Accessibility / Report Error

Chemical constituents and bioactivities of Blumea balsamifera (Sembung): a systematic review

Abstract

Blumea balsamifera (Sembung) is a very famous ethnic medicinal herbs and functional tea in many countries of Asia. Phytochemical investigations showed that B. balsamifera contains various type chemical components, including volatile oil, flavonoids, terpenoids, phenylpropanoids, polysaccharides, etc. B. balsamifera has many pharmacological activities such as antioxidation, antibiosis, antitumor, liver protection, anti-inflammation, analgesia, and wound healing. This paper reviewed the chemical constituents and pharmacological activities of B. balsamifera for the further research, development, and utilization of B. balsamifera.

Keywords:
Blumea balsamifera; phytochemical constituents; pharmacological activity

1 Introduction

Blumea balsamifera (L.) DC. is a very famous ethnic medicinal herbs and functional tea in many countries of Asia, such as China (named Ainaxiang), Malaysia (named Sembung), Philippines, Thailand, and Vietnam (Tan et al., 2020Tan, D., Yang, Z., Zhang, Q., Ling, H., Du, Y., Lu, Y., Xie, T., Zhou, X., Qin, L., & He, Y. (2020). Simultaneous quantitative determination of polyphenolic compounds in Blumea balsamifera (Ai-Na-Xiang, Sembung) by high-performance liquid chromatography with photodiode array detector. International Journal of Analytical Chemistry, 2020, 9731327. http://dx.doi.org/10.1155/2020/9731327. PMid:32256597.
http://dx.doi.org/10.1155/2020/9731327...
, 2023Tan, D., Wang, G., Wang, J., Feng, Y., & He, Y. (2023). Quantitive analysis of flavonoids in ainaxiang tablets by high-performance liquid chromatography. Food Science and Technology (Campinas), 43, e130422. http://dx.doi.org/10.1590/fst.130422.
http://dx.doi.org/10.1590/fst.130422...
; Wang et al., 2023Wang, G., Wang, J., Zhou, Z., Bai, L., Qin, L., He, Y., & Tan, D. (2023). Establishment of fingerprints and determination of various ingredients of Yanlishuang pills by GC-MS. Food Science and Technology (Campinas), 43, e121322. http://dx.doi.org/10.1590/fst.121322.
http://dx.doi.org/10.1590/fst.121322...
). The previous reports showed that B. balsamifera contains various type chemical components, including volatile oil, flavonoids, terpenoids, phenylpropanoids, polysaccharides, etc. and the chemical components of B. balsamifera have a variety of physiological activities, such as antioxidant, antibacterial, antifungal, anti-inflammatory, hypolipidemic, anti-infertility, liver protection, anti-diabetes, stomach protection, anti-tumor and so on (Tan et al., 2012Tan, D., Yan, Q., Kang, H., Zeng, W., & Feng, H. (2012). Chemical constituents of Blumea balsamifera DC. Natural Product Research and Development, 24(6), 718-721.; Widhiantara & Jawi, 2021Widhiantara, I. G., & Jawi, I. M. (2021). Phytochemical composition and health properties of Sembung plant (Blumea balsamifera): A review. Veterinary World, 14(5), 1185-1196. http://dx.doi.org/10.14202/vetworld.2021.1185-1196. PMid:34220120.
http://dx.doi.org/10.14202/vetworld.2021...
).

The two main ingredients (L-Borneol and Blumea balsamiferae oleum) in Blumea balsamifera are the main components of many proprietary Chinese medicines such as Yinlishuang pills, Yankang tablets, Jinhoujian Spray, and Xinwei Zhitong Capsules. In addition, B. balsamifera is also widely used in the field of cosmetics based on its unique aromatic odor and burn treatment effect. This paper reviewed the chemical constituents and pharmacological activities of B. balsamifera for the further research, development, and utilization of B. balsamifera.

2 Chemical composition

There are more than 100 volatile or nonvolatile chemical components isolated from B. balsamifera (Chen et al., 2009Chen, M., Jin, H. Z., Zhang, W. D., Yan, S. K., & Shen, Y. H. (2009). Chemical constituents of plants from the genus Blumea. Chemistry & Biodiversity, 6(6), 809-817. http://dx.doi.org/10.1002/cbdv.200800113. PMid:19551723.
http://dx.doi.org/10.1002/cbdv.200800113...
; Pang et al., 2014aPang, Y., Wang, D., Fan, Z., Chen, X., Yu, F., Hu, X., Wang, K., & Yuan, L. (2014a). Blumea balsamifera--a phytochemical and pharmacological review. Molecules (Basel, Switzerland), 19(7), 9453-9477. http://dx.doi.org/10.3390/molecules19079453. PMid:24995927.
http://dx.doi.org/10.3390/molecules19079...
), including volatile oils, flavonoids, terpenoids, phenylpropanoids, steroids, etc., of which volatile oils, flavonoids, and sesquiterpenes are the most abundant and are the main chemical components of B. balsamifera, with a variety of in vitro and in vivo biological activities.

2.1 Essential oil

Essential oil is an important kind of chemical components with pharmacological activity in B. balsamifera. The main essential oil components include (-)-bromelain, trans-gastrolene, γ-eudesmol, α-eudesmol, anthocyanin, gastrolene oxide, and camphor (He et al., 2020He, C., Yang, P., Wang, L., Jiang, X., Zhang, W., Liang, X., Yin, L., Yin, Z., Geng, Y., Zhong, Z., Song, X., Zou, Y., Li, L., & Lv, C. (2020). Antibacterial effect of Blumea balsamifera DC. essential oil against Haemophilus parasuis. Archives of Microbiology, 202(9), 2499-2508. http://dx.doi.org/10.1007/s00203-020-01946-4. PMid:32638056.
http://dx.doi.org/10.1007/s00203-020-019...
; Yang et al., 2021Yang, H., Gao, Y., Long, L., Cai, Y., Liao, J., Peng, J., & Wang, L. (2021). Antibacterial effect of Blumea balsamifera (L.) DC. essential oil against Staphylococcus aureus. Archives of Microbiology, 203(7), 3981-3988. http://dx.doi.org/10.1007/s00203-021-02384-6. PMid:34032873.
http://dx.doi.org/10.1007/s00203-021-023...
). Although the categories of volatile components in B. balsamifera are similar due to the origin, harvesting time, and extraction method, there are some differences in the content of specific components (Yuan et al., 2016Yuan, Y., Huang, M., Pang, Y. X., Yu, F. L., Chen, C., Liu, L. W., Chen, Z. X., Zhang, Y. B., Chen, X. L., & Hu, X. (2016). Variations in essential oil yield, composition, and antioxidant activity of different plant organs from Blumea balsamifera (L.) DC. at different growth times. Molecules (Basel, Switzerland), 21(8), 1024. http://dx.doi.org/10.3390/molecules21081024. PMid:27527137.
http://dx.doi.org/10.3390/molecules21081...
).

