Acessibilidade / Reportar erro

Spores of Plagiochila (Dumort.) Dumort.: the taxonomic relevance of morphology and ultrastructure

ABSTRACT

Plagiochilaceae is a family of leafy liverworts that are distributed worldwide. It is of great importance due to its taxonomic and ecological implications among bryophytes. Most species of the family belong to the genus Plagiochila, but there is no consensus regarding its infrageneric circumscription. There have been few palynological studies involving Plagiochilaceae and Plagiochila. Here, we describe the spore morphology of seventeen species of Plagiochila and discuss the taxonomic value of palynological characters for these taxa. The spores were processed by standard palynological techniques and analyzed using light and electron microscopy. The spores were found to be apolar, spheroidal, released monads that vary in size from 13µm to 58µm (small to large size). The sporoderm comprises an intine (stratified), a nexine, and a sexine. The spore surface is ornamented with granules that vary in shape and morphology, thus allowing the studied species to be grouped into four spore types: regular and delicate granulate, irregular and coarse granulate, long granules with flattened apices, and long and straight granules. Hierarchical cluster analysis revealed five different groups of species, evidencing the importance of spore information for taxonomic and phylogenetic studies.

Keywords:
bryophytes; liverworts; morphology; palynology; SEM; taxonomy; TEM; ultrastructure

Introduction

Plagiochilaceae (Lophocoleineae) is a family of leafy liverworts that includes robust, ascending or pendent plants (Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ; Gradstein & Costa 2003Gradstein SR, Costa DP. 2003. The Hepaticae and Anthocerotae of Brazil. New York, Memoirs of the New York Botanical Garden .). Their leaves are alternate or opposite, succubous and with a ciliated or entire reflexed dorsal margin, while underleaves are generally absent (Gradstein et al. 2001Gradstein SR, Churchill SP, Salazar-Allen N. 2001. Guide to the bryophytes of Tropical America. New York, Memoirs of the New York Botanical Garden. ; Gradstein & Costa 2003Gradstein SR, Costa DP. 2003. The Hepaticae and Anthocerotae of Brazil. New York, Memoirs of the New York Botanical Garden .). Plagiochilaceae is an important group of bryophytes in the tropics due to its high species richness (Gradstein & Reiner-Drehwald 1995Gradstein SR, Reiner-Drehwald E. 1995. Szweykowskia, a new genus of Plagiochilaceae (Hepaticae) from tropical America. Fragmenta Floristica et Geobotanica 40: 31 -38.), but it is also diverse in subtropical and temperate regions (Jamy et al. 2016Jamy M, Renner MAM, Patzak SDF, Heslewood MM, Schäfer-Verwimp A, Heinrichs J. 2016. Reinstatement of Plagiochila sect. Abietinae (Plagiochilaceae, Jungermanniopsida). Cryptogamie, Bryologie 37: 351-360.). The family contains ten genera that are distributed worldwide (Crandall-Stotler et al. 2009Crandall-Stotler B, Stotler RE, Long DG. 2009. Morphology and classification of the Marchantiophyta. In: Shaw JA, Goffinet B. (eds.) Bryophyte biology. Cambridge, Cambridge University Press. p. 1-54. ; Söderström et al. 2013Söderström L, Crandall-Stotler B, Stotler RE, Váňa J, Hagborg A, Konrat M. 2013. Notes on Early Land plants today. 36. Generic treatment of Lophocoleaceae (Marchantiophyta). Phytotaxa 97: 36-43.; 2016Söderström L, Hagborg A, Konrat M, et al. 2016. World checklist of hornworts and liverworts. PhytoKeys 59: 1-828.), with Plagiochila being the richest by far with ca 96 % of the species of the family (Gradstein et al. 2001Gradstein SR, Churchill SP, Salazar-Allen N. 2001. Guide to the bryophytes of Tropical America. New York, Memoirs of the New York Botanical Garden. ; Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ; Gradstein & Costa 2003Gradstein SR, Costa DP. 2003. The Hepaticae and Anthocerotae of Brazil. New York, Memoirs of the New York Botanical Garden .; Jamy et al. 2016Jamy M, Renner MAM, Patzak SDF, Heslewood MM, Schäfer-Verwimp A, Heinrichs J. 2016. Reinstatement of Plagiochila sect. Abietinae (Plagiochilaceae, Jungermanniopsida). Cryptogamie, Bryologie 37: 351-360.; Söderström et al. 2016Söderström L, Hagborg A, Konrat M, et al. 2016. World checklist of hornworts and liverworts. PhytoKeys 59: 1-828.).

Plagiochila is a taxonomically complex group, with more than 2300 published names (Inoue 1989Inoue H. 1989. Notes on the Plagiochilaceae, XVI. Studies on some Plagiochila species in the Neotropics. Bulletin of the National Science Museum 15: 35-47.), and maybe as many as approximately 3000 names (ELPT database). So & Grolle (2000So ML, Grolle R. 2000. Checklist of Plagiochila (Hepaticae). Journal of the Hattori Botanical Laboratory 88: 199-243.) reported ca 450 species distributed worldwide, whereas Gradstein (2015aGradstein SR. 2015a. New synonyms and new lectotypifications in neotropical Plagiochila (Marchantiophyta). Cryptogamie, Bryologie, 36: 369-379.; bGradstein SR. 2015b. Annotated key to the species of Plagiochila (Marchantiophyta) from Brazil. Pesquisas, Botânica 67: 23-36.; 2016Gradstein SR. 2016. The genus Plagiochila (Marchantiophyta) in Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 40: 104-136.) reviewed and contributed to synonymization and lectotypification of several names, and so more recent estimates place the number of currently accepted species at 700 (Söderström et al. 2016Söderström L, Hagborg A, Konrat M, et al. 2016. World checklist of hornworts and liverworts. PhytoKeys 59: 1-828.).

Numerous attempts at infrageneric classification of Plagiochila have been made, with early attempts relying on some important characters of the gametophyte, such as leaf shape, leaf cell pattern and branching type (Lindenberg 1839Lindenberg JBW. 1839. Species hepathicarum. Fasc. 1. Bonn, Henry & Cohen.; Spruce 1885Spruce R. 1885. Hepaticae amazonicae et andinae. II. Transactions and Proceedings of the Botanical Society of Edinburgh 15: 309-588.; Schiffner 1900Schiffner, V. 1900. Die Hepaticae der Flora von Buitenzorg. I. Leiden, Band. E. J. Brill.; Stephani 1902Stephani F. 1902. Species hepaticarum 2. Bulletin de l’Herbier Boissier, Série 2 2: 657-688.; Dugas 1929Dugas M. 1929, Contribution à l’étude du genre “Plagiochila” Dum. Annales des Sciences Naturelles; Botanique, Série 10 11: 1-199.; Carl 1931Carl H. 1931. Die Arttypen und die systematische Gliederung der Gattung Plagiochila Dum. Annales Bryologici 2: 1-170.). Later, studies of Schuster (1959Schuster RM. 1959. A monograph of the Nearctic Plagiochilaceae. Part. I. Introduction and section I. Asplenioides. American Midland Naturalist 62: 1-166. ; 1960Schuster RM. 1960. A monograph of the Nearctic Plagiochilaceae. Part. III. Sectio Contiguae to conclusion. American Midland Naturalist 63: 1-130. ), Inoue & Schuster (1971Inoue H, Schuster RM. 1971. A monograph of the New Zealand and Tasmanian Plagiochilaceae. Journal of the Hattori Botanical Laboratory 34: 1-225.), and more recently by So (2001So ML. 2001. Plagiochila (Hepaticae, Plagiochilaceae) in China. Monographs in Systematic Botany 60: 1-214.), and Hässel (2004Hässel GG. 2004. Andinopatagonian Species of Plagiochila (Plagiochilaceae, Marchantiophyta). I. Sectio Robustae Carl Emend. Hässel and II. Sectio Equitantes Carl Emend. Hässel. Journal of the Hattori Botanical Laboratory 96: 245-260. ; 2006Hässel GG. 2006. Andinopatagonian species of Plagiochila (Plagiochilaceae, Marchantiophyta). I sectio Hirtae and II sectio Angulatae. Journal of the Hattori Botanical Laboratory 100: 101-118.), used gametophyte morphology for the classification of species of Plagiochila. Molecular phylogenetic studies of Plagiochila and Plagiochilaceae (Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ; Groth et al. 2003Groth H, Lindner M, Wilson R, et al. 2003. Biogeography of Plagiochila (Hepaticae): natural species groups span several floristic kingdoms. Journal of Biogeography 30: 965-978. ; Patzak et al. 2016Patzak SDF, Renner MAM, Schäfer-Verwimp A, et al. 2016. A phylogeny of Lophocoleaceae-Plagiochilaceae-Brevianthaceae and a revised classification of Plagiochilaceae. Organisms Diversity & Evolution 16: 481-495. ; Jamy et al. 2016Jamy M, Renner MAM, Patzak SDF, Heslewood MM, Schäfer-Verwimp A, Heinrichs J. 2016. Reinstatement of Plagiochila sect. Abietinae (Plagiochilaceae, Jungermanniopsida). Cryptogamie, Bryologie 37: 351-360.; Söderström et al. 2016Söderström L, Hagborg A, Konrat M, et al. 2016. World checklist of hornworts and liverworts. PhytoKeys 59: 1-828.) have reviewed the morphological classification of these taxa with the aim of improving the current taxonomic arrangement.

