Acessibilidade / Reportar erro

Growth, production and nutrients in coriander cultivated with biofertilizer

Crescimento, produção e nutrientes no coentro cultivado com biofertilizante

ABSTRACT

The aim of this study was to evaluate the effect of doses of a biofertilizer, formulated with a mix of plants (BMV), on the growth, production and nutrients in coriander cultivar Verdão. The BMV was prepared with crushed parts of the species Flemingia macrophylla, Musa sp. and Azolla sp. The trial was carried out in a greenhouse, in Yellow Argissol, with medium texture (V= 36.4%). The experimental design was of randomized blocks with six replicates. Besides BMV doses (0, 5, 10, 15 and 30%, in water), an additional treatment with bovine manure biofertilizer was added (10% in water). Inorganic ingredients blended into biofertilizers as chicken manure were incorporated in soil of growing-beds. The evaluated traits responded to BMV doses linearly. A decrease in green mass (GM) of plants, from 1.43 to 0.88 kg/m2, which is the commercial product, and plant height, from 31.33 to 24.02 cm, was attributed to the astringency of Musa sp. in the biofertilizer, together with N shortage. The plant aerial part dry mass (DM) increased from 11.29 to 13.75 g/100 g due to fibrous stems under nitrogen deficiency. Nutrient contents increased (B and Zn), did not range (N, S, and Cu) or decreased (P, K, Ca, Mg, Fe and Mn) and accumulation increased (N, S, K, B, Zn and Cu), decreased (Fe) or did not change (P, Ca, Mg and Mn). The analysis of the principal components showed DM and accumulations of P, K, Ca, Mg and S in the same direction and antagonism of N with Ca and Mg, attributed to loss of N at alkaline pH, by natural phosphate (FN) in BMV. And also, DM, B, Cu and Zn accumulations increased concomitantly while accumulations of Fe and Mn did not compete. The manure biofertilizer surpassed the BMV in GM (1.38 and 1.21 kg/m2, respectively), as well as accumulations of N and K.

Keywords:
Coriandrum sativum; organic manure; alternative fertilizer

RESUMO

Objetivou-se avaliar o efeito de doses de um biofertilizante de materiais vegetais (BMV) sobre o crescimento, produção e nutrientes no coentro ′Verdãoʼ. O BMV foi preparado com partes trituradas das espécies Flemingia macrophylla, Musa sp. e Azolla sp. O ensaio foi conduzido em cultivo protegido, em Argissolo Amarelo textura média (V%= 36,4). O delineamento experimental foi de blocos ao acaso com seis repetições. Além das doses do BMV (0, 5, 10, 15 e 30% em água), foi adicionado um tratamento com biofertilizante de esterco bovino (10% em água). Os biofertilizantes receberam ingredientes inorgânicos e foi incorporado esterco de galinha ao solo. As características avaliadas responderam às doses do BMV linearmente. Houve decréscimo da massa verde (GM) de plantas, de 1,43 a 0,88 kg/m2, que é o produto comercial, e da altura de planta em 31,33 a 24,02 cm, atribuídos à adstringência conferida pela Musa sp. ao biofertilizante, junto com escassez de N. A massa seca da parte aérea (DM) incrementou de 11,29 a 13,75 g/100 g devido às hastes mais fibrosas sob carência de N. Os teores dos nutrientes aumentaram (B e Zn), não variaram (N, S e Cu) ou decresceram (P, K, Ca, Mg, Fe e Mn) e os acúmulos incrementaram (N, S, K, B, Zn e Cu), decresceram (Fe) ou não se alteraram (P, Ca, Mg e Mn). A análise de componentes principais evidenciou a DM e os acúmulos de P, K, Ca, Mg e S com o mesmo sentido, além de antagonismo do N com o Ca e o Mg, atribuído à perda de N em pH alcalino, pelo fosfato natural no BMV. A DM e os acúmulos de B, Cu e Zn aumentaram concomitante ao passo que os acúmulos de Fe e de Mn não competiram. O biofertilizante de esterco superou o BMV em GM (1,38 e 1,21 kg/m2, respectivamente), assim como, nos acúmulos de N e K.

Palavras-chave:
Coriandrum sativum; adubação orgânica; fertilizante alternativo

Coriander (Coriandrum sativum, Apiaceae) originates from the territories of the Mediterranean Basin. In Brazil, this herb was introduced at the beginning of colonization (Melo et al., 2009MELO, RA; MENEZES, D; RESENDE, LV; WANDERLEY JUNIOR, LJG; SANTOS, VF; MESQUITA, JCP; MAGALHÃES, AG. 2009. Variabilidade genética em progênies de meio-irmãos de coentro. Horticultura Brasileira 27: 324-329.), having great socioeconomic importance, especially in the Northern and Northeastern regions. The green mass of the leaves is used in natura as a condiment. The dry fruits, besides being used as condiments, are used in pharmaceutical and cosmetics industries (Daflon et al., 2014DAFLON, DSG; FREITAS, MSM; CARVALHO, AJC; MONNERAT, PH; PRINS, CL. 2014. Sintomas visuais de deficiência de macronutrientes e boro em coentro. Horticultura Brasileira 32: 28-33.). The plant is a good source of calcium, iron, vitamin C and pro-vitamin A (Melo et al., 2009MELO, RA; MENEZES, D; RESENDE, LV; WANDERLEY JUNIOR, LJG; SANTOS, VF; MESQUITA, JCP; MAGALHÃES, AG. 2009. Variabilidade genética em progênies de meio-irmãos de coentro. Horticultura Brasileira 27: 324-329.). In addition, it is a host of predators which control populations of phytophagous pests of vegetables (Resende et al., 2012RESENDE, ALS; HARO, MM; SILVA, VF; SOUZA, B; SILVEIRA, LCP. 2012. Diversidade de predadores em coentro, endro e funcho sob manejo orgânico. Arquivos do Instituto Biológico 79: 193-199.).

