SciELO - Scientific Electronic Library Online

 
vol.68 issue3Strategies to minimize the adverse thermal environment in broiler chickensUse of supplements for mating Angus heifers at 14 months author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Arquivo Brasileiro de Medicina Veterinária e Zootecnia

On-line version ISSN 1678-4162

Arq. Bras. Med. Vet. Zootec. vol.68 no.3 Belo Horizonte May./June 2016

http://dx.doi.org/10.1590/1678-4162-8729 

Zootecnia e Tecnologia e Inspeção de Produtos de Origem Animal

Determinação da energia metabolizável do farelo residual do milho com e sem enzima em dietas para frangos de corte

Determination of the metabolizable energy of residual corn bran with and without enzyme in diets for broilers

C.G. Valadares1 

J.S. Santos1 

M.C.M.M. Lüdke1  * 

J.V. Lüdke2 

J.C.N.S. Silva1 

P.S. Pereira1 

1Universidade Federal Rural de Pernambuco - UFRPE ˗ Recife, PE

2Empresa Brasileira de Pesquisa Agropecuária - Embrapa ˗ Concórdia, SC

RESUMO

O objetivo deste trabalho foi avaliar o valor nutricional e determinar a energia metabolizável do farelo residual de milho (FRM) sem e com o uso da enzima alfa- amilase. Foi realizado um experimento de metabolismo com 180 pintos machos Cobb com 14 dias, distribuídos em um delineamento inteiramente ao acaso, com seis tratamentos, cinco repetições e seis aves por parcela. As dietas experimentais foram: T1: ração referência (RR), T2: 60% T1 + 40% de FRM, T3: RR + enzima, T4: 60% T1 + 40% de FRM com adição de enzima, T5: RR com substituição de 100% do milho pelo FRM e T6: RR com substituição de 100% do milho pelo FRM com adição de enzima. A composição química do FRM foi: 88,33% de matéria seca (MS), 10,23% de proteína bruta (PB), 15,44% de extrato etéreo (EE), 4,33% de cinzas (CZ) e 4555kcal/kg de energia bruta (EB). Os valores dos coeficientes de metabolizabilidade aparente para o FRM sem e com adição de enzima foram, respectivamente, de 73,37% e 76,33% para MS (p=0,0136), 70,44% e 70,39% para PB (p=0,9595) e de 74,79% e 76,77% para EB (p=0,0128). Os valores da energia metabolizável aparente (EMA) e da EMA corrigida para retenção de nitrogênio (EMAn) para o FRM (na base natural) foram de 3322±19 e 3241±18kcal/kg e de 3334±16 e 3261±17kcal/kg, respectivamente, sem e com adição de enzima. A adição da enzima não teve efeito estatístico significativo sobre os valores de EMA e EMAn, entretanto houve efeito positivo no coeficiente de metabolização da energia.

Palavras-chave: alfa-amilase; alimento alternativo; aves; energia; metabolismo

ABSTRACT

The aim of this study was to evaluate the nutritional value and the metabolizable energy of residual corn bran (FRM) with and without the use of alpha amylase enzyme. One metabolism assay was done using 180 Ross male broilers at 14 days of age distributed in an entirely randomized design with six treatments, five replications and six broilers per plot. The assay treatments established were: T1: reference diet (RR), T2: 60% T1 + 40% of FRM, T3: T1 (RR) + enzyme addition, T4: 60% T1 + 40% of FRM with enzyme addition, T5: T1 (RR) with 100% replacement of corn by FRM and T6: T1 (RR) with 100% replacement of corn by FRM with enzyme addition. FRM chemical composition was: 88.33% of dry matter (MS), 10.23% of crude protein (PB), 15.44% of crude fat (EE), 4.33% of ashes (CZ) and 4555Kcal/kg of Gross Energy (EB). The FRM apparent metabolizability coefficients with and without the enzyme addition were, respectively, 73.37% and 76.33% for MS (p=0.0136), 70.44% and 70.39% for PB (p=0.9595) and 74.79% and 76.77% for EB (p=0.0128). The apparent metabolizable energy (EMA) and EMA corrected for nitrogen retention values (as is basis) were 3322±19 and 3241±18Kcal/kg and 3334±16 and 3261±17Kcal/kg, respectively, for with and without the enzyme addition to FRM. The enzyme addition had no statistical significance on the EMA and EMAn values, however, a significant effect on energy metabolizability coefficient was observed.