In spite of the various studies that have been conducted with Plagiochila, information about its spores is scarce (Erdtman 1965Erdtman G. 1965. Pollen and spore morphology/ plant taxonomy. Gymnospermae, Bryophyta (Text). An introduction to palynology III. Stockholm, Almqvist and Wiksell .; Vojtkó 1993Vojtkó A. 1993. The spore morphology of Hepaticae species. Acta Biologica Szegediensis 39: 59-69.) or limited to brief comments in taxonomic descriptions (Grolle & Heinrichs 1999Grolle R, Heinrichs J. 1999. Redescription and synonymy of Plagiochila aerea Täylor 1846 (Hepaticae), first describe as Lycopodium pinnatum by Lamarck 1792. Nova Hedwigia 68: 551-525. ; Heinrichs & Gradstein 1999Heinrichs J, Gradstein SR. 1999. On Plagiochila longiramea Steph., a poorly known species of Bolivia. Candollea 54: 73-81. ; Müller et al. 1999Müller J, Heinrichs J, Gradstein SR. 1999. A revision of Plagiochila sect. Plagiochila in the Neotropics. The Bryologist 102: 729-746.; Heinrichs et al. 2000Heinrichs J, Anton H, Gradstein SR, Mues R. 2000. Systematics of Plagiochila sect. Glaucescentes Carl (Hepaticae) from tropical America: a morphological and chemotaxonomical approach. Plant Systematics and Evolution 220: 115-138. ; 2001Heinrichs J, Groth R, Gradstein SR, Rycroft DS, Cole WJ, Anton H. 2001. Plagiochila rutilans (Hepaticae): A poorly known species from Tropical America. The Bryologist 104: 350-361.; Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ; Hässel 2004Hässel GG. 2004. Andinopatagonian Species of Plagiochila (Plagiochilaceae, Marchantiophyta). I. Sectio Robustae Carl Emend. Hässel and II. Sectio Equitantes Carl Emend. Hässel. Journal of the Hattori Botanical Laboratory 96: 245-260. ; among others). Erdtman (1965)Erdtman G. 1965. Pollen and spore morphology/ plant taxonomy. Gymnospermae, Bryophyta (Text). An introduction to palynology III. Stockholm, Almqvist and Wiksell . and Vojtkó (1993)Vojtkó A. 1993. The spore morphology of Hepaticae species. Acta Biologica Szegediensis 39: 59-69. presented a general description of spore surface and an evaluation of size, but with a small sample size. Descriptions of the spores of the genus in taxonomic studies are limited to superficial and sometimes inaccurate comments on ornamentation and size measurements.

Several characteristics of plants were crucial for their evolutionary transition to a terrestrial life, but the development of a durable and protective spore wall was essential (Brown & Lemmon 1988Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.; Renzaglia et al. 2000Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ. 2000. Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philosophical Transactions of the Royal Society B: Biological Sciences 355: 769-793.; Wellman 2004Wellman CH. 2004. Origin, function and development of the spore wall in early land plants. In: Hemsley AR, Poole I. (eds.) The evolution of plant physiology: From whole plants of ecosystems. London, Linnean Society of London, Paleobotany Specialist Group Elsevier Academic Press. p. 43-60. ; Wallace et al. 2011Wallace S, Fleming A, Wellman CH, Beerling DJ. 2011. Evolutionary development of the plant spore and pollen wall. AoB PLANTS 2011(1). plr027. doi:10.1093/aobpla/plr027
https://doi.org/10.1093/aobpla/plr027...
; Arteaga-Vazquez 2016Arteaga-Vazquez AM. 2016. Land plant evolution: listen to your elders. Current Biology 26(1). doi: 10.1016/j.cub.2015.12.001
https://doi.org/10.1016/j.cub.2015.12.00...
). The spore - a single cell produced by meiosis - is the first stage of the gametophyte in the life cycle of liverworts (Brown & Lemmon 1988Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.). Liverworts possess two layers of sporoderm, the special cell wall of the spore: an inner layer called the intine, which is composed of polysaccharides and is related to spore germination; and an external stratum called the exine, which composed of sporopollenin, a highly resistant polymer that provides resistance and protection (Olesen & Mogensen 1978Olesen P, Mogensen GS. 1978. Ultrastructure, histochemistry and notes on germination stages of spores in selected mosses. The Bryologist 81: 493-516.; Neidhart 1979Neidhart HB. 1979. Comparative studies of sporogenesis in bryophytes. In: Clarke CGS, Duckett JG. (eds.) Bryophyte Systematics. London, Academic Press. p 251-280.; Mogensen 1983Mogensen, GS. 1983. The spore. In: Schuster RM. (eds.) New manual of bryology. Nichinan, The Hattori Botanical Laboratory. p. 324-342. ; Blackmore & Barnes 1987Blackmore S, Barnes SH. 1987. Embryophye spore walls: Origin, development, and homologies. Cladistics 3: 185-195.; Brown & Lemmon 1988Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.; Ito et al. 2007Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozakif K. 2007. Arabidopsis MALE STERILITY1 Encodes a PHD-Type Transcription Factor and Regulates Pollen and Tapetum Development. The Plant Cell 19: 3549-3562.; Renzaglia et al. 2000Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ. 2000. Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philosophical Transactions of the Royal Society B: Biological Sciences 355: 769-793.; Wallace et al. 2011Wallace S, Fleming A, Wellman CH, Beerling DJ. 2011. Evolutionary development of the plant spore and pollen wall. AoB PLANTS 2011(1). plr027. doi:10.1093/aobpla/plr027
https://doi.org/10.1093/aobpla/plr027...
).

