Acessibilidade / Reportar erro

A review of the immune activity of chitooligosaccharides

Abstract

Under the influence of the COVID-19, people's awareness of physical health and immunity has increased significantly. Chitooligosaccharide is an oligomer of β-(1, 4)-linked D -glucosamine, furthermore, is one of the most widely studied immunomodulators. Chitooligosaccharide can be prepared from the chitin or chitosan polymers through enzymatically, chemically or physically processes. Chitooligosaccharide and its derivatives have been proven to have a wide range of biological activities including intestinal flora regulation, immunostimulant, anti-tumor, anti-obesity and anti-oxidation effects. This review summarizes the latest research of the preparation methods, biological activities in immunity and safety profiles of Chitooligosaccharide and its derivatives. We recapped the effect mechanisms of Chitooligosaccharide basing on overall immunity. Comparing the effects of Chitooligosaccharide with different molecular weights and degree of aggregation, a reference range for usage has been provided. This may provide a support for the application of Chitooligosaccharide in immune supplements and food. In addition, future research directions are also discussed.

Keywords:
Chitooligosaccharide; intestinal flora; immunity; anti-tumor; safety

1 Introduction

The world experienced the outbreak of coronavirus disease 2019 (COVID-19) recently, posing an enormous threat to global public health and economies (Ugur & Buruklar, 2022Ugur, A., & Buruklar, T. (2022). Effects of Covid-19 pandemic on agri-food production and farmers. Food Science and Technology, 2022(42), e19821. http://dx.doi.org/10.1590/fst.19821.
http://dx.doi.org/10.1590/fst.19821...
). Consumers are looking for natural immune ingredients from daily supplements and foods.

Chitooligosaccharide (COS), an oligomer of β-(1, 4)-linked D -glucosamine, can be prepared from the chitin or chitosan polymers, inside, the chitin is rarer and must be extracted from the exoskeletons of arthropods, such as shrimp and crab, and insects and the cell walls of fungi. The molecular weights (MW) of COS is highly related to its biological activity, and its polymerization degree (DP) is 2~10. Therefore, COS can be dissolved in water, is non-cytotoxic, can be readily absorbed through the intestines and excreted in urine (Muanprasat & Chatsudthipong, 2017Muanprasat, C., & Chatsudthipong, V. (2017). Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacology & Therapeutics, 170, 80-97. http://dx.doi.org/10.1016/j.pharmthera.2016.10.013. PMid:27773783.
http://dx.doi.org/10.1016/j.pharmthera.2...
). The reduced MW couples with different degree of deacetylation (DD) and DP, makes COS a strongly viable option for a variety of applications in daily supplements, food, cosmetics, animal nutrition and agriculture industries (Tabassum et al., 2021Tabassum, N., Ahmed, S., & Ali, M. A. (2021). Chitooligosaccharides and their structural-functional effect on hydrogels: a review. Carbohydrate Polymers, 261, 117882. http://dx.doi.org/10.1016/j.carbpol.2021.117882. PMid:33766369.
http://dx.doi.org/10.1016/j.carbpol.2021...
; Ngoc et al., 2022Ngoc, L. S., Van, P. T. H., Nhi, T. T. Y. N., Dung, N. A., & Manh, T. D. (2022). Effects of dipping time in chitosan (CS) and polyvinyl alcohol (PVA) mixture to quality of orange fruits during storage. Food Science and Technology, 2022(42), e114221. http://dx.doi.org/10.1590/fst.114221.
http://dx.doi.org/10.1590/fst.114221...
; Okutan & Boran, 2022Okutan, G., & Boran, G. (2022). Effect of gelatin based edible coatings on quality of surimi from pearl mullet (Alburnus tarichi, Güldenstädt, 1814) during cold storage. Food Science and Technology, 2022(42), e34520. http://dx.doi.org/10.1590/fst.34520.
http://dx.doi.org/10.1590/fst.34520...
). It has been applied to the food industry around the world as a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit (Gibson et al., 2017Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology, 14(8), 491-502. http://dx.doi.org/10.1038/nrgastro.2017.75. PMid:28611480.
http://dx.doi.org/10.1038/nrgastro.2017....
). In USA, COS has been applied as a supplement’s ingredient. It has been added into daily foods and beverages in Japan and Canada. In Europe, COS appeared in meal capsules.

Modern biomedical research largely focuses on significant immunoregulation effects of COS. The present review briefly summarizes the key roles of COS in the treatment of immunoregulation, with a focus on the functions of COS in intestinal and tumor immunity regulation, and describes recent clinical and pre-clinical trials investigating the potential of COS in immunoregulation therapy.

2 Preparation process of COS

Since the chitin from marine raw materials is a complex of calcium carbonate, protein, and small amounts of lipids, it must be further processed for industrial applications. After shredding and cleaning the crustacean shell waste, minerals and proteins need to be removed (Arnold et al., 2020Arnold, N. D., Brück, W. M., Garbe, D., & Brück, T. B. (2020). Enzymatic modification of native chitin and conversion to specialty chemical products. Marine Drugs, 18(2), 93. http://dx.doi.org/10.3390/md18020093. PMid:32019265.
http://dx.doi.org/10.3390/md18020093...
). Due to the high MW and degree of polymerization (DP), the water solubility of these polymers is limited. Furthermore, the industrial applicability of chitin and Chitosan is also restricted. However, there are converted into soluble and more biologically active forms, COS and GlcNAc, and these problems are effectively solved (Qin & Zhao, 2019Qin, Z., & Zhao, L. (2019). The history of chito/chitin oligosaccharides and its monomer. In L. Zhao (Ed.), Oligosaccharides of Chitin and Chitosan: bio-manufacture and applications (pp. 3-14). Singapore: Springer. http://dx.doi.org/10.1007/978-981-13-9402-7_1.
http://dx.doi.org/10.1007/978-981-13-940...
). COS can be prepared by enzymatic hydrolysis methods using specific enzymes or non-specific enzymes, physical methods such as ultrasonic, ultraviolet or microwave treatment, and chemical methods such as acid or alkali hydrolysis. Specific enzymes is chitosanases,meanwhile, non specific enzymes include cellulose, protease, amylase, etc. Preparation methods of COS are shown as Table 1.

Table 1
Advantages and disadvantages for preparation methods.