Keywords: alpha amylase; alternative feedstuffs; poultry; energy; metabolism

INTRODUÇÃO

No Brasil, a principal fonte de energia em rações para frangos de corte é o milho. Como a nutrição possui caráter econômico importante na produção de frangos de corte por ser responsável em até 70% do custo total da produção, há necessidade de pesquisas por fontes energéticas alternativas, equivalentes nutricionalmente, menos onerosas que o milho e disponíveis no mercado regional.

Um dos ingredientes alternativos que possuem potencial para amenizar os altos custos da ração é o farelo residual de milho (FRM), subproduto da industrialização do milho obtido mediante processamento a seco do grão. O FRM é gerado como subproduto na proporção de 35% de todo o milho industrializado que é destinado ao consumo humano na forma de "flocão" (ingrediente para preparo do cuscuz). Zanotto et al. (1998) avaliaram a composição química do FRM e encontraram: 88,88% de MS, 9,14% de PB, 11,33% de EE, 5,20% de fibra bruta (FB), 3,20% de CZ, 0,46% de lisina, 0,25% de metionina e 3040kcal/kg de EMAn na matéria natural. Os autores determinaram que níveis de substituição do milho pelo FRM em até 50% foram satisfatórios na alimentação de frangos de corte. Em pesquisa mais recente, Santos et al. (2013) encontraram valores de 88,55% de MS, 10,80% de PB, 12,90% de EE, 5,04 de FB e 3017kcal/kg de EMAn para frangos de corte, resultado este próximo ao encontrado pelos autores acima.

Estudos recentes têm sido direcionados para o uso do FRM associado a insumos biotecnológicos (enzimas) que aumentem o valor nutricional do farelo e que possam ser usados de forma concomitante com processamentos adequados, visando, de forma estratégica, incrementar o valor econômico do subproduto.

A alfa-amilase pancreática cliva aleatoriamente as ligações glicosídicas alfa 1-4 da amilose para gerar maltose e maltotriose ou para gerar maltose, glicose e dextrina da amilopectina. Enzimas, como a amilase, aumentam o aproveitamento da energia do ingrediente, provavelmente por quebrar maiores quantidades de amido durante o processo de digestão, aumentando a digestibilidade da energia. Adeola et al. (2010) utilizaram carboidrases (xilanase + amilase) e quantificaram a energia metabolizável de um farelo residual oriundo da produção de álcool do milho. Os autores determinaram um aumento de energia digestível ileal, energia metabolizável aparente e aparente corrigida para nitrogênio correspondendo a 12%, 5,7% e 6,2%, respectivamente.

Os aditivos enzimáticos (enzimas exógenas) auxiliam o processo digestivo, melhorando a digestibilidade dos nutrientes presentes na dieta (Guimarães et al., 2009). As principais enzimas disponíveis no mercado são as carboidrases, as proteases e as fitases. Para quebra do amido, polissacarídeo complexo de extrema importância na nutrição avícola, utiliza-se a enzima alfa-amilase classificada no grupo das carboidrases.

Diante das informações descritas, o objetivo desta pesquisa é verificar a composição nutricional e determinar a energia metabolizável aparente (EMA) e a energia metabolizável aparente corrigida (EMAn) do FRM sem e com a adição da enzima alfa- amilase.

MATERIAL E MÉTODOS

Todo o procedimento experimental padronizado para ensaios de metabolismo foi aprovado pelo comitê de ética para uso de animais em pesquisa e experimentação na UFRPE, de licença n° 043/2012.

Um ensaio de metabolismo foi realizado no Laboratório de Digestibilidade de Não Ruminantes do Departamento de Zootecnia da Universidade Federal Rural de Pernambuco (UFRPE), para avaliar a metabolizabilidade dos nutrientes e determinar o balanço de nitrogênio, os valores de energia metabolizável aparente (EMA) e de EMA corrigida para nitrogênio (EMAn) do FRM ao natural e submetido à incorporação da enzima alfa-amilase. A enzima alfa-amilase foi adicionada na proporção de 0,09g para cada 30kg de ração (3ppm). A atividade da enzima declarada pelo fabricante foi de 30.000U/g de amilase. Uma unidade libera 1mg de maltose do amido em três minutos, no pH 6,9, na temperatura de 20°C. Após essa etapa, foram feitas as rações teste substituindo a ração referência em 40% pelo FRM sem e com enzima.