Many studies on spores have addressed different aspects of various groups (Heckman 1970Heckman CA. 1970. Spore wall structure in the Jungermanniales. Grana 10: 109-119.; Blackmore & Barnes 1987Blackmore S, Barnes SH. 1987. Embryophye spore walls: Origin, development, and homologies. Cladistics 3: 185-195.; Brown & Lemmon 1980Brown RC, Lemmon BE. 1980. Ultrastructure of sporogenesis in a moss: Ditrichum pallidum. III. Spore wall formation. American Journal of Botany 67: 918-934.; 1984aBrown RC, Lemmon BE. 1984a. Ultrastructure of sporogenesis in moss Amblystegium riparium II. Spore wall development. Journal of Hattori Laboratory 57: 139-152.; bBrown RC, Lemmon BE. 1984b. Spore wall development in Andreaea (Musci: Bryopsida). American Journal of Botany 71: 412-420.; 1988Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.; 1991Brown RC, Lemmon BE. 1991. Sporogenesis in simple land plants. In: Blackmore S, Barnes SH. (eds.) Pollen and spores. patterns of diversification. Oxford, Clarendon Press. p 9-24.; Estébanez et al. 1997Estébanez B, Alfayate C, Ron E. 1997. Observations on spore ultrastructure in six species of Grimmia (Bryopsida). Grana 36: 347-357.; Luizi-Ponzo & Barth 1998Luizi-Ponzo AP, Barth OM. 1998. Spore morphollogy of some Bruchiaceae species (Bryophyta) from Brazil. Grana 37: 222-227.; 1999Luizi-Ponzo AP, Barth OM. 1999. Spore morphology of some Dicranaceae species (Bryophyta) from Brazil. Grana 38: 42-49. ; Luizi-Ponzo & Melhem 2006Luizi-Ponzo AP, Melhem TS. 2006. Spore morphology and ultrastructure of the tropical moss Helicophyllum torquatum (Hook.) Brid. (Helicophyllaceae) in relation to systematics and evolution. Cryptogamie, Bryologie 27: 413-420.; Caldeira et al. 2006Caldeira IC, Gonçalves-Esteves V, Luizi-Ponzo AP. 2006. Morfologia dos esporos das espécies de Leucobryaceae Schimp. (Bryophyta) do Parque Estadual de Ilha Grande, Município de Angra dos Reis, Estado do Rio de Janeiro. Revista Brasileira de Botânica 29: 301-307.; 2009Caldeira IC, Gonçalves-Esteves V, Luizi-Ponzo AP. 2009 Morfologia dos esporos de Sematophyllaceae Broth. ocorrentes em três fragmentos de Mata Atlântica, no Rio de Janeiro, Brasil. Revista Brasileira de Botânica 32: 299-306.; 2013Caldeira IC, Gonçalves-Esteves V, Luizi-Ponzo AP. 2013. Palynology of selected species of Fissidens (Hedw.). Plant Systematics and Evolution 299: 187-195.; Yano & Luizi-Ponzo 2006 Yano O, Luizi-Ponzo AP. 2006. Chonecolea doellingeri (Chonecoleaceae, Hepaticae), taxonomia e distribuição geográfica no Brasil. Acta Botanica Brasilica 20: 783-788.; 2011Yano O, Luizi-Ponzo AP. 2011. Dumortiera hirsuta (Dumortieraceae, Marchantiophyta), taxonomy, palynology and geographic distribution. Boletim do Instituto de Botânica 21: 9-18.; Rocha et al. 2008Rocha LM, Gonçalves-Esteves V, Luizi-Ponzo AP. 2008. Morfologia de esporos de espécies de Polytrichaceae Schwägr. (Bryophyta) do Brasil. Revista Brasileira de Botânica 31: 537-548.; Rodrigues & Luizi-Ponzo 2015Rodrigues RS, Luizi-Ponzo AP. 2015. Palinologia de espécies selecionadas da família Pottiaceae (Bryophyta). Pesquisas, Botânica 67: 303-317.; Savaroğlu 2015Savaroğlu F. 2015 Spore morphology of some Orthotrichaceae Arn. species (Bryophyta) from Turkey. Bangladesh Journal of Botany 44: 499-506.; Savaroğlu et al. 2017Savaroğlu F, Erkara IP, Koyuncu O. 2017. Observations of spore morphology of some species of Hypnaceae Schimp. (Bryophyta) in Turkey. Bangladesh Journal of Botany 46: 9-17.; Silva-e-Costa et al. 2017Silva-e-Costa JC, Luizi-Ponzo AP, Resende CF, Peixoto PHP. 2017. Spore germination, early development and some notes on the effects of in vitro culture medium on Frullania ericoides (Nees) Mont. (Frullaniaceae, Marchantiophyta). Acta Botanica Brasilica 31: 19-28). However, little is known about morphology of the spores of the genus Plagiochila. In fact, it is worthy to note that sporophytes are infrequent among species of Plagiochila (Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ).

The present study aimed to perform a palynological evaluation of species of Plagiochila in order to: (1) analyze intra- and interspecific variation in spore size, (2) describe spore ornamentation and (3) sporoderm structure, and (4) determine whether infrageneric circumscriptions are supported by spore morphology.

Materials and methods

Sample selection and studied material

The research was developed using herborized botanical material loaned or donated by the following herbaria: Botanical Garden of Rio de Janeiro Herbarium (RB), Brazilian National Museum Herbarium (R), Herbarium Anchieta (PACA), Santa Cecília University Herbarium (HUSC), University of Kentucky Herbarium (KY), and Professor Leopoldo Krieger Herbarium (CESJ). Acronyms follow Thiers (2018Thiers B. [continuously updated]. 2018. Index Herbariorum: A global directory of public herbaria and associated staff. New York, New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/science/ih/.
http://sweetgum.nybg.org/science/ih/...
).

As previously mentioned, the rarity of the occurrence of sexual reproduction in Plagiochila (Dumort.) Dumort. is remarkable, which makes finding sporophytes on these plants difficult (Schuster 1980Schuster RM. 1980. The Hepaticae and Anthocerotae of North America. IV. New York, Columbia University Press.; Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ; Gradstein & Costa 2003Gradstein SR, Costa DP. 2003. The Hepaticae and Anthocerotae of Brazil. New York, Memoirs of the New York Botanical Garden .). Thus, 1000 specimens from the aforementioned herbaria of various species of Plagiochila were examined in search of specimens with sporophytes. All species for which a sporophyte was found, and which and enough material available for study, were analyzed, for a total of thirty-four specimens of seventeen species. The analyzed species, preceded by the name of their respective section, are: sect. Arrectae Carl - Plagiochila bifaria (Sw.) Lindenb; sect. Fuscolutea Carl - P. fuscolutea Taylor; sect. Glaucescentes Carl - P. buchtiniana Steph.; sect. Hylacoetes Carl - P. macrostachya Lindenb.; sect. Plagiochila - P. asplenioides (L.) Dumort. and P. porelloides (Tor ex. Ness) Lindenb.; sect. Rutilantes Carl - P. gymnocalycina (Lehm. & Lindenb.) Lindenb., P. heteromalla Lehm. & Lindenb., P. rutilans Lindenb., and P. trichostoma Gottsche.; and sect. Vagae Lindenb. - P. corrugata (Nees) Nees & Mont, P. crispabilis Lindenb., P. disticha (Lehm. & Lindenb.) Lindenb., P. laetevirens Lindenb., P. patula (Sw.) Lindenb., P. raddiana Lindenb., and P. simplex (Sw.) Lindenb. Species circumscription follows Gradstein (2015b)Gradstein SR. 2015b. Annotated key to the species of Plagiochila (Marchantiophyta) from Brazil. Pesquisas, Botânica 67: 23-36. and the names are in accordance to the Tropicos Database (http://www.tropicos.org).

Light microscopy

For observation under light microscopy (LM), spores were prepared according to the method of Wodehouse (1935Wodehouse RP. 1935. Pollen grains: Their structure, identification and significance in science and medicine. New York, McGraw-Hill.), for observation of cellular content, and by the acetolysis method proposed by Erdtman (1960Erdtman G. 1960. The acetolysis method. A revised description. Svensk Botanisk Tidskrift 39: 561-564.). Both techniques were performed following the modifications recommended by Luizi-Ponzo & Melhem (2006Luizi-Ponzo AP, Melhem TS. 2006. Spore morphology and ultrastructure of the tropical moss Helicophyllum torquatum (Hook.) Brid. (Helicophyllaceae) in relation to systematics and evolution. Cryptogamie, Bryologie 27: 413-420.). Spores were described using the terminology proposed by Punt et al. (2007Punt W, Hoen P, Blackmore S, Nilsson S, Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1-81.) and the definitions of size classes of Erdtman (1952)Erdtman G. 1952. Pollen morphology and plant taxonomy. Angiosperms. An Introduction to Palynology I. Stockholm, Almqvist and Wiksell..

Scanning electron microscopy

For observation under scanning electron microscopy (SEM), capsules were fixed in 2.5 % glutaraldehyde for 24 hours and then washed in 0.05 M phosphate buffer solution. Post-fixation was performed with 2 % osmium tetroxide (OsO4) in buffer solution for a period of two hours. The capsules were then dehydrated in an increasing ethanol series and dried in a critical point dryer (Silveira 2007Silveira M. 2007. Preparo de amostras para Microscopia Eletrônica de Varredura. In: Souza W. (eds.) Técnicas de microscopia eletrônica aplicadas às ciências biológicas. Rio de Janeiro, Sociedade brasileira de microscopia e microanálise. p 47-59.). The capsules were opened under stereoscopic microscopy and the spores dispersed on stubs with double-sided carbon tape and covered with a 20 nm layer of gold. Non-fixed spores were also observed. The SEM analyses were undertaken at the Laboratório de Microscopia Eletrônica of the Universidade Federal de Juiz de Fora, the Centro de Microscopia of the Universidade Federal de Minas Gerais, and the Centro de Microscopia e Microanálise of the Universidade Federal de Viçosa.

Transmission electron microscopy

For observation under transmission electron microscopy (TEM), mature capsules were separated, fixed in 2.5 % glutaraldehyde for 24 hours, washed in 0.05 M phosphate buffer solution, and post fixed in 2 % osmium tetroxide in buffer solution. After dehydration in an increasing ethanol series, the material was embedded in Spurr resin and heated at 70 ºC for 48 hours. The material was cut in ultrathin sections (65-70 nm) and stained with uranyl acetate and lead citrate (Reynolds 1963Reynolds ED. 1963. The use of lead citrate at high Ph as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17: 208-212.). The TEM analyses were undertaken at the Microscopy Center of Federal University de Minas Gerais.