Coriander is not a demanding plant in relation to soil and it is tolerant to acidity; however, the herb responds to organic and mineral fertilization (Filgueira, 2008FILGUEIRA, FAR. 2008. Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. 3.ed. Viçosa: UFV. 421p.). At the end of the crop cycle, leafy vegetable nutritional requirement becomes more intense, since, in the beginning of the cycle, the dry matter accumulation is slow. In soils with optimum artificial levels of fertility, macronutrients accumulation rates in coriander were from 30 to 35 days after sowing, with total extraction up to 40 DAS (descending order: K, Ca, N, Mg and P), higher K accumulation and lower accumulation of P (Grangeiro et al., 2011GRANGEIRO, LC; FREITAS, FCL; NEGREIROS, MZ; LUCENA RRM; OLIVEIRA, RA. 2011. Crescimento e acúmulo de nutrientes em coentro e rúcula. Revista Brasileira de Ciências Agrárias 6: 11-16.). In hydroponic cultivation, the macronutrient extraction by the coriander vegetative parts represented 85% (N); 79.9% (P), 89.2% (K); 86.4% (Ca); 77.8% (Mg) and 82.3% (S), in relation to total (Donegá, 2009DONEGÁ, M.A. 2009. Relações K:Ca e aplicação de silício na solução nutritiva para o cultivo de coentro. Piracicaba: ESALQ. 62p (Dissertação mestrado).). Identically, the authors verified that total accumulation of micronutrients by coriander at 30 days after emergency in seedbeds, following the order: Fe, Zn, Mn, B and Cu, which corresponded to 18.402; 0.876; 0.816; 0.55 and 0.141 mg/plant (Haag et al., 1988HAAG, HP; BELFORT, C; MINAMI, K. 1988. Nutrição mineral de hortaliças. Absorção de nutrientes na cultura do coentro (Coriandrum sativum). In: HAAG, PH; MINAMI, K. Nutrição mineral em hortaliças. 2. ed. Campinas: Fundação Cargill. p.27-35.). Given the above, an adequate supply of these nutrients is necessary, in any different coriander production system, in order to avoid nutritional deficiencies. Especially, the N supply, which is of decisive importance for growth and development of herbaceous vegetables (Filgueira, 2008FILGUEIRA, FAR. 2008. Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. 3.ed. Viçosa: UFV. 421p.; Echer et al., 2012ECHER, MM; ZOZ, T; ROSSOL, CD; STEINER, F; CASTAGNARA, DD; LANA, MC. 2012. Plant density and nitrogen fertilization in Swiss chard. Horticultura Brasileira 30: 703-707.), being the second most accumulated nutrient (Haag et al., 1988), besides, its deficiency affects the uptake of P, K, Ca and Mg (Araújo et al., 2016ARAUJO, KP; FAQUIN, V; BALIZA, DP; ÁVILA, FW; GUERRERO, AC. 2016. Crescimento e nutrição mineral de cebolinha verde cultivada hidroponicamente sob diferentes concentrações N,P,K. Revista Ceres, 63: 232-240. Disponível em: Disponível em: http://www.scielo.br/pdf/rceres/v63n2/2177-3491-rceres-63-02-00232.pdf Acessado em 20 de outubro de 2016.
http://www.scielo.br/pdf/rceres/v63n2/21...
), among others.

In leafy vegetables, limiting nutrients are conventionally supplied through the application of mineral fertilizers and organic residues, in planting and top dressing application of N. Thus, the coriander grown using poultry manure and NPK produced more green mass than the cultivation without these fertilizers (Santos, 2009SANTOS, KP. 2009. Desempenho agronômico do coentro submetido a diferentes adubações. Altamira: UFPA. 51p(Monografia graduação). Disponível em: Disponível em: http://www.aba-agroecologia.org.br/revistas/index.php/cad/article/viewFile/2713/2361 Acessado em 18 de outubro de 2016.
http://www.aba-agroecologia.org.br/revis...
). However, agroecological approaches recommend reducing and rationalizing the use of synthetic inputs, so that the organic fertilizers are likely to become of central importance to soil. Animal manures are good suppliers of N, P and K (Bergo et al., 2005BERGO, CL; RICCI, MSF; ROSÁRIO, AAS; BRAGA, RR. 2005. Adubação orgânica. In: WADT, PGS (ed) Manejo do solo e recomendação de adubação para o Estado do Acre. Rio Branco: Embrapa Acre . p.325-348.) and used in vegetables even in organic production system, in which also, some mineral sources can be applied, through compost or biofertilizer.

Biofertilizers result from the fermentation of manures, which can be enriched with other organic residues and mineral components, in water, under anaerobic or aerobic process (Souza & Alcântara, 2007SOUZA, RB; ALCÂNTARA, FA. 2007. Adubação orgânica. In: HENZ, GP; ALCÂNTARA, FA; RESENDE, FV. Produção orgânica de hortaliças: o produtor pergunta e a Embrapa responde. Brasília: Embrapa Informação Tecnológica. p.113-127. (Coleção 500 perguntas, 500 respostas).). They also result from exclusive digestion of organic material, with or without minerals (Bergo et al., 2005BERGO, CL; RICCI, MSF; ROSÁRIO, AAS; BRAGA, RR. 2005. Adubação orgânica. In: WADT, PGS (ed) Manejo do solo e recomendação de adubação para o Estado do Acre. Rio Branco: Embrapa Acre . p.325-348.; Medeiros et al., 2007MEDEIROS, DC; LIMA, BAB; BARBOSA, MR; ANJOS, RSB; BORGES, RD; CAVALCANTE NETO, JG; MARQUES, LF. 2007. Produção de alface com biofertilizantes e substratos. Horticultura Brasileira 25: 433-436.), being possible to use several organic residues. Banana industry waste is a potential substrate for anaerobic digestion processes (Souza et al., 2010SOUZA, O; FEDERIZZI, M; COELHO, B; WAGNER, TM; WISBECK, E. 2010. Biodegradação de resíduos lignocelulósicos gerados na bananicultura e sua valorização para a produção de biogás. Revista Brasileira de Engenharia Agrícola e Ambiental 14: 438-443.), for its important content of K (Moreira & Fageria, 2009MOREIRA, A; FAGERIA, NK. 2009. Repartição e mobilização de nutriente na bananeira. Revista Brasileira de Fruticultura {online} 31: 574-581.), as well as, water hyacinths and aquatic plants (Guazelli et al., 2012GUAZELLI, MJB; RUPP, LCD; VENTURINI, L. 2012. Biofertilizantes. Programa de Fortalecimento da Viticultura Familiar da Serra Gaucha. SL: Grafisul. 13p. (MDA/IBRAVIN. Publicação Técnica, 1). Disponível em: Disponível em: http://www.centroecologico.org.br/cartilhas/Biofertilizantes.pdf Acessado em: 09 de março de 2014.
http://www.centroecologico.org.br/cartil...
), since they are free of water contaminants. Otherwise, N content will increase if N-rich species are used (Souza & Resende, 2003SOUZA JL; RESENDE, P. 2003. Manual de horticultura orgânica. Viçosa: Aprenda Fácil. 569p.), such as leguminous plants.

