Acessibilidade / Reportar erro

Biological activities of Persea americana: in vitro and in vivo studies

Abstract

Natural resources emerge as an essential and alternative tool for controlling parasitic agents. The present study was carried out to evaluate in vitro and in vivo effect of Persea americana fruit extract (PAFE) on helminthiasis and coccidiosis. In vitro, anthelmintic activity was performed using PAFE against Allolobophora caliginose. PAFE elicited significant anthelmintic activity comparable to mebendazole with the lesser time taken to paralysis and death for 200 mg/mL. In vitro anticoccidial activity of PAFE, amprolium, phenol, DettolTM, and formalin were studied after incubation with unsporulated oocysts. PAFE was able to significantly inhibit oocyst sporulation in a dose-dependent manner. A total 35 male mice were divided into seven groups. At day 0, all groups except first and second groups were infected with 1×103 E. papillata. Group 1 served as control. Group 2 served as uninfected-treated one. Group 3 was considered an infected-untreated group. After 60 min of infection, groups 4, 5, and 6 were treated with PAFE. Group 7 was treated with amprolium. However, not at par with amprolium, PAFE showed a good anticoccidial activity adjudged based on a significant change in body weight gain, feed intake, oocysts output, and content of carbohydrates and protein. Therefore, PAFE exhibits powerful anthelmintic and anticoccidial effects.

Keywords:
Persea americana; helminths; Eimeria; coccidiosis; anticoccidial drugs

1 Introduction

Parasitic infections caused by protozoans and helminths induce considerable health problems and economic losses in animals in many countries (Mehlhorn, 2014Mehlhorn, H. (2014). Encyclopedic reference of parasitology (Vol. 1, 6th ed.). Berlin: Springer Press.). Weakness due to malnutrition and anemia is the major complaint of helminth infections (Taylor et al., 2007Taylor, M., Coop, R., & Wall, R. (2007). Veterinary parasitology (3rd ed.). Oxford: Blackwell Publishing.; Jones & Berkley, 2014Jones, K. D., & Berkley, J. A. (2014). Severe acute malnutrition and infection. Paediatrics and International Child Health, 34(Suppl 1), S1-S29. http://dx.doi.org/10.1179/2046904714Z.000000000218. PMid:25475887.
http://dx.doi.org/10.1179/2046904714Z.00...
). Anthelmintic drugs are used for expelling parasitic worms from the body, however, it induces some side effects, especially for host tissue (Hong, 2018Hong, S. T. (2018). Albendazole and praziquantel: review and safety monitoring in Korea. Infection & Chemotherapy, 50(1), 1-10. http://dx.doi.org/10.3947/ic.2018.50.1.1. PMid:29637747.
http://dx.doi.org/10.3947/ic.2018.50.1.1...
).

Coccidiosis due to Eimeria infection is a major health problem in different animal species (Mehlhorn, 2001Mehlhorn, H. (Ed.) (2001). Encyclopedic reference of parasitology (Vol. 1, 2nd ed.). Berlin: Springer Press.; Dkhil et al., 2019Dkhil, M. A., Thagfan, F. A., Hassan, A. S., Al-Shaebi, E. M., Abdel-Gaber, R., & Al-Quraishy, S. (2019). Anthelmintic, anticoccidial and antioxidant activity of Salvadora persica root extracts. Saudi Journal of Biological Sciences, 26(6), 1223-1226. http://dx.doi.org/10.1016/j.sjbs.2019.02.006. PMid:31516352.
http://dx.doi.org/10.1016/j.sjbs.2019.02...
). Eimeria papillata is a coccidian parasite that was first reported in the house mouse (Mus musculus). Infection with coccidian parasites causes a lot of pathological changes which can be observed in blood, urine, and feces (Jithendran & Bhat, 1996Jithendran, K. P., & Bhat, K. P. (1996). Subclinical coccidiosis in Angora rabbits—a field survey in Himachal Pradesh (India). World Rabbit Science, 4, 29-32.; Tambur et al., 1998Tambur, Z., Kulišić, Z., Maličević, Ž., & Mihailović, M. (1998). The influence of intestinal coccidia upon the activity of liver enzimes. Acta Veterinaria, 48, 139-146.; Dkhil and Al-Quraishy, 2012Dkhil, M. A., & Al-Quraishy, S. (2012). Metabolic disturbance and hepatic tissue damage induced by Eimeria papillata infection. African Zoology, 47(2), 255-260. http://dx.doi.org/10.1080/15627020.2012.11407543.
http://dx.doi.org/10.1080/15627020.2012....
). Coccidiosis is mostly treated with synthetic anticoccidial drugs, but this approach is facing a serious threat of the development of resistance in Eimeria strains (Wunderlich et al., 2014Wunderlich, F., Al-Quraishy, S., Steinbrenner, H., Sies, H., & Dkhil, M. A. (2014). Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant based natural products. Parasitology Research, 113(10), 3547-3556. http://dx.doi.org/10.1007/s00436-014-4101-8. PMid:25185667.
http://dx.doi.org/10.1007/s00436-014-410...
; Grandi et al., 2016Grandi, G., Kramer, L. H., Quarantelli, A., & Righi, F. (2016). Influence of oregano essential oil (OEO) on prevalence and oocyst shedding dynamics of naturally acquired Eimeria spp. infection in replacement dairy heifers. Annals of Animal Science, 16(1), 171-179. http://dx.doi.org/10.1515/aoas-2015-0050.
http://dx.doi.org/10.1515/aoas-2015-0050...
).

To control coccidiosis and helminthiasis in various animal species, different alternative options and protocols were effectively used worldwide (Liaqat et al., 2016Liaqat, I., Pervaiz, Q., Bukhsh, S. J., Ahmed, S., & Jahan, N. (2016). Investigation of bactericidal effects of medicinal plant extracts on clinical isolates and monitoring their biofilm forming potential. Pakistan Veterinary Journal, 36, 159-164.). Among these options, different compounds obtained from natural medicinal plants or natural health alternatives found to have some therapeutic effects (Abbas et al., 2015Abbas, A., Iqbal, Z., Abbas, R.Z., Khan, M.K., Khan, J.A. (2015). In-vitro anticoccidial potential of Sacharrum officiarum extract against Eimeria oocysts. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, 14(6), 456-461.; Habibi et al., 2016Habibi, H., Firouzi, S., Nili, H., Razavi, M., Asadi, S. L., & Daneshi, S. (2016). Anticoccidial effects of herbal extracts on Eimeria tenella infection in broiler chickens: in vitro and in vivo study. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology, 40(2), 401-407. http://dx.doi.org/10.1007/s12639-014-0517-4. PMid:27413312.
http://dx.doi.org/10.1007/s12639-014-051...
) not target only the parasites, but also have organ-protective properties in the host (Alzahrani et al., 2016Alzahrani, F., Al-Shaebi, E.M., Dkhil, M.A., Al-Quraishy, S. (2016). In vivo Anti-eimeria and in vitro anthelmintic activity of Ziziphus spina-christi leaf extracts. Pakistan Journal of Zoology, 48(2), 409-413.). The anticoccidial activity of botanicals has generally been attributed to their antioxidant properties. The use of antioxidant-rich plant extracts has shown comparable results to synthetic drugs for coccidiosis and other diseases (Khaliq et al., 2015Khaliq, T., Mumtaz, F., Rahman, Z. U., Javed, I., & Iftikhar, A. (2015). Nephroprotective potential of Rosa damascene mill flowers, Cichorium intybus linn roots and their mixtures on gentamicin 283 induced toxicity in albino rabbits. Pakistan Veterinary Journal, 35, 43-47.).

The avocado (Persea americana) belongs to the laurel family Lauraceae (Scora & Bergh, 1990Scora, R. W., & Bergh, B. O. (1990). The origin and taxonomy of avocado (Persea americana Mill. Lauraceae). Acta Horticulturae, (275), 387-394. http://dx.doi.org/10.17660/ActaHortic.1990.275.47.
http://dx.doi.org/10.17660/ActaHortic.19...
). This plant is a source of bioactive compounds especially antioxidants and its seed extracts have been proven to possess various therapeutic activities (Dabas et al., 2013Dabas, D., Shegog, R. M., Ziegler, G. R., & Lambert, J. D. (2013). Avocado (Persea americana) seed as a source of bioactive phytochemicals. Current Pharmaceutical Design, 19(34), 6133-6140. http://dx.doi.org/10.2174/1381612811319340007. PMid:23448442.
http://dx.doi.org/10.2174/13816128113193...
; Melgar et al., 2018Melgar, B., Dias, M. I., Ciric, A., Sokovic, M., Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Barros, L., & Ferreira, I. C. R. F. (2018). Bioactive characterization of Persea americana Mill. By-products: a rich source of inherent antioxidants. Industrial Crops and Products, 111, 212-218. http://dx.doi.org/10.1016/j.indcrop.2017.10.024.
http://dx.doi.org/10.1016/j.indcrop.2017...
; Widiyastuti et al., 2018Widiyastuti, Y., Pratiwi, R., Riyanto, S., & Wahyuono, S. (2018). Cytotoxic activity and apoptosis induction of avocado (Persea americana) seed extract on MCF-7 cancer cell line. Indonesian Journal of Biotechnology, 23(2), 61. http://dx.doi.org/10.22146/ijbiotech.32141.
http://dx.doi.org/10.22146/ijbiotech.321...
; Bhuyan et al., 2019Bhuyan, D. J., Alsherbiny, M. A., Perera, S., Low, M., Basu, A., Devi, O. A., Barooah, M. S., Li, C. G., & Papoutsis, K. (2019). The odyssey of bioactive compounds in Avocado (Persea americana) and their health benefits. Antioxidants, 8(10), 426. http://dx.doi.org/10.3390/antiox8100426. PMid:31554332.
http://dx.doi.org/10.3390/antiox8100426...
; Pacheco-Coello & Seijas-Perdomo, 2020Pacheco-Coello, F., & Seijas-Perdomo, D. (2020). Evaluation of the antioxidant activity of the aqueous and methanolic extracts of seeds of Persea americana Mill, variety Hass, from the State Aragua in Venezuela. Revista Boliviana de Química, 37(3), 142-147. http://dx.doi.org/10.34098/2078-3949.37.3.2.
http://dx.doi.org/10.34098/2078-3949.37....
). Moreover, the antihelmithic activity for avocado was reported previously via Rosa et al. (2018)Rosa, S. S. S., Santos, F. O., Lima, H. G., Reis, I. M. A., Cassiano, D. S. A., Vieira, I. J. C., Braz-Filho, R., Uzeda, R. S., Botura, M. B., Branco, A., & Batatinha, M. J. M. (2018). In vitro anthelmintic and cytotoxic activities of extracts of Persea wildenovii Kosterm (Lauraceae). Journal of Helminthology, 92(6), 674-680. http://dx.doi.org/10.1017/S0022149X17000979. PMid:29067895.
http://dx.doi.org/10.1017/S0022149X17000...
against goat gastrointestinal nematodes and Soldera-Silva et al. (2018)Soldera-Silva, A., Seyfried, M., Campestrini, L. H., Zawadzki-Baggio, S. F., Minho, A. P., Molento, M. B., & Maurer, J. B. B. (2018). Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts. Veterinary Parasitology, 251, 34-43. http://dx.doi.org/10.1016/j.vetpar.2017.12.019. PMid:29426474.
http://dx.doi.org/10.1016/j.vetpar.2017....
against third-stage larvae of Haemonchus contortus. For this, avocado has gained worldwide recognition and its consumption has considerably increased in the last years.

