DD, 6(2), 69-76. http://dx.doi.org/10.5455/spatula.20160413015353
    » http://dx.doi.org/10.5455/spatula.20160413015353
  • Dornas, W. C., Nagem, T. J., Oliveira, T. T., & Contelli, R. (2006). Alloxan and diabetes. Revista Brasileira de Toxicologia, 19, 81-87.
  • Dunn, J. S., Sheehan, H. L., & Mcletchie, N. E. D. (1943). Necrosis of islets of Langerhans produced experimentally. Lancet, 1, 484-487.
  • Dzoyem, J. P., Kuete, V., & Eloff, J. N. (2014). Biochemical parameters in toxicological studies in Africa: significance, principle of methods, data interpretation, and use in plant screenings. In V. Kuete (Ed.), Toxicological survey of African medicinal plants (pp. 659-715). London: Elsevier. http://dx.doi.org/10.1016/B978-0-12-800018-2.00023-6
    » http://dx.doi.org/10.1016/B978-0-12-800018-2.00023-6
  • Gao, Q., Zhong, C., Zhou, X., Chen, R., Xiong, T., Hong, M., Li, Q., Kong, M., Xiong, G., Han, W., Sun, G., Yang, X., Yang, N., & Hao, L. (2021). Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: a prospective cohort study. Clinical Nutrition, 40(2), 550-559. http://dx.doi.org/10.1016/j.clnu.2020.05.053 PMid:32593522.
    » http://dx.doi.org/10.1016/j.clnu.2020.05.053
  • Gautam, K., Kumar, P., & Jain, C. (2013). Comparative study of alpha amylase inhibitory activity of flavonoids of Vitex negundo Linn. and Andrographis paniculata Nees. International Journal of Green Pharmacy, 7(1), 25-28. http://dx.doi.org/10.4103/0973-8258.111602
    » http://dx.doi.org/10.4103/0973-8258.111602
  • Gentile, C., Tesoriere, L., Allegra, M., Livrea, M. A., & D’Alessio, P. (2004). Antioxidant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1 expression. Annals of the New York Academy of Sciences, 1028(1), 481-486. http://dx.doi.org/10.1196/annals.1322.057 PMid:15650274.
    » http://dx.doi.org/10.1196/annals.1322.057
  • Gottlieb, M. G. V., Bonardi, G., & Moriguchi, E. H. (2005). Fisiopatologia e aspectos inflamatórios da aterosclerose. Scientia Medica, 15, 203.
  • Greaves, P. (2012). Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation Amsterdam: Elsevier.
  • Guasch-Ferré, M., Merino, J., Sun, Q., Fitó, M., & Salas-Salvadó, J. (2017). Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxidative Medicine and Cellular Longevity, 2017, 6723931. http://dx.doi.org/10.1155/2017/6723931 PMid:28883903.
    » http://dx.doi.org/10.1155/2017/6723931
  • Guo, X. F., Ruan, Y., Li, Z. H., & Li, D. (2019). Flavonoid subclasses and type 2 diabetes mellitus risk: a meta-analysis of prospective cohort studies. Critical Reviews in Food Science and Nutrition, 59(17), 2850-2862. http://dx.doi.org/10.1080/10408398.2018.1476964 PMid:29768032.
    » http://dx.doi.org/10.1080/10408398.2018.1476964
  • Holanda, M. O., Lira, S. M., Silva, J. Y. G., Marques, C. G., Coelho, L. C., Lima, C. L. S., Costa, J. T. G., Silva, G. S., Santos, G. B. M., Zocolo, G. J., Dionísio, A. P., & Guedes, M. I. F. (2021). Intake of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) beneficially affects the cholesterolemic profile of dyslipidemic C57BL/ 6 mice. Food Bioscience, 42, 101181. http://dx.doi.org/10.1016/j.fbio.2021.101181
    » http://dx.doi.org/10.1016/j.fbio.2021.101181
  • Hor, S. Y., Ahmad, M., Farsi, E., Yam, M. F., Hashim, M. A., Lim, C. P., Sadikun, A., & Asmawi, M. Z. (2012). Safety assessment of methanol extract of red dragon fruit (Hylocereus polyrhizus): acute and subchronic toxicity studies. Regulatory Toxicology and Pharmacology, 63(1), 106-114. http://dx.doi.org/10.1016/j.yrtph.2012.03.006 PMid:22440551.
