Acessibilidade / Reportar erro

Ecologia populacional dos Amphipoda (Crustacea) dos fitais de Caiobá, Matinhos, Paraná, Brasil

Population ecolocy of Amphipoda (Crustacea) from the phytals of Caiobá, Matinhos, Paraná, Brazil

Resumo

Spalial and temporal density distributions of Amphipoda from the phytals of Caiobá are described. Air temperature oscillated from 16ºC (August and May) to 23ºC (March), surface water temperature from 17ºC (August) to 25ºC (March) and the salinity from 29.3‰ (May) to 32.8‰ (August). Two samples of 25cm² (for algae less than 5cm long), 100 cm² (for algae between 5-10cm long) and whole plants (for algae more than 10cm long) were removed with a spatula from the rocky surface at Caiobá Beach, in August/86, November/86, March/87 and May/87. After sorting, the algal substrata were weighted, their adsorption coefficient calculated and the sediment retained among the thallii weighted. The average distance between the branching was measured for all branched algae. The densities were calculated in relation to the weight of the algal substrate in grams. Eight phytals were considered: Ulva fasciata Delile, Padina gymnospora (Kútzing) Vickers, Sargassum cymosum Garth, Porphyra atropurpurea (Olivi) De Toni, Gelidium sp., Gymnogongrus griffithsiae (Turner) Martius, Pterocladia capillacea (Gmelin) Bornet &Thurel and Pterosiphonia pennata (Roth) Falkenberg, over which nine Amphipoda species live: Ampithoe ramondi Audouin, 1816, Cymadusa filosa Savigny, 1852, Elasmopus pectenicrus Bate, 1857, Hyale media Dana, 1857, Hyale sp.l, Jassa falcata Montagu, 1895 and Sunampithoe pelagica H. Milne-Edwards, 1830 (Gammaridea). Caprella danilevskii Czerniavski, 1861 and Caprella penantis Leach, 1814 (Caprellidea). Amphipoda densities ranged from 0.27 ind.g-1 to 45.68. ind.g-1. The broad-thallii algae Porphyra, Ulva and Padina harbored lower densities of Amphipoda, whereas those finely branched Pterocladia, Pterosiphonia and Gymnogongrus, the highest values and the less branched Sargassum and Gelidium, intermediate values. The high densities found in the finely branched algae had as main contribution the juvenile recruiting of most Amphipoda. The tide level might have influenced the temporal distribution of the Amphipoda density, due to the distinct time of air exposition in eaeh collection data. Most Amphipoda did not show specific algal substratum colonization: only Sunampithoe pelagica occurred solely in Sargassum. Four species occurred in different branched algae: J. falcata. S. pelagica. C. danilevskii and C. penantis. H. media had Sargassum, Pterocladia, Pterosiphonia and Gymnogongrus as the best algal substrata, whereas Caprellidea, the Pterocladia and Pterosiphonia phytals. High sediment weight in Padina was the main reason for high densities of Hyale sp.l in this phytal. The occurrence of males, females (including ovigerous ones) and juveniles of most Amphipoda species found in the present study indicates a complete life cycle whithin these phytals and corroborates with the assumption of the complexity of this marine coastal ecosystem.

Amphipoda; phytal; density; population; Caiobá; Paraná; Brazil


Amphipoda; phytal; density; population; Caiobá; Paraná; Brazil

Ecologia populacional dos Amphipoda (Crustacea) dos fitais de Caiobá, Matinhos, Paraná, Brasil1 1 Contribuição número 880 do Departamento de Zoologia, Universidade Federal do Paraná.

Population ecolocy of Amphipoda (Crustacea) from the phytals of Caiobá, Matinhos, Paraná, Brazil

Janete Dubiaski-Silva; Setuko Masunari

Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-990 Curitiba, Paraná, Brasil