This study aims to evaluate the potential role of Persea americana extract as an antihelmintic and anticoccidial agent against E. papillata- experimentally infected mice.

2 Materials and methods

2.1 Plant and drug collection

Fruit of Persea americana was purchased from the local markets in Riyadh, Saudi Arabia. A botanist from the Department of Botany, College of Science, King Saud University, Saudi Arabia authenticated the samples. Amprolium (Amproxine 20%, water-soluble powder, Gulf Veterinary Pharmacy, Riyadh, Saudi Arabia) was used as a reference drug for the treatment of coccidiosis.

2.2 Preparation of the methanolic extract

The P. americana methanolic extract was prepared according to the method of Amer et al. (2015)Amer, O. S., Dkhil, M.A., Hikal, W.M., Al-Quraishy, S., Muhammad, F., Hafeez, M. A., Mahmood, M. S., & Bashir, S. (2015). Antioxidant and anti-inflammatory activities of pomegranate (Punica granatum on Eimeria papillata-induced infection in mice. Biomed Research International, 219670. http://dx.doi.org/10.11155/2015/219670. PMid:4310320.. In brief, peel and pulp were obtained from the fruits and dried, grinded by an electronic blender (Senses, MG-503T, Korea) into a powder that was extracted with 70% methanol, the collected residue used for the experiment.

2.3 Infrared spectroscopy

P. americana extract was mixed with a powder of potassium bromide powder (1:99 wt %) to obtain a translucent sample disc (see in Al-Quraishy et al., 2020)Al-Quraishy, S., Qasem, M. A. A., Al-Shaebi, E. M., Murshed, M., Mares, M., & Dkhil, M. A. (2020). Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. Journal of King Saud University. Science, 32(3), 2207-2211. http://dx.doi.org/10.1016/j.jksus.2020.02.034.
http://dx.doi.org/10.1016/j.jksus.2020.0...
. The NICOLET 6700 Fourier-transform Infrared Spectroscopy (FT-IR) from Thermo Scientific (Waltham, MA, USA) was used for the analysis. Maximum absorption was reported in the number of waves in the spectral range of 4000-400 cm-1.

2.4 Anthelmintic activity of P. americana

Allolobophora caliginosa was used as a model worm, according to the method of Ajaiyeoba et al. (2001)Ajaiyeoba, E. O., Onocha, P. A., & Olarenwaju, O. T. (2001). In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts. Pharmaceutical Biology, 39(3), 217-220. http://dx.doi.org/10.1076/phbi.39.3.217.5936.
http://dx.doi.org/10.1076/phbi.39.3.217....
. Three doses were used (200, 100, and 50 mg/mL) to study the anthelmintic activity of P. americana (PAFE). The reference drug, mebendazole (Saudi Pharmaceutical Industries, Riyadh, Saudi Arabia) was used with a concentration of 10 mg/mL. Worms in distilled water were used as a control. The time to reach paralysis and death state was expressed in minutes (Dkhil, 2013Dkhil, M. A. (2013). Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitology Research, 112(7), 2639-2646. http://dx.doi.org/10.1007/s00436-013-3430-3. PMid:23609599.
http://dx.doi.org/10.1007/s00436-013-343...
).

2.5 Histological examinations

The treated and control worms were prepared for histological study immediately after paralysis and death experiment, according to Drury & Wallington (1973)Drury, R. A., & Wallington, E. A. (1973). Carletons Histological technique (pp. 412). New York: Oxford University Press.. Using an Olympus B×61 microscope (Tokyo, Japan), the stained sections were examined and photographed and then the cuticular thickness were measured via ImageJ 1.53e software (Wayne Rasband and contributors, National Institute of Health, USA) and expressed in micrometers.

2.6 Parasite

E. papillata was used as a model coccidial murine parasite. Oocysts were passaged in laboratory mice. Unsporulated oocysts were collected from mice feces and then washed in phosphate buffer solution (PBS). Part of these oocysts was used in the in vitro study and the other sporulated in 2.5% (w/v) potassium dichromate (K2Cr2O7) for in vivo study.

2.7 In vitro oocyst sporulation

The unsporulated oocysts (1 × 105) were incubated for 72 and 96 hr at 25-29 ºC in 5 mL Dist. H2O (negative control), 5 mL 2.5% K2Cr2O7 (positive control) and finally in 5 mL K2Cr2O7 containing one of the following: PAFE (100, 50, and 25 mg/mL), 8.3 mg amprolium, 109 µL Dettol TM, 25 µl phenol, and 5% formalin. Sporulation of the oocysts was monitored by examining sporocysts using an Olympus compound microscope (Olympus Co., Tokyo, Japan). Sporulation and inhibition (%) were calculated according to Thagfan et al. (2020)Thagfan, F. A., Al-Megrin, W. A., Al-Quraishy, S., & Dkhil, M. A. M. (2020). Mulberry extract as an ecofriendly anticoccidial agent: in vitro and in vivo application. Revista Brasileira de Parasitologia Veterinária, 29(4), e009820. http://dx.doi.org/10.1590/s1984-29612020072. PMid:33111843.
http://dx.doi.org/10.1590/s1984-29612020...
.

2.8 Mice and coccidial infection

A total of 35 male mice of the strain C57BL/6 (10-12 weeks old, weighing 20-25 g) were obtained from the animal facility in the College of Pharmacy at King Saud University. Mice were divided into seven groups with five mice in each. The groups included an uninfected-untreated control, uninfected-treated with PAFE (500 mg/kg mice weight), and infected-untreated control with 1×103 E. papillata oocysts. The remaining groups 4, 5 and 6 were infected and then after 60 min, they were treated with PAFE 100, 300, and 500 mg/kg, respectively. Group 7 was infected and treated with Amprolium at 120 mg/kg. Treatment was applied for 5 days. Fecal pellets were collected from infected untreated and treated groups to estimate the number of oocysts per gram (OPG) of feces according to Dkhil et al. (2015)Dkhil, M. A., Metwaly, M. S., Al-Quraishy, S., Sherif, N. E., Delic, D., Al Omar, S. Y., & Wunderlich, F. (2015). Anti-Eimeria activity of berberine and identification of associated gene expression changes in the mouse jejunum infected with Eimeria papillata. Parasitology Research, 114(4), 1581-1593. http://dx.doi.org/10.1007/s00436-015-4344-z. PMid:25663104.
http://dx.doi.org/10.1007/s00436-015-434...
.

2.9 Body weight and feed intake

The experimental mice performance indicators included change in body weight (BWG) and feed intake (FI) according to Al-Quraishy et al. (2020)Al-Quraishy, S., Qasem, M. A. A., Al-Shaebi, E. M., Murshed, M., Mares, M., & Dkhil, M. A. (2020). Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. Journal of King Saud University. Science, 32(3), 2207-2211. http://dx.doi.org/10.1016/j.jksus.2020.02.034.
http://dx.doi.org/10.1016/j.jksus.2020.0...
. All mice were weighed individually and the BWG was calculated by subtracting the initial body weight (at day 0 p.i.) from the final body weight (at day 5 p.i.). Also, FI was calculated by subtracting the weight of the residual food (at day 5 p.i.) from the weight of the food offered at the start of the experiment (at day 0 p.i.).

2.10 Sample collection

On day 5 p.i., all mice were euthanized. The jejunum was aseptically removed from all groups, cut up into small pieces, washed in physiological saline (0.9%), and then fixed in neutral buffered formalin (10%).