The COS obtained by enzymatic hydrolysis also has three types of reactive functional groups. In addition to the amino/acetamido group at C-2, namely the primary and secondary hydroxyl groups at the C-3 and C-6 positions. The existence of these functional groups makes COS possess various biological activities.

3 Intestinal flora regulation of COS

The intestinal flora is divided into probiotics, pathogenic bacteria and conditional pathogens. The occurrence of many diseases is related to the imbalance of intestinal flora (Yan et al., 2021Yan, Q., Zhai, W., Yang, C., Li, Z., Mao, L., Zhao, M., & Wu, X. (2021). The relationship among physical activity, intestinal flora, and cardiovascular disease. Cardiovascular Therapeutics, 2021, 3364418. http://dx.doi.org/10.1155/2021/3364418. PMid:34729078.
http://dx.doi.org/10.1155/2021/3364418...
; Zhang et al., 2021Zhang, W., Zhang, X., Zhang, Y., Wu, H., Liu, Q., Zhou, X., & Meng, Y. (2021). Analysis of changes of intestinal flora in elderly patients with Alzheimer’s disease and liver cancer and its correlation with abnormal gastrointestinal motility. Journal of Oncology, 2021, 7517379. http://dx.doi.org/10.1155/2021/7517379. PMid:34422052.
http://dx.doi.org/10.1155/2021/7517379...
). COS have been extensively researched for their prebiotic activities. which can promote the proliferation of probiotics while inhibiting the growth of pathogenic bacteria (Ying et al., 2002Ying, G. S., Lin, R., & Yuan, L. B. (2002). Study on the microecological effects of chitooligosaccharides. Chinese Journal of Microecology.; Koppová et al., 2012Koppová, I., Bureš, M., & Simůnek, J. (2012). Intestinal bacterial population of healthy rats during the administration of chitosan and chitooligosaccharides. Folia Microbiologica, 57(4), 295-299. http://dx.doi.org/10.1007/s12223-012-0129-2. PMid:22528304.
http://dx.doi.org/10.1007/s12223-012-012...
). The effect methods have been summarized:

  1. 1

    COS directly acts on microorganisms

0.1% COS can directly destroy the morphology of Actinomycetes (Choi et al., 2001Choi, B. K., Kim, K. Y., Yoo, Y. J., Oh, S. J., Choi, J. H., & Kim, C. Y. (2001). In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents, 18(6), 553-557. http://dx.doi.org/10.1016/S0924-8579(01)00434-4. PMid:11738343.
http://dx.doi.org/10.1016/S0924-8579(01)...
). It has been reported that COS can rupture the cells of Gram-positive pathogenic, Bacillus cereus, and dissolve solute. Furthermore, it can inhibit the growth of Gram-negative bacteria, Escherichia coli, by blocking nutrient absorption (Kim et al., 2003Kim, J. Y., Lee, J. K., Lee, T. S., & Park, W. H. (2003). Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans. International Journal of Biological Macromolecules, 32(1-2), 23-27. http://dx.doi.org/10.1016/S0141-8130(03)00021-7. PMid:12719128.
http://dx.doi.org/10.1016/S0141-8130(03)...
).

At present, researchers thought that the main mechanisms of COS against pathogenic bacteria are as follows:

The high concentration of amino groups of COS enables them to bind and adsorb readily on the negative microbial cell membrane. These results in the formation of an impermeable layer on the cell surface. So as to prevent nutrients from entering the cell and interfere with the normal physiological metabolism of bacteria (Tsai et al., 2002Tsai, G.-J., Su, W.-H., Chen, H.-C., & Pan, C.-L. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Science, 68(1), 170-177. http://dx.doi.org/10.1046/j.1444-2906.2002.00404.x.
http://dx.doi.org/10.1046/j.1444-2906.20...
; Kim & Rajapakse, 2005Kim, S. K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydrate Polymers, 62(4), 357-368. http://dx.doi.org/10.1016/j.carbpol.2005.08.012.
http://dx.doi.org/10.1016/j.carbpol.2005...
). COS could chelate heavy metals and nutrients (Naveed et al., 2019Naveed, M., Phil, L., Sohail, M., Hasnat, M., Baig, M. M. F. A., Ihsan, A. U., Shumzaid, M., Kakar, M. U., Mehmood Khan, T., Akabar, M. D., Hussain, M. I., & Zhou, Q. G. (2019). Chitosan oligosaccharide (COS): an overview. International Journal of Biological Macromolecules, 129, 827-843. http://dx.doi.org/10.1016/j.ijbiomac.2019.01.192. PMid:30708011.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). COS can polymerize with the cell wall components of Gram-positive pathogenic bacteria to form positive ion precipitation, exposing the cell membrane to osmotic pressure, dissolving the cytoplasm, and lysing the cell (Lee et al., 2002Lee, H. W., Park, Y. S., Jung, J. S., & Shin, W. S. (2002). Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe, 8(6), 319-324. http://dx.doi.org/10.1016/S1075-9964(03)00030-1. PMid:16887676.
http://dx.doi.org/10.1016/S1075-9964(03)...
). COS penetrates into the cells of pathogenic bacteria and flocculates with negatively charged solutes, and disrupts cell metabolism (Zhang, 2019Zhang, B. (2019). Dietary chitosan oligosaccharides modulate the growth, intestine digestive enzymes, body composition and nonspecific immunity of loach Paramisgurnus dabryanus. Fish & Shellfish Immunology, 88, 359-363. http://dx.doi.org/10.1016/j.fsi.2019.03.006. PMid:30851451.
http://dx.doi.org/10.1016/j.fsi.2019.03....
) and DNA synthesis of pathogenic bacteria, and blocks RNA transcription (Figure 1).

Figure 1
The mechanisms of COS againsts pathogenic bacteria. COS enables bind and adsorb readily on the negative microbial cell membrane to interfere normal physiological metabolism of bacteria. COS penetrates into the cells of pathogenic bacteria and disrupts cell metabolism and DNA synthesis, blocking RNA transcription.