Biofertilizers are supposed to have multiple effects; even if they do not own a standard formula. Coriander production was benefited by using a biofertilizer formulated, on a volume basis, with 50% of cattle manure and 50% of water (Silva et al., 2007SILVA, AF; CCOELHO, AIA; RAMOS, JB; SANTANA, LM; FRANÇA, CRRS. 2007. Características químicas e aceitação de biofertilizante preparado e utilizado em horta agroecológica do Semi-Árido Nordestino. Revista Brasileira de Agroecologia 2: 962-965. Disponível em: Disponível em: http://www.aba-agroecologia.org.br/revistas/index.php/cad/article/viewFile/2713/2361 . Acessado em:19 de outubro de 2016.
http://www.aba-agroecologia.org.br/revis...
). However, the biofertilizer prepared with plant residues could be a safer option for leafy vegetables, following Good Agricultural Practices (GAPs) criteria. Thus, this work aimed to evaluate the effect of a biofertilizer formulated with plant material and enriched with mineral sources on growth, production and acquisition of nutrients in coriander.

MATERIAL AND METHODS

The experiment was carried out from July 17 to August 27, 2013, in a greenhouse, chapel type, with open sides, covered with 150 μm-thick polyethylene film of low density, at Experimental Station of Embrapa Amazonia Oriental, Iranduba, Amazonas State, Brazil (3°15‘13”S; 60°13‘36”W; altitude 51 m). The soil is classified as Yellow Argissol, with medium texture, showing signs of indigenous anthropogenic action, presenting the following chemical attributes (0-20 cm): pH= 5.2; Al= 0.0; MO= 22.0 g/kg; P= 48 mg/dm3; K= 26 mg/dm3; Ca= 1.9 cmolc/dm3; Mg= 1.0 cmolc/dm3 and V%= 36.4.

The main treatments were doses of a biofertilizer prepared with plant materials (BMV): 0%, 5%, 10%, 15% and 30% in water, besides an additional treatment with bovine manure biofertilizer (BEB), 10% in water. The experimental design was of randomized blocks, with six replicates. Each plot consisted of five double rows (10 cm among them) of coriander cultivar Verdão, as direct sowing was carried out in beds (15 cm high and 1.2 m wide), being a row on each side of the drip tape (0.25 m among them). The three central double rows (1 m) were the useful area (0.75 m2). As a basis, the planting beds received 1.5 kg/m2 of poultry manure {(g/kg) = N (31.0); P (19.1); K (25.0); Ca (26.0); Mg (6.2); S (5.9); and (mg/kg) = B (44.2); Cu (67.3); Fe (1024.5); Mn (332.6); Zn (533.0)}.

BMV was produced from parts of the species Flemingia macrophylla, Musa sp. and Azolla sp., using herbaceous branches and leaves; only leaves and leaves and roots, respectively. These parts were crushed and, then mixed in the following volumetric ratios: 40, 60 and 20 L, respectively. This material was put in a 310-liter polyethylene tank, and then added 160 L of well water, Arad natural phosphate (FN) {(2.8 kg); P2O5= 33%; Ca= 37% and S= 1%}; potassium sulfate (1.4 kg); magnesium sulfate (700 g) and micronutrients, in the form of fritted trace elements (FTE) {(280 g) S= 3.2%; B= 1.8%; Cu= 0.8%; Mn= 2%; Mo= 0.1% and Zn= 9%}; borax (140 g) and zinc sulfate (70 g); soluble content in the neutral ammonium citrate (CNA) + water (1:1): Cu (0.48%); Mn (1.2%); soluble content of citric acid (2%) of: B (1.09%); Mo (0.06%) and Zn (5.4 %). In BEB, the mixture of fresh manure and well water (v/v = 1/1) was also put in a 310-liter polyethylene tank; and the same nutrient sources and amounts were added proportionally to its volume.

Both biofertilizers resulted from anaerobic fermentation. Into BMV, there was addition of cow milk (5 L) with natural yogurt (110 g) and 1.0 kg of sugar (Bergo et al., 2005BERGO, CL; RICCI, MSF; ROSÁRIO, AAS; BRAGA, RR. 2005. Adubação orgânica. In: WADT, PGS (ed) Manejo do solo e recomendação de adubação para o Estado do Acre. Rio Branco: Embrapa Acre . p.325-348.), to supply microorganisms. This was not applied to BEB due to the microbial population which is ordinary in ruminants (Guazelli et al., 2012GUAZELLI, MJB; RUPP, LCD; VENTURINI, L. 2012. Biofertilizantes. Programa de Fortalecimento da Viticultura Familiar da Serra Gaucha. SL: Grafisul. 13p. (MDA/IBRAVIN. Publicação Técnica, 1). Disponível em: Disponível em: http://www.centroecologico.org.br/cartilhas/Biofertilizantes.pdf Acessado em: 09 de março de 2014.
http://www.centroecologico.org.br/cartil...
). At 30 days, these biofertilizers were sampled, by a register at the bottom of the tank, in order to analyze the liquid part, resulting in the following composition of the plant material and the bovine manure biofertillizers, respectively {(mL/L): P= 0.11 and 4.21; K= 0.52 and 2.32; Ca= 0.40 and 4.18; Mg= 0.75 and 1.98 and S= 0.09 and 0.11; (µL/L): Cu= 1.0 and 10.50; Fe= 66.50 and 823.0; Mn= 70.0 and 202.50 and Zn= 97.0 and 275.73}. The sieved biofertilizers (1 mm mesh) and diluted in water, according to the treatments, were applied manually (1.5 L/m) among the double rows (6.0 L/plot), weekly, totalizing four applications. Irrigation, with drip emitters, spaced every 10 cm from the drip tape, with a flow rate of 10.6 L/h/meter, was monitored by using sensor Irrigas®. Weeding was carried out with the use of hoe, when necessary. No phytosanitary damage was noticed in plants.