2.11 Histochemical studies of the jejunal tissue

The fixed jejunal specimens were dehydrated, embedded in wax, and then sectioned to 5 µm thickness. Sections were stained with periodic acid-Schiff’s method for total carbohydrates demonstration according to Hotchkiss (1948)Hotchkiss, R. D. (1948). A microchemical reaction resulting in the staining of polysaccharide structures in fixed tissue preparations. Archives of Biochemistry, 16(1), 131-141. PMid:18921848., and with mercuric bromophenol blue method to demonstrate total proteins according to Mazia et al. (1953)Mazia, D., Brewer, P. A., & Alfert, M. (1953). The cytochemical staining and measurement of proteins with mercuric bromophenol blue. The Biological Bulletin, 104(1), 57-67. http://dx.doi.org/10.2307/1538691.
http://dx.doi.org/10.2307/1538691...
.

2.12 Statistical analysis

Data were analyzed using SigmaPlot® version 11.0 (Systat Software, Inc., Chicago, IL, USA). The statistical comparison among groups was performed using a one-way analysis of variance (ANOVA). All values were expressed as mean ± SD, at a significant level of p-value ≤ 0.01.

3 Results

3.1 Infrared spectroscopy

The analysis of PAFE using FT-IR showed major bands at 3419.55 cm-1, 2930.88 cm-1, 1619.05 cm-1, 1412.14 cm-1, 1261.84 cm-1, 1058.72 cm-1, 901.26 cm-1, 820.05 cm-1, and 594.99 cm-1 (Figure 1, Table 1). O-H stretching was indicated by the band at 3419.55 cm-1 confirming the presence of alcohol. The band at 2930.88 cm-1 implied N-H stretching for the presence of amine salt. C=C stretching at 1619.05 cm-1 confirming the presence of α,β-unsaturated ketone. The band at 1412.14 cm-1 implied S=O stretching for the presence of sulfate. C-O stretching at the band 1261.84 cm-1 confirmed the presence of alkyl aryl ether. The band 1058.72 cm-1 (S=O stretching), 901.26 cm-1 (C-H stretching), 820.05 cm-1 (C-C stretching), and 594.99 cm-1 (C-I stretching) confirmed the presence of sulfoxide, 1,2,3-trisubstituted, alkene and halo compound, respectively.

Figure 1
FTIR of Persea americana fruit extract in an aqueous medium showing the functional characteristic of material.
Table 1
FTIR for Persea americana fruit extract.

3.2 Anthelmintic activity of P. americana

The methanolic PAFE extracts were able to exert greater anthelmintic activity against live adult A. caliginosa worms (Figure 2, Table 2). The most efficient dose, 200 mg/kg showed the time to paralysis and death were 6.17 ± 0.40 and 9.87 ± 1.50 min, respectively. However, the reference drug mebendazole (10 mg/mL) showed less effect (9.07 ± 1.35 and 16.74 ± 5.62 for paralysis and death time, respectively) compared to the 200 mg/kg PAFE (Table 2). Moreover, microscopic examinations revealed uniform normal body architecture for control worms (Figure 3) as well as a significant reduction in the cuticular thickness for treated worms with PAFE and mebendazole (Figure 3).

Figure 2
In vitro anthelmintic effect of methanolic extract of fruit of Persea americana against Allolobophora caliginosa in comparison to the reference drug (mebendazole).
Table 2
In vitro anthelminthic activity of Persea americana fruit extract.
Figure 3
Cuticle thickness of A. caliginose with various treatments. (A) worms in dist. H2O (control). (B) worms in 200 mg/mL PAFE leaf extracts. (C) worms in the reference drug (mebendazole). (D) Bar chart is thickness of worm cuticle (µm) among three groups, control group, PAFE-treated group, and drug-treated group. Each group represents an average of five different fields of cuticle sections stained with hematoxylin and eosin, Scale bar = 25 µm. *significance change with respect to control group.

3.3 Effect of PAFE on oocyst sporulation in vitro

There was no change for oocysts incubation in dist. H2O (negative control) at both 72 and 96 hr. Oocyst incubation with K2Cr2O7 (2.5%), PAFE (100, 50, 25 mg/mL), amprolium, phenol, and DettolTM showed different levels of sporulation (Table 3). After incubation with formalin, the unsporulated E. papillata oocysts showed no rate of sporulation. Incubation with PAFE (100 mg/mL) for 72 and 96 hr inhibited oocysts sporulation by 66.24% and 59.27%, respectively. PAFE (50 and 25 mg/mL), amprolium, DettolTM, and phenol induced variable inhibition levels at 96 hr of 30.04%, 7.19%, 73.18%, 84.16%, and 90.47%, respectively (Table 3).

Table 3
In vitro anti-coccidial effects of the methanolic extract of Persea americana fruit on the sporulation percentage of Eimeria papillata oocysts.

3.4 Oocysts per gram feces

Oocysts output reached the highest peak on the 5th-day p.i. being about 4075 × 106 ± 129.7 × 106 oocysts/g feces in the infected group (Table 4). All treated groups showed lower OPG as compared to the infected-untreated group. Among PAFE-treated groups, a significant reduction of the oocyst output by 594.3 × 106 ± 89.4 × 106 oocysts/g feces was observed in the group treated with 500 mg/kg followed in increasing order by the groups treated with 300 and 100 mg/kg. This dose was considered the best dose for lowering the oocysts output in comparison to 677 × 106 ± 89.3 × 106 oocysts/g feces with the reference drug (Table 4).

Table 4
PAFE induced reduction in oocyst output.

3.5 Body weight and feed intake

On the 5th-day, the uninfected-untreated group have a significant increase in BW by an average percent of 1.96%, while the E. papillata infection caused a great significant diminish in BW of the infected group by an average percent of 2.54% (Figure 4). The infected-treated groups showed a significant increase in BW by 1.36% compared to the infected one, especially at the 500 mg/kg PAFE dose showing more BWG than the reference drug 2.03% (Figure 4). The minimum FI was recorded in 5th-day p.i. to be 50.29 ± 1.33 for the infected-untreated group (Figure 5). The treated groups showed enhancement of FI as compared to the infected group. Among PAFE-treated groups, a maximum FI (56.59 ± 1.25) was reported in mice treated with 500 mg/kg PAFE, this dose is considered as good as the amprolium-treated group (50.84 ±1.30) (Figure 5).

Figure 4
PAFE improved weight loss due to infection with Eimeria papillata in mice. Values are means ± SEM. *significance (P ≤ 0.05) against non-infected control group, #significance (P ≤ 0.05) against infected group.
Figure 5
PAFE improved food intake due to infection with Eimeria papillata in mice. *significance (P ≤ 0.05) against non-infected control group, #significance (P ≤ 0.05) against infected group.

3.6 Histochemical studies of the jejunal tissue

Qualitative analysis of carbohydrate content revealed depletion in the jejunal tissue of the infected group in comparison to the control one which refers to an increased carbohydrate content (Figure 6). After treatment of PAFE, the carbohydrate status showed a significant change compared to the infected group (Figure 6). Additionally, the E. papillata infection caused depletion in the soluble protein content in the jejunal tissue in comparison to the control group (Figure 7). Treatment with PAEF restored the jejunal soluble proteins compared to the infected group (Figure 7).

Figure 6
Carbohydrate content in jejunum sections stained with periodic Schiff’s method. (A) control non-infected jejunum with normal content. (B) E. papillata infected jejunum with depletion in their carbohydrate content. (C and D) infected treated mice (500 mg/kg PAFE and 120 mg/kg AMP, respectively) with improvement in their level. Scale bar = 100 µm.
Figure 7
Protein content in jejunum sections stained with mercuric bromophenol blue method. (A) control non-infected jejunum with normal content. (B) E. papillata infected jejunum with depletion in their protein content. (C and D) infected treated mice (500 mg/kg PAFE and 120 mg/kg AMP, respectively) with improvement in their level. Scale bar = 100 µm.

4 Discussion

Murine coccidiosis caused by E. papillata began with the oral uptake of the sporulated oocysts that invade the intestinal caecum destroying the epithelium due to the multiplication of E. papillata stages and finally, the developed oocysts were released in feces (Al-Quraishy et al., 2011Al-Quraishy, S., Delic, D., Sies, H., Wunderlich, F., Abdel-Baki, A. A. S., & Dkhil, M. A. M. (2011). Differential miRNA expression in the mouse jejunum during garlic treatment of Eimeria papillata infections. Parasitology Research, 109(2), 387-394. http://dx.doi.org/10.1007/s00436-011-2266-y. PMid:21301871.
http://dx.doi.org/10.1007/s00436-011-226...
). Previous studies have attempted to determine a solution for this issue. To avoid adverse effects on animal performance, there’s a need to develop new agents with minimum side effects against coccidiosis. This study aimed to evaluate the anthelmintic and anticoccidial activities of P. americana. Previous studies reported the effective role of other fruit extracts like Puniga granotum (Amer et al., 2015Amer, O. S., Dkhil, M.A., Hikal, W.M., Al-Quraishy, S., Muhammad, F., Hafeez, M. A., Mahmood, M. S., & Bashir, S. (2015). Antioxidant and anti-inflammatory activities of pomegranate (Punica granatum on Eimeria papillata-induced infection in mice. Biomed Research International, 219670. http://dx.doi.org/10.11155/2015/219670. PMid:4310320.; Khorrami et al., 2022Khorrami, P., Gholami-Ahangaran, M., & Moghtadaei-Khorasgani, E. (2022). The efficacy of pomegranate peel extract on Eimeria shedding and growth indices in experimental coccidiosis in broiler chickens. Veterinary Medicine and Science, 8(2), 635-641. http://dx.doi.org/10.1002/vms3.714. PMid:34981905.
http://dx.doi.org/10.1002/vms3.714...
; Yang et al., 2022Yang, Y., Ding, X., Memon, F. U., Zhang, G., Jiang, M., Hu, D. D., & Si, H. (2022). Punicalagin: a monmer with anti-Eimeria tenella effect from fruit peel of Punica granatum L. Poultry Science, 101(10), 102100. http://dx.doi.org/10.1016/j.psj.2022.102100. PMid:36055031.
http://dx.doi.org/10.1016/j.psj.2022.102...
), Citrus x paradise (Pérez-Fonseca et al., 2016Pérez-Fonseca, A., Alcala-Canto, Y., Salem, A. Z. M., & Alberti-Navarro, A. B. (2016). Anticoccidial efficacy of naringenin and a grapefruit peel extract in growing lambs naturally-infected with Eimeria spp. Veterinary Parasitology, 232, 58-65. http://dx.doi.org/10.1016/j.vetpar.2016.11.009. PMid:27890083.
http://dx.doi.org/10.1016/j.vetpar.2016....
), Tribulus terrestris (Hong et al., 2018Hong, S., Moon, M. N., Im, E. K., Won, J. S., Yoo, J. H., & Kim, O. (2018). Anti-coccidial activity of the ethanol extract of Tribulus terrestris fruits on Eimeria tenella. Laboratory Animal Research, 34(1), 44-47. http://dx.doi.org/10.5625/lar.2018.34.1.44. PMid:29628976.
http://dx.doi.org/10.5625/lar.2018.34.1....
), Ananas comosus (Daiba et al., 2022Daiba, A. R., Kagira, J. M., Ngotho, M., Kimotho, J., & Maina, N. (2022). In vitro anticoccidial activity of nanoencapsulated bromelain against Eimeria spp. oocysts isolated from goats in Kenya. Veterinary World, 15(2), 397-402. http://dx.doi.org/10.14202/vetworld.2022.397-402. PMid:35400962.
http://dx.doi.org/10.14202/vetworld.2022...
).