The main mechanisms of COS promote probiotics proliferation are as follows:

The macromolecule COS cannot be absorbed into the blood (Zeng et al., 2008Zeng, L., Qin, C., Wang, W., Chi, W., & Li, W. (2008). Absorption and distribution of chitosan in mice after oral administration. Carbohydrate Polymers, 71(3), 435-440. http://dx.doi.org/10.1016/j.carbpol.2007.06.016.
http://dx.doi.org/10.1016/j.carbpol.2007...
), and enters the back part of the small intestine to play a role (Chen et al., 2020Chen, J., Chen, Q., Xie, C., Ahmad, W., Jiang, L., & Zhao, L. (2020). Effects of simulated gastric and intestinal digestion on chitooligosaccharides in two in vitro models. International Journal of Food Science & Technology, 55(5), 55. http://dx.doi.org/10.1111/ijfs.14337.
http://dx.doi.org/10.1111/ijfs.14337...
), and finally is degraded in the intestine (Fernandes et al., 2008Fernandes, J. C., Tavaria, F. K., Soares, J. C., Ramos, O. S., João Monteiro, M., Pintado, M. E., & Xavier Malcata, F. (2008). Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiology, 25(7), 922-928. http://dx.doi.org/10.1016/j.fm.2008.05.003. PMid:18721683.
http://dx.doi.org/10.1016/j.fm.2008.05.0...
). However, the fully deacetylated COS cannot be digested by biological enzymes, thus increasing the applicability of COS to probiotics (Nurhayati et al., 2016Nurhayati, Y., Manaf, A. A., Osman, H., Abdullah, A., & Tang, J. (2016). Effect of chitosan oligosaccharides on the growth of bifidobacterium species. Malaysian Journal of Applied Sciences, 1(1), 13-23.), thereby promoting the growth of probiotics.

  1. 2

    COS indirectly acts on microorganisms

COS could reduce the susceptibility to pathogenic bacteria by improving the immune activity of the body (Li et al., 2019Li, J., Cheng, Y., Chen, Y., Qu, H., Zhao, Y., Wen, C., & Zhou, Y. (2019). Dietary chitooligosaccharide inclusion as an alternative to antibiotics improves intestinal morphology, barrier function, antioxidant capacity, and immunity of broilers at early age. Animals, 9(8), 493. http://dx.doi.org/10.3390/ani9080493. PMid:31357589.
http://dx.doi.org/10.3390/ani9080493...
). COS absorbed into the blood can cause a series of biological reactions (Chae et al., 2005Chae, S. Y., Jang, M. K., & Nah, J. W. (2005). Influence of molecular weight on oral absorption of water soluble chitosans. Journal of Controlled Release, 102(2), 383-394. http://dx.doi.org/10.1016/j.jconrel.2004.10.012. PMid:15653159.
http://dx.doi.org/10.1016/j.jconrel.2004...
; Fernandes et al., 2008Fernandes, J. C., Tavaria, F. K., Soares, J. C., Ramos, O. S., João Monteiro, M., Pintado, M. E., & Xavier Malcata, F. (2008). Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiology, 25(7), 922-928. http://dx.doi.org/10.1016/j.fm.2008.05.003. PMid:18721683.
http://dx.doi.org/10.1016/j.fm.2008.05.0...
), and promote the growth of probiotics, increase the secretion of short-chain fatty acids (SCFA) and lactic acid, and reduce the number of pathogenic bacteria (Selenius et al., 2018Selenius, O., Korpela, J., Salminen, S., & Gallego, C. G. (2018). Effect of Chitin and Chitooligosaccharide on In vitro Growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Applied Food Biotechnology, 5(3), 163-172.). COS improves the integrity of intestinal structure: increase the height of intestinal villi, improve intestinal structure, and effectively improve the absorption of nutrients in the small intestine. Increase CLDN3 expression, reduce DAO and endotoxin levels, and maintain the integrity of the intestinal barrier (Vishu Kumar et al., 2005Vishu Kumar, A. B., Varadaraj, M. C., Gowda, L. R., & Tharanathan, R. N. (2005). Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. The Biochemical Journal, 391(Pt 2), 167-175. http://dx.doi.org/10.1042/BJ20050093. PMid:15932346.
http://dx.doi.org/10.1042/BJ20050093...
), promote healthy intestinal environment.

The current research on the effect of COS on the regulation of intestinal flora, the molecular weight is mainly focused on the COS with a molecular weight of <3000 Da, and 0.01-0.5% COS in vitro experiments can exert the effect of inhibiting pathogenic bacteria (Table 2). In vivo experiments among them, the working concentration of COS is 30-500 mg/kg (0.003%~0.05%), which can regulate animal intestinal flora.

Table 2
Inhibition and Promotional effect of COS on Pathogenic Bacteria and Probiotics.

4 Direct effects of COS on immunity

In addition to acting on the intestinal flora and the way of immune response, COS can also regulate the body's immunity by entering the blood. Immune cells include T\B lymphocytes, natural killer (NK) cells, and mononuclear phagocytes. The immune response mainly includes humoral immunity, phagocytosis and cellular immunity. Non-specific immunity mainly includes the phagocytosis and elimination of pathogens by macrophages and white blood cells. Macrophages and dendritic cells play a key role in the immune system, activating the immune response through cytokine release, phagocytosis, and antigen presentation. The activation of macrophages is the key to promote immune activity. Stimulated macrophages release a variety of pro-inflammatory mediators and cytokines, including nitric oxide (NO), tumor necrosis factor-a (TNF-a), prostaglandin E2 (PGE2), interleukin-1β (IL- 1β), Interleukin-6 (IL-6) (Shi et al., 2022Shi, J., Li, H., Liang, S., Evivie, S. E., Huo, G., Li, B., & Liu, F. (2022). Selected lactobacilli strains inhibit inflammation in LPS-induced RAW264.7 macrophages by suppressing the TLR4-mediated NF-κB and MAPKs activation. Food Science and Technology, 2022(42), e107621. http://dx.doi.org/10.1590/fst.107621.
http://dx.doi.org/10.1590/fst.107621...
) . COS can be recognized by immune cells and exert immunostimulatory properties, thereby improving the body's immunity (Table 3), and resisting diseases.

Table 3
COS improves the immune function of the body.

The current researches have revealed that COS mainly improves the body's immunity through the following ways:

COS activates AMP-activated protein kinase (AMPK) through calcium-sensing receptor (CaSR) to enhance tight junction in epithelial cells (Muanprasat & Chatsudthipong, 2017Muanprasat, C., & Chatsudthipong, V. (2017). Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacology & Therapeutics, 170, 80-97. http://dx.doi.org/10.1016/j.pharmthera.2016.10.013. PMid:27773783.
http://dx.doi.org/10.1016/j.pharmthera.2...
), increasing the production of intestinal SCFA and enhancing the ability of SCFA to bind to G-coupled protein receptors on leukocytes.