Statistical analyses

Spore size was assessed under light microscopy using acetolyzed material. When possible, based on the availability of palynological material, more than one specimen was examined for all species studied and with a reference specimen (RS) and comparison specimens (CS) being designated. For estimating largest diameter, 50 RS spores randomly chosen from three microscope slides were measured. When available, 30 CS spores randomly chosen from three microscope slides were analyzed. Descriptive statistics were calculated from the resulting data, including arithmetic mean (X), size range (Xmin-Xmax), standard deviation (S), standard error (Sx), coefficient of variation (CV% - obtained by the formula (S/X)*100) (Sokal & Rohlf 1995Sokal RR, Rohlf J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd. edn. New York, W.H. Freeman and Company.), 95 % confidence level (95 % CL), and 95 % confidence interval (95 %CI - X ± 95 %CL) (Sokal & Rohlf 1995Sokal RR, Rohlf J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd. edn. New York, W.H. Freeman and Company.) using Microsoft Excel (2016). Ten non-acetolyzed RS spores randomly chosen from three microscope slides were measured for sporoderm thickness and only the arithmetic mean calculated.

The measurements were not normally distributed (Shapiro-Wilk normality test, p < 0.05) and so the Kruskall-Wallis test, followed by the Dunnett’s test (which are more appropriate tests for non-parametric data), were performed to test intra- and interspecific differences. Median values and data distribution were graphically evaluated. Statistical analysis and graphing were performed using R software v. 3.5.1 (R Development Core Team 2018R Development Core Team. 2018. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. http://www.R-project.org.
http://www.R-project.org...
) and JMP® 12 (SAS Institute, Cary, North Carolina, USA).

Cluster analysis

The degree of association among the studied species was evaluated by cluster analysis, using the unweighted pair-group average (UPGMA) algorithm and Jaccard similarity index, and calculating the cophenetic correlation coefficient, using the software Past 3.21 (Hammer et al. 2001Hammer Ø, Harper DAT, Ryan P. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-9. ).

Palynological, gametophytic and ecological data (Tab. 1) were organized in a qualitative binary matrix (Tab. 2). The palynological data included the following: spore size (< 26 µm or 26 µm), spore ornamentation (granules or long granules), and sporoderm thickness (two classes of sporoderm thickness were established using the formula h=A/k; where h is the class amplitude, A is the spore size amplitude, and k is the number of classes (Correa 2007Correa SMBB. 2007. Probabilidade e estatística. 2nd. edn. Belo Horizonte, PUC Minas Virtual. ). The gametophytic data included the following: branching type (Frullania-type or Plagiochila-type), androecia shape (single or fan-shaped), androecia position (terminal or intercalary), perianth base (naked or covered by bracts), and asexual reproduction (absent or present). The single ecological variable included was related to substratum: the species are reported as exclusive when occurring on only one type of substratum, and generalist when occurring on two or more types of substrata. The species Plagiochila bifaria was not included in this analysis due to a lack of information.

Table 1
Palynological, gametophytic and ecological aspects of the studied species of Plagiochila (Dumort.) Dumort.

Table 2
Binary matrix showing the arrangement of palynological, gametophytic and ecological aspects of Plagiochila (Dumort.) Dumort. Spore size: <26 µm = 1, ≥ 26 µm = 0; spore ornamentation: types RD and IR = 0, types LF and LS = 1; sporoderm thickness: ≥ 1.4900 µm = 1; < 1.4900 µm = 0; branching: Plagiochila-type = 1; Frullania-type = 0; Substratum occupation: exclusive = 1, generalist = 0; androecia shape: fan-shaped = 1, single = 0; androecia position: intercalary = 1, terminal = 0; perianth base: bracts present = 1, naked = 0; asexual reproduction: present = 1, absent = 0.

Results

The spores of the genus Plagiochila are monads that are isomorphic, apolar to weakly heteropolar, small to large in size (13.00 - 57.80 µm; Tab. 3, Figs. 1, 2), inaperturate and with a subcircular amb. Spore surface ornamentation is formed by granules, but the nature of these processes varies among the seventeen species studied (Figs. 1, 2), with four types being identified under LM and SEM: (1) regular and delicate granulate (RD), (2) irregular and coarse granulate (IC), (3) long granules with flattened apices (LF), and (4) long and straight granules (LS).

Table 3
Morphometric data of acetolyzed spores of Plagiochila. Reference specimen indicated by an asterisk (n=50); comparison specimens, n=30.

Figure 1
Photomicrographs and electromicrographs of spores of species of Plagiochila (Dumort.) Dumort. Ornamentation type I - A. Plagiochila asplenioides, LM; B. P. patula, LM; C. P. patula, SEM; Ornamentation type II - D. P. gymnocalycina, LM; E. P. laetevirens, LM; F - G. P. porelloides, SEM - arrow with asterisks = proximal face; H. P. raddiana, SEM; I. P. disticha, TEM - arrow = lamelar slips. RD = regular and delicate granule; IC = irregular and coarse granule. In I: In = inner intine, Io = outer intine, E = exine.

Figure 2
Photomicrographs and electromicrographs of spores of species of Plagiochila (Dumort.) Dumort. Ornamentation type III - A. Plagiochila crispabilis, LM; B. P. simplex, LM; C. P. crispabilis, SEM - arrow with asterisks = proximal area; D-E. P. simplex, SEM -asterisks = proximal face; F. P. simplex, TEM; G. P. trichostoma, LM; H. P. corrugata, SEM; I. P. trichostoma, SEM. LF = long granule with flattened apex; LS = long and straight granule. In F: In = inner intine, Io = outer intine, E = exine, arrow = lamellar slips.

Ornamentation pattern I - RD consists of granules homogeneously distributed on the spore surface and having a regular shape (Fig. 1A - C). This pattern is possessed by Plagiochila asplenioides (Fig. 1A), P. disticha and P. patula (Fig. 1B, C). Spore size for these three species varies from small to medium (Tab. 3), and the sporoderm is thin (Tab. 4). Under LM this ornamentation appears as a blur in optical cut due to its small size and fine magnification (Fig. 1A, B), but under SEM the granules are easily identified (Fig. 1C).

Table 4
Morphometric data for sporoderm thickness of spores of Plagiochila (n=10).

Ornamentation pattern II - IC - comprises irregular shaped granules disorderly distributed on the spore surface (Fig. 1D-H). This pattern is possessed by P. gymnocalycina (Fig. 1D), Plagiochila heteromala, P. laetevirens (Fig. 1E), P. porelloides (Fig. 1F, G) and P. raddiana (Fig. 1H). Spore size varies from small to medium (Tab. 3), and the sporoderm is of variable thickness (Tab. 4). Plagiochila gymnocalycina has a more elaborate version of this pattern with overlapped and united granules (Fig. 1D), producing a gemmae-like appearance.

Ornamentation pattern III - LF - includes species whose spore surface is ornate with elongate and irregularly distributed granules that have flattened apexes (Fig. 2A- F). This pattern is possessed by Plagiochila crispabilis (Fig. 2A, C) and P. simplex (Fig. 2B, D-F). This type of granule is barely observable under LM (Fig. 2A), but can be clearly observed under SEM, including the flattened apex region (Fig. 2C-F). There is a region with smaller granules restricted to a particular area (Fig. 2D) that suggests it may have been the site of contact during the tetrad stage.

Ornamentation pattern IV - LS - this ornamentation consists of an ornate spore surface with elongate granules that have a smooth and straight shape, resembling bacula (Fig. 2G-I). The species that possess this pattern are: Plagiochila bifaria, P. buchtiniana, P. corrugata (Fig. 2H), P. fuscolutea, P. macrostachya, P. rutilans, and P. trichostoma (Fig. 2G, I). A region with smaller granules, suggestive of the proximal pole, was observed in some species. Among this group, P. corrugate is notable for having endosporic and intracapsular germination (Fig. 2H).

Sporoderm thickness varied from 0.9 µm to 1.8 µm among the studied species (Tab. 4). Observations under TEM revealed the sporoderm to comprise one or two electron-translucent layer(s) corresponding to the intine (Figs. 1I, 2F - inner intine and outer intine when two layers are present), and two electron-dense layers compounded by lamellae deposition (Figs. 1I, 2F), corresponding to the exine divided into nexine and sexine. The sexine lamellae have a perpendicular to inclined arrangement (Figs. 1I, 2F). A stratified intine was observed for the spores of P. disticha (Fig. 1I), including a granular inner layer, with a mix of electron-translucent and electron-dense components, that is in contact with cell contents, and an outer layer, with a great amount of electron-translucent elements, that is in contact with the nexine.

Descriptive statistical analyses showed that the species analyzed here differ significantly in spore size (Fig. 3). Furthermore, there was significant intraspecific variation in spore size (Fig. 4) for those species for which CS was available (see Tab. 3), with the exception of P. simplex (Fig. 4I), which did not exhibit significant intraspecific variation in spore size.

Figure 3
Boxplots representing the spore size distribution within Plagiochila (Dumort.) Dumort. Error bars above and below the box indicate the 90th and 10th percentiles, respectively, while white circles represent the outliers.