Harvest was carried out at 40 days after sowing. Next traits were evaluated: the green mass of the whole harvested plants per plot (the roots were washed in order to remove the soil particles); plant height (average of three random measurements of plant packs, using a milimetric ruler, from the base of the plant up to the apex); aerial part dry mass {average between two plant packs (100 g each, without the roots) per plot, which were put in a greenhouse (65oC), in paper bags, until constant mass}. Afterwards, the contents of macronutrient and micronutrient were determined and calculated the accumulation per 100 g of aerial part green mass (GMap) too (g/100 g of GMap; mg/100 g of GMap, respectively).

The obtained data were submitted to analyses of variance (F test) and regression, besides contrasts with additional treatment (F test), using the program IRRISTAT 5.0. Also the main components analysis was applied with aerial part dry mass and nutrient accumulation, for the main treatments, using the Facto Mine R package (Lê et al., 2008LÊ, S; Josse, J; Husson, F. 2008. Facto Mine R: an R package for multivariate analysis. Journal of Statistical Software 25: 1-18. Disponível em Disponível em http://www.jstatsoft.org/v25/i01 . Acessado em 06 de abril de 2015.
http://www.jstatsoft.org/v25/i01...
) for R v.3.2.1 (R Foundation for Statistical Computing, 2015R FOUNDATION FOR STATISTICAL COMPUTING. 2015. R: a language and environment for statistical computing. Disponível em: Disponível em: http://cran.r-project.org/manuals.html . Acessado em: 09 de julho de 2015.
http://cran.r-project.org/manuals.html...
).

Results and discussion

Green mass, dry mass and plant height

The green mass of the plants (GM) decreased linearly with the growing doses of the biofertilizer (BMV) (Figure 1A). Probably, the roots were damaged, particularly, the finest roots affecting water absorption, besides nutrients, damaging the chain of reactions which culminate in the production of the green mass. Damage to the roots should be related to the astringent sap of banana leaves in the BMV, since Costa et al. (2014COSTA, A; PRESTES, G; SOUTO, LIM; MARIOT, EJ. 2014. Análise da eficácia da seiva da bananeira e iodo polividona em ferimentos de coelho. In: MOSTRA NACIONAL DE INICIAÇÃO CIENTÍFICA E INTERDISCIPLINAR, 7. Anais eletrônicos... Araquari-SC: IFC. 5p. Disponível em: Disponível em: http://ocs.araquari.ifc.edu.br/index.php/micti/micti2014/paper/download/370/127 . Acessado em: 25 de fevereiro, 2014.
http://ocs.araquari.ifc.edu.br/index.php...
) state that this sap is an effective healing. Moreover, mass accumulation in leafy vegetables is positively influenced by water content and by N supply. Thus, the GM production ranged from 1070.8 g/plot (1.43 kg/m2) to 658.75 g/plot (0.88 kg/m2), according to the lowest to the highest dose, coherent with the gradual reduction of plant size, which also, in regular visual inspections, showed progressively paler green color. This change in color is due to the lack of N, which is related to unfavorable interactions between BMV and the reactions of this nutrient in soil. Therefore, water stress and N deficiency determined the decreasing of GM.

Figure 1
Green mass of plants (A), aerial part dry mass (B) and plant height (C) of coriander grown with BMV using different doses and contrasts BEB versus BMV and BEB versus SB, respectively (D, E and F). BMV=biofertilizer prepared with vegetal material; BEB= bovine manure biofertilizer; SB= without biofertilizer, GMap= aerial part green mass. Useful area of the plot (0.75 m2). *;** significant by F test (p<0.05 and p<0.01, respectively); ns= non-significant.

Aerial part dry mass (DM) increased linearly (Figure 1B), ranging from 11.29 g/100 g of GMap (0% BMV) to 13.75 g/100 g of GMap (30%). DM may increase by the greater number of stems, to the detriment to leaf expansion. Also, N-deficient plants may show thin and fibrous stems, due to carbohydrates excess which could not be used in the synthesis of amino acids and other nitrogenous compounds (Taiz & Zeiger, 2006TAIZ, L; ZEIGER, E. 2006. Fisiologia vegetal. 3. ed. Porto Alegre: Armed. 719p. 1a. reimpressão.).

Plant height (PH) decreased with the doses (Figure 1C), as well as GM, ranging from 31.33 cm (0% BMV) to 24.02 cm (30%). Oliveira et al. (2002OLIVEIRA, AP; SILVA, VRF; SANTOS, CS; ARAUJO, JS; NASCIMENTO, JT. 2002. Produção de coentro cultivado com esterco bovino e adubação mineral. Horticultura Brasileira 20: 477-479.), using cattle manure and NPK obtained maximum PH, 35 cm. N is the nutrient which most limits plant growth (Marschner, 2012MARSCHNER, P. 2012. Mineral nutrition of higher plants. 3ed. Amsterdam: Elsevier. 651p.), therefore its scarcity does not help PH and the same factors affected the responses for GM and PH.

Contrasts between treatments (BEB versus BMV and BEB versus SB (bovine manure in the absence of biofertilizer) were studied for GM (Figure 1D), DM (Figure 1E) and PH (Figure 1F). BEB surpassed BMV for GM (ŷ= 129.24*) also SB for DM (ŷ= 1.09**), showing no significance for the other traits. BEB showed, in the liquid part, highest contents for all macronutrients, whereas, for the BMV were attributed effects related to root injury, to the detriment of water and nutrient uptake, as well as a low N. Thus, BEB was more effective in relation to GM yield, that is the commercial product. Alike, it is reasonable that the BEB provided conditions for greater production of DM than SB has.

Contents and nutrients accumulations in the plant’s aerial part

BMV doses affected distinctly concentrations and accumulations of nutrients in the aerial part of coriander plant, with significant responses adjusting to different linear functions; thus, the amplitudes of their contents in DM were calculated, using the lowest and the highest dose of the interval studied (0%↔30%), in order to be compared to reference values (Table 1).