COS interacts with carbohydrate receptors on intestinal epithelial cells and immune cells (Muanprasat & Chatsudthipong, 2017Muanprasat, C., & Chatsudthipong, V. (2017). Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacology & Therapeutics, 170, 80-97. http://dx.doi.org/10.1016/j.pharmthera.2016.10.013. PMid:27773783.
http://dx.doi.org/10.1016/j.pharmthera.2...
). and produces IFN-γ through intestinal epithelial cells, activate macrophages (Deng et al., 2008Deng, X., Li, X., Liu, P., Yuan, S., Zang, J., Li, S., & Piao, X. (2008). Effect of chito-oligosaccharide supplementation on immunity in broiler chickens. Asian-Australasian Journal of Animal Sciences, 21(11), 81-88. http://dx.doi.org/10.5713/ajas.2008.80056.
http://dx.doi.org/10.5713/ajas.2008.8005...
) and improve the activity of NK cells (Zhai et al., 2018Zhai, X., Yang, X., Zou, P., Shao, Y., Yuan, S., Abd El-Aty, A. M., & Wang, J. (2018). Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice. Journal of Food Science, 83(2), 535-542. http://dx.doi.org/10.1111/1750-3841.14048. PMid:29350748.
http://dx.doi.org/10.1111/1750-3841.1404...
). Promoting humoral immunity and releasing antibody production such as IgA, IgM and IgG (Kong et al., 2018Kong, S. Z., Li, J. C., Li, S. D., Liao, M. N., Li, C. P., Zheng, P. J., Guo, M. H., Tan, W. X., Zheng, Z. H., & Hu, Z. (2018). Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice. Marine Drugs, 16(6), 181. http://dx.doi.org/10.3390/md16060181. PMid:29794973.
http://dx.doi.org/10.3390/md16060181...
) to enhance the body's resistance.

In immune cells, COS inhibits the suppression of P38 MAPK, extracellular signal-regulated kinase (ERK1/2) and C-Jun N-terminal kinase (JNK1/2) in mitogen-activated protein kinase (MAPK)-dependent pathways to block the nuclear translocation of activator protein 1 (AP-1). And COS promotes inhibitory kappa B (IƘB) degradation in the nuclear factor-kappa B (NF-ƘB) pathways. As a result, the pro-inflammatory mediators, such as tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E 2 (PGE 2) and nitric oxide (NO), has been inhibited (Muanprasat & Chatsudthipong, 2017Muanprasat, C., & Chatsudthipong, V. (2017). Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacology & Therapeutics, 170, 80-97. http://dx.doi.org/10.1016/j.pharmthera.2016.10.013. PMid:27773783.
http://dx.doi.org/10.1016/j.pharmthera.2...
) (Figure 2).

Figure 2
The mechanisms of COS improve immunity. COS activates AMPK through CaSR to enhance tight junction in epithelial cells, inhibits the suppression of MAPK and NF-ƘB pathways to inhibit secrete pro-inflammatory mediator.

5 Direct effects of COS on tumor growth inhibition

Immune cells play important roles in either anti-tumor or pro-tumor responses. The balance of immune cell is related to tumor progression and recurrence. A large number of immune cells produce various interactions between the interaction and the activation and inhibition of anti-tumor response.

Tumor metastasis is one of the main complications of cancer (Nam et al., 2007Nam, K. S., Kim, M. K., & Shon, Y. H. (2007). Inhibition of proinflammatory cytokine-induced invasiveness of HT-29 cells by chitosan oligosaccharide. Journal of Microbiology and Biotechnology, 17(12), 2042-2045. PMid:18167453.). NO promotes metastasis by inducing angiogenesis and inhibiting platelet aggregation. Inhibition of iNOS can help anti-inflammatory and inhibit tumor metastasis. In addition, matrix metalloproteinase MMPS is also involved in tumor growth and invasion. And apoptosis is caused by the complex synergy of multiple genes and multiple proteins (Han et al., 2016Han, F. S., Yang, S. J., Lin, M. B., Chen, Y. Q., Yang, P., & Xu, J. M. (2016). Chitooligosaccharides promote radiosensitivity in colon cancer line SW480. World Journal of Gastroenterology, 22(22), 5193-5200. http://dx.doi.org/10.3748/wjg.v22.i22.5193. PMid:27298562.
http://dx.doi.org/10.3748/wjg.v22.i22.51...
). A wide range of studies revealed that COS can effectively inhibit tumor cell metastasis and growth, and promote tumor cell apoptosis (Shen et al., 2009Shen, K. T., Chen, M. H., Chan, H. Y., Jeng, J. H., & Wang, Y. J. (2009). Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food and Chemical Toxicology, 47(8), 1864-1871. http://dx.doi.org/10.1016/j.fct.2009.04.044. PMid:19427889.
http://dx.doi.org/10.1016/j.fct.2009.04....
).

The current researches on the anti-tumor effect of COS mainly focuses on the following aspects (Figure 3):

Figure 3
The mechanisms of COS anti-tumor effect. COS inhibits tumor cell’s glycolysis and energy, DNA synthesis, and blocks tumor metastasis. In addition, COS promotes cancer cell apoptosis also.
  1. 1

    Tumor cell’s glycolysis and energy will be inhibited by COS through the inhibition of tumor-specific variant of pyruvate kinases;

  2. 2

    Inhibition of DNA synthesis in cancer cells.

COS can inhibit DNA synthesis and metastasis in cancer cells by increasing the expression of p21, reducing the expression of cyclin A, cdk2 and PCNA, and inhibiting the action of ornithine decarboxylases (Nam et al., 2007Nam, K. S., Kim, M. K., & Shon, Y. H. (2007). Inhibition of proinflammatory cytokine-induced invasiveness of HT-29 cells by chitosan oligosaccharide. Journal of Microbiology and Biotechnology, 17(12), 2042-2045. PMid:18167453.).

  1. 3

    Start apoptotic factors to promote cancer cell apoptosis.