ABSTRACT

Spalial and temporal density distributions of Amphipoda from the phytals of Caiobá are described. Air temperature oscillated from 16ºC (August and May) to 23ºC (March), surface water temperature from 17ºC (August) to 25ºC (March) and the salinity from 29.3‰ (May) to 32.8‰ (August). Two samples of 25cm2 (for algae less than 5cm long), 100 cm2 (for algae between 5-10cm long) and whole plants (for algae more than 10cm long) were removed with a spatula from the rocky surface at Caiobá Beach, in August/86, November/86, March/87 and May/87. After sorting, the algal substrata were weighted, their adsorption coefficient calculated and the sediment retained among the thallii weighted. The average distance between the branching was measured for all branched algae. The densities were calculated in relation to the weight of the algal substrate in grams. Eight phytals were considered: Ulva fasciata Delile, Padina gymnospora (Kútzing) Vickers, Sargassum cymosum Garth, Porphyra atropurpurea (Olivi) De Toni, Gelidium sp., Gymnogongrus griffithsiae (Turner) Martius, Pterocladia capillacea (Gmelin) Bornet &Thurel and Pterosiphonia pennata (Roth) Falkenberg, over which nine Amphipoda species live: Ampithoe ramondi Audouin, 1816, Cymadusa filosa Savigny, 1852, Elasmopus pectenicrus Bate, 1857, Hyale media Dana, 1857, Hyale sp.l, Jassa falcata Montagu, 1895 and Sunampithoe pelagica H. Milne-Edwards, 1830 (Gammaridea). Caprella danilevskii Czerniavski, 1861 and Caprella penantis Leach, 1814 (Caprellidea). Amphipoda densities ranged from 0.27 ind.g-1 to 45.68. ind.g-1. The broad-thallii algae Porphyra, Ulva and Padina harbored lower densities of Amphipoda, whereas those finely branched Pterocladia, Pterosiphonia and Gymnogongrus, the highest values and the less branched Sargassum and Gelidium, intermediate values. The high densities found in the finely branched algae had as main contribution the juvenile recruiting of most Amphipoda. The tide level might have influenced the temporal distribution of the Amphipoda density, due to the distinct time of air exposition in eaeh collection data. Most Amphipoda did not show specific algal substratum colonization: only Sunampithoe pelagica occurred solely in Sargassum. Four species occurred in different branched algae: J. falcata. S. pelagica. C. danilevskii and C. penantis. H. media had Sargassum, Pterocladia, Pterosiphonia and Gymnogongrus as the best algal substrata, whereas Caprellidea, the Pterocladia and Pterosiphonia phytals. High sediment weight in Padina was the main reason for high densities of Hyale sp.l in this phytal. The occurrence of males, females (including ovigerous ones) and juveniles of most Amphipoda species found in the present study indicates a complete life cycle whithin these phytals and corroborates with the assumption of the complexity of this marine coastal ecosystem.

Key words: Amphipoda, phytal, density, population, Caiobá, Paraná, Brazil

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

AGRADECIMENTOS. À Profa Dra Yoko Wakabara (Instituto Oceanográfia, Universidade de São Paulo) pela confirmação das identificações dos Amphipoda. Ao Prof. Dr. Ayrton de Mattos (

in memorian

) e ao M. Sc. José Augusto Cunha (Departamenlo de Botânica, Universidade Federal do Paraná), pela identificação das algas do presente estudo.

Recebido em 25.I.1995; aceito em 01.IX.1995.