2.2 Flavonoids

Flavonoids are one of the more reported classes of components in B. balsamifera in recent years, and with a wide range of pharmacological activities have also greatly expanded the scope of clinical applications of B. balsamifera medicinal herbs(Pang et al., 2017Pang, Y., Zhang, Y., Huang, L., Xu, L., Wang, K., Wang, D., Guan, L., Zhang, Y., Yu, F., Chen, Z., & Xie, X. (2017). Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. International Journal of Molecular Sciences, 18(12), 2766. http://dx.doi.org/10.3390/ijms18122766. PMid:29257119.
http://dx.doi.org/10.3390/ijms18122766...
). At present, scholars have isolated a total of 56 flavonoids from different parts of B. balsamifera, including dihydroflavonoids (compounds 1-8), dihydroflavonols (compounds 9-22), flavonoids (compounds 23-28), flavonols (compounds 29-50), chalcones (compounds 51, 52), paclitaxel (compounds 53, 54), and flavonoid dimers (compounds 55, 56). The names of these compounds are shown in Table 1, and their structures are shown in Figure 1.

Table 1
Flavonoids isolated from B. balsamifera (1-56).
Figure 1
Flavonoids isolated from B. balsamifera.

In addition, in order to improve the production of flavonoid active ingredients in B. balsamifera in terms of biosynthesis, Xia et al. (2016)Xia, Q., Zhao, Z., Liu, H., Guan, L., & Pang, Y. (2016). Metabolic pathway of flavonoids in Blumea balsamifera. Zhongguo Zhongyao Zazhi, 41(19), 3630-3636. http://dx.doi.org/10.4268/cjcmm20161922. PMid:28925160.
http://dx.doi.org/10.4268/cjcmm20161922...
compared the transcriptome sequencing results of B. balsamifera with those of the biosynthetic pathways of flavonoids in other higher plants in the KEGG database and predicted that the metabolic pathway of flavonoids in B. balsamifera, and the key enzymes were CHS and chalcone isomerase, which provide a direction for further research on the biosynthesis of flavonoids in B. balsamifera.

2.3 Terpenoids

Terpenoids are a common class of compounds in B. balsamifera. Their cytoskeleton types include Monoterpenoids, sesquiterpenes, diterpenes, triterpenes and so on. Sesquiterpene lactone has attracted attention because of its cytotoxicity and potential antitumor activity. L-borneol, a famous traditional Chinese medicine, is a kind of bicyclic monoterpene, and its important plant source is B. balsamifera. At present, 5 sesquiterpenes, 51 sesquiterpenes and 5 diterpenes were isolated from B. balsamifera, and 2 ursolane triterpenes were isolated from the aboveground part of B. balsamifera. The name of the compound is shown in Table 2, and the chemical composition and structure are shown in Figure 2.

Table 2
Terpenoids isolated from B. balsamifera (57-118).
Figure 2
Terpenoids isolated from B. balsamifera.

2.4 Phenylpropanoids

Fourteen common phenylpropanoids and one coumarin were isolated from B. balsamifera, among which the simple phenylpropanoids existed as esters or glycosides. Phenylpropanoids in B. balsamifera are shown in Table 3 and Figure 3.

Table 3
Phenylpropanoids isolated from B. balsamifera (120-134).
Figure 3
Phenylpropanoids isolated from B. balsamifera.

2.5 Others

In addition to the above chemical components, it was found that B. balsamifera contains steroid compounds: β-sitosterol, stigmasterol, daucosterol, ergosterol peroxide, 4,22-stigmastadiene-3-one, 2-hydroxy-4,6-dimethoxyacetophenone, 2,4-dihydroxy-6-methoxyacetophenone, paraben, phytol, β-carotene, lutein, hentriacontane, et al (Table 4, Figure 4).

Table 4
Other compounds isolated from B. balsamifera (135-154).
Figure 4
Other compounds isolated from B. balsamifera.

3 Pharmacological activities

The previous pharmacological activity investigations on the whole plant of B. balsamifera and its crude extracts or chemical components found various pharmacological activities such as antioxidant, antibacterial, antitumor, hepatoprotective, anti-inflammatory, analgesic and wound healing promotion. Different chemical components show different pharmacological effects, such as: flavonoids play a certain role in antioxidation, antitumor, protect acute liver injury, promote blood aggregation and resist radiation. L-borneol and camphor in the volatile oil have good antibacterial, vasodilating and skin penetration promoting effects.

3.1 Antioxidant

Flavonoids and polyphenols are the main components of the antioxidant in B. balsamifera (Fazilatun et al., 2005Fazilatun, N., Nornisah, M., & Zhari, I. (2005). Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of Blumea balsamifera. Pharmaceutical Biology, 43(1), 15-20. http://dx.doi.org/10.1080/13880200590903264.
http://dx.doi.org/10.1080/13880200590903...
; Pang et al., 2014cPang, Y., Yuan, L., Wang, Z., Hu, X., Sun, J., & Yang, Q. (2014c). Antioxidant activities and anti-tyrosinase of extracts fromdifferent parts of Blumea balsamifera. Zhongguo Shiyan Fangjixue Zazhi, 20(18), 4-8. http://dx.doi.org/10.13422/j.cnki.syfjx.2014180004.
http://dx.doi.org/10.13422/j.cnki.syfjx....
). Nguyen et al. (2004)Nguyen, M. T., Awale, S., Tezuka, Y., Tran, Q. L., Watanabe, H., & Kadota, S. (2004). Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biological & Pharmaceutical Bulletin, 27(9), 1414-1421. http://dx.doi.org/10.1248/bpb.27.1414. PMid:15340229.
http://dx.doi.org/10.1248/bpb.27.1414...
investigated the effect of three crude extracts (methanol, methanol-water (1:1), and water) in inhibiting xanthine oxidase and found that among the three crude extracts, methanol extract was the most effective, methanol-water was the second most effective, and water was the least active. Nessa et al. (2004)Nessa, F., Ismail, Z., Mohamed, N., & Haris, M. (2004). Free radical-scavenging activity of organic extracts and of pure flavonoids of Blumea balsamifera DC leaves. Food Chemistry, 88(2), 243-252. http://dx.doi.org/10.1016/j.foodchem.2004.01.041.
http://dx.doi.org/10.1016/j.foodchem.200...
further investigated the antioxidant aspects of the crude extracts of B. balsamifera and concluded that different crude extracts of B. balsamifera have different degrees of antioxidant activity. Based on the above experimental results, Fazilatun Nessa inferred that the antioxidant activity of the flavonoids in B. balsamifera is mainly related to the number of hydroxyl groups, and the antioxidant activity of flavonoids containing one free hydroxyl group is greater than that of the methylated compounds (Fazilatun et al., 2005Fazilatun, N., Nornisah, M., & Zhari, I. (2005). Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of Blumea balsamifera. Pharmaceutical Biology, 43(1), 15-20. http://dx.doi.org/10.1080/13880200590903264.
http://dx.doi.org/10.1080/13880200590903...
). In addition, Hu et al. (2018)Hu, Y., Li, Y., Li, X., Hao, X., Yang, W., & Gu, W. (2018). Study on the flavonoids in Blumea balsamifera DC and their antioxidant activity as well as α-glucosidase inhibitory activity. Natural Product Research and Development, 30(11), 1898-1903. found the strong antioxidant activity of flavonoids in B. balsamifera leaves by DPPH radical scavenging assay. Zhou et al. (2020)Zhou, L., Luo, S., Li, J., Zhou, Y., Chen, T., Feng, S., & Ding, C. (2020). Simultaneous optimization of extraction and antioxidant activity from Blumea laciniata and the protective effect on Hela cells against oxidative damage. Arabian Journal of Chemistry, 13(12), 9231-9242. http://dx.doi.org/10.1016/j.arabjc.2020.11.007.
http://dx.doi.org/10.1016/j.arabjc.2020....
demonstrated that the antioxidant capacity was related to the presence of polyphenolic compounds by the effector surface method and Huihui & Jin (2013)Huihui, T., & Jin, M. (2013). Antioxidant and antimicrobial activities of essential oil of Blumea balsamifera (L.) DC. leaves cultivated in Hainan province in China. Shipin Yu Fajiao Gongye, 39(06), 47-52. http://dx.doi.org/10.13995/j.cnki.11-1802/ts.2013.06.025.
http://dx.doi.org/10.13995/j.cnki.11-180...
found the strong antioxidant activity of essential oil of B. balsamifera leaves after DPPH radical scavenging assay, β-carotene bleaching assay and thiobarbituric acid assay. The above studies indicated that the essential oil of B. balsamifera has significant antioxidant activity and has the potential to be a natural antioxidant for food and cosmetics.