Figure 4
Boxplots representing the spore size distribution within those species for which RS and CS were observed. Error bars above and below the box indicate the 90th and 10th percentiles, respectively, while white circles represent the outliers. Different letters (a, b, c, d, e) represent statistical differences among treatments (Krukal-Wallis test, Dunn’s post hoc test, p < 0.05).

The variability of spore size was confirmed by coefficients of variation (Tab. 3). The lowest values, around 8 %, were for P. buchtiniana and RS and CS1 in P. cripabilis. Values around 10 % were observed in a great number of species, while values greater than 12 % were detected in at least one specimen of P. asplenioides, P. crispabilis, P. fuscolutea, P gymnocalycina, P. raddiana P. patula, and P. porelloides. For almost all the studied species for which a CS could be analyzed, the mean value for the CS did not fit the CI established for the reference specimen (Tab. 3).

Cluster analysis revealed five groups with similarity above 0.5 (Fig. 5 - G1 to G5) and a cophenetic correlation coefficient of 0.8138. The group G1 assembles P. disticha, P. laetevirens, P. patula, and P. raddiana; group G2 group unites P. asplenioides, P. buchtiniana, P. corrugata, and P. porelloides; group G3 is the largest, being represented by P. fuscolutea, P. gymnocalycina, P. rutilans, P. trichostoma, and P. simplex; group G4 is formed by P. crispabilis and P. macrostachya; and group G5 is represented by the single species P. heteromalla. Referring to the binary matrix (Tab. 4), it is possible to unravel the characteristics shared among species of the same group. The species of G1 share ornamentation type (rounded granules), sporoderm thickness, Frullania-type branching, generalist substratum occupation, single androecia, perianth covered by bracts, and some type of asexual reproduction. The species of G2 also share a single androecia and a perianth covered by bracts, but do not possess a asexual reproduction structure, and are exclusive in substratum occupation. In addition, these species also share androecia positioned terminally, although and branching type is variable. The species of G3 have generalist substratum occupation, Plagiochila-type branching and single androecia; while the species of G4 have generalist substratum occupation, fan-shaped androecia, and perianth covered by bracts. The species of this last group also share some spore characteristics such as ornamentation and sporoderm thickness. The species P. heteromalla is the only species of group G5.

Figure 5
Representation of the hierarchical cluster analyses showing the five groups of species of Plagiochila (Dumort.) Dumort. UPGMA algorithm, Jaccard similarity index, Cophenetic correlation = 0.8130.

Discussion

Plagiochila is an important genus, being distributed worldwide and one of the most speciose genera of liverworts. Palynological information can lead to a better understanding of the taxonomy and ecology of the species of Plagiochila. The present study revealed the spores of this genus to be variable, especially with regard to spore size and sporoderm ornamentation, which were able to separate the studied species into four spore types.

Spore size in Plagiochila

Average spore size in Plagiochila varied from 13.80 µm to 57.05 µm, being classified as small to large (Erdtman 1952Erdtman G. 1952. Pollen morphology and plant taxonomy. Angiosperms. An Introduction to Palynology I. Stockholm, Almqvist and Wiksell.). Spore size is a variable characteristic among liverworts. For example, spores of Chonecolea doelligeri (Chonecoleaceae) measured 16.00 µm in polar view (Yano & Luizi-Ponzo 2006 Yano O, Luizi-Ponzo AP. 2006. Chonecolea doellingeri (Chonecoleaceae, Hepaticae), taxonomia e distribuição geográfica no Brasil. Acta Botanica Brasilica 20: 783-788.), while species belonging to Frullaniaceae (Zhao et al. 2011Zhao DP, Bai XL, Wang LH. 2011. Observations of spore morphology of some hepatics species (Marchantiophyta) in China. Arctoa 20: 205-210. ), Dumortieraceae (Yano & Luizi-Ponzo 2011Yano O, Luizi-Ponzo AP. 2011. Dumortiera hirsuta (Dumortieraceae, Marchantiophyta), taxonomy, palynology and geographic distribution. Boletim do Instituto de Botânica 21: 9-18.), Porellaceae (Zhao et al. 2011Zhao DP, Bai XL, Wang LH. 2011. Observations of spore morphology of some hepatics species (Marchantiophyta) in China. Arctoa 20: 205-210. ), and Ricciaceae (Steinkamp & Doyle 1979Steinkamp MP, Doyle WT. 1979. Spore wall ultrastructure in four species of the liverwort Riccia. American Journal of Botany 66: 546-556.; Zhao et al. 2011Zhao DP, Bai XL, Wang LH. 2011. Observations of spore morphology of some hepatics species (Marchantiophyta) in China. Arctoa 20: 205-210. ), varied widely from 31 µm (medium-sized) to 127 µm (giant).

Related to the present study, Erdtman (1965Erdtman G. 1965. Pollen and spore morphology/ plant taxonomy. Gymnospermae, Bryophyta (Text). An introduction to palynology III. Stockholm, Almqvist and Wiksell .) reported that the spores of P. asplenioides have an average size of 15 µm, while Vojtkó (1993Vojtkó A. 1993. The spore morphology of Hepaticae species. Acta Biologica Szegediensis 39: 59-69.) reported the spores of P. porelloides to be 17.80 µm. Some taxonomic studies have included notes about spores of species of Plagiochila, especially regarding size and surface ornamentation. Heinrichs & Gradstein (2000Heinrichs J, Gradstein SR. 2000. A revision of Plagiochila sect. Crispatae and sect. Hypnoides (Hepaticae) in the Neotropics. I. Plagiochila disticha, P. montagnei and P. raddiana. Nova Hedwigia 70: 161-184.) described the spores of P. disticha as ranging in size from 16 µm to 28 µm (- 47 µm), and those of P. raddiana ranging 18 µm - 25 µm (- 45 µm); Heinrichs et al. (2000)Heinrichs J, Anton H, Gradstein SR, Mues R. 2000. Systematics of Plagiochila sect. Glaucescentes Carl (Hepaticae) from tropical America: a morphological and chemotaxonomical approach. Plant Systematics and Evolution 220: 115-138. reported a range of 33 µm - 54 µm for spores of P. buchtiniana ; Heinrichs et al. (2001)Heinrichs J, Groth R, Gradstein SR, Rycroft DS, Cole WJ, Anton H. 2001. Plagiochila rutilans (Hepaticae): A poorly known species from Tropical America. The Bryologist 104: 350-361. reported a range of 23 µm - 28 µm for spores of P. rutilans; and Heinrichs et al. (2004a)Heinrichs J, Groth H, Lindner M, Renker C, Pócs T, Pröschold T. 2004a. Intercontinental distribution of Plagiochila corrugata (Plagiochilaceae, Hepaticae) inferred from nrDNA ITS sequences and morphology. Botanical Journal of the Linnean Society 146: 469-481. reported 18 µm - 52 µm for P. corrugata. The present study found slightly narrower ranges of variation for the spores of these species.

Lophocoleineae Schljakov, which includes Plagiochilaceae, possesses exosporic spore germination (Crandall-Stotler et al. 2009Crandall-Stotler B, Stotler RE, Long DG. 2009. Morphology and classification of the Marchantiophyta. In: Shaw JA, Goffinet B. (eds.) Bryophyte biology. Cambridge, Cambridge University Press. p. 1-54. ), but some studies (Heinrichs et al. 2000Heinrichs J, Gradstein SR. 2000. A revision of Plagiochila sect. Crispatae and sect. Hypnoides (Hepaticae) in the Neotropics. I. Plagiochila disticha, P. montagnei and P. raddiana. Nova Hedwigia 70: 161-184.; 2004aHeinrichs J, Groth H, Lindner M, Renker C, Pócs T, Pröschold T. 2004a. Intercontinental distribution of Plagiochila corrugata (Plagiochilaceae, Hepaticae) inferred from nrDNA ITS sequences and morphology. Botanical Journal of the Linnean Society 146: 469-481.; Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ) have reported spores of Plagiochila released with 1-8 cells. Endosporic germination was also observed in the present study with the release of spores with 1-5 cells (and even intracapsular germination) in P. corrugata.