  • Aoki. M. & T. Kikuchi. 1990. Habitat adaptations of caprellid amphipods and the importance of epiphytic secondary habitats in a Sargassum patens bed in Amakusa. Southern Japan. Publ. Amakusa Mar. Biol. Lab. 10 (2):123-133.
  • Barnard, J.L. 1969a. Gammaridean Amphipoda of the rocky intertidal ot California: Monterey Bay to La Jolla. Bull. U.S. Nat. Mus. 258:1-230.
  • ______. 1969b. The families and genera of marine gammaridean Amphipoda. Bull. U.S. Nat. Mus. 271:1-535.
  • Brawley, S. & X.G. Fey. 1987. Studies of mesoherbivory in aquaria and in an unbarricaded mariculture farm on the Chinese coast. J. Phycol. 23:614-623.
  • Caine. E.A. 1983. Community interactions of Caprella penantis Leach (Crustacea Amphipoda) on sea whips. J. Crustacean Biol. 3 (4):497-504.
  • Dahl, C. 1948. On the smaller Arthropoda of marine algae, especially in the polyhaline waters off the Swedish West coast. Untersuchung Oresund 35:1-193.
  • Dhn. 1986. Tábua das marés. Diretoria de Hidrografia e Navegação, Marinha do Brasil, 224p.
  • ______. 1987. Tábua das marés. Diretoria de Hidrografia e Navegação, Marinha do Brasil, 224p.
  • Duffy, J.E. 1990. Amphipods on seaweeds: partners or pests? Oecologia 8:267-276.
  • Dutra, R.R.C. 1988. A fauna vágil do fital Pterocladia capillacea (Rhodophyta Gelidiaceae) da Ilha do Mel, Paraná, Brasil. Rev. Bras. Biol. 48 (3):589-605.
  • Gibbons, M.J. 1988a. The impact of wave exposure on the meiofauna of Gelidium pristoides (Turner) Kuetzing (Gelidiales: Rhodophyta). Estuarine, Coastal Shelf Sci. 27:581-593.
  • ______. 1988b. Impact of predation by juvenile Clinus superciliosus on phytal meiofauna. Are fish important as predators? Mar. Ecol. 45 (1-2):13-22.
  • Hacker, S.D. & R.S. Steneck. 1990. Habitat architecture and body-size-dependent habitat selection of a phytal amphipod. Ecology 71 (6):2269-2285.
  • Hagerman. L. 1966. The macro and microfauna associated with Fucus serratus L. with some ecological remarks. Ophelia 3:1-43.
  • Hay, M.E.; J.E. Duffy; C.A. Pfister & W. Fenical. 1987a. Chemical defense against different herbivores: are amphipods and insect equivalents? Ecology 68:1567-1580.
  • Hay, M.E.,;W. Fenical & K. Gustafson. 1987b. Chemical defense against diverse coral-reef herbivores. Ecology 68:1581-1591.
  • Hay, M.E.; V.J. Paul; S.M. Lewis: K. Gustafson; J. Tucker & R. Trindell. 1988a. Can tropical seaweeds reduce herbivory by growing al night? Diel patterns of growth, nitrogen contend herbivory, and chemical versus morphological defenses. Oecologia, Berlim, 75:233-245.
  • Hay, M.E.; P.E. Renaud & W. Fenical. 1988b. Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses. Oecologia (Berlim) 75:246-252.
  • Jakobi, H. 1954. Espécies novas de Harpacticoidea (Copepoda Crustacea) encontradas nas algas marinhas do litoral do Paraná e Santa Catarina. Bol. Inst. Oceanogr. 5(1-2):189-212.
  • ______. 1962. Harpacticoidea e Syncarida troglobiontes (Crustacea). Bol. Univ. Paraná, Zool., 1 (21):1-19.
  • Joly. A.B. 1951. Contribuição para o conhecimento da flora algológica marinha do Estado do Paraná. Bol. Inst. Oceanogr. 2 (1):125-138.
  • ______. 1965. Flora marinha do litoral norte do estado de São Paulo e regiões circunvizinhas. Bol. Fac. Filos. Ciênc. Let. Univ. São Paulo 294, Ser. Bot., 21:1-393.
  • ______. 1967. Gêneros de algas marinhas da costa atlântica latino-americana. Editora da Universidade de São Paulo. São Paulo, 461p.
  • Kikuchi, T. & J.M. Pérès. 1977. Consumer ecology of seagrass beds. p. 147-193. In: C.P. McRoy & C. Helfferich (eds). Seagrass Ecossystem. New York. M. Dekker, 314p.
  • Krapp-Schickel. V.G. 1969. Zur Oekologie der Amphipoden aus dem Phytal der Nordadria. Zool. Jb. Syst. 96 (3):265-448.
  • Lewis. F.G. III. 1987. Crustacean epifauna of seagrass and macroalga in Apalachee Bay, Florida, USA. Mar. Biol. 94 (2):219-229.
  • Loyola e Silva, J. 1960. Sphaeromatidae do litoral brasileiro. Bol. Univ. Paraná, Zool., 4:1-182.
  • Masunari, S. 1982. Organismos do fital Amphiroa beauvoisii Lamouroux, 1816 (Rhodophyta; Corallinaceae). I. Autoecologia. Bol. Zool. Univ. S. Paulo 7:57-148.
  • ______. 1986. Copepoda Harpacticoidea dos fitais do litoral do Paraná. Ciênc. Cult. 38(7):1010.
  • ______. 1987. Ecologia das Comunidades Fitais, p. 195-233. In: Academia de Ciências do Estado de São Paulo (ed.). Simpósio sobre ecossistemas da costa sul e sudeste brasileira. Cananéia. 459p.