3.2 Antibacterial

Huihui & Jin (2013)Huihui, T., & Jin, M. (2013). Antioxidant and antimicrobial activities of essential oil of Blumea balsamifera (L.) DC. leaves cultivated in Hainan province in China. Shipin Yu Fajiao Gongye, 39(06), 47-52. http://dx.doi.org/10.13995/j.cnki.11-1802/ts.2013.06.025.
http://dx.doi.org/10.13995/j.cnki.11-180...
confirmed that the essential oil had inhibitory activity against Staphylococcus aureus, Aspergillus flavus, Candida albicans, Enterobacter, Salmonella and Listeria monocytogenes. And related studies found that B. balsamifera extract and volatile oil have anti-bacterial and fungal effects: n-hexane extract has inhibitory effect on Enterobacter cloacae and Staphylococcus aureus, dichloromethane extract has an inhibitory effect on Enterobacter cloacae, while volatile oil has a strong inhibitory effect on Bacillus cereus, Staphylococcus aureus and Candida albicans (Sakee et al., 2011Sakee, U., Maneerat, S., Cushnie, T. P., & De-Eknamkul, W. (2011). Antimicrobial activity of Blumea balsamifera (Lin.) DC. extracts and essential oil. Natural Product Research, 25(19), 1849-1856. http://dx.doi.org/10.1080/14786419.2010.485573. PMid:21500092.
http://dx.doi.org/10.1080/14786419.2010....
). Volatile oil can destroy the integrity of the Staphylococcus aureus cell membrane, change its cell membrane permeability, inhibit bacterial nucleic acid and protein synthesis, cause amino acid metabolism disorder, and affect the activity of various enzymes and substance transport (Yang et al., 2021Yang, H., Gao, Y., Long, L., Cai, Y., Liao, J., Peng, J., & Wang, L. (2021). Antibacterial effect of Blumea balsamifera (L.) DC. essential oil against Staphylococcus aureus. Archives of Microbiology, 203(7), 3981-3988. http://dx.doi.org/10.1007/s00203-021-02384-6. PMid:34032873.
http://dx.doi.org/10.1007/s00203-021-023...
). Wang et al. (2019)Wang, H., Yuan, C., & Pang, Y. (2019). Antibacterial activity of flavonoids from Blumea balsamifera. Redai Zuowu Xuebao, 40(9), 1810-1816. http://dx.doi.org/10.3969/j.issn.1000-2561.2019.09.020.
http://dx.doi.org/10.3969/j.issn.1000-25...
isolated 15 monomer compounds from ethyl acetate, mainly flavonoids, and evaluated their antibacterial activity. It was found that the antimicrobial activity of vanillin against Staphylococcus aureus was the strongest, and the minimum inhibitory concentration (MIC) was 32 μg / mL. In addition, He et al. (2020)He, C., Yang, P., Wang, L., Jiang, X., Zhang, W., Liang, X., Yin, L., Yin, Z., Geng, Y., Zhong, Z., Song, X., Zou, Y., Li, L., & Lv, C. (2020). Antibacterial effect of Blumea balsamifera DC. essential oil against Haemophilus parasuis. Archives of Microbiology, 202(9), 2499-2508. http://dx.doi.org/10.1007/s00203-020-01946-4. PMid:32638056.
http://dx.doi.org/10.1007/s00203-020-019...
studied the in vitro bacteriostatic effect of essential oil on Haemophilus parasuis and evaluated the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the essential oil. Wen et al. (2015)Wen, Q., Pang, Y., Hu, X., Yang, Q., Zhang, Y., & Zou, J. (2015). Study on antibacterial activity of extracts from residues of Blumea balsamifera(L.) DC. in vitro. Guangdong Yaoxueyuan Xuebao, 31(06), 713-716. http://dx.doi.org/10.3969/j.issn.1006-8783.2015.06.005.
http://dx.doi.org/10.3969/j.issn.1006-87...
found that the extract of B. balsamifera residue has good antibacterial activity in vitro, and its chloroform extract has a significant inhibitory effect on Escherichia coli and type B Hemolytic streptococcus. The above studies show that B. balsamifera extract has a certain inhibitory effect on several infectious and toxin-producing microorganisms and can be used to prevent and treat microbial diseases.

3.3 Antitumor

Toshio et al (Norikura et al., 2008aNorikura, T., Kojima-Yuasa, A., Shimizu, M., Huang, X., Xu, S., Kametani, S., Rho, S. N., Kennedy, D. O., & Matsui-Yuasa, I. (2008a). Anticancer activities and mechanisms of Blumea balsamifera extract in hepatocellular carcinoma cells. The American Journal of Chinese Medicine, 36(2), 411-424. http://dx.doi.org/10.1142/S0192415X08005862. PMid:18457370.
http://dx.doi.org/10.1142/S0192415X08005...
, bNorikura, T., Kojima-Yuasa, A., Shimizu, M., Huang, X., Xu, S., Kametani, S., Rho, S. N., Kennedy, D. O., & Matsui-Yuasa, I. (2008b). Mechanism of growth inhibitory effect of Blumea balsamifera extract in hepatocellular carcinoma. Bioscience, Biotechnology, and Biochemistry, 72(5), 1183-1189. http://dx.doi.org/10.1271/bbb.70586. PMid:18460811.
http://dx.doi.org/10.1271/bbb.70586...
) found that methanolic extract of B. balsamifera (BME) inhibited the growth of rat and human hepatocellular carcinoma cells. In addition, BME reduced the levels of proliferation-inducing ligands that stimulate tumor cell growth, suggesting a potential therapeutic effect of BME in patients with hepatocellular carcinoma. Hu et al. (2018) used cervical cancer (HeLa), breast cancer (MCF-7), lung cancer (A549), gastric cancer (MGC-803), and colon cancer (COLO-205) cell lines as donor cell lines and screened the cytotoxic activity of two sesquiterpene lactones isolated and purified from B. balsamifera using MTT method. The results showed that both Blumeaene E and Blumeaene N have cytotoxic activity.