The coefficient of variation for spore size for the species studied here ranged from 8 % to 12 %. A coefficient of variation of around 10 % has been commonly found by palynological treatments of bryophytes, such as Luizi-Ponzo & Barth (1998Luizi-Ponzo AP, Barth OM. 1998. Spore morphollogy of some Bruchiaceae species (Bryophyta) from Brazil. Grana 37: 222-227.; 1999), Luizi-Ponzo & Melhem (2006), Rocha et al. (2008Rocha LM, Gonçalves-Esteves V, Luizi-Ponzo AP. 2008. Morfologia de esporos de espécies de Polytrichaceae Schwägr. (Bryophyta) do Brasil. Revista Brasileira de Botânica 31: 537-548.), Caldeira et al. (2009Caldeira IC, Gonçalves-Esteves V, Luizi-Ponzo AP. 2009 Morfologia dos esporos de Sematophyllaceae Broth. ocorrentes em três fragmentos de Mata Atlântica, no Rio de Janeiro, Brasil. Revista Brasileira de Botânica 32: 299-306.; 2013), Yano & Luizi-Ponzo (2011Yano O, Luizi-Ponzo AP. 2011. Dumortiera hirsuta (Dumortieraceae, Marchantiophyta), taxonomy, palynology and geographic distribution. Boletim do Instituto de Botânica 21: 9-18.), and Rodrigues & Luizi-Ponzo (2015Rodrigues RS, Luizi-Ponzo AP. 2015. Palinologia de espécies selecionadas da família Pottiaceae (Bryophyta). Pesquisas, Botânica 67: 303-317.). Heinrichs (2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ) stated that the average size of spores of Plagiochila vary considerably, while Heinrichs & Gradstein (1999)Heinrichs J, Gradstein SR. 1999. On Plagiochila longiramea Steph., a poorly known species of Bolivia. Candollea 54: 73-81. reported ca. 50 % variation in spore size for Plagiochila longiramea.

Sporoderm structure and surface ornamentation

Two layers of sporoderm, the intine and the exine, were observed in the species of the present study, which is typical of for bryophyte spores (Clarke 1979Clarke GCS. 1979. Spore morphology and bryophyte systematics. In: Clarke GCS, Duckett JG. (eds.) Bryophyte systematics. Systematic Association Special Vol. 14. London/ New York, Academic Press. p. 231-250. ; Neidhart 1979Neidhart HB. 1979. Comparative studies of sporogenesis in bryophytes. In: Clarke CGS, Duckett JG. (eds.) Bryophyte Systematics. London, Academic Press. p 251-280.; Mogensen 1983Mogensen, GS. 1983. The spore. In: Schuster RM. (eds.) New manual of bryology. Nichinan, The Hattori Botanical Laboratory. p. 324-342. ). Erdtman (1965Erdtman G. 1965. Pollen and spore morphology/ plant taxonomy. Gymnospermae, Bryophyta (Text). An introduction to palynology III. Stockholm, Almqvist and Wiksell .) reported that spores of P. asplenioides have a very thin exine. The sporoderm of the species studied here is indeed quite thin, being no more than 2 µm thick and even thinner than 1 µm for some species.

Analyses made under TEM revealed that the exine is divided into the nexine, an inner layer, and the sexine, an outer layer. Similar exine configurations have been observed for spores of both mosses and liverworts (Heckman 1970Heckman CA. 1970. Spore wall structure in the Jungermanniales. Grana 10: 109-119.; Steinkamp & Doyle 1979Steinkamp MP, Doyle WT. 1979. Spore wall ultrastructure in four species of the liverwort Riccia. American Journal of Botany 66: 546-556.; Brown & Lemmon 1988Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.; Estébanez et al. 1997Estébanez B, Alfayate C, Ron E. 1997. Observations on spore ultrastructure in six species of Grimmia (Bryopsida). Grana 36: 347-357.; Yano & Luizi-Ponzo 2006 Yano O, Luizi-Ponzo AP. 2006. Chonecolea doellingeri (Chonecoleaceae, Hepaticae), taxonomia e distribuição geográfica no Brasil. Acta Botanica Brasilica 20: 783-788.; 2011Yano O, Luizi-Ponzo AP. 2011. Dumortiera hirsuta (Dumortieraceae, Marchantiophyta), taxonomy, palynology and geographic distribution. Boletim do Instituto de Botânica 21: 9-18.; Rocha et al. 2008Rocha LM, Gonçalves-Esteves V, Luizi-Ponzo AP. 2008. Morfologia de esporos de espécies de Polytrichaceae Schwägr. (Bryophyta) do Brasil. Revista Brasileira de Botânica 31: 537-548.; Caldeira et al. 2013Caldeira IC, Gonçalves-Esteves V, Luizi-Ponzo AP. 2013. Palynology of selected species of Fissidens (Hedw.). Plant Systematics and Evolution 299: 187-195.; Brown et al. 2015Brown RC, Lemmon BE, Shimamura M, Villarreal JC, Renzaglia KS. 2015. Spores of relictual bryophytes: Diverse adaptations to life on land. Review of Palaeobotany and Palynology 216: 1-17.; Silva-e-Costa 2015Silva-e-Costa JC. 2015. Palinologia de Frullaniaceae Lorch (Marchantiophyta) do Brasil. MSc Thesis. Universidade Federal de Juiz de Fora, Juiz de Fora.; Rodrigues & Luizi-Ponzo 2015Rodrigues RS, Luizi-Ponzo AP. 2015. Palinologia de espécies selecionadas da família Pottiaceae (Bryophyta). Pesquisas, Botânica 67: 303-317.).

Lamellar deposition of exine elements in liverworts was first reported by Heckman (1970Heckman CA. 1970. Spore wall structure in the Jungermanniales. Grana 10: 109-119.) and Brown & Lemmon (1988Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.). The present study found perpendicular sexine elements in two species - P. disticha and P. simplex. Heckman (1970) Heckman CA. 1970. Spore wall structure in the Jungermanniales. Grana 10: 109-119.reported similar sexine patterns in two other liverworts - Lophocolea heterophylla and Chiloscyphus polyanthos. This author described these elements that shape spore ornamentation as “lamellar slips”. Both species studied by Heckman (1970)Heckman CA. 1970. Spore wall structure in the Jungermanniales. Grana 10: 109-119. belong to the family Lophocoleaceae, which is, as is Plagiochilaceae, a member of Lophocoleineae.

Two light electron-dense layers were identified in P. disticha, which correspond to intine. The intine is the last layer to be formed and is directly related to spore germination (Neidhart 1979Neidhart HB. 1979. Comparative studies of sporogenesis in bryophytes. In: Clarke CGS, Duckett JG. (eds.) Bryophyte Systematics. London, Academic Press. p 251-280.; Mogensen 1983Mogensen, GS. 1983. The spore. In: Schuster RM. (eds.) New manual of bryology. Nichinan, The Hattori Botanical Laboratory. p. 324-342. ; Brown & Lemmon 1988Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.). Mogensen (1983)Mogensen, GS. 1983. The spore. In: Schuster RM. (eds.) New manual of bryology. Nichinan, The Hattori Botanical Laboratory. p. 324-342. pointed out that the intine can have little stratification, as observed in the present study; Studying the spore wall structure in Jungermanniales, Heckman (1970Heckman CA. 1970. Spore wall structure in the Jungermanniales. Grana 10: 109-119.) presented a similar configuration of a stratified intine in L. heterophylla; even though it was not mentioned in the text, the stratification is easy recognized in the image provided by the paper.

McClymont & Larson (1964McClymont JW, Larson DA. 1964. An electron-microscopic study of spore wall structure in the musci. American Journal of Botany 51: 195-200.) described a multistratified intine for Archidium alternifoliuim; Nilsson (1990)Nilsson S. 1990. Taxonomic and evolutionary significance of pollen morphology in the Apocynaceae. Plant Systematics and Evolution 5: 91-102. observed it in pollen grains of Apocynaceae; Estébanez et al. (1997)Estébanez B, Alfayate C, Ron E. 1997. Observations on spore ultrastructure in six species of Grimmia (Bryopsida). Grana 36: 347-357. observed a one to three-layered intine in Grimmia; Luizi-Ponzo & Melhem (2006Luizi-Ponzo AP, Melhem TS. 2006. Spore morphology and ultrastructure of the tropical moss Helicophyllum torquatum (Hook.) Brid. (Helicophyllaceae) in relation to systematics and evolution. Cryptogamie, Bryologie 27: 413-420.) described a stratified intine for mature spores of Helicophyllum torquatum; and, finally, Medina & Estébanez (2014Medina NG, Estébanez B. 2014. Does spore ultrastructure mirror different dispersal strategies in mosses? A study of seven Iberian Orthotrichum species. PLOS ONE 9(11): e112867. doi: 10.1371/journal.pone.0112867
https://doi.org/10.1371/journal.pone.011...
) reported intine stratification for Orthotrichum ibericum and Orthotrichum striatum, and argued that intine stratification may be due to the environmental and developmental condition of spores.

Different dispositions of the exine element may be related to early contact at the proximal pole during spore wall formation. Brown & Lemmon (1991Brown RC, Lemmon BE. 1991. Sporogenesis in simple land plants. In: Blackmore S, Barnes SH. (eds.) Pollen and spores. patterns of diversification. Oxford, Clarendon Press. p 9-24.) observed that during wall formation of liverwort spores, especially in Jungermanniidae, the exine is generally thinner and less ornamented on the proximal face than in other areas of the spore wall, and might represent a region for germination.