  • Masunari, S. & L. Forneris. 1981. O ecossistema fital - uma revisão, p. 149-172. In: Academia Brasileira de Ciências (ed.). Seminários de Biologia Marinha. Rio de Janeiro, 383p.
  • Mazzella. L.; M.B. Scipione & M.C Buia. 1989. Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow. Mar. Ecol. 10 (2):107-129.
  • McBane, C.D. & R.A. Crocker. 1983. Animal-algae relationships of the amphipod Hyale nilssoni (Ratke) in the rocky interdital. J. Crustacean Biol. 3:592-601.
  • Moore, P.G. 1973. The larger Crustacea associated with holdfast of kelp (Luminaria hyperborea) in North-East Britain. Cah. Biol. Mar. 14 (4):493-518.
  • Mukai. II. 1971. The phytal animais on the thalli of Sargassum serratifolium in the Sargassum region, with reference to their seasonal fluctuations. Mar. Biol. 8:170-182.
  • Nagle, J.S. 1968. Distribution of the epibiota of macroepibenthic plants. Contrib. Mar. Sci. 13:105-144.
  • Nelson, W.G. 1980. The biology of eelgrass (Zostera marina) amphipods. Crustaceana 39 (1):59-88.
  • Nonato, E.F. & J.M. Pérès. 1961. Observations sur quelques pleuplements intertidaux de substrat dur dans la région dUbatuba (État de São Paulo). Cah. Biol. Mar. 2 (3):263-270.
  • Oliveira-Filho, E.C. & E.M. Mayal. 1976. Seasonal distribution of intertidal organisms at Ubatuba, São Paulo (Brasil). Rev. Bras. Biol. 36:305-316.
  • Ryer, C.H. 1988. Pipefish foraging: effects of fish size, prey size and altered habitat complexity. Mar. Ecol. Prog. Ser. 48 (1):37-45.
  • Ryer, C.H. & R.J. Orth. 1987. Feeding Ecology of the Northern pipefish, Syngnathus fuscus, in a seagrass community of the lower Cheasapeake Bay. Estuaries 10 (4):330-336.
  • Sarma, A.L.N. & P.N. Ganapati. 1970. Faunal associations of algae in the intertidal region of Visakhapatnam (India). Proc. Indian Nat. Sci. Acad. 38:380-396.
  • Schneider. F.I. & K.H. Mann. 1991a. Species specific relationships of invertebrates to vegetation in a seagrass bed. I. Correlational studies. J. Exp. Mar. Biol. and Ecol. 145:101-117.
  • ______. 1991b. Species specitic relationships of invertebrate to vegetation in a seagrass bed. II. Experiments on the importance of macrophyte shape, epiphyte cover and predation. J. Exp. Mar. Biol. Ecol. 145:119-139.
  • Schoener, T.W. 1974. Resource partitioning in ecological communities. Science 185 (4145):27-39.
  • Stoner, A.W. 1980. Abundance, reproductive seasonality and habitat preferenees of amphipod crustaceans in seagrass meadows of Apalachee Bay, Florida. Contrib. Mar. Sci. 23:63-77.
  • Takeuchi. I.: R. Kuwabara: R. Hirano & H. Yamakawa. 1987. Studies on the compositions of the Caprellidea (Crustacea: Amphipoda) of the Sargassum zone on the pacific coast of Japan. Bull. Mar. Sci. 41(2):253-267.
  • Tararam, A.S. & Y. Wakabara. 1981. The mobile fauna - especially Gammaridea - of Sargassum cymosum. Mar. Ecol. Prog. Ser. 5:157-163.
  • Tararam, A.S.; Y. Wakabara & F.P.D. Leite. 1985. Feeding habits of Hyale media (Dana, 1953) (Crustacea - Amphipoda). Bol. Inst. Oceanogr. 33 (2):193-199.
  • ______. 1986. Vertical distribution of amphipods living on algae of a Brazilian intertidal rocky shore. Crustaceana 51 (2):183-187.
  • Truchot. J.P. 1963. Étude faunistique et écologique des amphipodes des facies rocheux intertidaux de Roscòff. Cah. Biol. Mar. 4:121-176.
  • Van Dolah, R.F. 1978. Factors regulating the distribution and population dynamics of the amphipod Gammarus palustris in an intertidal salt marsh community. Ecol. Monogr. 48:191-217.
  • Wakabara, Y.; A.S. Tararam & A.M. Takeda. 1983. Comparative study of the amphipod fauna living on Sargassum of two Itanhaém shores, Brazil. J. Crustacean Biol. 3 (4):602-607.
  • Wieser, W. 1951. Ueber die quantitative Bestimmung der Algenbewohnenden Mikrofauna felsiger Meerekuesten. Oikos 3 (1):124-131.
  • ______. 1952. Investigations on the microfauna inhabiting seaweeds on rocky coasts. IV. Studies on the vertical distribution of the fauna inhabiting seaweeds below the Plymouth Laboratory. J. Mar. Biol. Ass. U.K. 31:145-174.
  • 1
    Contribuição número 880 do Departamento de Zoologia, Universidade Federal do Paraná.
  • Datas de Publicação

    • Publicação nesta coleção
      21 Jul 2009
    • Data do Fascículo
      1995

    Histórico

    • Aceito
      01 Set 1995
    • Recebido
      25 Jan 1995
    Sociedade Brasileira de Zoologia Caixa Postal 19020, 81531-980 Curitiba PR Brasil, Tel./Fax: +55 41 3266-6823, - Curitiba - PR - Brazil
    E-mail: sbz@bio.ufpr.br