Acessibilidade / Reportar erro

Relation between chemical composition of Grateloupia doryphora (Montagne) Howe, Gymnogongrus griffithsiae (Turner) Martius, and abiotic parameters

Relação entre composição química de Grateloupia doryphora (Montagne) Howe, Gymnogongrus griffithsiae (Turner) Martius e parâmetros abióticos

Abstracts

In Grateloupia doryphora and Gymnogongrus griffithsiae the seasonal variation of their chemical compounds was studied, establishing a relation with the physical and chemical properties of seawater. High values of proteins in the studied species were detected during the winter, 28.88% in G. doryphora and 26.68% in G. griffithsiae, corresponding to the maximum period of ammonium concentration in the marine environment. The variation in carbohydrates content showed an inverse relation with the proteins, with a maximum of 54.72% in G. doryphora and of 55.36% in G. griffithsiae, both in summer, positively correlated with salinity and temperature of sea water. Lipids content was low in both species. In G. doryphora the values ranged between 0.81 and 1.30% and, in G. griffithsiae, from 0.71 to 1.50% of dry weight, showing a direct relation with the amount of nitrogen in the seawater. The maximum content of ashes, phosphorus and potassium occurred in autumn and winter, respectively, with 11.85%, 0.20%, 1.27% in G. doryphora, and 14.46%, 0.14%, 1.41% in G. griffithsiae.

algae; proteins; carbohidrates; lipids; ashes; nitrogen; phosphorus; potassium


Foi estudado em Grateloupia doryphora e Gymnogongrus griffithsiae a variação sazonal de seus compostos químicos, estabelecendo uma relação com os parâmetros físico-químicos da água do mar. Durante o inverno foram detectados valores altos de proteína nas espécies estudadas, com 28,88 % em G. doryphora e 26,68 % em G. griffithsiae, correspondendo ao período de concentração máxima de amônio no ambiente marinho. A variação no conteúdo de carboidratos apresentou relação inversa à de proteínas. Os valores máximos de 54,72 % em G. doryphora e de 55,36 % em G. griffithsiae, ocorreram no verão, correlacionados positivamente com salinidade e temperatura da água do mar. Os conteúdos de lipídeos foram baixos em ambas as espécies. Em G. doryphora os valores variaram entre 0,81 e 1,30 % e em G. griffithsiae, de 0,71 a 1,50 % do peso seco, mostrando relação direta com a quantidade de nitrogênio na água do mar. O conteúdo máximo de cinzas, fósforo e potássio ocorreu no outono e inverno, respectivamente com 11,85 %, 0,20 % e 1,27 % em G. doryphora e 14,46 %, 0,14 % e 1,41 % em G. griffithsiae.

algas; proteínas; carboidratos; lipídeos; cinzas; nitrogênio; fósforo; potássio


Relation between chemical composition of Grateloupia doryphora (Montagne) Howe, Gymnogongrus griffithsiae (Turner) Martius, and abiotic parameters

Relação entre composição química de Grateloupia doryphora (Montagne) Howe, Gymnogongrus griffithsiae (Turner) Martius e parâmetros abióticos

Paulo Nelo Medeiros Perfeto

Departamento de Oceanografia, Universidade do Rio Grande, Caixa Postal 474, CEP 96201-560, Rio Grande, RS, Brasil

ABSTRACT

In Grateloupia doryphora and Gymnogongrus griffithsiae the seasonal variation of their chemical compounds was studied, establishing a relation with the physical and chemical properties of seawater. High values of proteins in the studied species were detected during the winter, 28.88% in G. doryphora and 26.68% in G. griffithsiae, corresponding to the maximum period of ammonium concentration in the marine environment. The variation in carbohydrates content showed an inverse relation with the proteins, with a maximum of 54.72% in G. doryphora and of 55.36% in G. griffithsiae, both in summer, positively correlated with salinity and temperature of sea water. Lipids content was low in both species. In G. doryphora the values ranged between 0.81 and 1.30% and, in G. griffithsiae, from 0.71 to 1.50% of dry weight, showing a direct relation with the amount of nitrogen in the seawater. The maximum content of ashes, phosphorus and potassium occurred in autumn and winter, respectively, with 11.85%, 0.20%, 1.27% in G. doryphora, and 14.46%, 0.14%, 1.41% in G. griffithsiae.