Several studies have reported the anthelmintic role of certain fruit extracts (Yadav & Temjenmongla, 2012Yadav, A. K., & Temjenmongla (2012). In vivo anthelmintic activity of Clerodendrum colebrookianum Walp., a traditionally used taenicidal plant in Northeast India. Parasitology Research, 111(4), 1841-1846. http://dx.doi.org/10.1007/s00436-012-2908-8. PMid:22476567.
http://dx.doi.org/10.1007/s00436-012-290...
; Dkhil et al., 2019Dkhil, M. A., Thagfan, F. A., Hassan, A. S., Al-Shaebi, E. M., Abdel-Gaber, R., & Al-Quraishy, S. (2019). Anthelmintic, anticoccidial and antioxidant activity of Salvadora persica root extracts. Saudi Journal of Biological Sciences, 26(6), 1223-1226. http://dx.doi.org/10.1016/j.sjbs.2019.02.006. PMid:31516352.
http://dx.doi.org/10.1016/j.sjbs.2019.02...
; Castagna et al., 2020Castagna, F., Britti, D., Oliverio, M., Bosco, A., Bonacci, S., Iriti, G., Ragusa, M., Musolino, V., Rinaldi, L., Palma, E., & Musella, V. (2020). In vitro anthelminthic efficacy of aqueous pomegranate (Punica granatum L.) extracts against gastrointestinal nematodes of sheep. Pathogens (Basel, Switzerland), 9(12), 1063. http://dx.doi.org/10.3390/pathogens9121063. PMid:33353177.
http://dx.doi.org/10.3390/pathogens91210...
). The earthworms have been chosen as a model for the antihelmintic activity experiment due to the physiological similarity between intestinal roundworms infecting humans (Das et al., 2011Das, S. S., Dey, M., & Ghosh, A. K. (2011). Determination of anthelmintic activity of the leaf and bark extract of Tamarindus indica Linn. Indian Journal of Pharmaceutical Sciences, 73(1), 104-107. http://dx.doi.org/10.4103/0250-474X.89768. PMid:22131633.
http://dx.doi.org/10.4103/0250-474X.8976...
). In vitro antihelmintic activity exhibited by PAFE at 200 mg/mL the lesser time is taken to paralysis and death (6.17 ± 0.40 and 9.87 ± 1.50 min, respectively) compared to mebendazole, probably owing to the extract composition as agreed with Rivai et al. (2019)Rivai, H., Putri, Y. T., & Rusdi, R. (2019). Qualitative and quantitative analysis of the chemical content of hexane, acetone, ethanol and water extract from avocado seeds (Persea americana Mill.). Scholars International Journal of Traditional and Complementary Medicine, 2(3), 25-31., and Subba et al. (2019)Subba, B., Gaire, S., & Raj Sharma, K. (2019). Analysis of phyto-constituents, antiocidant, and alpha amylase inhibitory activities of Persea americana Mill., Rhododendron arboretum SM. Rubus ellipticus SM. from Arghakhanchi district Nepal. Asian Journal of Pharmaceutical and Clinical Research, 12(1), 301-304. http://dx.doi.org/10.22159/ajpcr.2019.v12i1.29679.
http://dx.doi.org/10.22159/ajpcr.2019.v1...
reported that P. americana extracts that contained phenols, flavonoids, alkaloids, tannins, terpenoids, saponins, steroids, carbohydrates, and proteins. Paralysis and death of worms may also due to the mucopolysaccharide membrane damage by saponins and tannins. Vidyadhar et al. (2010)Vidyadhar, S., Saidulu, M., Gopal, T.K., Chamundeeswari, D., Umamaheswara rao, & Banji, D. (2010). In vitro anthelmintic activity of the whole plant of Enicostemma littorale by using various extracts. Journal of Applied Biology & Pharmaceutical Technology, 1(3), 1119-1125. stated that the direct action of tannins on the worm cuticle causes skin stiffness, resulting in paralysis and the death of worms. Wang et al. (2010)Wang, G. X., Han, J., Zhao, L. W., Jiang, D. X., Liu, Y. T., & Liu, X. L. (2010). Anthelmintic activity of steroidal saponins from Paris polyphylla. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 17(14), 1102-1105. http://dx.doi.org/10.1016/j.phymed.2010.04.012. PMid:20576414.
http://dx.doi.org/10.1016/j.phymed.2010....
reported that saponins increase membrane permeability and pores formation which is important for the anthelminthic effect.

Our study demonstrated in vitro anticoccidial activity of PAFE on the oocyst’s sporulation in a dose-dependent manner, which is attributable to numerous bioactive phytochemical constituents studied by Enwa et al. (2016)Enwa, F. O., Michael, O., Anie, C.O., Ayeh, R.A. (2016). Antibacterial screening of the ethanol and aqueous extract of the fruit peel of Persea americana Mill against selected enteric bacteria. Academia Journal of Microbiology Research, 4(3), 040-046. http://dx.doi.org/110.15413/ajmr.2015.0109.
http://dx.doi.org/110.15413/ajmr.2015.01...
and Noorul et al. (2017)Noorul, H., Badruddeen, M. M., Khalid, M., Vartika, S., Nesar, A., Zafar, K., & Zohrameena, S. (2017). Physico-phytochemical analysis & estimation of total phenolic, flavonoids and proanthocyanidin content of Persea americana (avocado) seed extracts. World Journal of Pharmaceutical Sciences, 5(4), 70-77.. Also, formalin (5%) completely inhibited the sporulation of E. papillata, which agreed with Thagfan et al. (2020)Thagfan, F. A., Al-Megrin, W. A., Al-Quraishy, S., & Dkhil, M. A. M. (2020). Mulberry extract as an ecofriendly anticoccidial agent: in vitro and in vivo application. Revista Brasileira de Parasitologia Veterinária, 29(4), e009820. http://dx.doi.org/10.1590/s1984-29612020072. PMid:33111843.
http://dx.doi.org/10.1590/s1984-29612020...
stated that this highly reactive chemical interacts with proteins in vitro and inhibits sporulation. In addition, phenol and DettolTM have been reported to inhibit sporulation at 96 hr by 90.47% and 84.16%, respectively, which is consistent with Mai et al. (2009)Mai, K., Sharman, P. A., Walker, R. A., Katrib, M., De Souza, D., McConville, M. J., Wallach, M. G., Belli, S. I., Ferguson, D. J., & Smith, N. C. (2009). Oocyst wall formation and composition in coccidian parasites. Memorias do Instituto Oswaldo Cruz, 104(2), 281-289. http://dx.doi.org/10.1590/S0074-02762009000200022. PMid:19430654.
http://dx.doi.org/10.1590/S0074-02762009...
that the oocyst wall is impermeable to water-soluble substances and resistant to proteolysis.