Activate the apoptotic promoter Caspase-3, successfully block cancer cell proliferation and Gz/M phase arrest (Xing et al., 2017Xing, R., Liu, Y., Li, K., Yu, H., Liu, S., Yang, Y., Chen, X., & Li, P. (2017). Monomer composition of chitooligosaccharides obtained by different degradation methods and their effects on immunomodulatory activities. Carbohydrate Polymers, 157, 1288-1297. http://dx.doi.org/10.1016/j.carbpol.2016.11.001. PMid:27987835.
http://dx.doi.org/10.1016/j.carbpol.2016...
), up-regulate pro-apoptotic gene Bax, down-regulate pro-apoptosis the expression of gene Bcl-2 (Beerheide et al., 2000Beerheide, W., Tan, Y. J., Teng, E., Ting, A. E., Jedpiyawongse, A., & Srivatanakul, P. (2000). Downregulation of proapoptotic proteins Bax and Bcl-X(S) in p53 overexpressing hepatocellular carcinomas. Biochemical and Biophysical Research Communications, 273(1), 54-61. http://dx.doi.org/10.1006/bbrc.2000.2891. PMid:10873563.
http://dx.doi.org/10.1006/bbrc.2000.2891...
; Tsujimoto & Shimizu, 2000Tsujimoto, Y., & Shimizu, S. (2000). Bcl-2 family: life-or-death switch. FEBS Letters, 466(1), 6-10. http://dx.doi.org/10.1016/S0014-5793(99)01761-5. PMid:10648802.
http://dx.doi.org/10.1016/S0014-5793(99)...
), increase the radiosensitivity of cancer cells and promotes cancer cell apoptosis.

  1. 4

    Inhibit the synthesis of genes and proteins related to tumor metastasis and block tumor metastasis.

COS can inhibit CD147, MMP-9 (Van Ta et al., 2006Van Ta, Q., Kim, M. M., & Kim, S. K. (2006). Inhibitory effect of chitooligosaccharides on matrix metalloproteinase-9 in human fibrosarcoma cells (HT1080). Marine Biotechnology, 8(6), 593-599. http://dx.doi.org/10.1007/s10126-006-6031-7. PMid:17091328.
http://dx.doi.org/10.1007/s10126-006-603...
), MMP-2 by inhibiting the CD147/MMP-2 pathway activation, thereby inhibiting the expression of matrix protease MMPS, inhibiting the metastasis and invasion of cancer cells (Nam & Shon, 2009Nam, K. S., & Shon, Y. H. (2009). Suppression of metastasis of human breast cancer cells by chitosan oligosaccharides. Journal of Microbiology and Biotechnology, 19(6), 629-633. http://dx.doi.org/10.4014/jmb.0811.603. PMid:19597323.
http://dx.doi.org/10.4014/jmb.0811.603...
).

There are many studies on the use of low-molecular-weight COS for anti-tumor, which may be related to the ability of low-molecular-weight COS to be absorbed into the blood. The research results show that COS has a good inhibitory effect on many tumors (Table 4).

Table 4
Anti-tumor effects of COS.

6 Safety profile of COS

In order to fully understand the potential therapeutic applications of COS, many studies have used in vitro and in vivo models to investigate the safety of COS, especially its mutagenicity, cytotoxicity and systemic toxicity have been evaluated (Table 5).

Table 5
The safety of COS.

Mutagenicity is the ability of a substance to induce mutations, which can cause alterations in cell function and promote the development of diseases, especially cancer. It has been proved that COS has no mutagenic potential in both in vitro and in vivo models.

Further research is needed to determine the types of COS/constituents that induce dermal reactions, and subchronic and chronic toxicity of COS are necessary.

7 Conclusions and perspectives

Our studies have concluded advantages and disadvantages of different preparation methods for COS. We described how COS exerts its function on immune support through intestinal, humoral and cellular immunity, and how it plays an anti-cancer effect. The oral safety range of COS has been provided by numerous studies. In view of the 2-20 DP for COS, each DP of COS has its unique biological activity. Therefore, the biological activities of COS can be dozens of times that of chitosan. As an immunostimulatory agent, COS dues in part to their lower MW and easy absorption characteristics. We speculated that COS may have a certain application as a food ingredient in food, supplement products and pet nutrition to support daily health. Its biological activity and its molecular mechanism need to be confirmed by further studies. Clarifying the way of action of COS will promote the widely use in dietary supplements, food and medicine.

  • Practical Application: In the USA, COS has been applied as a supplements ingredient. It has been added to daily foods and beverages in China, Japan and Canada. In Europe, COS appeared in meal capsules.
  • #These authors have contributed equally to this work and share first authorship
  • Funding This work was funded by company Chenland Nutritionals, Inc.