Key words: algae, proteins, carbohidrates, lipids, ashes, nitrogen, phosphorus, potassium

RESUMO

Foi estudado em Grateloupia doryphora e Gymnogongrus griffithsiae a variação sazonal de seus compostos químicos, estabelecendo uma relação com os parâmetros físico-químicos da água do mar. Durante o inverno foram detectados valores altos de proteína nas espécies estudadas, com 28,88 % em G. doryphora e 26,68 % em G. griffithsiae, correspondendo ao período de concentração máxima de amônio no ambiente marinho. A variação no conteúdo de carboidratos apresentou relação inversa à de proteínas. Os valores máximos de 54,72 % em G. doryphora e de 55,36 % em G. griffithsiae, ocorreram no verão, correlacionados positivamente com salinidade e temperatura da água do mar. Os conteúdos de lipídeos foram baixos em ambas as espécies. Em G. doryphora os valores variaram entre 0,81 e 1,30 % e em G. griffithsiae, de 0,71 a 1,50 % do peso seco, mostrando relação direta com a quantidade de nitrogênio na água do mar. O conteúdo máximo de cinzas, fósforo e potássio ocorreu no outono e inverno, respectivamente com 11,85 %, 0,20 % e 1,27 % em G. doryphora e 14,46 %, 0,14 % e 1,41 % em G. griffithsiae.

Palavras-chave: algas, proteínas, carboidratos, lipídeos, cinzas, nitrogênio, fósforo, potássio

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

Acknowledgments

I wish to express sincere appreciation to Dr. José Levy Sabaj, who provided invaluable insight and guidance through of this study. I am also grateful to Dr. Eurico Cabral de Oliveira Filho for valuable suggestions on the first version of the manuscript. My best thank is also due to Dr. João Sarkis Yunes for reading the manuscript, making constructive comments, to Prof. Silvia Fresteiro Barbosa and Prof. Maria Mercedes Solis Rivero by the grammatical correction of the text.