Foram estabelecidos seis tratamentos, sendo: T1: ração referência (RR), T2: 60% T1 + 40% substituição da RR pelo FRM, T3: RR + enzima, T4: 60% T1 + 40% substituição da RR pelo FRM com enzima, T5: RR em que o milho foi substituído peso a peso pelo FRM e T6: RR em que o milho foi substituído peso a peso pelo FRM com enzima.

No experimento de metabolismo, foram utilizados 180 frangos machos da linhagem comercial Cobb 500, alojados com idade inicial de 10 dias e com peso médio inicial de 395±20g, distribuídos em 30 gaiolas metabólicas com comedouros tipo calha com tela de proteção para evitar desperdícios e bebedouros tipo taça, com água e ração à vontade, em ambiente controlado com temperatura entre 28° e 32ºC. O delineamento experimental foi o inteiramente ao acaso, com seis tratamentos, cinco repetições e seis frangos homogêneos no peso por parcela experimental. A ração experimental referência foi formulada de acordo com a composição dos alimentos e as exigências nutricionais para a idade das aves, segundo Rostagno et al. (2011), conforme expresso na Tab. 1.

Tabela 1 Composição percentual calculada da dieta experimental 

Ingredientes Ração referência
Milho grão 56,0853
Farelo de soja 36,5973
Óleo de soja 3,3866
Fosfato bicálcico 1,5518
Calcário calcítico 0,9157
Sal comum 0,4825
Premix vitamínico1 0,1200
Premix mineral1 0,1000
L-Lisina HCl (78,8%) 0,2526
DL-Metionina (99%) 0,3170
L-Treonina (98,5%) 0,0912
Cloreto de colina (60%) 0,1000
Composição calculada 100,000
Energia metabolizável (kcal/kg) 3050
Proteína bruta, % 21,20
Cálcio, % 0,8410
Sódio, % 0,2100
Fósforo disponível, % 0,4010
Lisina digestível, % 1,2521
Metionina + cistina digestível, % 0,8760
Fenilalanina + tirosina digestível, % 1,6376
Isoleucina digestível, % 0,8224
Leucina digestível, % 1,6234
Arginina digestível, % 1,3150
Treonina digestível, % 0,7910
Triptofano digestível, % 0,2367

1Níveis de garantia por quilo de produto: vit. A (10.000.000UI), vit. D3 (2.000.000UI), vit. E (20.000mg), vit. K3 (4.000mg), vit. B1 (1880mg), vit. B2 (5000mg), vit. B6 (2000mg), vit. B12 (10.000mcg), niacina (30.000mg), ácido pantotênico (13.500mg), ácido fólico (500mg), selênio (360mg), zinco (110.000mg), iodo (1400mg), cobre (20.000mg), manganês (156.000mg), ferro (96.000mg), antioxidante (100.000mg), veículo Q.S.P. 100g.

O período experimental foi de 14 dias, sendo quatro dias de adaptação dos pintos às gaiolas e 10 dias em que as aves receberam dieta experimental. No período de 14 aos 24 dias de idade, cinco dias foram reservados para adaptação às dietas e cinco para coleta de excretas para determinação do metabolismo.

Utilizou-se o óxido férrico (Fe2O3) na concentração de 1% como marcador para identificar o início e o final do período de coleta. A coleta de excretas foi realizada uma vez ao dia (às nove horas). O material coletado foi acondicionado em sacos plásticos previamente identificados e congelado em freezer a -20°C. No final do experimento, as excretas foram descongeladas, mantendo-se os sacos plásticos hermeticamente fechados, homogeneizadas, e foram retiradas alíquotas de 600g para cada repetição; em seguida, foram pré-secas em estufa de ventilação forçada a 55°C, por 72 horas.

Após a pesagem das amostras secas, estas foram moídas em moinho tipo Willey, com peneira de 1mm, colocadas em recipientes plásticos identificados e encaminhadas às análises. Foram realizadas as análises de matéria seca (MS), energia bruta (EB), extrato etéreo (EE), cinzas (CZ), nitrogênio (N), no Laboratório de Nutrição Animal (Lana/DZ/UFRPE) e no Laboratório de Química do Solo (Depa/UFRPE). As concentrações de matéria seca, energia bruta, nitrogênio e cinzas foram determinadas de acordo com Silva e Queiroz (2002). A energia bruta foi quantificada com auxílio de bomba calorimétrica adiabática.