3.4 Hepatoprotective effect

Xu & Zhao (1998)Xu, S., & Zhao, J. (1998). Protective effects of dihydroflavonoids from Erna incense on experimental liver injury in rats. Zhongguo Yaolixue Tongbao, (02), 99-100. investigated the protective effects of 5,3',5'-trihydroxy-7-methoxydihydroflavone (BF-I) and four compounds (BF-II, BF-III, BF-IV, BF-V) obtained by structural modification of BF-I on acute liver injury. The results demonstrated that all five compounds had significant protective effects against acute liver injury caused by CCl4, AAP and TAA in rats, with BF-II showing the strongest activity, followed by BF-I, and then BF-III, BF-IV and BF-V. Zhao & Xu (1997)Zhao, J., & Xu, S. (1997). Effects of Blumea flavanones on lipid peroxidation and reactive oxygen radicals. Zhongguo Yaolixue Tongbao, 13(5), 438-441. conducted a study on the pharmacological activity of BF-I and its structural modifiers and found that dihydroflavonoids have a strong inhibitory effect on lipid peroxidation. Pu et al. (2000)Pu, H., Zhao, J., Xu, S., & Hu, Q. (2000). Protective actions of blumea flavanones on primary cultured hepatocytes against lipid peroxidation. Chinese Traditional and Herbal Drugs, 2, 35-37. further demonstrated the protective effect of five dihydroflavonoids against CCl4 or cysteine-induced lipid peroxidation in hepatocytes.

3.5 Anti-inflammatory and analgesic

In vivo experiments showed that essential oil of B. balsamifera significantly inhibited xylene-induced auricular swelling in mice, reduced the number of twists in acetic acid-induced mice, decreased the content of prostaglandin E2 in the inflammatory tissue of dimethylamine-induced mouse ears, and enhanced the activity of superoxide dismutase in mouse serum (Ma et al., 2016Ma, Q., Wang, D., Pang, Y., Yang, Q., Li, X., & Xu, L. (2016). Anti-inflammatory effect of blumea balsamifera oil against mouse ear edema. Guizhou Agricultural Sciences, 44(04), 100-102.; Yi et al., 2016Yi, Q., Wang, Y., & Wang, L. (2016). Evaluation of pharmacological effects of blumea balsamifera oil. Heilongjiang Animal Science And veterinary. Medicine, (16), 149-151. http://dx.doi.org/10.13881/j.cnki.hljxmsy.2016.1495.
http://dx.doi.org/10.13881/j.cnki.hljxms...
). In vitro experiments showed that essential oil significantly improved the morphological changes of LPS-induced RAW264.7 macrophages and reduced apoptosis. In addition, essential oil significantly inhibited the expression of leukocyte differentiation antigen 14, Toll-like receptor 4, myeloid differentiation primary response gene 88, and NOD-like receptor thermoprotein structural domain-associated protein 3 inflammatory vesicles in the NFκB signaling pathway (Liao et al., 2021Liao, J., Xie, X., Wang, W., Gao, Y., Cai, Y., Peng, J., Li, T., Yi, Q., He, C., & Wang, L. (2021). Anti-inflammatory activity of essential oil from leaves of Blumea balsamifera (L.) DC through Inhibiting TLR4/NF-kB signaling pathways and NLRP3 inflammasome activation in LPS-induced RAW264.7 macrophage cells. Journal of Essential Oil-Bearing Plants, 24(2), 160-176. http://dx.doi.org/10.1080/0972060X.2021.1912645.
http://dx.doi.org/10.1080/0972060X.2021....
). Through a comparative study of the anti-inflammatory effects of B. balsamifera herbs from different origins in Guizhou, Li et al. (2018)Li, X., Wu, H., Yang, Y., Wang, X., & Xu, F. (2018). Comparison of anti-inflammatory effects of Blumea balsamifera from different areas of Guizhou. Lishizhen Medicine and Materia Medica Research, 29(1), 200-201. found that all the herbs from different origins also had certain anti-acute and chronic inflammatory effects. Cai et al. (2021)Cai, Y., Liao, J., Peng, J., Gao, Y., Wang, W., Yi, Q., & Wang, L. (2021). Screening of anti-inflammatory substances from Blumea balsamifera oil and their effects on inflammatory factors. Natural Product Research and Development, 33(3), 402-409. found that linalool and trans-stilbene are important anti-inflammatory components of essential oil, both of which can inhibit the release and expression of cellular inflammatory factors and inflammatory mediators.

3.6 Promotion of wound healing

By exploring the healing effect of essential oil on a rat deep second-degree burn model, Fan et al. (2015)Fan, Z. W., Pang, Y. X., Wang, K., Yu, F. L., Wang, D., Yang, Q., Ma, Q. S., Li, X. T., Zou, J., Zhang, W. Q., & Wu, L. F. (2015). Blumea balsamifera oil for the acceleration of healing of burn injuries. Molecules (Basel, Switzerland), 20(9), 17166-17179. http://dx.doi.org/10.3390/molecules200917166. PMid:26393555.
http://dx.doi.org/10.3390/molecules20091...
found that essential oil treatment significantly reduced the water content of burned rat tissues, shortened the crusting time, accelerated healing, and significantly increased the expression of growth factors in tissues. Pang et al. (2014b)Pang, Y., Wang, D., Hu, X., Wang, H., Fu, W., Fan, Z., Chen, X., & Yu, F. (2014b). Effect of volatile oil from Blumea Balsamifera (L.) DC. leaves on wound healing in mice. Journal of Traditional Chinese Medicine, 34(6), 716-724. http://dx.doi.org/10.1016/S0254-6272(15)30087-X. PMid:25618977.
http://dx.doi.org/10.1016/S0254-6272(15)...
found that diluted essential oil promoted capillary regeneration, blood circulation, collagen deposition, granulation tissue formation, epithelial deposition and wound contraction by observing the effect of essential oil of B. balsamifera on wound healing in mice. The mechanism of action may be related to the induction of neuropeptide substance P secretion and mesenchymal cell proliferation and differentiation. However, undiluted essential oil may lead to skin thickening and sclerosis, inhibition of collagen synthesis and delayed skin wound healing. total flavonoids of B. balsamifera also promote skin wound healing in rats and the mechanism of action is related to increased expression levels of vascular endothelial growth factor, transforming growth factor β and hydroxyproline content at different stages of healing (Pang et al., 2017Pang, Y., Zhang, Y., Huang, L., Xu, L., Wang, K., Wang, D., Guan, L., Zhang, Y., Yu, F., Chen, Z., & Xie, X. (2017). Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. International Journal of Molecular Sciences, 18(12), 2766. http://dx.doi.org/10.3390/ijms18122766. PMid:29257119.
http://dx.doi.org/10.3390/ijms18122766...
).