    » http://dx.doi.org/10.1016/j.yrtph.2012.03.006
  • Hosseini, A., Shafiee-Nick, R., & Ghorbani, A. (2015). Proteção de células beta pancreáticas/regeneração com fitoterapia. Brazilian Journal of Pharmaceutical Sciences, 51(1), 1-16. http://dx.doi.org/10.1590/S1984-82502015000100001
    » http://dx.doi.org/10.1590/S1984-82502015000100001
  • Hulthe, J., & Fagerberg, B. (2002). Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arteriosclerosis, Thrombosis, and Vascular Biology, 22(7), 1162-1167. http://dx.doi.org/10.1161/01.ATV.0000021150.63480.CD PMid:12117732.
    » http://dx.doi.org/10.1161/01.ATV.0000021150.63480.CD
  • Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine and Pharmacotherapy, 108, 656-662. http://dx.doi.org/10.1016/j.biopha.2018.09.058 PMid:30245465.
    » http://dx.doi.org/10.1016/j.biopha.2018.09.058
  • International Diabetes Federation. (2019). IDF diabetes atlas (7th ed.). Brussels: International Diabetes Federation.
  • Jeong, S.-M., Kang, M.-J., Choi, H.-N., Kim, J.-H., & Kim, J.-I. (2012). Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutrition Research and Practice, 6(3), 201-207. http://dx.doi.org/10.4162/nrp.2012.6.3.201 PMid:22808343.
    » http://dx.doi.org/10.4162/nrp.2012.6.3.201
  • Junod, A., Lambert, A. E., Orci, L., Pictet, R., Gonet, A. E., & Renold, A. E. (1967). Studies of the diabetogenic action of streptozotocin. Proceedings of the Society for Experimental Biology and Medicine, 126(1), 201-205. http://dx.doi.org/10.3181/00379727-126-32401 PMid:4864021.
    » http://dx.doi.org/10.3181/00379727-126-32401
  • Kaliora, A. C., Dedoussis, G. V. Z., & Schmidt, H. (2006). Dietary antioxidants in preventing atherogenesis. Atherosclerosis, 187(1), 1-17. http://dx.doi.org/10.1016/j.atherosclerosis.2005.11.001 PMid:16313912.
    » http://dx.doi.org/10.1016/j.atherosclerosis.2005.11.001
  • Kanner, J., Harel, S., & Granit, R. (2001). Betalains: a new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry, 49(11), 5178-5185. http://dx.doi.org/10.1021/jf010456f PMid:11714300.
    » http://dx.doi.org/10.1021/jf010456f
  • Kazeem, M. I., Abimbola, S. G., & Ashafa, A. O. T. (2013). Inhibitory potential of Gssypium arboreum leaf extracts on diabetes key enzymes, alpha- amylase and alpha- glucosidase. Bangladesh Journal of Pharmacology, 8(2), 149-155. http://dx.doi.org/10.3329/bjp.v8i2.14152
    » http://dx.doi.org/10.3329/bjp.v8i2.14152
  • Kim, J. H., Kang, M. J., Choi, H. N., Jeong, S. M., Lee, Y. M., & Kim, J. I. (2011). Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutrition Research and Practice, 5(2), 107-111. http://dx.doi.org/10.4162/nrp.2011.5.2.107 PMid:21556223.
    » http://dx.doi.org/10.4162/nrp.2011.5.2.107
  • Kobori, M., Masumoto, S., Akimoto, Y., & Oike, H. (2011). Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Molecular Nutrition & Food Research, 55(4), 530-540. http://dx.doi.org/10.1002/mnfr.201000392 PMid:21462320.
    » http://dx.doi.org/10.1002/mnfr.201000392
  • Koenen, R. R., von Hundelshausen, P., Nesmelova, I. V., Zernecke, A., Liehn, E. A., Sarabi, A., Kramp, B. K., Piccinini, A. M., Paludan, S. R., Kowalska, M. A., Kungl, A. J., Hackeng, T. M., Mayo, K. H., & Weber, C. (2009). Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine, 15(1), 97-103. http://dx.doi.org/10.1038/nm.1898 PMid:19122657.
    » http://dx.doi.org/10.1038/nm.1898
  • Lira, S. M., Dionísio, A. P., Holanda, M. O., Marques, C. G., Silva, G. S., Correa, L. C., Santos, G. B. M., Abreu, F. A. P., Magalhães, F. E. A., Rebouças, E. L., Guedes, J. A. C., Oliveira, D. F., Guedes, M. I. F., & Zocolo, G. J. (2020). Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MSE and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Research International, 127, 108701. http://dx.doi.org/10.1016/j.foodres.2019.108701 PMid:31882110.