Recebido em 5/5/97

Aceito em 11/3/98

  • A.O.A.C., 1980. Official methods of analysis of the association of official agriculture chemistry. (William Horwitz, Ed.). Washington, D.C. 20044.
  • Baeza, P. & Matshuiro, B. 1977. Polysaccharides from Chilean seaweeds IV. A sulfated galactan from Grateloupia lanceolata. Botanica Marina 20(6): 355-357.
  • Black, W. A. P. 1949. Seasonal variation in chemical composition of some littoral seaweeds common to Scotland. Part II. Fucus serratus, Fucus vesiculosus, Fucus spiralis and Pelvetia canaliculata. Journal of the Society of Chemistry Industrial 68: 183-189.
  • Black, W. A. P. 1950. The effects of the depth of immersion on the chemical constitution of some sub-littoral seaweeds common to Scotland. Journal of the Society of Chemistry Industrial 69:161-165.
  • Boney, A. D. 1966. A Biology of Marine Algae. Hutchinson, London.
  • Chapman, A. O. R. & Craigie, J. S. 1977. Seasonal growth in Laminaria longicruris with dissolved inorganic nutrients and internal reserves of nitrogen. Marine Biology 40: 197-205.
  • Chapman, A. R. O. & Lindley, J. E. 1980. Seasonal growth of Laminaria solidungula in Canadian High Arctic in relation to irradiance and dissolved nutrient concentrations. Marine Biology 57: 1-5.
  • Dubois, M.; Guillies, K. A.; Hamilton, J. K.; Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of suggar and related substances. Analytical Chemistry 28: 352-356.
  • Fredriksen, S. & Rueness, J. 1989. Culture studies of Gelidium latifolium (Grev.) Born et Thurn. (Rhodophyta) from Norway. Growth and nitrogen storage in response to varying photon flux density, temperature and nitrogen availability. Botanica Marina 32(6): 539-546.
  • Friedlander, M.; Shalev, R.; Ganor, T.; Strimling, S.; Ben-Amotz, A.; Klar, H. & Wax, Y. 1987. Seasonal fluctuations of growth rate and chemical composition of Gracilaria cf. conferia in outdoor culture in Israel. Hydrobiologia 151/152: 501-507.
  • Gagné, J. A. & Mann, K. H. 1981. Comparison of growth strategy in Laminaria populations living under differing seasonal patters of nutrients availibility. International Seaweed Symposium 10: 297-302.
  • Hanisak, M. D. 1983. The nitrogen relationships of marine macroalgae. Pp. 699-731. In E.J.Carpenter & D.G. Capone (Ed.), Nitrogen in the Marine Environment. Academic Press, Inc.
  • Haines, K.C. & Wheller, P. A. 1978. Ammonium and nitrate uptake by marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). Journal of Phycology 14: 319-324
  • Kantin, R. & Baumgarten, M. G. Z. 1982. Observações hidrográficas no estuário da Lagoa dos Patos: distribuição e flutuações dos sais nutrientes. Atlântica 5(1): 76-92.
  • Lapointe, B. E. 1981. The effects of light and nitrogen on the growth, pigment content and biochemical composition of Gracilaria foliifera v. angustissima (Gigartinales, Rhodophyta). Journal of Phycology 17: 90-95.
  • Macler, B. A. & West, J. A. 1987. Life history and physiology of red algae Gelidium coulteri, in unialgal culture. Aquaculture 61: 281-293.
  • Macler, B. A. & Zupan, J. R. 1991. Physiological basis for the cultivation of Gelidiales. Hydrobiologia 221: 83-90.
  • Mizuta, H. & Maita, Y. 1991. Effects of nitrate supply on ammonium assimilations in the blade of Laminaria japonica (Phaeophyceae). Bulletin of Faculty Fisheries Hokkaido University 42(3): 107-114.
  • Mouradi-Givernaud, A.; T. Givernaud, Y.; Morvan, H. & Cosson, J. 1992. Agar from Gelidium latifolium (Rhodophyceae, Gelidiales), biochemical composition and seasonal variations. Botanica Marina 35: 153-159.
  • Mouradi-Givernaud, A.; T. Givernaud, Y.; Morvan, H. & Cosson, J. 1993. Annual variations of the biochemical composition of Gelidium latifolium (Greville) Thuret et Bornet. Hidrobiologia 260/261: 607-612.
  • Mshigeni, K. E. 1979. The economic algal genus Eucheuma (Rhodophyta, Gigartinales): Observation on the morphology and distribution ecology of Tanzanian species. Botanica Marina 22:437-445.
  • Munda, I. M. & Kremer, B. P. 1977. Chemical composition and physiological properties of fucoids under conditions of reduced salinity. Marine Biology 42: 9-15.
  • Murthy, M. S. & Radia, P. 1978. Eco-biochemical studies on some economical important intertidal algae from Port Okha (India). Botanica Marina 24: 417-422.
  • Ohlweiler, O. A. 1974. Química Analítica Quantitativa. Livros Técnicos e Científicos, Rio de Janeiro.
  • Rosenberg, G. & Ramus, J. 1982. Ecological growth strategies in the seaweeds Gracilaria follifera (Rhodophyceae) and Ulva sp. (Chlorophyta): Soluble nitrogen and reserves carbohydrates. Marine Biology 66: 251-259.
  • Rossel, K. G. & Srivastava, L. M. 1984. Seasonal variation in the chemical constituents of brown algae Macrocystis integrifolia and Nereocystis luetkeana. Canadian Journal of Botany 62: 2229-2236.
  • Rotem, A.; Roth-Bejerano, N. & Arad, S. M. 1986. Effect of controlled environmental conditions on starch and agar contents of Gracialaria sp. (Rhodophyceae). Journal of Phycology 22: 117-121.
  • Saito, R. M. & Oliveira Fş, E.C. de 1990. Chemical screening of Brazilian marine algae producing carrageenans. Hydrobiologia 204/205: 585-588.
  • Salinas, J. M. & Valdés, L. 1993. Influence of temperature and photoperiod on the re-attachment process of Gelidium sesquipedale (Clem.)Born. et Thurn. (Gelidiales:Rhodophyta). Journal of Applied Phycology 5: 317-326.
  • Santelices, B., 1991. Production ecology of Gelidium. Hydrobiologia 221: 31-44.
  • Solorzano, L. 1969. Determination of ammonia in natural waters by phenohypoclorite methods. Limnology Oceanography 14: 799-801.
  • Standard methods: for examination of water and wastewater, 1989. Vanadomolybdo-phosphoric Acid Colorimetric Method 4500-PC. Pp. 4-112. In L.S. Clesceri; A. E. Greenberg & R. Trussell ( Ed.), 17th Edição. American Public Health Association, Washington.
  • Strickland, J. D. H. & Parson, T. R. 1972. A practical handbook of seawater analysis. Fish Research Board Canadian Bulletin 167: 1-310.
  • Vergara, J. J.; Niell, F. X. & Torres, M. 1993. Culture of Gelidium sesquipedale(Clem.) Born, et Thurn. in chemostat system. Biomass production and metabolic responses affected by N flow. Journal of Applied Phycology 5: 405-415.
  • Zavodinik, N. 1973. Seasonal variations in rate of photosynthetic activity and chemical composition of the littoral seaweeds common to North Adriatic.Part I. Fucus virsoides (Don) J.Ag. Botanica Marina 16: 155-165.

Publication Dates

  • Publication in this collection
    06 June 2011
  • Date of issue
    Apr 1998

History

  • Received
    05 May 1997
  • Accepted
    11 Mar 1998
Sociedade Botânica do Brasil SCLN 307 - Bloco B - Sala 218 - Ed. Constrol Center Asa Norte CEP: 70746-520 Brasília/DF. - Alta Floresta - MT - Brazil
E-mail: acta@botanica.org.br