3.7 Hypoglycemia

Yan et al. (2014Yan, X., Zuo, J., Li, X., & Chen, J. W. (2014). Antihyperglycemic effect of various fractions from residues of Blumea balsamifera. Chinese Herbal Medicines, 6(2), 4.) found that the aqueous solutionof B. balsamifera (BBW) after extraction of volatile oil and ethyl acetate extract (BBE) of the alcoholic extract of the pomace after extraction of volatile oil had an inhibitory effect on α-glucosidase. Hu et al. (2018)Hu, Y., Li, Y., Li, X., Hao, X., Yang, W., & Gu, W. (2018). Study on the flavonoids in Blumea balsamifera DC and their antioxidant activity as well as α-glucosidase inhibitory activity. Natural Product Research and Development, 30(11), 1898-1903. obtained nine flavonoids from the leaves of B. balsamifera, 5 of which showed inhibitory effects on α-glucosidase. In addition, the aqueous and methanolic extracts of B. balsamifera also inhibited protein tyrosine phosphatase 1B with IC50 of 2.26 and 5.73 μg/mL, respectively (Saifudin et al., 2013Saifudin, A., Kadota, S., & Tezuka, Y. (2013). Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum. Journal of Natural Medicines, 67(2), 264-270. http://dx.doi.org/10.1007/s11418-012-0674-7. PMid:22645080.
http://dx.doi.org/10.1007/s11418-012-067...
, 2012Saifudin, A., Tanaka, K., Kadota, S., & Tezuka, Y. (2012). Chemical constituents of Blumea balsamifera of Indonesia and their protein tyrosine phosphatase 1B inhibitory activity. Natural Product Communications, 7(7), 815-818. http://dx.doi.org/10.1177/1934578X1200700701. PMid:22908553.
http://dx.doi.org/10.1177/1934578X120070...
).

3.8 Other pharmacological activities

Numerous studies have shown that B. balsamifera is an important medicinal plant, and pharmacological studies have focused on anti-microbial, anti-inflammatory effects, anti-tumor, wound healing, and anti-pathogenic activities, which confirm the traditional medicinal uses of the plant. In addition, several new pharmacological activities have been identified, such as antiviral (Xiong et al., 2022Xiong, Y., Yi, P., Li, Y., Gao, R., Chen, J., Hu, Z., Lou, H., Du, C., Zhang, J., Zhang, Y., Yuan, C., Huang, L., Hao, X., & Gu, W. (2022). New sesquiterpeniod esters form Blumea balsamifera (L.) DC. and their anti-influenza virus activity. Natural Product Research, 36(5), 1151-1160. http://dx.doi.org/10.1080/14786419.2020.1861615. PMid:33331176.
http://dx.doi.org/10.1080/14786419.2020....
), anti-xanthine oxidase (Nguyen & Nguyen, 2012Nguyen, M. T. T., & Nguyen, N. T. (2012). Xanthine oxidase inhibitors from Vietnamese Blumea balsamifera L. Phytotherapy Research, 26(8), 1178-1181. http://dx.doi.org/10.1002/ptr.3710. PMid:22821854.
http://dx.doi.org/10.1002/ptr.3710...
), and anti-obesity activities (Kubota et al., 2009Kubota, H., Kojima-Yuasa, A., Morii, R., Huang, X., Norikura, T., Rho, S. N., & Matsui-Yuasa, I. (2009). Anti-obesity effect of Blumea balsamifera extract in 3T3-L1 preadipocytes and adipocytes. The American Journal of Chinese Medicine, 37(5), 843-854. http://dx.doi.org/10.1142/S0192415X09007326. PMid:19885945.
http://dx.doi.org/10.1142/S0192415X09007...
).

4 Conclusion

In recent years, B. balsamifera has received more and more attention in many countries of Asia and extensive research has been conducted on its chemical constituents and pharmacological activities. Till now, 154 small molecular compounds including flavonoids, terpenoids, phenylpropanoids, steroids, etc. have been reported from B. balsamifera. The pharmacological investigations showed that B. balsamifera has various effects such as antioxidant, antibacterial, antitumor, hepatoprotective, anti-inflammatory, analgesic and wound healing promotion. This paper reviewed the chemical constituents and pharmacological activities of B. balsamifera for the further research, development, and utilization of B. balsamifera.

Acknowledgements

This work was financially supported by the Department of Science and Technology of Guizhou Province (Nos. QKHZC [2021] general 476, QKHZC [2023] general 426 and QKHPTRC [2018]5772-001), Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile (QJJ [2022]048 and QJJ [2022]006).

  • Practical Application: The review provides a comprehensive information for consumers and researchers to understand Sembung Chemical constituents and bioactivities.