    » http://dx.doi.org/10.1016/j.foodres.2019.108701
  • Lugo-Radillo, A., Delgado-Enciso, I., & Peña-Beltrán, E. (2012). Betanidin significantly reduces blood glucose levels in BALB/c mice fed with an atherogenic diet. Natural Products and Bioprospecting, 2(4), 154-155. http://dx.doi.org/10.1007/s13659-012-0034-z
    » http://dx.doi.org/10.1007/s13659-012-0034-z
  • Luo, H., Cai, Y., Peng, Z., Liu, T., & Yang, S. (2014). Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaia (dragon fruit) peel. Chemistry Central Journal, 8(1), 1. http://dx.doi.org/10.1186/1752-153X-8-1 PMid:24386928.
    » http://dx.doi.org/10.1186/1752-153X-8-1
  • Mahesh, T., & Menon, V. P. (2004). Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytotherapy Research, 18(2), 123-127. http://dx.doi.org/10.1002/ptr.1374 PMid:15022163.
    » http://dx.doi.org/10.1002/ptr.1374
  • Mahmoud, A. B., & Al-Salahy, M. B. (2004). Physiological and histolological studies on the effect of lupine seeds on the fish, Clarias lazera treated with glucose and alloxan. Fish Physiology and Biochemistry, 30(3-4), 213-229. http://dx.doi.org/10.1007/s10695-005-8243-6
    » http://dx.doi.org/10.1007/s10695-005-8243-6
  • Maideen, N. M. P. (2019). Pharmacologically relevant drug interactions of α-glucosidase inhibitors. Journal of Diabetes and Metabolic Disorders, 6(2), 28-30. http://dx.doi.org/10.15406/jdmdc.2019.06.00178
    » http://dx.doi.org/10.15406/jdmdc.2019.06.00178
  • Meyer, D. J., Coles, E. H., & Rich, L. J. (1995). Medicina de laboratório veterinário: interpretação e diagnóstico São Paulo: Rocca.
  • Montiel-Sánchez, M., García-Cayuela, T., Gómez-Maqueo, A., García, H. S., & Cano, M. P. (2021). In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chemistry, 342, 128087. http://dx.doi.org/10.1016/j.foodchem.2020.128087 PMid:33077279.
    » http://dx.doi.org/10.1016/j.foodchem.2020.128087
  • Motta, V. T. (2003). Bioquímica clínica para laboratório: princípios e interpretações (4th ed.). Caxias do Sul: Editora Médica Missau/EDUCS.
  • Najafian, M. (2015). The effects of curcumin on alpha amylase in diabetics rats. Journal of Research in Medical Sciences, 17(12), e5198.
  • Nunes, P. P., & Moreira, A. L. (2007). Fisiologia hepática: texto de apoio Porto: Faculdade de Medicina da Universidade do Porto. Retrieved from doencasdofigado.com.br/fisiologia%20hepatica.pdf
  • Oh, M. S. (2012). Avaliação da função renal, da água, dos eletrólitos e do equilíbrio acidobásico. In: J. B. Henry (Ed.), Diagnósticos clínico e tratamentos por métodos laboratoriais (21th ed., pp. 255-267). Barueri: Manole.
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. http://dx.doi.org/10.1016/0003-2697(79)90738-3 PMid:36810.
    » http://dx.doi.org/10.1016/0003-2697(79)90738-3
  • Oliveira, T. T., Nagem, T. J., Pinto, A. S., Message, D., Tinoco, A. L. A., Magalhães, N. M., Silva, J. F., Huertas, A. G., Pinto, J. G., Pezerico, G. B., & Tsiomis, A. C. (2002). Efeito de antocianina e própolis em diabetes induzida em coelhos. Medicina, 35, 464-469.
  • Parreira, L. (2008). Avaliação da função renal em doentes diabéticos. Revista Portuguesa de Diabetes, 3(3), 154-156.
  • Paśko, P., Galanty, A., Zagrodzki, P., Ku, Y. G., Luksirikul, P., Weisz, M., & Gorinstein, S. (2021). Bioactivity and cytotoxicity of different species of pitaya fruits - a comparative study with advanced chemometric analysis. Food Bioscience, 40, 100888. http://dx.doi.org/10.1016/j.fbio.2021.100888
    » http://dx.doi.org/10.1016/j.fbio.2021.100888
  • Reddy, M. K., Alexander-Lindo, R. L., & Nair, M. G. (2005). Relative inhibition of lipid peroxidation, cyclooxygenase enzymes and human tumor cell proliferation by natural food colors. Journal of Agricultural and Food Chemistry, 53(23), 9268-9273. http://dx.doi.org/10.1021/jf051399j PMid:16277432.