References

  • Aam, B. B., Heggset, E. B., Norberg, A. L., Sørlie, M., Vårum, K. M., & Eijsink, V. G. (2010). Production of chitooligosaccharides and their potential applications in medicine. Marine Drugs, 8(5), 1482-1517. http://dx.doi.org/10.3390/md8051482 PMid:20559485.
    » http://dx.doi.org/10.3390/md8051482
  • Arnold, N. D., Brück, W. M., Garbe, D., & Brück, T. B. (2020). Enzymatic modification of native chitin and conversion to specialty chemical products. Marine Drugs, 18(2), 93. http://dx.doi.org/10.3390/md18020093 PMid:32019265.
    » http://dx.doi.org/10.3390/md18020093
  • Beerheide, W., Tan, Y. J., Teng, E., Ting, A. E., Jedpiyawongse, A., & Srivatanakul, P. (2000). Downregulation of proapoptotic proteins Bax and Bcl-X(S) in p53 overexpressing hepatocellular carcinomas. Biochemical and Biophysical Research Communications, 273(1), 54-61. http://dx.doi.org/10.1006/bbrc.2000.2891 PMid:10873563.
    » http://dx.doi.org/10.1006/bbrc.2000.2891
  • Chae, S. Y., Jang, M. K., & Nah, J. W. (2005). Influence of molecular weight on oral absorption of water soluble chitosans. Journal of Controlled Release, 102(2), 383-394. http://dx.doi.org/10.1016/j.jconrel.2004.10.012 PMid:15653159.
    » http://dx.doi.org/10.1016/j.jconrel.2004.10.012
  • Chen, J., Chen, Q., Xie, C., Ahmad, W., Jiang, L., & Zhao, L. (2020). Effects of simulated gastric and intestinal digestion on chitooligosaccharides in two in vitro models. International Journal of Food Science & Technology, 55(5), 55. http://dx.doi.org/10.1111/ijfs.14337
    » http://dx.doi.org/10.1111/ijfs.14337
  • Choi, B. K., Kim, K. Y., Yoo, Y. J., Oh, S. J., Choi, J. H., & Kim, C. Y. (2001). In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans International Journal of Antimicrobial Agents, 18(6), 553-557. http://dx.doi.org/10.1016/S0924-8579(01)00434-4 PMid:11738343.
    » http://dx.doi.org/10.1016/S0924-8579(01)00434-4
  • Deng, X., Li, X., Liu, P., Yuan, S., Zang, J., Li, S., & Piao, X. (2008). Effect of chito-oligosaccharide supplementation on immunity in broiler chickens. Asian-Australasian Journal of Animal Sciences, 21(11), 81-88. http://dx.doi.org/10.5713/ajas.2008.80056
    » http://dx.doi.org/10.5713/ajas.2008.80056
  • European Food Safety Authority – EFSA. (2007). Review of the Community Summary Report on Trends and Sources of Zoonoses, Zoonotic agents and Antimicrobial Resistance in the European Union in 2005 - Scientific Opinion of the Scientific Panel on Biological Hazards (BIOHAZ) and Animal Health and Welfare. EFSA Journal, 5(12), 600. http://dx.doi.org/10.2903/j.efsa.2007.600
    » http://dx.doi.org/10.2903/j.efsa.2007.600
  • Fernandes, J. C., Tavaria, F. K., Soares, J. C., Ramos, O. S., João Monteiro, M., Pintado, M. E., & Xavier Malcata, F. (2008). Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiology, 25(7), 922-928. http://dx.doi.org/10.1016/j.fm.2008.05.003 PMid:18721683.
    » http://dx.doi.org/10.1016/j.fm.2008.05.003
  • Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology, 14(8), 491-502. http://dx.doi.org/10.1038/nrgastro.2017.75 PMid:28611480.
    » http://dx.doi.org/10.1038/nrgastro.2017.75
  • Guan, D., Sun, H., Meng, X., Wang, J., Wan, W., Han, H., Wang, Z., & Li, Y. (2019). Effects of different molar mass chitooligosaccharides on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in GIFT tilapia Oreochromis niloticus Fish & Shellfish Immunology, 93, 500-507. http://dx.doi.org/10.1016/j.fsi.2019.08.001 PMid:31377430.
    » http://dx.doi.org/10.1016/j.fsi.2019.08.001
  • Han, F. S., Yang, S. J., Lin, M. B., Chen, Y. Q., Yang, P., & Xu, J. M. (2016). Chitooligosaccharides promote radiosensitivity in colon cancer line SW480. World Journal of Gastroenterology, 22(22), 5193-5200. http://dx.doi.org/10.3748/wjg.v22.i22.5193 PMid:27298562.
    » http://dx.doi.org/10.3748/wjg.v22.i22.5193
  • Kim, J. Y., Lee, J. K., Lee, T. S., & Park, W. H. (2003). Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans International Journal of Biological Macromolecules, 32(1-2), 23-27. http://dx.doi.org/10.1016/S0141-8130(03)00021-7 PMid:12719128.
    » http://dx.doi.org/10.1016/S0141-8130(03)00021-7
  • Kim, S. K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydrate Polymers, 62(4), 357-368. http://dx.doi.org/10.1016/j.carbpol.2005.08.012
    » http://dx.doi.org/10.1016/j.carbpol.2005.08.012
  • Kim, S. K., Park, P. J., Yang, H. P., & Han, S. S. (2001). Subacute toxicity of chitosan oligosaccharide in Sprague-Dawley rats. Arzneimittel-Forschung, 51(9), 769-774. http://dx.doi.org/10.1055/s-0031-1300113 PMid:11642011.
    » http://dx.doi.org/10.1055/s-0031-1300113
  • Kong, S. Z., Li, J. C., Li, S. D., Liao, M. N., Li, C. P., Zheng, P. J., Guo, M. H., Tan, W. X., Zheng, Z. H., & Hu, Z. (2018). Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice. Marine Drugs, 16(6), 181. http://dx.doi.org/10.3390/md16060181 PMid:29794973.
    » http://dx.doi.org/10.3390/md16060181
  • Koppová, I., Bureš, M., & Simůnek, J. (2012). Intestinal bacterial population of healthy rats during the administration of chitosan and chitooligosaccharides. Folia Microbiologica, 57(4), 295-299. http://dx.doi.org/10.1007/s12223-012-0129-2 PMid:22528304.
    » http://dx.doi.org/10.1007/s12223-012-0129-2
  • Lee, H. W., Park, Y. S., Jung, J. S., & Shin, W. S. (2002). Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe, 8(6), 319-324. http://dx.doi.org/10.1016/S1075-9964(03)00030-1 PMid:16887676.
    » http://dx.doi.org/10.1016/S1075-9964(03)00030-1