Com base nos resultados das análises, foram calculados os coeficientes de metabolização aparente da matéria seca (CMAMS), da proteína bruta (CMAPB) e da energia bruta (CMAEB) e os valores da energia metabolizável aparente (EMA) e da EMA corrigida para retenção de nitrogênio (EMAn) para o ingrediente na presença (T4) ou ausência (T2) de enzima, por meio de equações descritas por Matterson et al., (1965). Os mesmos parâmetros foram calculados para as rações nos tratamentos 1 a 6. A quantificação e a qualificação do amido foram realizadas no Itep, pelo método de colorimetria/IAL (Instrução normativa - Mapa n° 68, de 12/12/2006), e no Laapa, pelo método previsto pela AOAC (1995), respectivamente.

Os dados foram analisados mediante a análise da variância ANOVA, utilizando-se o programa estatístico SAS. O efeito da adição ou não da enzima no ingrediente sobre os parâmetros calculados foi avaliado por meio de contraste. Da mesma forma, os parâmetros calculados para as rações do T1 e T3, do T2 e T4 e do T5 e T6 foram comparadas duas a duas, estabelecendo-se os respectivos contrastes ortogonais.

RESULTADOS E DISCUSSÃO

Os valores analisados de MS, PB, EE, CZ, FB e EB para o FRM foram, respectivamente, 88,33%, 10,23%, 15,44%, 4,33%, 6,54% e 4555kcal/kg. A composição bromatológica do farelo residual de milho apresentou valores numéricos que diferem dos encontrados na literatura. Brum et al. (2000) avaliaram a composição química e a energia metabolizável de ingredientes para aves e encontraram valores de MS de 91,60%, PB de 9,56%, CZ de 3,29%, EE de 11,41% e EB de 4407kcal/kg. Para a MS, os valores foram superiores, e nas demais análises os valores foram inferiores. Contudo, Santos et al. (2013) observaram valores similares para MS e PB, de 88,5 e 10,8%, respectivamente, e maiores para energia bruta, de 4638kcal/kg. Os teores de EE (12,9%) e CZ (3,9%), entretanto, foram inferiores aos relatados na presente pesquisa. A EB determinada para o FRM foi superior ao valor de 4407kcal/kg determinado por Brum et al. (2000).

A diferença da composição nutricional do farelo residual de milho pode estar relacionada a diversos fatores, desde a variedade gênica do ingrediente até o processamento (via seca ou úmida) pelo qual ele foi submetido. Nesse contexto, Calderano et al. (2010), ao determinarem a composição química e energética de alimentos de origem vegetal com aves em diferentes idades, encontraram variação na composição química e energética dos alimentos em ralação à literatura, o que justifica que condições de cultivo e de solo, de clima e de cultivares, além do próprio processamento a que são submetidos, interferem sobre tais características.

Em relação à análise quantitativa do amido no ingrediente, este apresentou 33,6% de amido, contrastando com a proporção encontrada no milho, que possui 62,66% de amido (Rostagno et al., 2011). Assim, em comparação ao milho, o FRM apresenta um pouco mais que a metade desse carboidrato (53,68%), contudo essa proporção não interferiu no aproveitamento das diferentes fontes precursoras de energia pelo animal. As energias metabolizáveis determinadas foram EMA 3322±19 e EMAn 3241±18kcal/kg do farelo residual de milho. Em relação à fração amídica, o FRM demonstrou as proporções de 23,3% de amilose e de 73,1% de amilopectina, similarmente às encontradas em algumas variedades de milho, que possuem 24% e 76% de amilose e amilopectina, respectivamente (Macari, 2002). Esses resultados reforçam que o ingrediente, por apresentar maior proporção de amilopectina, possui uma alta digestibilidade.

Para os coeficientes de metabolização aparente (CMA) da MS, PB e EB, houve diferença estatística entre o FRM sem enzima e com enzima para os compostos MS e EB (Tab. 2). A adição de alfa-amilase melhorou os coeficientes de metabolizabilidade aparente da matéria seca e da energia bruta, o que indica maior disponibilização dos nutrientes para o aproveitamento animal.