Table 1
Regression equations of contents and accumulations of macro and micronutrients in the coriander’s aerial part with doses of biofertilizer prepared with a mix of plants. Manaus, Embrapa Amazônia Ocidental, 2013.

N contents did not range according to the doses, whereas accumulations increased linearly, which did not reflect in GM, possibly, because the increase (0.0027 g/100 g of GMap), per each unit applied to BMV, was little expressive. Nitrogen is fundamental to increase vegetative growth in leafy vegetables (Echer et al., 2012ECHER, MM; ZOZ, T; ROSSOL, CD; STEINER, F; CASTAGNARA, DD; LANA, MC. 2012. Plant density and nitrogen fertilization in Swiss chard. Horticultura Brasileira 30: 703-707.); therefore, there was N scarcity or depreciation on the acquisition of this nutrient. S also showed significance only for accumulation, which showed inexpressive linear increase (0.0001 g/100 g of GMap, per unit of BMV), concluding that the addition of sulphates (K and Mg) into BMV had little impact in acquisition of S by coriander. SO4 2- is absorbed in low amounts and speed depends on the accompanying cation (Vitti et al., 2006VITTI, GC; LIMA, E; CICARONE, F. 2006. XII - Cálcio, magnésio e enxofre. In: FERNANDES, MS (ed) Nutrição mineral de plantas.Viçosa: SBCS. p.299- 325.): Ca2+<Mg2+<NH4 +<K+. In both cases, the average of contents was lower than the reference values (Haag et al., 1988HAAG, HP; BELFORT, C; MINAMI, K. 1988. Nutrição mineral de hortaliças. Absorção de nutrientes na cultura do coentro (Coriandrum sativum). In: HAAG, PH; MINAMI, K. Nutrição mineral em hortaliças. 2. ed. Campinas: Fundação Cargill. p.27-35.; Daflon et al., 2014DAFLON, DSG; FREITAS, MSM; CARVALHO, AJC; MONNERAT, PH; PRINS, CL. 2014. Sintomas visuais de deficiência de macronutrientes e boro em coentro. Horticultura Brasileira 32: 28-33.).

P contents decreased linearly with the doses and the accumulations were not responsive. P utilization is lower even with the application of the fertilizer (Araújo & Machado, 2006ARAÚJO, AP; MACHADO, CTT. 2006. X-Fósforo. In: FERNANDES, MS(ed) Nutrição mineral de plantas. Viçosa: SBCS. p.253-280.). Damages to roots and precipitation of Ca++, as well as FN, under the highest doses of BMV, probably interfered with its acquisition. K contents also decreased linearly with doses; on the other hand, the accumulations increased linearly. By the angular coefficient of functions, respectively, the highest negative value for K contents (0.1755) compared to the positive value of the accumulation (0.0023), shows a decrease of K in DM, by dilution. P was the least accumulated nutrient in coriander, whereas K was the most absorbed nutrient (Grangeiro et al., 2011GRANGEIRO, LC; FREITAS, FCL; NEGREIROS, MZ; LUCENA RRM; OLIVEIRA, RA. 2011. Crescimento e acúmulo de nutrientes em coentro e rúcula. Revista Brasileira de Ciências Agrárias 6: 11-16.); thus, compared to reference values in soil and nutrient solution, P contents were the most consistent with the nutrients obtained in nutrient solution, whereas K contents were higher in both conditions.

Ca and Mg contents decreased linearly with the doses and there was no significance for accumulations of these nutrients which was similar to P. In the irrigation water, phosphates are incompatible with Ca and Mg (Borges & Silva, 2011BORGES, AL; SILVA, DJ. 2011. Fertilizantes para irrigação. In: Sousa, VF; Marouelli, WA; COELHO, EF; PINTO, JM; COELHO FILHO, MA. Irrigação e fertirrigação em fruteiras e hortaliças. Brasília: Embrapa Informação Tecnológica. p.254-264.) and FN added into BMV, by its composition (Ca= 37%; P2O5= 33%), may have affected the acquisition of these nutrients. Moreover, Ca delivered by FN may have decreased Mg absorption rate (Vitti et al., 2006VITTI, GC; LIMA, E; CICARONE, F. 2006. XII - Cálcio, magnésio e enxofre. In: FERNANDES, MS (ed) Nutrição mineral de plantas.Viçosa: SBCS. p.299- 325.), which was practically a third of what was verified for Ca. Under these conditions, Ca contents were more than double of those recorded by Haag et al. (1988HAAG, HP; BELFORT, C; MINAMI, K. 1988. Nutrição mineral de hortaliças. Absorção de nutrientes na cultura do coentro (Coriandrum sativum). In: HAAG, PH; MINAMI, K. Nutrição mineral em hortaliças. 2. ed. Campinas: Fundação Cargill. p.27-35.), whereas Mg contents were close. Granjeiro et al. (2011) verified that Ca accumulation (20.4 mg/plant) practically double the Mg content (10.18 mg/plant).

The contrast between BEB versus BMV was significant only for contents of K and S (ŷ= -1.73*; -0.17*, respectively), being BMV superior (Table 2). For BEB x SB, the significance occurred for the K content (ŷ= -1.71*), which was higher in SB; thus, this fact can be an effect of concentration since DM was higher than BEB, inversely, by diluting its content. Cattle manure shows considerable contents of K (23.5 g/kg), being able to raise the K + of the biofertilizer.

Table 2
Treatment averages and contrasts estimates (ŷ) of biofertilizer of bovine manure (BEB) versus biofertilizer prepared with a mix of plants (BMV) and BEB versus without biofertilizer (SB) for contents and accumulations of macronutrients in the coriander’s aerial part. Manaus, Embrapa Amazônia Ocidental, 2013.