The PAFE extract exhibit adequate anticoccidial properties in a dose-dependent manner, evidenced by a significant lowering in the oocysts output in the treated group reflecting that PAFE impairs the development of parasites in the epithelial cells of the host jejunum before the relatively inert oocysts are formed and finally released. The anti-coccidial properties of PAFE may be due to its high amounts of polyphenolic compounds (Kosińska et al., 2012Kosińska, A., Karamać, M., Estrella, I., Hernández, T., Bartolomé, B., & Dykes, G. A. (2012). Phenolic compound profiles and antioxidant capacity of Persea americana Mill. Peels and seeds of two varieties. Journal of Agricultural and Food Chemistry, 60(18), 4613-4619. http://dx.doi.org/10.1021/jf300090p. PMid:22494370.
http://dx.doi.org/10.1021/jf300090p...
; Di Stefano et al., 2017Di Stefano, V., Avellone, G., Bongiorno, D., Indelicato, S., Massenti, R., & Lo Bianco, R. (2017). Quantitative evaluation of the phenolic profile in fruits of six avocado (Persea americana) cultivars by ultra-high- performance liquid chromatography-heated electrospray-mass spectrometry. International Journal of Food Properties, 20(6), 1302-1312. http://dx.doi.org/10.1080/10942912.2016.1208225.
http://dx.doi.org/10.1080/10942912.2016....
; Melgar et al., 2018Melgar, B., Dias, M. I., Ciric, A., Sokovic, M., Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Barros, L., & Ferreira, I. C. R. F. (2018). Bioactive characterization of Persea americana Mill. By-products: a rich source of inherent antioxidants. Industrial Crops and Products, 111, 212-218. http://dx.doi.org/10.1016/j.indcrop.2017.10.024.
http://dx.doi.org/10.1016/j.indcrop.2017...
; Castro-López et al., 2019Castro-López, C., Bautista-Hernández, I., González-Hernández, M. D., Martínez-Ávila, G. C. G., Rojas, R., Gutiérrez-Díez, A., Medina-Herrera, N., & Aguirre-Arzola, V. E. (2019). Polyphenolic profile and antioxidant activity of leaf purified hydroalcoholic extracts from seven Mexican Persea americana cultivars. Molecules (Basel, Switzerland), 24(1), 173. http://dx.doi.org/10.3390/molecules24010173. PMid:30621198.
http://dx.doi.org/10.3390/molecules24010...
; Rosero et al., 2019Rosero, J. C., Cruz, S., Osorio, C., & Hurtado, N. (2019). Analysis of phenolic composition of byproducts (seeds and peels) of avocado (Persea americana Mill.) cultivated in Colombia. Molecules (Basel, Switzerland), 24(17), 3209. http://dx.doi.org/10.3390/molecules24173209. PMid:31484471.
http://dx.doi.org/10.3390/molecules24173...
; Abdelkader et al., 2022Abdelkader, A. M., Labib, S., Taha, T. F., Althobaiti, F., Aldhahrani, A., Salem, H. M., Saad, A., & Ibrahim, F. M. (2022). Phytogenic compounds from Avocado (Persea americana L.) extracts: antioxidant activity, amylase inhibitory activity, therapeutic potential of type 2 diabetes. Saudi Journal of Biological Sciences, 29(3), 1428-1433. http://dx.doi.org/10.1016/j.sjbs.2021.11.031. PMid:35280591.
http://dx.doi.org/10.1016/j.sjbs.2021.11...
), which exert a strong antimicrobial activity via interaction and disruption of microbial cell walls (Chia & Dykes, 2010Chia, T. W. R., & Dykes, G. A. (2010). Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars. Pharmaceutical Biology, 48(7), 753-756. http://dx.doi.org/10.3109/13880200903273922. PMid:20645772.
http://dx.doi.org/10.3109/13880200903273...
; Rodríguez-Carpena et al., 2011Rodríguez-Carpena, J. G., Morcuende, D., Andrade, M. J., Kylli, P., & Estévez, M. (2011). Avocado (Persea americana Mill.) phenolics, In vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. Journal of Agricultural and Food Chemistry, 59(10), 5625-5635. http://dx.doi.org/10.1021/jf1048832. PMid:21480593.
http://dx.doi.org/10.1021/jf1048832...
; Cardoso et al., 2016Cardoso, P. F., Scarpassa, J. A., Pretto-Giordano, L. G., Oraguiri, E. S., Yamada-Ogatta, S. F., Nakazato, G., Perugini, M. R. E., Moreira, I. C., & Vilas-Bôas, G. T. (2016). Antibacterial activity of avocado extracts (Persea americana Mill.) against Streptococcus agalactiae. Revista Internacional de Botánica Experimental International Journal of Experimental Botany, 85, 218-224.; Fernández-Castañeda et al., 2018Fernández-Castañeda, L. A., Arias-Candamil, H. A., Zapata-Torres, B., & Ardila-Castañeda, M. P. (2018). Evaluation of the antimicrobial capacity of Hass avocado seed extract (Persea americana) for potential application in the meat industry. Dyna, 85(207), 346-350. http://dx.doi.org/10.15446/dyna.v85n207.72980.
http://dx.doi.org/10.15446/dyna.v85n207....
). Such an impairment and even inhibition of the intracellular development of parasites by PAFE are also known to occur with most anticoccidial drugs.

Our finding demonstrated the weight loss and feed intake following the infection with E. papillata. Previous studies explained this loss due to the consumption of the parasitic Eimeria stages to the carbohydrate content inside the intestinal epithelium and lead to severe structural intestinal epithelium alterations (Ghanem & Abdel Raof, 2005; Anwar et al., 2008Anwar, M. I., Akhtar, M., Hussain, I., Haq, A. U., Muhammad, F., Hafeez, M. A., Mahmood, M. S., & Bashir, S. (2008). Field evaluation of Eimeria tenella (local isolates) gametocytes vaccine and its comparative efficacy with imported live vaccine, LivaCox®. Parasitology Research, 104(1), 135-143. http://dx.doi.org/10.1007/s00436-008-1171-5. PMid:18769942.
http://dx.doi.org/10.1007/s00436-008-117...
; Ogbe et al., 2009Ogbe, A. O., Atawodi, S. E., Abdu, P. A., Sannusi, A., & Itodo, A. E. (2009). Changes in weight gain, faecal oocyst count and packed cell volume of Eimeria tenella-infected broilers treated with a wild mushroom (Ganoderma lucidum) aqueous extract. Journal of the South African Veterinary Association, 80(2), 97-102. http://dx.doi.org/10.4102/jsava.v80i2.179. PMid:19831271.
http://dx.doi.org/10.4102/jsava.v80i2.17...
; Gilbert et al., 2011Gilbert, E. R., Cox, C. M., Williams, P. M., McElroy, A. P., Dalloul, R. A., Ray, W. K., Barri, A., Emmerson, D. A., Wong, E. A., & Webb Junior, K. E. (2011). Eimeria species and genetic background influence the serum protein profile of broilers with coccidiosis. PLoS One, 6(1), e14636. http://dx.doi.org/10.1371/journal.pone.0014636. PMid:21297942.
http://dx.doi.org/10.1371/journal.pone.0...
; Metwaly et al., 2013Metwaly, M. S., Dkhil, M. A., Gewik, M. M., Alghamdy, A. O., & Al-Quraishy, S. (2013). Induced metabolic disturbance and growth depression in rabbits infected with Eimeria coecicola parasite. Parasitology Research, 112(9), 3109-3114. http://dx.doi.org/10.1007/s00436-013-3485-1. PMid:23749092.
http://dx.doi.org/10.1007/s00436-013-348...
; Dkhil et al., 2014Dkhil, M. A., Abdel-Baki, A. S., Wunderlich, F., Sies, H., & Al-Quraishy, S. (2014). Dietary selenium affects intestinal development of Eimeria papillata in mice. Parasitology Research, 113(1), 267-274. http://dx.doi.org/10.1007/s00436-013-3653-3. PMid:24221886.
http://dx.doi.org/10.1007/s00436-013-365...
; Hamid et al., 2019Hamid, P. H., Prastowo, S., & Kristianingrum, Y. P. (2019). Intestinal and hepatic coccidiosis among rabbits in Yogyakarta, Indonesia. Veterinary World, 12(8), 1256-1260. http://dx.doi.org/10.14202/vetworld.2019.1256-1260. PMid:31641305.
http://dx.doi.org/10.14202/vetworld.2019...
; Al-Quraishy et al., 2020Al-Quraishy, S., Qasem, M. A. A., Al-Shaebi, E. M., Murshed, M., Mares, M., & Dkhil, M. A. (2020). Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. Journal of King Saud University. Science, 32(3), 2207-2211. http://dx.doi.org/10.1016/j.jksus.2020.02.034.
http://dx.doi.org/10.1016/j.jksus.2020.0...
; Qaid et al., 2021Qaid, M. M., Mansour, L., Al-Garadi, M. A., Alqhtani, A. H., Al-abdullatif, A. A., Qasem, M. A., & Murshed, M. A. (2021). Evaluation of the anticoccidial effect of traditional medicinal plants, Cinnamomum verum bark and Rumex nervosus leaves in experimentally infected broiler chickens with Eimeria tenella. Italian Journal of Animal Science, 21(1), 408-421. http://dx.doi.org/10.1080/1828051X.2022.2033139.
http://dx.doi.org/10.1080/1828051X.2022....
). Upon treatment, a significant improvement in weight and food consumption was observed due to the presence of bioactive compounds in PAFE helping in the improvement of the jejunal histological architecture that restored the nutritional status of mice.