    » http://dx.doi.org/10.1021/jf051399j
  • Rio, D. D., Stewart, A. J., & Pellegrini, N. (2005). A review of recente studies on malondial dehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism, and Cardiovascular Diseases, 15(4), 316-328. http://dx.doi.org/10.1016/j.numecd.2005.05.003 PMid:16054557.
    » http://dx.doi.org/10.1016/j.numecd.2005.05.003
  • Rosa, C. O. B. (2009). Avaliação do efeito de compostos naturais- Curcumina e Hieridina- na hiperlipidemia induzida em coelhos (Doctoral dissertation). Programa de Pós-graduação em Bioquímica, Universidade Federal de Viçosa, Viçosa.
  • Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. http://dx.doi.org/10.3390/molecules26092520 PMid:33925891.
    » http://dx.doi.org/10.3390/molecules26092520
  • Sani, H. A., Baharoom, A., Ahmad, M. A., & Ismail, I. I. (2009). Effectiveness of Hylocereus polyrhizus extract in decreasing serum lipids and liver MDA-TBAR level in hypercholesterolemic rats. Sains Malaysiana, 38, 271-279.
  • Santos, G. B. M., Dionísio, A. P., Magalhães, H. C. R., Abreu, F. A. P., Lira, S. M., Lima, A. C. V., Silva, G. S. D., Guedes, J. A. C., Araujo, I. M. S., Artur, A. G., Pontes, D. F., & Zocolo, G. J. (2020). Effects of processing on the chemical, physicochemical, enzymatic and volatile metabolic composition of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose). Food Research International, 127, 108710. http://dx.doi.org/10.1016/j.foodres.2019.108710 PMid:31882103.
    » http://dx.doi.org/10.1016/j.foodres.2019.108710
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation total, protein boundand nonprotein sulfhydryl groups in tissue with Elman’s reagent. Analytical Biochemistry, 25(1), 192-205. http://dx.doi.org/10.1016/0003-2697(68)90092-4 PMid:4973948.
    » http://dx.doi.org/10.1016/0003-2697(68)90092-4
  • Sharma, S., Katoch, V., Kumar, S., & Chatterjee, S. (2021). Functional relationship of vegetable colors and bioactive compounds: implications in human health. The Journal of Nutritional Biochemistry, 92, 108615. http://dx.doi.org/10.1016/j.jnutbio.2021.108615 PMid:33705954.
    » http://dx.doi.org/10.1016/j.jnutbio.2021.108615
  • Sies, H. (1999). Glutathione and its role in celular functions. Free Radical Biology & Medicine, 27(9-10), 916-921. http://dx.doi.org/10.1016/S0891-5849(99)00177-X PMid:10569624.
    » http://dx.doi.org/10.1016/S0891-5849(99)00177-X
  • Silva, D. V. T., Baião, D. S., Ferreira, V. F., & Paschoalin, V. M. F. (2022). Betanin as a multipath oxidative stress and inflammation modulator: a beetroot pigment with protective effects on cardiovascular disease pathogenesis. Critical Reviews in Food Science and Nutrition, 62(2), 539-554. http://dx.doi.org/10.1080/10408398.2020.1822277 PMid:32997545.
    » http://dx.doi.org/10.1080/10408398.2020.1822277
  • Sodré, F. L., Costa, J. C. B., & Lima, J. C. C. (2007). Avaliação da função e da lesão renal: um desafio laboratorial. Jornal Brasileiro de Patologia e Medicina Laboratorial, 43(5), 43. http://dx.doi.org/10.1590/S1676-24442007000500005
    » http://dx.doi.org/10.1590/S1676-24442007000500005
  • Stein, O., Thiery, J., & Stein, Y. (2002). Is there a genetic basis for resistance to atherosclerosis? Atherosclerosis, 160(1), 1-10. http://dx.doi.org/10.1016/S0021-9150(01)00664-5 PMid:11755917.
    » http://dx.doi.org/10.1016/S0021-9150(01)00664-5
  • Sudha, P., Zinjarde, S. S., Bhargava, S. Y., & Kumar, A. R. (2011). Potent a-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary and Alternative Medicine, 11(1), 5. http://dx.doi.org/10.1186/1472-6882-11-5 PMid:21251279.
    » http://dx.doi.org/10.1186/1472-6882-11-5
  • Takım, K. (2021). Bioactive component analysis and investigation of antidiabetic effect of Jerusalem thorn (Paliurus spina-christi) fruits in diabetic rats induced by streptozotocin. Journal of Ethnopharmacology, 264, 113263. http://dx.doi.org/10.1016/j.jep.2020.113263 PMid:32818572.