Some authors have described some Plagiochila spores as ornate with bacula (Heinrichs & Gradstein 2000Heinrichs J, Gradstein SR. 2000. A revision of Plagiochila sect. Crispatae and sect. Hypnoides (Hepaticae) in the Neotropics. I. Plagiochila disticha, P. montagnei and P. raddiana. Nova Hedwigia 70: 161-184.; Heinrichs et al. 2001Heinrichs J, Groth R, Gradstein SR, Rycroft DS, Cole WJ, Anton H. 2001. Plagiochila rutilans (Hepaticae): A poorly known species from Tropical America. The Bryologist 104: 350-361.; 2004aHeinrichs J, Groth H, Lindner M, Renker C, Pócs T, Pröschold T. 2004a. Intercontinental distribution of Plagiochila corrugata (Plagiochilaceae, Hepaticae) inferred from nrDNA ITS sequences and morphology. Botanical Journal of the Linnean Society 146: 469-481.; 2005aHeinrichs J, Groth H, Lindner M, Renker C. 2005a. Distribution and synonymy of Plagiochila punctata (Taylor) Taylor, with hypotheses on the evolutionary history of Plagiochila sect. Arrectae (Plagiochilaceae, Hepaticae). Plant Systematics and Evolution 250: 105-117.; bHeinrichs J, Lindner M, Gradstein SR, et al. 2005b. Origin and subdivision of Plagiochila (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. Taxon 54: 317-333.; Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ), verrucate, or even vermiculate (Inoue 1982Inoue H. 1982. Scanning electron microscopy in hepatic taxonomy. Nova Hedwigia 71: 75-80.; Muller et al. 1999Müller J, Heinrichs J, Gradstein SR. 1999. A revision of Plagiochila sect. Plagiochila in the Neotropics. The Bryologist 102: 729-746.; Heinrichs 2002Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. ; Groth et al. 2003Groth H, Lindner M, Wilson R, et al. 2003. Biogeography of Plagiochila (Hepaticae): natural species groups span several floristic kingdoms. Journal of Biogeography 30: 965-978. ; Heinrichs et al. 2004bHeinrichs J, Lindner M, Groth H. 2004b. Sectional classification of the North American Plagiochila (Hepaticae, Plagiochilaceae). The Bryologist 107: 489 496.). In a treatment of Plagiochilaceae of North America, Schuster (1980Schuster RM. 1980. The Hepaticae and Anthocerotae of North America. IV. New York, Columbia University Press.) described the ornamentation of the spores as “finely granulose”. In a compilation of literature data, Heinrichs (2002)Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. described two basic patterns of spore ornamentation for Plagiochila: (1) verrucate-vermiculate structures, and (2) baculate structures (varying from “bacula sensu strictu” to pila). Observing the images provided by these authors, in can be concluded that these ornamentation patterns are, actually, granules with different and variable shapes and morphologies. Punt et al. (2007Punt W, Hoen P, Blackmore S, Nilsson S, Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1-81.) defined bacula as “a cylindrical, free standing exine element more than 1 µm in length and less than this in diameter”. In a similar way, a verruca is an element more than 1 µm wide; and vermiculate is used to describe rugulate pollen and spores. Thus, none of these terms fit the spore ornamentation observed in Plagiochila. The present study encountered elements that were less than 1µm long and wide, and when they were larger than this the elements were clearly groups of united processes. Heinrichs (2002)Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca. stated that the spores of Plagiochila are, necessarily, trilete with a weakly developed laesure under SEM observation. Due to their thin and delicate spore wall, spores of species of Plagiochila are easily damaged during processing for SEM, thus giving the appearance of an irregular trilete mark. However, when spores are observed under different kinds of preparation, this affirmation is clearly denied. Observations of spores under LM (Figs. 1A, B, D, E; 2A, B, G) prior to acetolysis, affirm that they are not trilete, but indeed tremendously fragile and easily folded. This fragility is related to the thin sporoderm and, especially, the delicacy of the nexine, which becomes folded during processing for SEM (Figs. 1F, H; 2C, E, H). It is important to note, however, that in spite of this fragility, the sporoderm tolerates acetolysis due its sporopollenin content (Mogensen 1983Mogensen, GS. 1983. The spore. In: Schuster RM. (eds.) New manual of bryology. Nichinan, The Hattori Botanical Laboratory. p. 324-342. ; Brown & Lemmon 1988Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.).

Interpretation of hierarchical clustering and the taxonomic implications

The hierarchical clustering analyses revealed five groups with a cophenetic correlation coefficient higher than 0.8, which represents low distortion and relatively reliable data (Rohlf & Fisher 1968Rohlf J, Fisher DR. 1968. Tests for hierarchical structure in random data sets. Systematic Zoology 17: 407-412.). These five groups, G1 to G5, did not correspond to the current infrageneric classification of Plagiochila. The common characteristics shared by species of the same group, for groups G1 to G4, are mostly morphological characteristics of the gametophyte. Furthermore, species with the same ornamentation type described in this study were also separated by cluster analysis. To G1 and G4, indeed, spore ornamentation was a shared variable for species of group G1 and for species of group G4, while surface ornamentation varied within groups G2 and G3. Although these groups did not correspond directly to either infrageneric circumscriptions or ornamentation types, the palynological information added to gametophyte morphology clearly formed new groups, suggesting that spore data may contribute to understanding the phylogenetic relationships within Plagiochila. Spore morphology is genetically based (Clarke 1979Clarke GCS. 1979. Spore morphology and bryophyte systematics. In: Clarke GCS, Duckett JG. (eds.) Bryophyte systematics. Systematic Association Special Vol. 14. London/ New York, Academic Press. p. 231-250. ), and thus can be evolutionary information and useful in phylogenetic analyses.

Palynology can make an important contribution to taxonomic studies, especially when dealing with taxa that present taxonomic difficulties. The species of Plagiochila of the present study are quite homogeneous with regard to gametophyte characteristics, but they differ in spore structure, size, sporoderm strata, and surface ornamentation. As demonstrated here, different ornamentation types were observed and can useful in species descriptions.

Acknowledgements

We thank the curators of the herbaria CESJ, HUSC, KY, PACA, R, and RB, and especially Nicholas McLecthie and Robert Paratley. Thanks also go to: Universidade Federal de Juiz de Fora/ Pós-graduação em Ecologia for logistical support and Pedro Loureiro for technical assistance. This research was financed by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (Grant APQ CRA 01598-14) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001.