Host cell metabolism is the most affected process during coccidiosis (Al-Quraishy et al., 2014Al-Quraishy, S., Sherif, N. E., Metwaly, M. S., & Dkhil, M. A. (2014). Berberine-induced amelioration of the pathological changes in nutrients’s homeostasis during murine intestinal Eimeria papillata infection. Pakistan Journal of Zoology, 46(2), 437-445.) and Eimeria parasite has a great capacity to manipulate host cells for their benefit via scavenging available host nutrients (Hermosilla et al., 2012Hermosilla, C., Ruiz, A., & Taubert, A. (2012). Eimeria bovis: An update on parasite-host cell interactions. International Journal of Medical Microbiology, 302(4-5), 210-215. http://dx.doi.org/10.1016/j.ijmm.2012.07.002. PMid:22925990.
http://dx.doi.org/10.1016/j.ijmm.2012.07...
). Our result demonstrated a disturbance in both carbohydrate and protein status. Metwaly et al. (2013)Metwaly, M. S., Dkhil, M. A., Gewik, M. M., Alghamdy, A. O., & Al-Quraishy, S. (2013). Induced metabolic disturbance and growth depression in rabbits infected with Eimeria coecicola parasite. Parasitology Research, 112(9), 3109-3114. http://dx.doi.org/10.1007/s00436-013-3485-1. PMid:23749092.
http://dx.doi.org/10.1007/s00436-013-348...
mentioned a possible reason for the lower carbohydrate levels related to the excessive consumption of parasitic stages to stored carbohydrate content in the jejunal tissues. Upon treatment, PAFE restored jejunal carbohydrate content regarding the bioactive components of PAFE that caused a reduction in the activity of the glucose-6-phosphatase enzyme which probably resulted in the restoration of tissue glycogen content. Intestinal coccidial infections have been classified as protein-losing enteropathy (Kouwenhoven, 1971Kouwenhoven, B. (1971). Eimeria avervulina infection in chickens; a parasitological and biochemical study (summary). Netherlands Veterinary Journal, 4, 112-114.). Many studies proved that there is a lower amount of total proteins in the infected tissues and an increased rate of protein escaping into the intestinal lumen via the ruptured intestinal wall and excreted within feces (Bangoura & Daugschies, 2007Bangoura, B., & Daugschies, A. (2007). Influence of experimental Eimeria zuernii infection in calves on electrolyte concentrations, acid base balance and blood gases. Parasitology Research, 101(6), 1637-1645. http://dx.doi.org/10.1007/s00436-007-0705-6. PMid:17763871.
http://dx.doi.org/10.1007/s00436-007-070...
). Upon treatment, the jejunal protein content improved because of PAFE for the reduction of the catalytic processes of tissue protein and nucleic acid degradation.

Based on the presented data, it could be concluded that P. americana possesses powerful anthelminthic and anticoccidial activities. Future studies are needed to know the mechanism of P. americana action on both parasite and the host.

Acknowledgements

This study was supported by the Researchers Supporting Project (RSP2023R25), King Saud University, Riyadh, Saudi Arabia, and also was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R96), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  • Practical Application: Efficacy of Persea americana as antihelmintic and anticoccidial effects.
  • Data Availability Statement

    All the datasets generated or analyzed during this study are included in this published article.