In relation to accumulations, the contrast BEB versus BMV, with no significance for S, indicated higher values of N and K in BEB, which is consistent with its greater production of GM (Figure 1D) and with invariable DM in this contrast (Figure 1E). On the other hand, the highest accumulations of P, Ca and Mg in BMV may occur due to the fact that their organic acids decreased P fixing (Benites et al., 2005BENITES, VM; MADARI, B; BERNARDI, ACC; MACHADO, PLOA. 2005. Matéria orgânica. In: WADT, PGS (ed). Manejo do solo e recomendação de adubação para o Estado do Acre. Rio Branco: Embrapa Acre. p.93-120.), particularly, solubilizing the probable phosphates of Ca. Moreover, synergism between P and Mg in the absorption (Silva & Trevizam, 2015SILVA, MLS; TREVIZAM, AR. 2015. Interações iônicas e seus efeitos na nutrição das plantas. Informações agronômicas, 49, 16p. Disponível em: Disponível em: http://www.ipni.net/publication/ia-brasil.nsf/0/8C2796BCB76E0F9B83257E20006560E2/$FILE/Page10-16-149.pdf Acessado em 19 de outubro de 2016.
http://www.ipni.net/publication/ia-brasi...
) may have increased both nutrients in the aerial part. In BEB x SB, significance occurred for the accumulation of all the macronutrients, except for P. Greater accumulations of N, K and S were observed with BEB, and of Ca and Mg with SB. The highest accumulation of Ca and Mg in SB may indicate undesirable effect of BEB on its acquisition, and this may be related to the effect of the triad P, Ca and Mg.

The increasing doses of BMV increased linearly the contents of B and Zn and their accumulations. B uptake can be excessive when its content in the solution is high (Dechen & Nachtigall, 2006DECHEN, AR; NACHTIGALL, GR. 2006. Elementos essenciais e benéficos às plantas superiores. In: FERNANDES, MS (ed) Nutrição mineral de plantas. Viçosa: SBCS . p.1-5.), and it is verified, from the 10% dose, that the contents reach higher values than the comparison references, considering the marked angular coefficient of the function (+7.335). However, in the amplitude of Zn contribution, the values were lower than the reference used. For Zn, values lower than 25.0 mg/kg are considered deficient.

Cu contents did not change with the doses of BMV, whereas contents of Fe and Mn decreased linearly. Mn accumulation was not affected either, Cu accumulation has increased and Fe accumulation has decreased linearly. The average contents of Cu and the relative amplitude of Fe were lower than the reference values. Mn referential values were the same; however, only without the biofertilizer (0%), decreased with an increase of doses. Despite appreciable supply of Fe by the soil with manure, BMV decreased the acquisition of Fe, probably, due to changes in pH and concentrations of P and Ca (Luchini, 2008LUCHINI, I.. 2008. Fósforo disponível em solos ácidos e corrigidos com aplicação de fosfatos solúveis, reativo e natural. Presidente Prudente: UNOESTE. 33p(Dissertação mestrado).), which interfere with the acquisition of this nutrient. Since Mn was added into the effluent, an increase in contents proportionally to the doses would be expected. However, its absorption is basically controlled metabolically (Dechen & Nachtigall, 2006DECHEN, AR; NACHTIGALL, GR. 2006. Elementos essenciais e benéficos às plantas superiores. In: FERNANDES, MS (ed) Nutrição mineral de plantas. Viçosa: SBCS . p.1-5.) and Mn extraction by the coriander is lower than Fe extraction (Haag et al., 1988HAAG, HP; BELFORT, C; MINAMI, K. 1988. Nutrição mineral de hortaliças. Absorção de nutrientes na cultura do coentro (Coriandrum sativum). In: HAAG, PH; MINAMI, K. Nutrição mineral em hortaliças. 2. ed. Campinas: Fundação Cargill. p.27-35.).

The contrasts BEB versus BMV and BEB versus SB (with no biofertilizer) were studied for contents and accumulations of micronutrients (Table 3). For the contrast BEB versus BMV, significance was only noticed for Fe contents (ŷ= -278.76 mg/kg), with superiority of BMV. On the contrast BEB versus SB, a significance was noticed only for Fe contents, with superiority of SB (ŷ= -476.06 mg/kg). In both situations, BEB was less impactful for Fe content, which accumulation stood out in BMV and in SB. Fe acquisition in plants is affected by the pH, concentration of Ca and P; balance Fe/Mn, among others (Dechen & Nachtigall, 2006DECHEN, AR; NACHTIGALL, GR. 2006. Elementos essenciais e benéficos às plantas superiores. In: FERNANDES, MS (ed) Nutrição mineral de plantas. Viçosa: SBCS . p.1-5.). The contents of Ca and P in the liquid part of BEB were more accentuated, and Fe shows affinity to form phosphate binders and the slower speed of Fe3+ reduction at higher pH, phenomena which reduce the supply to the roots. In both contrasts, significance also occurred for B, considering that BEB surpassed BMV and SB. In the first, probably, due to the increased movement of B with transpiration flow, since BEB yielded more GM than BMV (Figure 1D). And due to the fact that BEB surpassed SB, the lowest yield of DM in SB (Figure 1E) can be emphasized, because it was verified that the accumulation of B followed the increase of DM.

Table 3
Treatment averages and contrast estimates (ŷ) biofertilizer of bovine manure (BEB) versus biofertilizer produced with a mix of plants (BMV) and BEB versus without biofertilizer (SB) for contents and accumulations of micronutrients in the coriander’s aerial part. Manaus, Embrapa Amazônia Ocidental, 2013.

Principal components analysis

The results of the principal components analysis (PCA), applied into DM correlation matrix (g/100 g of GMap) and macronutrient accumulations (g/100 g of GMap), demonstrated that, in the correlation circle, the first two axes explained 76.30% of total variability, being 48.91% in axis 1 and 27.39% in axis 2 (Figure 2). The principal component 1 (PC1), with distribution in axis 1, was influenced by dry mass of the aerial part (MS), P, K, Ca, Mg and S, all with positive eigenvectors (0.725; 0.841; 0.770; 0.685; 0.775 and 0.658, respectively); therefore, the same occur with DM and with the acquisition of these macronutrients. PC2, in axis 2, demonstrates competition of N (0.674) with Ca (-0.636) and Mg (-0.556), by the opposite signals. Therefore, increasing N accumulation will decrease the accumulation of Ca and Mg and vice-versa. This indicates losses of N through volatilization, which are favored, among other factors, by alkaline pH. In this case, due to contribution of FN in the biofertilizer raising the pH (Luchini, 2008LUCHINI, I.. 2008. Fósforo disponível em solos ácidos e corrigidos com aplicação de fosfatos solúveis, reativo e natural. Presidente Prudente: UNOESTE. 33p(Dissertação mestrado).), besides adding more Ca and Mg to the soil.