Tabela 2 Valores médios e desvio-padrão para os coeficientes de metabolização aparente, a energia metabolizável aparente (EMA) e a EMA corrigida para retenção de nitrogênio (EMAn) para o farelo residual de milho em função da presença ou não da enzima alfa-amilase 

Parâmetro Farelo residual de milho
Coeficiente de metabolização aparente Sem alfa- amilase Com alfa- amilase Probab. P= C.V. % Média
Energia bruta, % 74,79±0,45b 76,67±0,37a 0,0128 1,23 75,73±0,42
Matéria seca, % 73,37±0,76b 76,33±0,55a 0,0136 1,99 74,85±0,66
Proteína bruta, % 70,44±0,67 70,39±0,68 0,9595 2,13 70,42±0,45
Energia metabolizável aparente
EMA na MS, kcal/kg 3760±22 3774±18 0,6429 1,17 3767±13
EMA na MN, kcal/kg 3322±19 3334±16 0,6430 1,17 3328±12
EMA corrigida p/ retenção de N
EMAn na MS, kcal/kg 3669±21 3686±19 0,5709 1,22 3677±14
EMAn na MN, kcal/kg 3241±18 3261±17 0,4554 1,22 3251±12

Valores seguidos de letras diferentes na mesma linha diferem estatisticamente pelo nível de significância indicado.

Em relação aos valores de EMA e EMAn expressos em matéria seca e matéria natural, não houve diferença estatística do FRM com ou sem adição de enzima. Para EMA e EMAn do FRM sem enzima, foram encontrados valores superiores, 3178kcal/kg e 3017kcal/kg, respectivamente, se comparados com os de Santos et al. (2013). Os valores de EMA e EMAn foram superiores numericamente no ingrediente (FRM) que possuía a enzima alfa-amilase, com melhora de 0,4% e 0,5% para EMA e EMAn na base de MS, respectivamente. Valores superiores foram encontrados por Adeola et al. (2010), quando observaram as contribuições das carboidrases (xilanase + amilase) sobre EM dos resíduos oriundos da produção de álcool de milho incluídos em dietas à base de milho e farelo de soja em níveis de 0, 30 e 60%. A adição das enzimas, segundo os autores, melhorou a EMA e a EMAn daqueles subprodutos em 5,7% e 6,2%, respectivamente.

O aumento das energias metabolizáveis pode sugerir maior disponibilização de energia direta, por meio da digestibilidade do amido e, indiretamente, da disponibilidade proteica. Isso porque a inclusão de carboidrases poderia auxiliar a digestão do amido, reduzindo a produção de amilase endógena e indiretamente tendo um efeito poupador de aminoácidos para síntese dessas enzimas endógenas (Gracia et al., 2003).

O uso de complexos enzimáticos pode favorecer uma resposta superior da ação bioquímica das enzimas, quando comparados ao uso individual das enzimas. Sabe-se que as enzimas são específicas em suas ações, tendo um substrato específico na reação. Esse fato pode ser insuficiente para produzir o máximo benefício, sugerindo que misturas de enzimas sejam mais efetivas no aproveitamento dos nutrientes das dietas (Tejedor et al., 2001).

A enzima proporcionou efeito (P=0,0136) ao se avaliar o coeficiente de metabolização aparente da matéria seca nos animais alimentados com as rações contendo a relação 60/40 de ração referência e FRM, com valores de 71,82 e 73,00%, respectivamente (Tab. 3 e 4).

Tabela 3 Valores médios e desvio-padrão para os coeficientes de metabolização aparente (CMA), a energia metabolizável aparente (EMA) e a EMA corrigida para retenção de nitrogênio (EMAn) para três tipos de rações em função da presença ou não da enzima alfa amilase 