References

  • Abbas, A., Iqbal, Z., Abbas, R.Z., Khan, M.K., Khan, J.A. (2015). In-vitro anticoccidial potential of Sacharrum officiarum extract against Eimeria oocysts. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, 14(6), 456-461.
  • Abdelkader, A. M., Labib, S., Taha, T. F., Althobaiti, F., Aldhahrani, A., Salem, H. M., Saad, A., & Ibrahim, F. M. (2022). Phytogenic compounds from Avocado (Persea americana L.) extracts: antioxidant activity, amylase inhibitory activity, therapeutic potential of type 2 diabetes. Saudi Journal of Biological Sciences, 29(3), 1428-1433. http://dx.doi.org/10.1016/j.sjbs.2021.11.031 PMid:35280591.
    » http://dx.doi.org/10.1016/j.sjbs.2021.11.031
  • Ajaiyeoba, E. O., Onocha, P. A., & Olarenwaju, O. T. (2001). In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts. Pharmaceutical Biology, 39(3), 217-220. http://dx.doi.org/10.1076/phbi.39.3.217.5936
    » http://dx.doi.org/10.1076/phbi.39.3.217.5936
  • Al-Quraishy, S., Delic, D., Sies, H., Wunderlich, F., Abdel-Baki, A. A. S., & Dkhil, M. A. M. (2011). Differential miRNA expression in the mouse jejunum during garlic treatment of Eimeria papillata infections. Parasitology Research, 109(2), 387-394. http://dx.doi.org/10.1007/s00436-011-2266-y PMid:21301871.
    » http://dx.doi.org/10.1007/s00436-011-2266-y
  • Al-Quraishy, S., Qasem, M. A. A., Al-Shaebi, E. M., Murshed, M., Mares, M., & Dkhil, M. A. (2020). Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. Journal of King Saud University. Science, 32(3), 2207-2211. http://dx.doi.org/10.1016/j.jksus.2020.02.034
    » http://dx.doi.org/10.1016/j.jksus.2020.02.034
  • Al-Quraishy, S., Sherif, N. E., Metwaly, M. S., & Dkhil, M. A. (2014). Berberine-induced amelioration of the pathological changes in nutrients’s homeostasis during murine intestinal Eimeria papillata infection. Pakistan Journal of Zoology, 46(2), 437-445.
  • Alzahrani, F., Al-Shaebi, E.M., Dkhil, M.A., Al-Quraishy, S. (2016). In vivo Anti-eimeria and in vitro anthelmintic activity of Ziziphus spina-christi leaf extracts. Pakistan Journal of Zoology, 48(2), 409-413.
  • Amer, O. S., Dkhil, M.A., Hikal, W.M., Al-Quraishy, S., Muhammad, F., Hafeez, M. A., Mahmood, M. S., & Bashir, S. (2015). Antioxidant and anti-inflammatory activities of pomegranate (Punica granatum on Eimeria papillata-induced infection in mice. Biomed Research International, 219670. http://dx.doi.org/10.11155/2015/219670. PMid:4310320.
  • Anwar, M. I., Akhtar, M., Hussain, I., Haq, A. U., Muhammad, F., Hafeez, M. A., Mahmood, M. S., & Bashir, S. (2008). Field evaluation of Eimeria tenella (local isolates) gametocytes vaccine and its comparative efficacy with imported live vaccine, LivaCox®. Parasitology Research, 104(1), 135-143. http://dx.doi.org/10.1007/s00436-008-1171-5 PMid:18769942.
    » http://dx.doi.org/10.1007/s00436-008-1171-5
  • Bangoura, B., & Daugschies, A. (2007). Influence of experimental Eimeria zuernii infection in calves on electrolyte concentrations, acid base balance and blood gases. Parasitology Research, 101(6), 1637-1645. http://dx.doi.org/10.1007/s00436-007-0705-6 PMid:17763871.
    » http://dx.doi.org/10.1007/s00436-007-0705-6
  • Bhuyan, D. J., Alsherbiny, M. A., Perera, S., Low, M., Basu, A., Devi, O. A., Barooah, M. S., Li, C. G., & Papoutsis, K. (2019). The odyssey of bioactive compounds in Avocado (Persea americana) and their health benefits. Antioxidants, 8(10), 426. http://dx.doi.org/10.3390/antiox8100426 PMid:31554332.
    » http://dx.doi.org/10.3390/antiox8100426
  • Cardoso, P. F., Scarpassa, J. A., Pretto-Giordano, L. G., Oraguiri, E. S., Yamada-Ogatta, S. F., Nakazato, G., Perugini, M. R. E., Moreira, I. C., & Vilas-Bôas, G. T. (2016). Antibacterial activity of avocado extracts (Persea americana Mill.) against Streptococcus agalactiae. Revista Internacional de Botánica Experimental International Journal of Experimental Botany, 85, 218-224.
  • Castagna, F., Britti, D., Oliverio, M., Bosco, A., Bonacci, S., Iriti, G., Ragusa, M., Musolino, V., Rinaldi, L., Palma, E., & Musella, V. (2020). In vitro anthelminthic efficacy of aqueous pomegranate (Punica granatum L.) extracts against gastrointestinal nematodes of sheep. Pathogens (Basel, Switzerland), 9(12), 1063. http://dx.doi.org/10.3390/pathogens9121063 PMid:33353177.
    » http://dx.doi.org/10.3390/pathogens9121063
  • Castro-López, C., Bautista-Hernández, I., González-Hernández, M. D., Martínez-Ávila, G. C. G., Rojas, R., Gutiérrez-Díez, A., Medina-Herrera, N., & Aguirre-Arzola, V. E. (2019). Polyphenolic profile and antioxidant activity of leaf purified hydroalcoholic extracts from seven Mexican Persea americana cultivars. Molecules (Basel, Switzerland), 24(1), 173. http://dx.doi.org/10.3390/molecules24010173 PMid:30621198.
    » http://dx.doi.org/10.3390/molecules24010173
  • Chia, T. W. R., & Dykes, G. A. (2010). Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars. Pharmaceutical Biology, 48(7), 753-756. http://dx.doi.org/10.3109/13880200903273922 PMid:20645772.
    » http://dx.doi.org/10.3109/13880200903273922
  • Dabas, D., Shegog, R. M., Ziegler, G. R., & Lambert, J. D. (2013). Avocado (Persea americana) seed as a source of bioactive phytochemicals. Current Pharmaceutical Design, 19(34), 6133-6140. http://dx.doi.org/10.2174/1381612811319340007 PMid:23448442.
    » http://dx.doi.org/10.2174/1381612811319340007
  • Daiba, A. R., Kagira, J. M., Ngotho, M., Kimotho, J., & Maina, N. (2022). In vitro anticoccidial activity of nanoencapsulated bromelain against Eimeria spp. oocysts isolated from goats in Kenya. Veterinary World, 15(2), 397-402. http://dx.doi.org/10.14202/vetworld.2022.397-402 PMid:35400962.
    » http://dx.doi.org/10.14202/vetworld.2022.397-402
  • Das, S. S., Dey, M., & Ghosh, A. K. (2011). Determination of anthelmintic activity of the leaf and bark extract of Tamarindus indica Linn. Indian Journal of Pharmaceutical Sciences, 73(1), 104-107. http://dx.doi.org/10.4103/0250-474X.89768 PMid:22131633.
    » http://dx.doi.org/10.4103/0250-474X.89768
  • Di Stefano, V., Avellone, G., Bongiorno, D., Indelicato, S., Massenti, R., & Lo Bianco, R. (2017). Quantitative evaluation of the phenolic profile in fruits of six avocado (Persea americana) cultivars by ultra-high- performance liquid chromatography-heated electrospray-mass spectrometry. International Journal of Food Properties, 20(6), 1302-1312. http://dx.doi.org/10.1080/10942912.2016.1208225
    » http://dx.doi.org/10.1080/10942912.2016.1208225
  • Dkhil, M. A. (2013). Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitology Research, 112(7), 2639-2646. http://dx.doi.org/10.1007/s00436-013-3430-3 PMid:23609599.
    » http://dx.doi.org/10.1007/s00436-013-3430-3
  • Dkhil, M. A., & Al-Quraishy, S. (2012). Metabolic disturbance and hepatic tissue damage induced by Eimeria papillata infection. African Zoology, 47(2), 255-260. http://dx.doi.org/10.1080/15627020.2012.11407543
    » http://dx.doi.org/10.1080/15627020.2012.11407543
  • Dkhil, M. A., Abdel-Baki, A. S., Wunderlich, F., Sies, H., & Al-Quraishy, S. (2014). Dietary selenium affects intestinal development of Eimeria papillata in mice. Parasitology Research, 113(1), 267-274. http://dx.doi.org/10.1007/s00436-013-3653-3 PMid:24221886.
    » http://dx.doi.org/10.1007/s00436-013-3653-3
  • Dkhil, M. A., Metwaly, M. S., Al-Quraishy, S., Sherif, N. E., Delic, D., Al Omar, S. Y., & Wunderlich, F. (2015). Anti-Eimeria activity of berberine and identification of associated gene expression changes in the mouse jejunum infected with Eimeria papillata. Parasitology Research, 114(4), 1581-1593. http://dx.doi.org/10.1007/s00436-015-4344-z PMid:25663104.
    » http://dx.doi.org/10.1007/s00436-015-4344-z
  • Dkhil, M. A., Thagfan, F. A., Hassan, A. S., Al-Shaebi, E. M., Abdel-Gaber, R., & Al-Quraishy, S. (2019). Anthelmintic, anticoccidial and antioxidant activity of Salvadora persica root extracts. Saudi Journal of Biological Sciences, 26(6), 1223-1226. http://dx.doi.org/10.1016/j.sjbs.2019.02.006 PMid:31516352.
    » http://dx.doi.org/10.1016/j.sjbs.2019.02.006
  • Drury, R. A., & Wallington, E. A. (1973). Carletons Histological technique (pp. 412). New York: Oxford University Press.
  • Enwa, F. O., Michael, O., Anie, C.O., Ayeh, R.A. (2016). Antibacterial screening of the ethanol and aqueous extract of the fruit peel of Persea americana Mill against selected enteric bacteria. Academia Journal of Microbiology Research, 4(3), 040-046. http://dx.doi.org/110.15413/ajmr.2015.0109
    » http://dx.doi.org/110.15413/ajmr.2015.0109
  • Fernández-Castañeda, L. A., Arias-Candamil, H. A., Zapata-Torres, B., & Ardila-Castañeda, M. P. (2018). Evaluation of the antimicrobial capacity of Hass avocado seed extract (Persea americana) for potential application in the meat industry. Dyna, 85(207), 346-350. http://dx.doi.org/10.15446/dyna.v85n207.72980
    » http://dx.doi.org/10.15446/dyna.v85n207.72980
  • Ghanem, M. M., & Abdel-Raof, Y. M. (2005). Clinical and hematobiochemical studies on lamb coccidiosis and changes following amprolium and sulphadimthoxine therapy. Benha Veterinary Medical Journal, 16, 286-300.
  • Gilbert, E. R., Cox, C. M., Williams, P. M., McElroy, A. P., Dalloul, R. A., Ray, W. K., Barri, A., Emmerson, D. A., Wong, E. A., & Webb Junior, K. E. (2011). Eimeria species and genetic background influence the serum protein profile of broilers with coccidiosis. PLoS One, 6(1), e14636. http://dx.doi.org/10.1371/journal.pone.0014636 PMid:21297942.
    » http://dx.doi.org/10.1371/journal.pone.0014636
  • Grandi, G., Kramer, L. H., Quarantelli, A., & Righi, F. (2016). Influence of oregano essential oil (OEO) on prevalence and oocyst shedding dynamics of naturally acquired Eimeria spp. infection in replacement dairy heifers. Annals of Animal Science, 16(1), 171-179. http://dx.doi.org/10.1515/aoas-2015-0050
    » http://dx.doi.org/10.1515/aoas-2015-0050
  • Habibi, H., Firouzi, S., Nili, H., Razavi, M., Asadi, S. L., & Daneshi, S. (2016). Anticoccidial effects of herbal extracts on Eimeria tenella infection in broiler chickens: in vitro and in vivo study. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology, 40(2), 401-407. http://dx.doi.org/10.1007/s12639-014-0517-4 PMid:27413312.
    » http://dx.doi.org/10.1007/s12639-014-0517-4
  • Hamid, P. H., Prastowo, S., & Kristianingrum, Y. P. (2019). Intestinal and hepatic coccidiosis among rabbits in Yogyakarta, Indonesia. Veterinary World, 12(8), 1256-1260. http://dx.doi.org/10.14202/vetworld.2019.1256-1260 PMid:31641305.
    » http://dx.doi.org/10.14202/vetworld.2019.1256-1260
  • Hermosilla, C., Ruiz, A., & Taubert, A. (2012). Eimeria bovis: An update on parasite-host cell interactions. International Journal of Medical Microbiology, 302(4-5), 210-215. http://dx.doi.org/10.1016/j.ijmm.2012.07.002 PMid:22925990.
    » http://dx.doi.org/10.1016/j.ijmm.2012.07.002
  • Hong, S. T. (2018). Albendazole and praziquantel: review and safety monitoring in Korea. Infection & Chemotherapy, 50(1), 1-10. http://dx.doi.org/10.3947/ic.2018.50.1.1 PMid:29637747.
    » http://dx.doi.org/10.3947/ic.2018.50.1.1