Figure 2
Correlation circle between accumulations of macro (A) and micronutrients (B) and aerial part dry mass (DM) of the coriander in two first principal components (PC1 and PC2). Variance (V) and eingenvalues of correlation matrix (λ). Manaus, Embrapa Amazônia Ocidental, 2013.

Evaluating PCA, which was applied to DM correlation matrix (100 g of GMap) and micronutrient accumulations (mg/100 g of GMap), it is possible to verify that, in the correlation circle, the first two axes explained 75.45% of total variance of the original traits, being 48.48% in axis 1 and 26.97% in axis 2 (Figure 2 ). PC1, in axis 1, represents DM (0.876) and the accumulations of B (0.776), Cu (0.710) and Zn (0.857), by the largest coefficients of the same signal, indicating that DM and the acquisition of these micronutrients increased concomitantly. In PC2, axis 2, it is easily verified that accumulations of Fe (0.867) and Mn (0.738), with positive eigenvectors, do not express competition. In general, PC1 can better explain the data; however, PC2 was additional on these metal micronutrients, which is important since Mn, and not Fe, was added into the biofertilizer.

In short, the increase of BMV concentrations (%, in water) led a decrease in green mass yield of the coriander, which is a product with commercial value, as well as the plant height; however, the aerial part dry mass increased. On the other hand, the total amounts of nutrients in the aerial part of plants increased (N, S and K; B, Zn and Cu), decreased (Fe) or no responsed (P, Ca and Mg; Mn). Interactions between BMV and N in soil, decreasing its availability, conditioned growth and production, since the results related to nutrients were not counterproductive. On the other hand, BEB surpassed BMV in relation to the green mass of the plants and to the accumulations of N and K. In short, it is inferred that Musa sp and FN in the composition of BMV have compromised its efficacy.

ACKNOWLEDGEMENTS

To Foundation for Research Support of the State of the Amazon FAPEAM, for the financial support for this research.