References

  • Ali, D. M., Wong, K. C., & Lim, P. K. (2005). Flavonoids from Blumea balsamifera. Fitoterapia, 76(1), 128-130. http://dx.doi.org/10.1016/j.fitote.2004.10.015 PMid:15664477.
    » http://dx.doi.org/10.1016/j.fitote.2004.10.015
  • Bouktaib, M., Lebrun, S., Atmani, A., & Rolando, C. (2002). Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions. Tetrahedron, 58(50), 10001-10009. http://dx.doi.org/10.1016/S0040-4020(02)01306-6
    » http://dx.doi.org/10.1016/S0040-4020(02)01306-6
  • Cai, Y., Liao, J., Peng, J., Gao, Y., Wang, W., Yi, Q., & Wang, L. (2021). Screening of anti-inflammatory substances from Blumea balsamifera oil and their effects on inflammatory factors. Natural Product Research and Development, 33(3), 402-409.
  • Cao, J., Dang, Q., Fu, H., Yao, Y., & Pei, Y. (2007). Isolation and Identification of Chemical Constituents from Blumea riparia. Journal of Shenyang Pharmaceutical University, 24(10), 615-618.
  • Chen, M., Jiang, J., & Ma, W. (2020). Chemical constituents of ethyl acetate fraction of Blumea riparia (BI.) DC. Guangxi Shifan Daxue Xuebao. Ziran Kexue Ban, 38(6), 82-87. http://dx.doi.org/10.16088/j.issn.1001-6600.2020.06.010
    » http://dx.doi.org/10.16088/j.issn.1001-6600.2020.06.010
  • Chen, M., Jin, H. Z., Zhang, W. D., Yan, S. K., & Shen, Y. H. (2009). Chemical constituents of plants from the genus Blumea. Chemistry & Biodiversity, 6(6), 809-817. http://dx.doi.org/10.1002/cbdv.200800113 PMid:19551723.
    » http://dx.doi.org/10.1002/cbdv.200800113
  • Chen, M., Jin, H., Yan, L., Hu, X., Qin, J., Liu, J., Yan, S., & Zhang, W. (2010a). Flavonoids from Blumea balsamifera. Natural Product Research and Development, 22(6), 991-994.
  • Chen, M., Qin, J. J., Fu, J. J., Hu, X. J., Liu, X. H., Zhang, W. D., & Jin, H. Z. (2010b). Blumeaenes A-J, sesquiterpenoid esters from Blumea balsamifera with NO inhibitory activity. Planta Medica, 76(9), 897-902. http://dx.doi.org/10.1055/s-0029-1240800 PMid:20101563.
    » http://dx.doi.org/10.1055/s-0029-1240800
  • Fan, Z. W., Pang, Y. X., Wang, K., Yu, F. L., Wang, D., Yang, Q., Ma, Q. S., Li, X. T., Zou, J., Zhang, W. Q., & Wu, L. F. (2015). Blumea balsamifera oil for the acceleration of healing of burn injuries. Molecules (Basel, Switzerland), 20(9), 17166-17179. http://dx.doi.org/10.3390/molecules200917166 PMid:26393555.
    » http://dx.doi.org/10.3390/molecules200917166
  • Fazilatun, N., Nornisah, M., & Zhari, I. (2005). Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of Blumea balsamifera. Pharmaceutical Biology, 43(1), 15-20. http://dx.doi.org/10.1080/13880200590903264
    » http://dx.doi.org/10.1080/13880200590903264
  • Gao, M., He, T., Zhang, X., & Hua, L. (2016). Study of flavonoid constituents in the seeds of Hovenia trichocarpa. Journal of Pharmacy Research, 35(08), 453-456. http://dx.doi.org/10.13506/j.cnki.jpr.2016.08.004
    » http://dx.doi.org/10.13506/j.cnki.jpr.2016.08.004
  • Hanh, T. T. H., Hang, L. T. T., Huong Giang, V., Trung, N. Q., Thanh, N. V., Quang, T. H., & Cuong, N. X. (2021). Chemical constituents of Blumea balsamifera. Phytochemistry Letters, 43, 35-39. http://dx.doi.org/10.1016/j.phytol.2021.03.002
    » http://dx.doi.org/10.1016/j.phytol.2021.03.002
  • He, C., Yang, P., Wang, L., Jiang, X., Zhang, W., Liang, X., Yin, L., Yin, Z., Geng, Y., Zhong, Z., Song, X., Zou, Y., Li, L., & Lv, C. (2020). Antibacterial effect of Blumea balsamifera DC. essential oil against Haemophilus parasuis. Archives of Microbiology, 202(9), 2499-2508. http://dx.doi.org/10.1007/s00203-020-01946-4 PMid:32638056.
    » http://dx.doi.org/10.1007/s00203-020-01946-4
  • Hu, Y., Li, Y., Li, X., Hao, X., Yang, W., & Gu, W. (2018). Study on the flavonoids in Blumea balsamifera DC and their antioxidant activity as well as α-glucosidase inhibitory activity. Natural Product Research and Development, 30(11), 1898-1903.
  • Huang, H., Ding, F., Li, P., & Li, J. (2014). Chemical constituents of Blumea balsamifera. Zhongguo Shiyan Fangjixue Zazhi, 20(21), 106-108. http://dx.doi.org/10.13422/j.cnki.syfjx.2014210106
    » http://dx.doi.org/10.13422/j.cnki.syfjx.2014210106
  • Huang, Y., Zhu, T., Wen, Y., Wang, H., & Chen, Y. (2010). Isolation and identification of chemical constituents from Blumea balsanifera. Guangxi Zhi Wu, 30(4), 560-562.
  • Huihui, T., & Jin, M. (2013). Antioxidant and antimicrobial activities of essential oil of Blumea balsamifera (L.) DC. leaves cultivated in Hainan province in China. Shipin Yu Fajiao Gongye, 39(06), 47-52. http://dx.doi.org/10.13995/j.cnki.11-1802/ts.2013.06.025
    » http://dx.doi.org/10.13995/j.cnki.11-1802/ts.2013.06.025
  • Kubota, H., Kojima-Yuasa, A., Morii, R., Huang, X., Norikura, T., Rho, S. N., & Matsui-Yuasa, I. (2009). Anti-obesity effect of Blumea balsamifera extract in 3T3-L1 preadipocytes and adipocytes. The American Journal of Chinese Medicine, 37(5), 843-854. http://dx.doi.org/10.1142/S0192415X09007326 PMid:19885945.
    » http://dx.doi.org/10.1142/S0192415X09007326
  • Li, X., Wu, H., Yang, Y., Wang, X., & Xu, F. (2018). Comparison of anti-inflammatory effects of Blumea balsamifera from different areas of Guizhou. Lishizhen Medicine and Materia Medica Research, 29(1), 200-201.
  • Liao, J., Xie, X., Wang, W., Gao, Y., Cai, Y., Peng, J., Li, T., Yi, Q., He, C., & Wang, L. (2021). Anti-inflammatory activity of essential oil from leaves of Blumea balsamifera (L.) DC through Inhibiting TLR4/NF-kB signaling pathways and NLRP3 inflammasome activation in LPS-induced RAW264.7 macrophage cells. Journal of Essential Oil-Bearing Plants, 24(2), 160-176. http://dx.doi.org/10.1080/0972060X.2021.1912645
    » http://dx.doi.org/10.1080/0972060X.2021.1912645
  • Ma, J., Ren, Q., Dong, B., Shi, Z., Zhang, J., Jin, D. Q., Xu, J., Ohizumi, Y., Lee, D., & Guo, Y. (2018). NO inhibitory constituents as potential anti-neuroinflammatory agents for AD from Blumea balsamifera. Bioorganic Chemistry, 76, 449-457. http://dx.doi.org/10.1016/j.bioorg.2017.12.008 PMid:29275263.
    » http://dx.doi.org/10.1016/j.bioorg.2017.12.008
  • Ma, Q., Wang, D., Pang, Y., Yang, Q., Li, X., & Xu, L. (2016). Anti-inflammatory effect of blumea balsamifera oil against mouse ear edema. Guizhou Agricultural Sciences, 44(04), 100-102.
  • Nessa, F., Ismail, Z., Mohamed, N., & Haris, M. (2004). Free radical-scavenging activity of organic extracts and of pure flavonoids of Blumea balsamifera DC leaves. Food Chemistry, 88(2), 243-252. http://dx.doi.org/10.1016/j.foodchem.2004.01.041