  • Hong, S., Moon, M. N., Im, E. K., Won, J. S., Yoo, J. H., & Kim, O. (2018). Anti-coccidial activity of the ethanol extract of Tribulus terrestris fruits on Eimeria tenella. Laboratory Animal Research, 34(1), 44-47. http://dx.doi.org/10.5625/lar.2018.34.1.44 PMid:29628976.
    » http://dx.doi.org/10.5625/lar.2018.34.1.44
  • Hotchkiss, R. D. (1948). A microchemical reaction resulting in the staining of polysaccharide structures in fixed tissue preparations. Archives of Biochemistry, 16(1), 131-141. PMid:18921848.
  • Jithendran, K. P., & Bhat, K. P. (1996). Subclinical coccidiosis in Angora rabbits—a field survey in Himachal Pradesh (India). World Rabbit Science, 4, 29-32.
  • Jones, K. D., & Berkley, J. A. (2014). Severe acute malnutrition and infection. Paediatrics and International Child Health, 34(Suppl 1), S1-S29. http://dx.doi.org/10.1179/2046904714Z.000000000218 PMid:25475887.
    » http://dx.doi.org/10.1179/2046904714Z.000000000218
  • Khaliq, T., Mumtaz, F., Rahman, Z. U., Javed, I., & Iftikhar, A. (2015). Nephroprotective potential of Rosa damascene mill flowers, Cichorium intybus linn roots and their mixtures on gentamicin 283 induced toxicity in albino rabbits. Pakistan Veterinary Journal, 35, 43-47.
  • Khorrami, P., Gholami-Ahangaran, M., & Moghtadaei-Khorasgani, E. (2022). The efficacy of pomegranate peel extract on Eimeria shedding and growth indices in experimental coccidiosis in broiler chickens. Veterinary Medicine and Science, 8(2), 635-641. http://dx.doi.org/10.1002/vms3.714 PMid:34981905.
    » http://dx.doi.org/10.1002/vms3.714
  • Kosińska, A., Karamać, M., Estrella, I., Hernández, T., Bartolomé, B., & Dykes, G. A. (2012). Phenolic compound profiles and antioxidant capacity of Persea americana Mill. Peels and seeds of two varieties. Journal of Agricultural and Food Chemistry, 60(18), 4613-4619. http://dx.doi.org/10.1021/jf300090p PMid:22494370.
    » http://dx.doi.org/10.1021/jf300090p
  • Kouwenhoven, B. (1971). Eimeria avervulina infection in chickens; a parasitological and biochemical study (summary). Netherlands Veterinary Journal, 4, 112-114.
  • Liaqat, I., Pervaiz, Q., Bukhsh, S. J., Ahmed, S., & Jahan, N. (2016). Investigation of bactericidal effects of medicinal plant extracts on clinical isolates and monitoring their biofilm forming potential. Pakistan Veterinary Journal, 36, 159-164.
  • Mai, K., Sharman, P. A., Walker, R. A., Katrib, M., De Souza, D., McConville, M. J., Wallach, M. G., Belli, S. I., Ferguson, D. J., & Smith, N. C. (2009). Oocyst wall formation and composition in coccidian parasites. Memorias do Instituto Oswaldo Cruz, 104(2), 281-289. http://dx.doi.org/10.1590/S0074-02762009000200022 PMid:19430654.
    » http://dx.doi.org/10.1590/S0074-02762009000200022
  • Mazia, D., Brewer, P. A., & Alfert, M. (1953). The cytochemical staining and measurement of proteins with mercuric bromophenol blue. The Biological Bulletin, 104(1), 57-67. http://dx.doi.org/10.2307/1538691
    » http://dx.doi.org/10.2307/1538691
  • Mehlhorn, H. (2014). Encyclopedic reference of parasitology (Vol. 1, 6th ed.). Berlin: Springer Press.
  • Mehlhorn, H. (Ed.) (2001). Encyclopedic reference of parasitology (Vol. 1, 2nd ed.). Berlin: Springer Press.
  • Melgar, B., Dias, M. I., Ciric, A., Sokovic, M., Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Barros, L., & Ferreira, I. C. R. F. (2018). Bioactive characterization of Persea americana Mill. By-products: a rich source of inherent antioxidants. Industrial Crops and Products, 111, 212-218. http://dx.doi.org/10.1016/j.indcrop.2017.10.024
    » http://dx.doi.org/10.1016/j.indcrop.2017.10.024
  • Metwaly, M. S., Dkhil, M. A., Gewik, M. M., Alghamdy, A. O., & Al-Quraishy, S. (2013). Induced metabolic disturbance and growth depression in rabbits infected with Eimeria coecicola parasite. Parasitology Research, 112(9), 3109-3114. http://dx.doi.org/10.1007/s00436-013-3485-1 PMid:23749092.
    » http://dx.doi.org/10.1007/s00436-013-3485-1
  • Noorul, H., Badruddeen, M. M., Khalid, M., Vartika, S., Nesar, A., Zafar, K., & Zohrameena, S. (2017). Physico-phytochemical analysis & estimation of total phenolic, flavonoids and proanthocyanidin content of Persea americana (avocado) seed extracts. World Journal of Pharmaceutical Sciences, 5(4), 70-77.
  • Ogbe, A. O., Atawodi, S. E., Abdu, P. A., Sannusi, A., & Itodo, A. E. (2009). Changes in weight gain, faecal oocyst count and packed cell volume of Eimeria tenella-infected broilers treated with a wild mushroom (Ganoderma lucidum) aqueous extract. Journal of the South African Veterinary Association, 80(2), 97-102. http://dx.doi.org/10.4102/jsava.v80i2.179 PMid:19831271.
    » http://dx.doi.org/10.4102/jsava.v80i2.179
  • Pacheco-Coello, F., & Seijas-Perdomo, D. (2020). Evaluation of the antioxidant activity of the aqueous and methanolic extracts of seeds of Persea americana Mill, variety Hass, from the State Aragua in Venezuela. Revista Boliviana de Química, 37(3), 142-147. http://dx.doi.org/10.34098/2078-3949.37.3.2
    » http://dx.doi.org/10.34098/2078-3949.37.3.2
  • Pérez-Fonseca, A., Alcala-Canto, Y., Salem, A. Z. M., & Alberti-Navarro, A. B. (2016). Anticoccidial efficacy of naringenin and a grapefruit peel extract in growing lambs naturally-infected with Eimeria spp. Veterinary Parasitology, 232, 58-65. http://dx.doi.org/10.1016/j.vetpar.2016.11.009 PMid:27890083.
    » http://dx.doi.org/10.1016/j.vetpar.2016.11.009
  • Qaid, M. M., Mansour, L., Al-Garadi, M. A., Alqhtani, A. H., Al-abdullatif, A. A., Qasem, M. A., & Murshed, M. A. (2021). Evaluation of the anticoccidial effect of traditional medicinal plants, Cinnamomum verum bark and Rumex nervosus leaves in experimentally infected broiler chickens with Eimeria tenella. Italian Journal of Animal Science, 21(1), 408-421. http://dx.doi.org/10.1080/1828051X.2022.2033139
    » http://dx.doi.org/10.1080/1828051X.2022.2033139
  • Rivai, H., Putri, Y. T., & Rusdi, R. (2019). Qualitative and quantitative analysis of the chemical content of hexane, acetone, ethanol and water extract from avocado seeds (Persea americana Mill.). Scholars International Journal of Traditional and Complementary Medicine, 2(3), 25-31.
  • Rodríguez-Carpena, J. G., Morcuende, D., Andrade, M. J., Kylli, P., & Estévez, M. (2011). Avocado (Persea americana Mill.) phenolics, In vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. Journal of Agricultural and Food Chemistry, 59(10), 5625-5635. http://dx.doi.org/10.1021/jf1048832 PMid:21480593.
    » http://dx.doi.org/10.1021/jf1048832
  • Rosa, S. S. S., Santos, F. O., Lima, H. G., Reis, I. M. A., Cassiano, D. S. A., Vieira, I. J. C., Braz-Filho, R., Uzeda, R. S., Botura, M. B., Branco, A., & Batatinha, M. J. M. (2018). In vitro anthelmintic and cytotoxic activities of extracts of Persea wildenovii Kosterm (Lauraceae). Journal of Helminthology, 92(6), 674-680. http://dx.doi.org/10.1017/S0022149X17000979 PMid:29067895.
    » http://dx.doi.org/10.1017/S0022149X17000979
  • Rosero, J. C., Cruz, S., Osorio, C., & Hurtado, N. (2019). Analysis of phenolic composition of byproducts (seeds and peels) of avocado (Persea americana Mill.) cultivated in Colombia. Molecules (Basel, Switzerland), 24(17), 3209. http://dx.doi.org/10.3390/molecules24173209 PMid:31484471.
    » http://dx.doi.org/10.3390/molecules24173209
  • Scora, R. W., & Bergh, B. O. (1990). The origin and taxonomy of avocado (Persea americana Mill. Lauraceae). Acta Horticulturae, (275), 387-394. http://dx.doi.org/10.17660/ActaHortic.1990.275.47
    » http://dx.doi.org/10.17660/ActaHortic.1990.275.47
  • Soldera-Silva, A., Seyfried, M., Campestrini, L. H., Zawadzki-Baggio, S. F., Minho, A. P., Molento, M. B., & Maurer, J. B. B. (2018). Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts. Veterinary Parasitology, 251, 34-43. http://dx.doi.org/10.1016/j.vetpar.2017.12.019 PMid:29426474.
    » http://dx.doi.org/10.1016/j.vetpar.2017.12.019
  • Subba, B., Gaire, S., & Raj Sharma, K. (2019). Analysis of phyto-constituents, antiocidant, and alpha amylase inhibitory activities of Persea americana Mill., Rhododendron arboretum SM. Rubus ellipticus SM. from Arghakhanchi district Nepal. Asian Journal of Pharmaceutical and Clinical Research, 12(1), 301-304. http://dx.doi.org/10.22159/ajpcr.2019.v12i1.29679
    » http://dx.doi.org/10.22159/ajpcr.2019.v12i1.29679
  • Tambur, Z., Kulišić, Z., Maličević, Ž., & Mihailović, M. (1998). The influence of intestinal coccidia upon the activity of liver enzimes. Acta Veterinaria, 48, 139-146.
  • Taylor, M., Coop, R., & Wall, R. (2007). Veterinary parasitology (3rd ed.). Oxford: Blackwell Publishing.
  • Thagfan, F. A., Al-Megrin, W. A., Al-Quraishy, S., & Dkhil, M. A. M. (2020). Mulberry extract as an ecofriendly anticoccidial agent: in vitro and in vivo application. Revista Brasileira de Parasitologia Veterinária, 29(4), e009820. http://dx.doi.org/10.1590/s1984-29612020072 PMid:33111843.
    » http://dx.doi.org/10.1590/s1984-29612020072
  • Vidyadhar, S., Saidulu, M., Gopal, T.K., Chamundeeswari, D., Umamaheswara rao, & Banji, D. (2010). In vitro anthelmintic activity of the whole plant of Enicostemma littorale by using various extracts. Journal of Applied Biology & Pharmaceutical Technology, 1(3), 1119-1125.
  • Wang, G. X., Han, J., Zhao, L. W., Jiang, D. X., Liu, Y. T., & Liu, X. L. (2010). Anthelmintic activity of steroidal saponins from Paris polyphylla. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 17(14), 1102-1105. http://dx.doi.org/10.1016/j.phymed.2010.04.012 PMid:20576414.
    » http://dx.doi.org/10.1016/j.phymed.2010.04.012
  • Widiyastuti, Y., Pratiwi, R., Riyanto, S., & Wahyuono, S. (2018). Cytotoxic activity and apoptosis induction of avocado (Persea americana) seed extract on MCF-7 cancer cell line. Indonesian Journal of Biotechnology, 23(2), 61. http://dx.doi.org/10.22146/ijbiotech.32141
    » http://dx.doi.org/10.22146/ijbiotech.32141
  • Wunderlich, F., Al-Quraishy, S., Steinbrenner, H., Sies, H., & Dkhil, M. A. (2014). Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant based natural products. Parasitology Research, 113(10), 3547-3556. http://dx.doi.org/10.1007/s00436-014-4101-8 PMid:25185667.
    » http://dx.doi.org/10.1007/s00436-014-4101-8
  • Yadav, A. K., & Temjenmongla (2012). In vivo anthelmintic activity of Clerodendrum colebrookianum Walp., a traditionally used taenicidal plant in Northeast India. Parasitology Research, 111(4), 1841-1846. http://dx.doi.org/10.1007/s00436-012-2908-8 PMid:22476567.
    » http://dx.doi.org/10.1007/s00436-012-2908-8
  • Yang, Y., Ding, X., Memon, F. U., Zhang, G., Jiang, M., Hu, D. D., & Si, H. (2022). Punicalagin: a monmer with anti-Eimeria tenella effect from fruit peel of Punica granatum L. Poultry Science, 101(10), 102100. http://dx.doi.org/10.1016/j.psj.2022.102100 PMid:36055031.
    » http://dx.doi.org/10.1016/j.psj.2022.102100

Publication Dates

  • Publication in this collection
    20 Mar 2023
  • Date of issue
    2023

History

  • Received
    07 Dec 2022
  • Accepted
    21 Jan 2023
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br