REFERENCES

  • ARAÚJO, AP; MACHADO, CTT. 2006. X-Fósforo. In: FERNANDES, MS(ed) Nutrição mineral de plantas Viçosa: SBCS. p.253-280.
  • ARAUJO, KP; FAQUIN, V; BALIZA, DP; ÁVILA, FW; GUERRERO, AC. 2016. Crescimento e nutrição mineral de cebolinha verde cultivada hidroponicamente sob diferentes concentrações N,P,K. Revista Ceres, 63: 232-240. Disponível em: Disponível em: http://www.scielo.br/pdf/rceres/v63n2/2177-3491-rceres-63-02-00232.pdf Acessado em 20 de outubro de 2016.
    » http://www.scielo.br/pdf/rceres/v63n2/2177-3491-rceres-63-02-00232.pdf
  • BENITES, VM; MADARI, B; BERNARDI, ACC; MACHADO, PLOA. 2005. Matéria orgânica. In: WADT, PGS (ed). Manejo do solo e recomendação de adubação para o Estado do Acre Rio Branco: Embrapa Acre. p.93-120.
  • BERGO, CL; RICCI, MSF; ROSÁRIO, AAS; BRAGA, RR. 2005. Adubação orgânica. In: WADT, PGS (ed) Manejo do solo e recomendação de adubação para o Estado do Acre Rio Branco: Embrapa Acre . p.325-348.
  • BORGES, AL; SILVA, DJ. 2011. Fertilizantes para irrigação. In: Sousa, VF; Marouelli, WA; COELHO, EF; PINTO, JM; COELHO FILHO, MA. Irrigação e fertirrigação em fruteiras e hortaliças Brasília: Embrapa Informação Tecnológica. p.254-264.
  • COSTA, A; PRESTES, G; SOUTO, LIM; MARIOT, EJ. 2014. Análise da eficácia da seiva da bananeira e iodo polividona em ferimentos de coelho. In: MOSTRA NACIONAL DE INICIAÇÃO CIENTÍFICA E INTERDISCIPLINAR, 7. Anais eletrônicos.. Araquari-SC: IFC. 5p. Disponível em: Disponível em: http://ocs.araquari.ifc.edu.br/index.php/micti/micti2014/paper/download/370/127 Acessado em: 25 de fevereiro, 2014.
    » http://ocs.araquari.ifc.edu.br/index.php/micti/micti2014/paper/download/370/127
  • DAFLON, DSG; FREITAS, MSM; CARVALHO, AJC; MONNERAT, PH; PRINS, CL. 2014. Sintomas visuais de deficiência de macronutrientes e boro em coentro. Horticultura Brasileira 32: 28-33.
  • DECHEN, AR; NACHTIGALL, GR. 2006. Elementos essenciais e benéficos às plantas superiores. In: FERNANDES, MS (ed) Nutrição mineral de plantas Viçosa: SBCS . p.1-5.
  • DONEGÁ, M.A. 2009. Relações K:Ca e aplicação de silício na solução nutritiva para o cultivo de coentro Piracicaba: ESALQ. 62p (Dissertação mestrado).
  • ECHER, MM; ZOZ, T; ROSSOL, CD; STEINER, F; CASTAGNARA, DD; LANA, MC. 2012. Plant density and nitrogen fertilization in Swiss chard. Horticultura Brasileira 30: 703-707.
  • FERNANDES, MS. 2006. Nutrição mineral de plantas. Viçosa: SBCS , p.1-5.
  • FILGUEIRA, FAR. 2008. Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças 3.ed. Viçosa: UFV. 421p.
  • GRANGEIRO, LC; FREITAS, FCL; NEGREIROS, MZ; LUCENA RRM; OLIVEIRA, RA. 2011. Crescimento e acúmulo de nutrientes em coentro e rúcula. Revista Brasileira de Ciências Agrárias 6: 11-16.
  • GUAZELLI, MJB; RUPP, LCD; VENTURINI, L. 2012. Biofertilizantes. Programa de Fortalecimento da Viticultura Familiar da Serra Gaucha SL: Grafisul. 13p. (MDA/IBRAVIN. Publicação Técnica, 1). Disponível em: Disponível em: http://www.centroecologico.org.br/cartilhas/Biofertilizantes.pdf Acessado em: 09 de março de 2014.
    » http://www.centroecologico.org.br/cartilhas/Biofertilizantes.pdf
  • HAAG, HP; BELFORT, C; MINAMI, K. 1988. Nutrição mineral de hortaliças. Absorção de nutrientes na cultura do coentro (Coriandrum sativum). In: HAAG, PH; MINAMI, K. Nutrição mineral em hortaliças 2. ed. Campinas: Fundação Cargill. p.27-35.
  • LÊ, S; Josse, J; Husson, F. 2008. Facto Mine R: an R package for multivariate analysis. Journal of Statistical Software 25: 1-18. Disponível em Disponível em http://www.jstatsoft.org/v25/i01 Acessado em 06 de abril de 2015.
    » http://www.jstatsoft.org/v25/i01
  • LUCHINI, I.. 2008. Fósforo disponível em solos ácidos e corrigidos com aplicação de fosfatos solúveis, reativo e natural Presidente Prudente: UNOESTE. 33p(Dissertação mestrado).
  • MARSCHNER, P. 2012. Mineral nutrition of higher plants 3ed. Amsterdam: Elsevier. 651p.
  • MEDEIROS, DC; LIMA, BAB; BARBOSA, MR; ANJOS, RSB; BORGES, RD; CAVALCANTE NETO, JG; MARQUES, LF. 2007. Produção de alface com biofertilizantes e substratos. Horticultura Brasileira 25: 433-436.
  • MELO, RA; MENEZES, D; RESENDE, LV; WANDERLEY JUNIOR, LJG; SANTOS, VF; MESQUITA, JCP; MAGALHÃES, AG. 2009. Variabilidade genética em progênies de meio-irmãos de coentro. Horticultura Brasileira 27: 324-329.
  • MOREIRA, A; FAGERIA, NK. 2009. Repartição e mobilização de nutriente na bananeira. Revista Brasileira de Fruticultura {online} 31: 574-581.
  • OLIVEIRA, AP; SILVA, VRF; SANTOS, CS; ARAUJO, JS; NASCIMENTO, JT. 2002. Produção de coentro cultivado com esterco bovino e adubação mineral. Horticultura Brasileira 20: 477-479.
  • R FOUNDATION FOR STATISTICAL COMPUTING. 2015. R: a language and environment for statistical computing Disponível em: Disponível em: http://cran.r-project.org/manuals.html Acessado em: 09 de julho de 2015.
    » http://cran.r-project.org/manuals.html
  • RESENDE, ALS; HARO, MM; SILVA, VF; SOUZA, B; SILVEIRA, LCP. 2012. Diversidade de predadores em coentro, endro e funcho sob manejo orgânico. Arquivos do Instituto Biológico 79: 193-199.
  • SANTOS, KP. 2009. Desempenho agronômico do coentro submetido a diferentes adubações Altamira: UFPA. 51p(Monografia graduação). Disponível em: Disponível em: http://www.aba-agroecologia.org.br/revistas/index.php/cad/article/viewFile/2713/2361 Acessado em 18 de outubro de 2016.
    » http://www.aba-agroecologia.org.br/revistas/index.php/cad/article/viewFile/2713/2361
  • SILVA, AF; CCOELHO, AIA; RAMOS, JB; SANTANA, LM; FRANÇA, CRRS. 2007. Características químicas e aceitação de biofertilizante preparado e utilizado em horta agroecológica do Semi-Árido Nordestino. Revista Brasileira de Agroecologia 2: 962-965 Disponível em: Disponível em: http://www.aba-agroecologia.org.br/revistas/index.php/cad/article/viewFile/2713/2361 Acessado em:19 de outubro de 2016.
    » http://www.aba-agroecologia.org.br/revistas/index.php/cad/article/viewFile/2713/2361
  • SILVA, MLS; TREVIZAM, AR. 2015. Interações iônicas e seus efeitos na nutrição das plantas. Informações agronômicas, 49, 16p. Disponível em: Disponível em: http://www.ipni.net/publication/ia-brasil.nsf/0/8C2796BCB76E0F9B83257E20006560E2/$FILE/Page10-16-149.pdf Acessado em 19 de outubro de 2016.
    » http://www.ipni.net/publication/ia-brasil.nsf/0/8C2796BCB76E0F9B83257E20006560E2/$FILE/Page10-16-149.pdf
  • SOUZA JL; RESENDE, P. 2003. Manual de horticultura orgânica Viçosa: Aprenda Fácil. 569p.
  • SOUZA, RB; ALCÂNTARA, FA. 2007. Adubação orgânica. In: HENZ, GP; ALCÂNTARA, FA; RESENDE, FV. Produção orgânica de hortaliças: o produtor pergunta e a Embrapa responde Brasília: Embrapa Informação Tecnológica. p.113-127. (Coleção 500 perguntas, 500 respostas).
  • SOUZA, O; FEDERIZZI, M; COELHO, B; WAGNER, TM; WISBECK, E. 2010. Biodegradação de resíduos lignocelulósicos gerados na bananicultura e sua valorização para a produção de biogás. Revista Brasileira de Engenharia Agrícola e Ambiental 14: 438-443.
  • TAIZ, L; ZEIGER, E. 2006. Fisiologia vegetal 3. ed. Porto Alegre: Armed. 719p. 1a. reimpressão.
  • VITTI, GC; LIMA, E; CICARONE, F. 2006. XII - Cálcio, magnésio e enxofre. In: FERNANDES, MS (ed) Nutrição mineral de plantasViçosa: SBCS. p.299- 325.

Publication Dates

  • Publication in this collection
    Oct-Dec 2017

History

  • Received
    19 Sept 2016
  • Accepted
    07 Apr 2017
Associação Brasileira de Horticultura Embrapa Hortaliças, C. Postal 218, 70275-970 Brasília-DF, Tel. (61) 3385 9099, Tel. (81) 3320 6064, www.abhorticultura.com.br - Vitoria da Conquista - BA - Brazil
E-mail: associacaohorticultura@gmail.com