  • Li, J., Cheng, Y., Chen, Y., Qu, H., Zhao, Y., Wen, C., & Zhou, Y. (2019). Dietary chitooligosaccharide inclusion as an alternative to antibiotics improves intestinal morphology, barrier function, antioxidant capacity, and immunity of broilers at early age. Animals, 9(8), 493. http://dx.doi.org/10.3390/ani9080493 PMid:31357589.
    » http://dx.doi.org/10.3390/ani9080493
  • Liang, S., Sun, Y., & Dai, X. (2018). A review of the preparation, analysis and biological functions of chitooligosaccharide. International Journal of Molecular Sciences, 19(8), 2197. http://dx.doi.org/10.3390/ijms19082197 PMid:30060500.
    » http://dx.doi.org/10.3390/ijms19082197
  • Liu, H. T., Huang, P., Ma, P., Liu, Q. S., Yu, C., & Du, Y. G. (2011). Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases. Acta Pharmacologica Sinica, 32(4), 478-486. http://dx.doi.org/10.1038/aps.2011.10 PMid:21468084.
    » http://dx.doi.org/10.1038/aps.2011.10
  • Mattaveewong, T., Wongkrasant, P., Chanchai, S., Pichyangkura, R., Chatsudthipong, V., & Muanprasat, C. (2016). Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydrate Polymers, 145, 30-36. http://dx.doi.org/10.1016/j.carbpol.2016.02.077 PMid:27106148.
    » http://dx.doi.org/10.1016/j.carbpol.2016.02.077
  • Mei, Y. X., Chen, H. X., Zhang, J., Zhang, X. D., & Liang, Y. X. (2013). Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. International Journal of Biological Macromolecules, 62, 330-335. http://dx.doi.org/10.1016/j.ijbiomac.2013.09.038 PMid:24080320.
    » http://dx.doi.org/10.1016/j.ijbiomac.2013.09.038
  • Muanprasat, C., & Chatsudthipong, V. (2017). Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacology & Therapeutics, 170, 80-97. http://dx.doi.org/10.1016/j.pharmthera.2016.10.013 PMid:27773783.
    » http://dx.doi.org/10.1016/j.pharmthera.2016.10.013
  • Naito, Y., Tago, K., Nagata, T., Furuya, M., Seki, T., Kato, H., Morimura, T., & Ohara, N. (2007). A 90-day ad libitum administration toxicity study of oligoglucosamine in F344 rats. Food and Chemical Toxicology, 45(9), 1575-1587. http://dx.doi.org/10.1016/j.fct.2007.02.018 PMid:17418928.
    » http://dx.doi.org/10.1016/j.fct.2007.02.018
  • Nam, K. S., & Shon, Y. H. (2009). Suppression of metastasis of human breast cancer cells by chitosan oligosaccharides. Journal of Microbiology and Biotechnology, 19(6), 629-633. http://dx.doi.org/10.4014/jmb.0811.603 PMid:19597323.
    » http://dx.doi.org/10.4014/jmb.0811.603
  • Nam, K. S., Kim, M. K., & Shon, Y. H. (2007). Inhibition of proinflammatory cytokine-induced invasiveness of HT-29 cells by chitosan oligosaccharide. Journal of Microbiology and Biotechnology, 17(12), 2042-2045. PMid:18167453.
  • Naveed, M., Phil, L., Sohail, M., Hasnat, M., Baig, M. M. F. A., Ihsan, A. U., Shumzaid, M., Kakar, M. U., Mehmood Khan, T., Akabar, M. D., Hussain, M. I., & Zhou, Q. G. (2019). Chitosan oligosaccharide (COS): an overview. International Journal of Biological Macromolecules, 129, 827-843. http://dx.doi.org/10.1016/j.ijbiomac.2019.01.192 PMid:30708011.
    » http://dx.doi.org/10.1016/j.ijbiomac.2019.01.192
  • Ngoc, L. S., Van, P. T. H., Nhi, T. T. Y. N., Dung, N. A., & Manh, T. D. (2022). Effects of dipping time in chitosan (CS) and polyvinyl alcohol (PVA) mixture to quality of orange fruits during storage. Food Science and Technology, 2022(42), e114221. http://dx.doi.org/10.1590/fst.114221
    » http://dx.doi.org/10.1590/fst.114221
  • Nurhayati, Y., Manaf, A. A., Osman, H., Abdullah, A., & Tang, J. (2016). Effect of chitosan oligosaccharides on the growth of bifidobacterium species. Malaysian Journal of Applied Sciences, 1(1), 13-23.
  • Okutan, G., & Boran, G. (2022). Effect of gelatin based edible coatings on quality of surimi from pearl mullet (Alburnus tarichi, Güldenstädt, 1814) during cold storage. Food Science and Technology, 2022(42), e34520. http://dx.doi.org/10.1590/fst.34520
    » http://dx.doi.org/10.1590/fst.34520
  • Qin, C., Gao, J., Wang, L., Zeng, L., & Liu, Y. (2006). Safety evaluation of short-term exposure to chitooligomers from enzymic preparation. Food and Chemical Toxicology, 44(6), 855-861. http://dx.doi.org/10.1016/j.fct.2005.11.009 PMid:16442198.
    » http://dx.doi.org/10.1016/j.fct.2005.11.009
  • Qin, Z., & Zhao, L. (2019). The history of chito/chitin oligosaccharides and its monomer. In L. Zhao (Ed.), Oligosaccharides of Chitin and Chitosan: bio-manufacture and applications (pp. 3-14). Singapore: Springer. http://dx.doi.org/10.1007/978-981-13-9402-7_1
    » http://dx.doi.org/10.1007/978-981-13-9402-7_1
  • Sánchez, Á., Mengíbar, M., Rivera-Rodríguez, G., Moerchbacher, B., Acosta, N., & Heras, A. (2017). The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides. Carbohydrate Polymers, 157, 251-257. http://dx.doi.org/10.1016/j.carbpol.2016.09.055 PMid:27987925.
    » http://dx.doi.org/10.1016/j.carbpol.2016.09.055
  • Selenius, O., Korpela, J., Salminen, S., & Gallego, C. G. (2018). Effect of Chitin and Chitooligosaccharide on In vitro Growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Applied Food Biotechnology, 5(3), 163-172.
  • Shen, K. T., Chen, M. H., Chan, H. Y., Jeng, J. H., & Wang, Y. J. (2009). Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food and Chemical Toxicology, 47(8), 1864-1871. http://dx.doi.org/10.1016/j.fct.2009.04.044 PMid:19427889.
    » http://dx.doi.org/10.1016/j.fct.2009.04.044
  • Shi, J., Li, H., Liang, S., Evivie, S. E., Huo, G., Li, B., & Liu, F. (2022). Selected lactobacilli strains inhibit inflammation in LPS-induced RAW264.7 macrophages by suppressing the TLR4-mediated NF-κB and MAPKs activation. Food Science and Technology, 2022(42), e107621. http://dx.doi.org/10.1590/fst.107621
    » http://dx.doi.org/10.1590/fst.107621