Ração Referência (Milho+F. de soja) 60% Referência + 40% FRM Referência (FRM+F. de soja)**
Enzima Sem Com Sem Com Sem Com
CMAEB* 73,39±0,27 73,65±0,24 73,95±0,18 74,70±0,15 70,22±0,34 70,26±0,49
CMAMS 70,78±0,40 70,88±0,12 71,82±0,30b 73,00±0,22a 65,24±0,36 65,50±0,39
CMAPB 65,78 ±0,53 65,70±0,46 67,64±0,27 67,62±0,27 64,00±0,38 63,85±0,43
EMAMS 3369±12b 3431±11a 3526±9 3531±7 3405±16 3399±24
EMAMN 2996±11 3031±10 3119±8 3124±6 3030±15 3017±21
EMAnMS 3127±11b 3192±10a 3343±8 3350±8 3186±15 3223±23
EMAnMN 2780± 9b 2820± 8a 2958±7 2964±7 2835±13 2861±20

*Parâmetros avaliados: CMAEB, CMAMS, CMAPB, respectivamente, CMA para energia bruta, matéria seca e proteína bruta; EMAMS, EMAMN, respectivamente, EMA na matéria seca e na matéria natural; EMAnMS, EMAnMN, respectivamente, EMAn na matéria seca e na matéria natural. **FRM = farelo residual de milho, em que a ração referência no T5 e no T6 apresenta a mesma composição gravimétrica (em percentual) que a ração referência do T1, porém substituindo o milho peso a peso pelo FRM. a,b representa efeito significativo para enzima dentro de cada tipo de ração.

Tabela 4 Níveis de probabilidade para o efeito da presença ou não da enzima alfa- amilase em diferentes rações sobre os coeficientes de metabolização aparente (CMA), a energia metabolizável aparente (EMA) e a EMA corrigida para retenção de nitrogênio (EMAn) 

Ração Todas Referência (Milho+F. de soja) 60% Referência + 40% FRM Referência (FRM+F. de soja)*
Enzima Com x Sem Com x Sem Com x Sem Com x Sem
Nível de probabilidade (P=...)
CMA energia bruta 0,1673 0,5535 0,0896 0,9238
CMA matéria seca 0,0576 0,8340 0,0136 0,5680
CMA proteína bruta 0,7965 0,8889 0,9724 0,7853
EMA na matéria seca 0,0942 0,0056 0,7929 0,7720
EMA na matéria natural 0,4043 0,0654 0,7952 0,4768
EMAn na matéria seca 0,0027 0,0019 0,7267 0,0607
EMAn na matéria natural 0,0215 0,0260 0,7292 0,1372

*FRM = farelo residual de milho, em que a ração referência (FRM+F. de soja) apresenta a mesma composição gravimétrica (em percentual) que a ração referência (Milho+F. de soja), porém substituindo o milho peso a peso pelo FRM.

A Tab. 4 representa os níveis de probabilidade para o efeito da presença ou não da enzima alfa-amilase. Apenas a enzima proporcionou efeito (P=0,0136) ao se avaliar o coeficiente de metabolização aparente da matéria seca nos animais alimentados com as rações contendo a relação 60/40 de ração referência e FRM, com valores de 71,82 e 73,00%, respectivamente.

O uso da alfa-amilase em rações nutricionalmente balanceadas, compostas por milho e farelo de soja, teve um efeito significativo sobre a EMA (P=0,0056) e a EMAn (P=0,0019) quando expresso com base na matéria seca. Os aumentos foram de 62 e 65 kcal/kg, respectivamente. Estes valores são equivalentes ao incremento de 74kcal/kg que Dourado et al. (2009) encontraram para o milho com a adição de uma combinação de xilanase, amilase, protease e fitase, em relação ao tratamento sem o uso de enzima.

Não houve diferença estatística nos coeficientes de metabolizabilidade (CMA) da EB, da PB dos três tipos de ração. O CMA da matéria seca dos animais que consumiram a ração contendo 40% de FRM sem adição de enzima alfa-amilase diferiu do coeficiente de metabolizabilidade dos frangos que consumiram a ração que continha FRM com adição de enzima, o que permite sugerir a adição de enzima alfa-amilase em dietas de frangos de corte em fase inicial de desenvolvimento.

CONCLUSÃO

Os valores de EMAn do FRM com e sem enzima foram de 3241 e 3261kcal/kg, respectivamente. Constatou-se que a enzima melhorou o aproveitamento da energia do ingrediente, pois houve aumento no coeficiente de metabolização.