    » http://dx.doi.org/10.1016/j.foodchem.2004.01.041
  • Nguyen, M. T. T., & Nguyen, N. T. (2012). Xanthine oxidase inhibitors from Vietnamese Blumea balsamifera L. Phytotherapy Research, 26(8), 1178-1181. http://dx.doi.org/10.1002/ptr.3710 PMid:22821854.
    » http://dx.doi.org/10.1002/ptr.3710
  • Nguyen, M. T., Awale, S., Tezuka, Y., Tran, Q. L., Watanabe, H., & Kadota, S. (2004). Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biological & Pharmaceutical Bulletin, 27(9), 1414-1421. http://dx.doi.org/10.1248/bpb.27.1414 PMid:15340229.
    » http://dx.doi.org/10.1248/bpb.27.1414
  • Norikura, T., Kojima-Yuasa, A., Shimizu, M., Huang, X., Xu, S., Kametani, S., Rho, S. N., Kennedy, D. O., & Matsui-Yuasa, I. (2008a). Anticancer activities and mechanisms of Blumea balsamifera extract in hepatocellular carcinoma cells. The American Journal of Chinese Medicine, 36(2), 411-424. http://dx.doi.org/10.1142/S0192415X08005862 PMid:18457370.
    » http://dx.doi.org/10.1142/S0192415X08005862
  • Norikura, T., Kojima-Yuasa, A., Shimizu, M., Huang, X., Xu, S., Kametani, S., Rho, S. N., Kennedy, D. O., & Matsui-Yuasa, I. (2008b). Mechanism of growth inhibitory effect of Blumea balsamifera extract in hepatocellular carcinoma. Bioscience, Biotechnology, and Biochemistry, 72(5), 1183-1189. http://dx.doi.org/10.1271/bbb.70586 PMid:18460811.
    » http://dx.doi.org/10.1271/bbb.70586
  • Osaki, N., Koyano, T., Kowithayakorn, T., Hayashi, M., Komiyama, K., & Ishibashi, M. (2005). Sesquiterpenoids and plasmin-inhibitory flavonoids from Blumea balsamifera. Journal of Natural Products, 68(3), 447-449. http://dx.doi.org/10.1021/np049622e PMid:15787457.
    » http://dx.doi.org/10.1021/np049622e
  • Pang, Y., Wang, D., Fan, Z., Chen, X., Yu, F., Hu, X., Wang, K., & Yuan, L. (2014a). Blumea balsamifera--a phytochemical and pharmacological review. Molecules (Basel, Switzerland), 19(7), 9453-9477. http://dx.doi.org/10.3390/molecules19079453 PMid:24995927.
    » http://dx.doi.org/10.3390/molecules19079453
  • Pang, Y., Wang, D., Hu, X., Wang, H., Fu, W., Fan, Z., Chen, X., & Yu, F. (2014b). Effect of volatile oil from Blumea Balsamifera (L.) DC. leaves on wound healing in mice. Journal of Traditional Chinese Medicine, 34(6), 716-724. http://dx.doi.org/10.1016/S0254-6272(15)30087-X PMid:25618977.
    » http://dx.doi.org/10.1016/S0254-6272(15)30087-X
  • Pang, Y., Yuan, C., Hu, X., & Huang, L. (2019). Chemical constituents of li minority herb Blumea balsamifera. Zhong Yao Cai, 42(01), 91-95. http://dx.doi.org/10.13863/j.issn1001-4454.2019.01.020
    » http://dx.doi.org/10.13863/j.issn1001-4454.2019.01.020
  • Pang, Y., Yuan, L., Wang, Z., Hu, X., Sun, J., & Yang, Q. (2014c). Antioxidant activities and anti-tyrosinase of extracts fromdifferent parts of Blumea balsamifera. Zhongguo Shiyan Fangjixue Zazhi, 20(18), 4-8. http://dx.doi.org/10.13422/j.cnki.syfjx.2014180004
    » http://dx.doi.org/10.13422/j.cnki.syfjx.2014180004
  • Pang, Y., Zhang, Y., Huang, L., Xu, L., Wang, K., Wang, D., Guan, L., Zhang, Y., Yu, F., Chen, Z., & Xie, X. (2017). Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. International Journal of Molecular Sciences, 18(12), 2766. http://dx.doi.org/10.3390/ijms18122766 PMid:29257119.
    » http://dx.doi.org/10.3390/ijms18122766
  • Pu, H., Zhao, J., Xu, S., & Hu, Q. (2000). Protective actions of blumea flavanones on primary cultured hepatocytes against lipid peroxidation. Chinese Traditional and Herbal Drugs, 2, 35-37.
  • Ragasa, C. Y., Co, A. L., & Rideout, J. A. (2005). Antifungal metabolites from Blumea balsamifera. Natural Product Research, 19(3), 231-237. http://dx.doi.org/10.1080/14786410410001709773 PMid:15702636.
    » http://dx.doi.org/10.1080/14786410410001709773
  • Saewan, N., Koysomboon, S., & Chantrapromma, K. (2011). Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC. Journal of Medicinal Plants Research, 5(6), 1018-1025. http://dx.doi.org/10.2147/DDDT.S19759
    » http://dx.doi.org/10.2147/DDDT.S19759
  • Saifudin, A., Kadota, S., & Tezuka, Y. (2013). Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum. Journal of Natural Medicines, 67(2), 264-270. http://dx.doi.org/10.1007/s11418-012-0674-7 PMid:22645080.
    » http://dx.doi.org/10.1007/s11418-012-0674-7
  • Saifudin, A., Tanaka, K., Kadota, S., & Tezuka, Y. (2012). Chemical constituents of Blumea balsamifera of Indonesia and their protein tyrosine phosphatase 1B inhibitory activity. Natural Product Communications, 7(7), 815-818. http://dx.doi.org/10.1177/1934578X1200700701 PMid:22908553.
    » http://dx.doi.org/10.1177/1934578X1200700701
  • Sakee, U., Maneerat, S., Cushnie, T. P., & De-Eknamkul, W. (2011). Antimicrobial activity of Blumea balsamifera (Lin.) DC. extracts and essential oil. Natural Product Research, 25(19), 1849-1856. http://dx.doi.org/10.1080/14786419.2010.485573 PMid:21500092.
    » http://dx.doi.org/10.1080/14786419.2010.485573
  • Shirota, O., Oribello, J., Sekita, S., & Satake, M. (2011). Sesquiterpenes from Blumea balsamifera. Journal of Natural Products, 74(3), 470-476. http://dx.doi.org/10.1021/np100646n PMid:21319848.
    » http://dx.doi.org/10.1021/np100646n
  • Tan, D., Wang, G., Wang, J., Feng, Y., & He, Y. (2023). Quantitive analysis of flavonoids in ainaxiang tablets by high-performance liquid chromatography. Food Science and Technology (Campinas), 43, e130422. http://dx.doi.org/10.1590/fst.130422
    » http://dx.doi.org/10.1590/fst.130422
  • Tan, D., Yan, Q., & Kang, H. (2013). Chemical constituents from Blumea balsamifera. Chemistry of Natural Compounds, 48(6), 1072-1073. http://dx.doi.org/10.1007/s10600-013-0468-5
    » http://dx.doi.org/10.1007/s10600-013-0468-5
  • Tan, D., Yan, Q., Kang, H., Zeng, W., & Feng, H. (2012). Chemical constituents of Blumea balsamifera DC. Natural Product Research and Development, 24(6), 718-721.
  • Tan, D., Yang, Z., Zhang, Q., Ling, H., Du, Y., Lu, Y., Xie, T., Zhou, X., Qin, L., & He, Y. (2020). Simultaneous quantitative determination of polyphenolic compounds in Blumea balsamifera (Ai-Na-Xiang, Sembung) by high-performance liquid chromatography with photodiode array detector. International Journal of Analytical Chemistry, 2020, 9731327. http://dx.doi.org/10.1155/2020/9731327 PMid:32256597.
    » http://dx.doi.org/10.1155/2020/9731327
  • Wang, G., Wang, J., Zhou, Z., Bai, L., Qin, L., He, Y., & Tan, D. (2023). Establishment of fingerprints and determination of various ingredients of Yanlishuang pills by GC-MS. Food Science and Technology (Campinas), 43, e121322. http://dx.doi.org/10.1590/fst.121322