  • Tabassum, N., Ahmed, S., & Ali, M. A. (2021). Chitooligosaccharides and their structural-functional effect on hydrogels: a review. Carbohydrate Polymers, 261, 117882. http://dx.doi.org/10.1016/j.carbpol.2021.117882 PMid:33766369.
    » http://dx.doi.org/10.1016/j.carbpol.2021.117882
  • Tsai, G.-J., Su, W.-H., Chen, H.-C., & Pan, C.-L. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Science, 68(1), 170-177. http://dx.doi.org/10.1046/j.1444-2906.2002.00404.x
    » http://dx.doi.org/10.1046/j.1444-2906.2002.00404.x
  • Tsujimoto, Y., & Shimizu, S. (2000). Bcl-2 family: life-or-death switch. FEBS Letters, 466(1), 6-10. http://dx.doi.org/10.1016/S0014-5793(99)01761-5 PMid:10648802.
    » http://dx.doi.org/10.1016/S0014-5793(99)01761-5
  • Ugur, A., & Buruklar, T. (2022). Effects of Covid-19 pandemic on agri-food production and farmers. Food Science and Technology, 2022(42), e19821. http://dx.doi.org/10.1590/fst.19821
    » http://dx.doi.org/10.1590/fst.19821
  • Van Ta, Q., Kim, M. M., & Kim, S. K. (2006). Inhibitory effect of chitooligosaccharides on matrix metalloproteinase-9 in human fibrosarcoma cells (HT1080). Marine Biotechnology, 8(6), 593-599. http://dx.doi.org/10.1007/s10126-006-6031-7 PMid:17091328.
    » http://dx.doi.org/10.1007/s10126-006-6031-7
  • Vishu Kumar, A. B., Varadaraj, M. C., Gowda, L. R., & Tharanathan, R. N. (2005). Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli The Biochemical Journal, 391(Pt 2), 167-175. http://dx.doi.org/10.1042/BJ20050093 PMid:15932346.
    » http://dx.doi.org/10.1042/BJ20050093
  • Wan, J., Jiang, F., Xu, Q., Chen, D., Yu, B., Huang, Z., Mao, X., Yu, J., & He, J. (2017). New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity and intestinal development of weaned pigs. RSC Advances, 7(16), 9669-9679. http://dx.doi.org/10.1039/C7RA00142H
    » http://dx.doi.org/10.1039/C7RA00142H
  • Worku, M., Gyenai, K., & Mukhtar, H. (2011). Deciphering host pathogen interactions and identification of immunomodualtors to control milk borne pathogens. In 1st International Congress on Pathogens at the Human-Animal Interface Impact, Limitations and Needs in Developing Countriies. Addis Ababa, Ehiopia. Retrieved from http://icophai.org/sites/icophai/files/2011/sharedimages/2011Icophai/abstractBook
    » http://icophai.org/sites/icophai/files/2011/sharedimages/2011Icophai/abstractBook
  • Wu, S. J., Pan, S. K., Wang, H. B., & Wu, J. H. (2013). Preparation of chitooligosaccharides from cicada slough and their antibacterial activity. International Journal of Biological Macromolecules, 62, 348-351. http://dx.doi.org/10.1016/j.ijbiomac.2013.09.042 PMid:24095661.
    » http://dx.doi.org/10.1016/j.ijbiomac.2013.09.042
  • Xing, R., Liu, Y., Li, K., Yu, H., Liu, S., Yang, Y., Chen, X., & Li, P. (2017). Monomer composition of chitooligosaccharides obtained by different degradation methods and their effects on immunomodulatory activities. Carbohydrate Polymers, 157, 1288-1297. http://dx.doi.org/10.1016/j.carbpol.2016.11.001 PMid:27987835.
    » http://dx.doi.org/10.1016/j.carbpol.2016.11.001
  • Yan, Q., Zhai, W., Yang, C., Li, Z., Mao, L., Zhao, M., & Wu, X. (2021). The relationship among physical activity, intestinal flora, and cardiovascular disease. Cardiovascular Therapeutics, 2021, 3364418. http://dx.doi.org/10.1155/2021/3364418 PMid:34729078.
    » http://dx.doi.org/10.1155/2021/3364418
  • Ying, G. S., Lin, R., & Yuan, L. B. (2002). Study on the microecological effects of chitooligosaccharides. Chinese Journal of Microecology
  • Yoon, H. J., Park, H. S., Bom, H. S., Roh, Y. B., Kim, J. S., & Kim, Y. H. (2005). Chitosan oligosaccharide inhibits 203HgCl2-induced genotoxicity in mice: micronuclei occurrence and chromosomal aberration. Archives of Pharmacal Research, 28(9), 1079-1085. http://dx.doi.org/10.1007/BF02977405 PMid:16212241.
    » http://dx.doi.org/10.1007/BF02977405
  • Zeng, L., Qin, C., Wang, W., Chi, W., & Li, W. (2008). Absorption and distribution of chitosan in mice after oral administration. Carbohydrate Polymers, 71(3), 435-440. http://dx.doi.org/10.1016/j.carbpol.2007.06.016
    » http://dx.doi.org/10.1016/j.carbpol.2007.06.016
  • Zhai, X., Yang, X., Zou, P., Shao, Y., Yuan, S., Abd El-Aty, A. M., & Wang, J. (2018). Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice. Journal of Food Science, 83(2), 535-542. http://dx.doi.org/10.1111/1750-3841.14048 PMid:29350748.
    » http://dx.doi.org/10.1111/1750-3841.14048
  • Zhang, B. (2019). Dietary chitosan oligosaccharides modulate the growth, intestine digestive enzymes, body composition and nonspecific immunity of loach Paramisgurnus dabryanus Fish & Shellfish Immunology, 88, 359-363. http://dx.doi.org/10.1016/j.fsi.2019.03.006 PMid:30851451.
    » http://dx.doi.org/10.1016/j.fsi.2019.03.006
  • Zhang, W., Zhang, X., Zhang, Y., Wu, H., Liu, Q., Zhou, X., & Meng, Y. (2021). Analysis of changes of intestinal flora in elderly patients with Alzheimer’s disease and liver cancer and its correlation with abnormal gastrointestinal motility. Journal of Oncology, 2021, 7517379. http://dx.doi.org/10.1155/2021/7517379 PMid:34422052.
    » http://dx.doi.org/10.1155/2021/7517379
  • Zhou, Y., Li, S., Li, D., Wang, S., Zhao, W., Lv, Z., Li, X., Li, H., & Han, Y. (2020). Enzymatic preparation of chitooligosaccharides and their anti-obesity application. Bioscience, Biotechnology, and Biochemistry, 84(7), 1460-1466. http://dx.doi.org/10.1080/09168451.2020.1744110 PMid:32195627.
    » http://dx.doi.org/10.1080/09168451.2020.1744110

Publication Dates

  • Publication in this collection
    16 Jan 2023
  • Date of issue
    2023

History

  • Received
    17 Sept 2022
  • Accepted
    02 Nov 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br