    » http://dx.doi.org/10.1016/j.jep.2020.113263
  • Vareda, P. M. P. (2013). Avaliação da atividade hipoglicemiante do extrato de Myrcia bella em camundongos diabéticos induzidos por estreptozotocina (Master’s thesis). Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu.
  • Vessal, M., Hemmati, M., & Vasei, M. (2003). Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 135(3), 357-364. http://dx.doi.org/10.1016/S1532-0456(03)00140-6 PMid:12927910.
    » http://dx.doi.org/10.1016/S1532-0456(03)00140-6
  • Vilar, L., Castellar, E., Moura, E., Leal, E., Machado, A. C., Teixeira, L., & Campos, R. (2001). Endocrinologia clínica (2nd ed.). São Paulo: Grupo Gen. Diagnóstico e tratamento da nefropatia diabética, pp. 625-636.
  • Wang, L., Voss, E. A., Weaver, J., Hester, L., Yuan, Z., DeFalco, F., Schuemie, M. J., Ryan, P. B., Sun, D., Freedman, A., Alba, M., Lind, J., Meininger, G., Berlin, J. A., & Rosenthal, N. (2019). Cetoacidose diabética em pacientes com diabetes tipo 2 tratados com inibidor do co-transportador de sódio 2 versus outros agentes anti-hiperglicêmicos: um estudo observacional de quatro bancos de dados de reivindicações administrativas dos EUA. Pharmacoepidemiology and Drug Safety, 28, 1620-1628. http://dx.doi.org/10.1002/pds.4887 PMid:31456304.
    » http://dx.doi.org/10.1002/pds.4887
  • Wichienchot, S., Jatupornpipat, M., & Rastall, R. A. (2010). Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, Barking, 120(3), 850-857. http://dx.doi.org/10.1016/j.foodchem.2009.11.026
    » http://dx.doi.org/10.1016/j.foodchem.2009.11.026
  • Wootton-Beard, P. C., Brandt, K., Fell, D., Warner, S., & Ryan, L. (2014). Effects of a beetroot juice with high neobetanin content on the early-phase insulin response in healthy volunteers. Journal of Nutritional Science, 3, e9. http://dx.doi.org/10.1017/jns.2014.7 PMid:25191617.
    » http://dx.doi.org/10.1017/jns.2014.7
  • World Health Organization - WHO. (2020). Diabetes: key facts Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes
    » https://www.who.int/news-room/fact-sheets/detail/diabetes
  • Wroblewska, M., Juskiewicz, J., & Wiczkowski, W. (2011). Physiological properties of beetroot crisps applied in standard and dyslipidaemic diets of rats. Lipids in Health and Disease, 10(1), 178. http://dx.doi.org/10.1186/1476-511X-10-178 PMid:21995671.
    » http://dx.doi.org/10.1186/1476-511X-10-178
  • Wyckoff, J., & Abrahamson, M. J. (2005). Diabetic ketoacidosis and the hyperglycemic hyperosmolar nonketotic state. In: C. R. Kahn & G. C. Weir (Eds.),Joslin’s diabetes mellitus (14th ed., pp. 887-900). Philadelphia: Lippincott Williams & Wilkins.
  • Yigit, M., Sogut, O., Tataroglu, Ö., Yamanoglu, A., Yigit, E., Güler, E. M., Ozer, O. F., & Kocyigit, A. (2018). Oxidative/antioxidative status, lymphocyte DNA damage, and urotensin-2 receptor level in patients with migraine attacks. Neuropsychiatric Disease and Treatment, 14, 367-374. http://dx.doi.org/10.2147/NDT.S156710 PMid:29416338.
    » http://dx.doi.org/10.2147/NDT.S156710
  • Zheng, Y., Liu, S., Xie, J., Chen, Y., Dong, R., Zhang, X., Liu, S., Xie, J., Hu, X., & Yu, Q. (2020). Antioxidant, α-amylase and α-glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber. LWT, 132, 109943. http://dx.doi.org/10.1016/j.lwt.2020.109943
    » http://dx.doi.org/10.1016/j.lwt.2020.109943
  • Zhou, Y., Wang, T., Song, D., & Wang, A. (2018). Dietary intake of flavonoid subclasses and risk of type 2 diabetes in prospective cohort studies: a dose-response meta-analysis. Clinical Nutrition, 37(6), 2294-2298. http://dx.doi.org/10.1016/j.clnu.2018.08.024 PMid:30195577.
    » http://dx.doi.org/10.1016/j.clnu.2018.08.024

Publication Dates

  • Publication in this collection
    03 Feb 2023
  • Date of issue
    2023

History

  • Received
    19 June 2022
  • Accepted
    12 Dec 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br