    » http://dx.doi.org/10.1590/fst.121322
  • Wang, H., Yuan, C., & Pang, Y. (2019). Antibacterial activity of flavonoids from Blumea balsamifera. Redai Zuowu Xuebao, 40(9), 1810-1816. http://dx.doi.org/10.3969/j.issn.1000-2561.2019.09.020
    » http://dx.doi.org/10.3969/j.issn.1000-2561.2019.09.020
  • Wang, Y., Shi, L., Wang, A., Tian, H., & Zou, C. (2014). Preparation of high-purity (–)-borneol and xanthoxylin from leaves of Blumea balsamifera (L.) DC. Tropical Journal of Pharmaceutical Research, 13(1), 1535-1540. http://dx.doi.org/10.4314/tjpr.v13i1.6
    » http://dx.doi.org/10.4314/tjpr.v13i1.6
  • Wen, Q., Pang, Y., Hu, X., Yang, Q., Zhang, Y., & Zou, J. (2015). Study on antibacterial activity of extracts from residues of Blumea balsamifera(L.) DC. in vitro. Guangdong Yaoxueyuan Xuebao, 31(06), 713-716. http://dx.doi.org/10.3969/j.issn.1006-8783.2015.06.005
    » http://dx.doi.org/10.3969/j.issn.1006-8783.2015.06.005
  • Widhiantara, I. G., & Jawi, I. M. (2021). Phytochemical composition and health properties of Sembung plant (Blumea balsamifera): A review. Veterinary World, 14(5), 1185-1196. http://dx.doi.org/10.14202/vetworld.2021.1185-1196 PMid:34220120.
    » http://dx.doi.org/10.14202/vetworld.2021.1185-1196
  • Xia, Q., Zhao, Z., Liu, H., Guan, L., & Pang, Y. (2016). Metabolic pathway of flavonoids in Blumea balsamifera. Zhongguo Zhongyao Zazhi, 41(19), 3630-3636. http://dx.doi.org/10.4268/cjcmm20161922 PMid:28925160.
    » http://dx.doi.org/10.4268/cjcmm20161922
  • Xiong, Y., Yi, P., Li, Y., Gao, R., Chen, J., Hu, Z., Lou, H., Du, C., Zhang, J., Zhang, Y., Yuan, C., Huang, L., Hao, X., & Gu, W. (2022). New sesquiterpeniod esters form Blumea balsamifera (L.) DC. and their anti-influenza virus activity. Natural Product Research, 36(5), 1151-1160. http://dx.doi.org/10.1080/14786419.2020.1861615 PMid:33331176.
    » http://dx.doi.org/10.1080/14786419.2020.1861615
  • Xu, J., Jin, D. Q., Liu, C., Xie, C., Guo, Y., & Fang, L. (2012). Isolation, characterization, and NO inhibitory activities of sesquiterpenes from Blumea balsamifera. Journal of Agricultural and Food Chemistry, 60(32), 8051-8058. http://dx.doi.org/10.1021/jf302530u PMid:22823402.
    » http://dx.doi.org/10.1021/jf302530u
  • Xu, S., & Zhao, J. (1998). Protective effects of dihydroflavonoids from Erna incense on experimental liver injury in rats. Zhongguo Yaolixue Tongbao, (02), 99-100.
  • Yan, Q., Tan, D., Kang, H., Feng, H., & Zeng, W. (2012). Study on flavonoids constituents of Blumea balsamifera. Zhongguo Shiyan Fangjixue Zazhi, 18(05), 86-89. http://dx.doi.org/10.13422/j.cnki.syfjx.2012.05.033
    » http://dx.doi.org/10.13422/j.cnki.syfjx.2012.05.033
  • Yan, X., Zuo, J., Li, X., & Chen, J. W. (2014). Antihyperglycemic effect of various fractions from residues of Blumea balsamifera. Chinese Herbal Medicines, 6(2), 4.
  • Yang, H., Gao, Y., Long, L., Cai, Y., Liao, J., Peng, J., & Wang, L. (2021). Antibacterial effect of Blumea balsamifera (L.) DC. essential oil against Staphylococcus aureus. Archives of Microbiology, 203(7), 3981-3988. http://dx.doi.org/10.1007/s00203-021-02384-6 PMid:34032873.
    » http://dx.doi.org/10.1007/s00203-021-02384-6
  • Yi, Q., Wang, Y., & Wang, L. (2016). Evaluation of pharmacological effects of blumea balsamifera oil. Heilongjiang Animal Science And veterinary Medicine, (16), 149-151. http://dx.doi.org/10.13881/j.cnki.hljxmsy.2016.1495
    » http://dx.doi.org/10.13881/j.cnki.hljxmsy.2016.1495
  • Yong, H., Duan, Y., Yuan, C., Huang, L., Li, X., Gu, W., & Hao, X. (2019). A new sesquiterpenoid ester from Blumea balsamifera and its cytotoxic activity. Chinese Traditional and Herbal Drugs, 50(14), 3274-3278. http://dx.doi.org/10.7501/j.issn.0253-2670.2019.14.003
    » http://dx.doi.org/10.7501/j.issn.0253-2670.2019.14.003
  • Yuan, C., Wang, H., Hu, X., Chen, X., & Pang, Y. (2019). Chlorogenic acid constituents from Blumea balsamifera (L.) DC. Redai Zuowu Xuebao, 40(06), 1176-1180. http://dx.doi.org/10.3969/j.issn.1000-2561.2019.06.020
    » http://dx.doi.org/10.3969/j.issn.1000-2561.2019.06.020
  • Yuan, Y., Huang, M., Pang, Y. X., Yu, F. L., Chen, C., Liu, L. W., Chen, Z. X., Zhang, Y. B., Chen, X. L., & Hu, X. (2016). Variations in essential oil yield, composition, and antioxidant activity of different plant organs from Blumea balsamifera (L.) DC. at different growth times. Molecules (Basel, Switzerland), 21(8), 1024. http://dx.doi.org/10.3390/molecules21081024 PMid:27527137.
    » http://dx.doi.org/10.3390/molecules21081024
  • Yuan, Y., Pang, Y., & Yuan, C. (2018). Antibacterial constituents of ethyl acetate extract from Blumea balsamifera (L.) DC. Redai Zuowu Xuebao, 39(06), 1195-1199.
  • Zhang, L., Hu, Z., Liang, G., & Xu, B. (2015). Chemical constituents of the petroleum part of Blumea balsamifera (L.) DC. Journal of Guiyang Cdlege of TCM, 37(02), 68-70. http://dx.doi.org/10.3969/j.issn.1002-1108.2015.02.022
    » http://dx.doi.org/10.3969/j.issn.1002-1108.2015.02.022
  • Zhang, Y., & Tan, N. (2007). Chemical constituents of Taxodium mucronatum. Natural Product Research and Development, 5, 801-803.
  • Zhao, J., & Xu, S. (1997). Effects of Blumea flavanones on lipid peroxidation and reactive oxygen radicals. Zhongguo Yaolixue Tongbao, 13(5), 438-441.
  • Zhao, J., Kang, H., Yao, G., & Zeng, W. (2007). Study on chemical composition of Blumea balsamifera. Chinese Traditional and Herbal Drugs, 38(3), 350-352.
  • Zhou, L., Luo, S., Li, J., Zhou, Y., Chen, T., Feng, S., & Ding, C. (2020). Simultaneous optimization of extraction and antioxidant activity from Blumea laciniata and the protective effect on Hela cells against oxidative damage. Arabian Journal of Chemistry, 13(12), 9231-9242. http://dx.doi.org/10.1016/j.arabjc.2020.11.007
    » http://dx.doi.org/10.1016/j.arabjc.2020.11.007
  • Zhou, L., Xiong, Y., Chen, J., Zhang, J., Hao, X., & Gu, W. (2021). Study on the chemical constituents from the aerial parts of Blumea balsamifera DC and their antioxidant and tyrosinase inhibitory activities. Natural Product Research and Development, 33(7), 1112-1120.
  • Zhu, R., Bian, Q., Lin, H., & Chen, J. (2003). Studies on chemical constituents of the seeds of fagopyrum tataricum gaertn. Traditional Chinese Medicine Information, 20(03), 17-18.

Publication Dates

  • Publication in this collection
    17 Mar 2023
  • Date of issue
    2023

History

  • Received
    06 Jan 2023
  • Accepted
    22 Jan 2023
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br