REFERÊNCIAS

ADEOLA, O.; JENDZA, J.A.; SOUTHERN, L.L. et al. Contribution of exogenous dietary carbohidrases to the metabolizable energy value of corn distillers grains for broiler chickens. Poult. Sci. v.89, p.1947-1954, 2010. [ Links ]

OFFICIAL methods of analysis. 16.ed. Washington: Association of Official Analytical Chemists, 1990. 1094p. [ Links ]

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa Nº 68, de 12 de Dezembro de 2006. Oficializa os Métodos Analíticos Oficiais Físico-Químicos, para Controle de Leite e Produtos Lácteos, em conformidade com o anexo desta Instrução Normativa, determinando que sejam utilizados nos Laboratórios Nacionais Agropecuários. Diário Oficial da União, 14 de dezembro de 2006. Seção 1, p.8. Disponível em: <http://extranet.agricultura.gov.br/sislegis-consulta/consultarLegislacao.do?operacao=visualizar&id=17472>. Acessado em: 25 ago. 2015. [ Links ]

BRUM, P.A.R.; ZANOTTO, D.L.; LIMA, G.J.M.M.; VIOLA, E.S. Composição química e energia metabolizável de ingredientes para aves. Pesqui. Agropecu. Bras., v.35, p.995-1002, 2000. [ Links ]

CALDERANO, A.A.; DOMES, P.C.; ALBINO, L.F.T. et al. Composição química e energética de alimentos de origem vegetal determinada em aves de diferentes idades. Rev. Bras. Zootec., v.39, p.320-326, 2010. [ Links ]

DOURADO, L.R.B.; SAKOMURA, N.K.; BARBOSA, N.A.A. et al. Corn and soybean meal metabolizable energy with the addition of exogenous enzymes for poultry. Braz. J. Poultry. Sci, v.11, p.51-55, 2009. [ Links ]

GRACIA M.I., ARANÍBAR M.J., LÁZARO R. et al. α-Amilase supplementation of broiler diets based on corn. Poult. Sci. , v.82, p.436-442, 2003. [ Links ]

GUIMARÃES, I.G.; FALCON, D.R.; SCHICH, D. et al. Digestibilidade aparente de rações contendo complexo enzimático para tilápia-do-nilo. Arq. Bras. Med. Vet. Zootec., v.61, p.1397-1402, 2009. [ Links ]

MACARI, M. Fisiologia aplicada a frangos de corte. 2.ed. Jaboticabal: FUNEP, 2002. 375p. [ Links ]

MATTERSON, L.D.; POTTER, L.M.; STUTZ, M.W. The metabolizable energy of feed ingredients for chickens. Agricultural Experimental Station. Res. Rep., v.7, p.3-11, 1965. [ Links ]

OFFICIAL methods of analysis . 16.ed. Washington: Association of Official Analytical Chemists , 1990. 1094p. [ Links ]

ROSTAGNO, H.S.; ALBINO, L.F.T.; DONZELE, J.L. et al. Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais de aves e suínos. 3.ed.Viçosa: UFV, 2011. 252 p. [ Links ]

SANTOS, M.J.; LUDKE, M.C.M.M.; LUDKE, J.V. et al. Chemical composition and metabolizable energy values of alternative ingredients for broilers. Cienc. Anim. Bras., v.14, p. 32-40, 2013. [ Links ]

SAS Software. Version 9.4. Cary, North Carolina: SAS Institute Inc., 2013. [ Links ]

SILVA, D.J.; QUEIROZ, A.C. Análise de alimentos: métodos químicos e biológicos. 3.ed. Viçosa: UFV , 2002. 235 p. [ Links ]

TEJEDOR, A.A.; ALBINO, L.F.T.; ROSTAGNO, H.S. et al. Efeito da adição de enzimas em dietas de frangos de corte à base de milho e farelo de soja sobre a digestibilidade ileal de nutrientes. Rev. Bras. Zootec. , v.30, p.809-816, 2001. [ Links ]

ZANOTTO, D.L.; BRUM, P.A.R.; GUIDONI, A.L. et al. Utilização de Farelo Residual de Milho em Dietas de Frangos de Corte. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 35., 1998, Botucatu. Anais... Botucatu: SBZ, 1998, p.279-281. [ Links ]

Received: September 04, 2015; Accepted: January 05, 2016

*Autor para correspondência (corresponding author) E-mail: mohauptmariadocarmo@gmail.com

Creative Commons License Este é um artigo publicado em acesso aberto sob uma licença Creative Commons