References

  • Arteaga-Vazquez AM. 2016. Land plant evolution: listen to your elders. Current Biology 26(1). doi: 10.1016/j.cub.2015.12.001
    » https://doi.org/10.1016/j.cub.2015.12.001
  • Blackmore S, Barnes SH. 1987. Embryophye spore walls: Origin, development, and homologies. Cladistics 3: 185-195.
  • Brown RC, Lemmon BE. 1980. Ultrastructure of sporogenesis in a moss: Ditrichum pallidum. III. Spore wall formation. American Journal of Botany 67: 918-934.
  • Brown RC, Lemmon BE. 1984a. Ultrastructure of sporogenesis in moss Amblystegium riparium II. Spore wall development. Journal of Hattori Laboratory 57: 139-152.
  • Brown RC, Lemmon BE. 1984b. Spore wall development in Andreaea (Musci: Bryopsida). American Journal of Botany 71: 412-420.
  • Brown RC, Lemmon BE. 1988. Sporogenesis in bryophytes. Advances in Bryology 3: 159-223.
  • Brown RC, Lemmon BE. 1991. Sporogenesis in simple land plants. In: Blackmore S, Barnes SH. (eds.) Pollen and spores. patterns of diversification. Oxford, Clarendon Press. p 9-24.
  • Brown RC, Lemmon BE, Shimamura M, Villarreal JC, Renzaglia KS. 2015. Spores of relictual bryophytes: Diverse adaptations to life on land. Review of Palaeobotany and Palynology 216: 1-17.
  • Caldeira IC, Gonçalves-Esteves V, Luizi-Ponzo AP. 2006. Morfologia dos esporos das espécies de Leucobryaceae Schimp. (Bryophyta) do Parque Estadual de Ilha Grande, Município de Angra dos Reis, Estado do Rio de Janeiro. Revista Brasileira de Botânica 29: 301-307.
  • Caldeira IC, Gonçalves-Esteves V, Luizi-Ponzo AP. 2009 Morfologia dos esporos de Sematophyllaceae Broth. ocorrentes em três fragmentos de Mata Atlântica, no Rio de Janeiro, Brasil. Revista Brasileira de Botânica 32: 299-306.
  • Caldeira IC, Gonçalves-Esteves V, Luizi-Ponzo AP. 2013. Palynology of selected species of Fissidens (Hedw.). Plant Systematics and Evolution 299: 187-195.
  • Carl H. 1931. Die Arttypen und die systematische Gliederung der Gattung Plagiochila Dum. Annales Bryologici 2: 1-170.
  • Clarke GCS. 1979. Spore morphology and bryophyte systematics. In: Clarke GCS, Duckett JG. (eds.) Bryophyte systematics. Systematic Association Special Vol. 14. London/ New York, Academic Press. p. 231-250.
  • Correa SMBB. 2007. Probabilidade e estatística. 2nd. edn. Belo Horizonte, PUC Minas Virtual.
  • Crandall-Stotler B, Stotler RE, Long DG. 2009. Morphology and classification of the Marchantiophyta. In: Shaw JA, Goffinet B. (eds.) Bryophyte biology. Cambridge, Cambridge University Press. p. 1-54.
  • Dugas M. 1929, Contribution à l’étude du genre “Plagiochila” Dum. Annales des Sciences Naturelles; Botanique, Série 10 11: 1-199.
  • Erdtman G. 1952. Pollen morphology and plant taxonomy. Angiosperms. An Introduction to Palynology I. Stockholm, Almqvist and Wiksell.
  • Erdtman G. 1960. The acetolysis method. A revised description. Svensk Botanisk Tidskrift 39: 561-564.
  • Erdtman G. 1965. Pollen and spore morphology/ plant taxonomy. Gymnospermae, Bryophyta (Text). An introduction to palynology III. Stockholm, Almqvist and Wiksell .
  • Estébanez B, Alfayate C, Ron E. 1997. Observations on spore ultrastructure in six species of Grimmia (Bryopsida). Grana 36: 347-357.
  • Gradstein SR. 2015a. New synonyms and new lectotypifications in neotropical Plagiochila (Marchantiophyta). Cryptogamie, Bryologie, 36: 369-379.
  • Gradstein SR. 2015b. Annotated key to the species of Plagiochila (Marchantiophyta) from Brazil. Pesquisas, Botânica 67: 23-36.
  • Gradstein SR. 2016. The genus Plagiochila (Marchantiophyta) in Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 40: 104-136.
  • Gradstein SR, Churchill SP, Salazar-Allen N. 2001. Guide to the bryophytes of Tropical America. New York, Memoirs of the New York Botanical Garden.
  • Gradstein SR, Costa DP. 2003. The Hepaticae and Anthocerotae of Brazil. New York, Memoirs of the New York Botanical Garden .
  • Gradstein SR, Reiner-Drehwald E. 1995. Szweykowskia, a new genus of Plagiochilaceae (Hepaticae) from tropical America. Fragmenta Floristica et Geobotanica 40: 31 -38.
  • Grolle R, Heinrichs J. 1999. Redescription and synonymy of Plagiochila aerea Täylor 1846 (Hepaticae), first describe as Lycopodium pinnatum by Lamarck 1792. Nova Hedwigia 68: 551-525.
  • Groth H, Lindner M, Wilson R, et al. 2003. Biogeography of Plagiochila (Hepaticae): natural species groups span several floristic kingdoms. Journal of Biogeography 30: 965-978.
  • Hammer Ø, Harper DAT, Ryan P. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-9.
  • Hässel GG. 2004. Andinopatagonian Species of Plagiochila (Plagiochilaceae, Marchantiophyta). I. Sectio Robustae Carl Emend. Hässel and II. Sectio Equitantes Carl Emend. Hässel. Journal of the Hattori Botanical Laboratory 96: 245-260.
  • Hässel GG. 2006. Andinopatagonian species of Plagiochila (Plagiochilaceae, Marchantiophyta). I sectio Hirtae and II sectio Angulatae. Journal of the Hattori Botanical Laboratory 100: 101-118.
  • Heckman CA. 1970. Spore wall structure in the Jungermanniales. Grana 10: 109-119.
  • Heinrichs J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine linages. Berlin, Bryophytorum Bibliotheca.
  • Heinrichs J, Anton H, Gradstein SR, Mues R. 2000. Systematics of Plagiochila sect. Glaucescentes Carl (Hepaticae) from tropical America: a morphological and chemotaxonomical approach. Plant Systematics and Evolution 220: 115-138.
  • Heinrichs J, Gradstein SR. 1999. On Plagiochila longiramea Steph., a poorly known species of Bolivia. Candollea 54: 73-81.
  • Heinrichs J, Gradstein SR. 2000. A revision of Plagiochila sect. Crispatae and sect. Hypnoides (Hepaticae) in the Neotropics. I. Plagiochila disticha, P. montagnei and P. raddiana. Nova Hedwigia 70: 161-184.
  • Heinrichs J, Groth R, Gradstein SR, Rycroft DS, Cole WJ, Anton H. 2001. Plagiochila rutilans (Hepaticae): A poorly known species from Tropical America. The Bryologist 104: 350-361.
  • Heinrichs J, Groth H, Lindner M, Renker C. 2005a. Distribution and synonymy of Plagiochila punctata (Taylor) Taylor, with hypotheses on the evolutionary history of Plagiochila sect. Arrectae (Plagiochilaceae, Hepaticae). Plant Systematics and Evolution 250: 105-117.
  • Heinrichs J, Groth H, Lindner M, Renker C, Pócs T, Pröschold T. 2004a. Intercontinental distribution of Plagiochila corrugata (Plagiochilaceae, Hepaticae) inferred from nrDNA ITS sequences and morphology. Botanical Journal of the Linnean Society 146: 469-481.
  • Heinrichs J, Lindner M, Gradstein SR, et al. 2005b. Origin and subdivision of Plagiochila (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. Taxon 54: 317-333.
  • Heinrichs J, Lindner M, Groth H. 2004b. Sectional classification of the North American Plagiochila (Hepaticae, Plagiochilaceae). The Bryologist 107: 489 496.
  • Inoue H. 1982. Scanning electron microscopy in hepatic taxonomy. Nova Hedwigia 71: 75-80.
  • Inoue H. 1989. Notes on the Plagiochilaceae, XVI. Studies on some Plagiochila species in the Neotropics. Bulletin of the National Science Museum 15: 35-47.
  • Inoue H, Schuster RM. 1971. A monograph of the New Zealand and Tasmanian Plagiochilaceae. Journal of the Hattori Botanical Laboratory 34: 1-225.
  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozakif K. 2007. Arabidopsis MALE STERILITY1 Encodes a PHD-Type Transcription Factor and Regulates Pollen and Tapetum Development. The Plant Cell 19: 3549-3562.
  • Jamy M, Renner MAM, Patzak SDF, Heslewood MM, Schäfer-Verwimp A, Heinrichs J. 2016. Reinstatement of Plagiochila sect. Abietinae (Plagiochilaceae, Jungermanniopsida). Cryptogamie, Bryologie 37: 351-360.
  • Lindenberg JBW. 1839. Species hepathicarum. Fasc. 1. Bonn, Henry & Cohen.
  • Luizi-Ponzo AP, Barth OM. 1998. Spore morphollogy of some Bruchiaceae species (Bryophyta) from Brazil. Grana 37: 222-227.
  • Luizi-Ponzo AP, Barth OM. 1999. Spore morphology of some Dicranaceae species (Bryophyta) from Brazil. Grana 38: 42-49.
  • Luizi-Ponzo AP, Melhem TS. 2006. Spore morphology and ultrastructure of the tropical moss Helicophyllum torquatum (Hook.) Brid. (Helicophyllaceae) in relation to systematics and evolution. Cryptogamie, Bryologie 27: 413-420.
  • McClymont JW, Larson DA. 1964. An electron-microscopic study of spore wall structure in the musci. American Journal of Botany 51: 195-200.
  • Medina NG, Estébanez B. 2014. Does spore ultrastructure mirror different dispersal strategies in mosses? A study of seven Iberian Orthotrichum species. PLOS ONE 9(11): e112867. doi: 10.1371/journal.pone.0112867
    » https://doi.org/10.1371/journal.pone.0112867
  • Mogensen, GS. 1983. The spore. In: Schuster RM. (eds.) New manual of bryology. Nichinan, The Hattori Botanical Laboratory. p. 324-342.
  • Müller J, Heinrichs J, Gradstein SR. 1999. A revision of Plagiochila sect. Plagiochila in the Neotropics. The Bryologist 102: 729-746.
  • Neidhart HB. 1979. Comparative studies of sporogenesis in bryophytes. In: Clarke CGS, Duckett JG. (eds.) Bryophyte Systematics. London, Academic Press. p 251-280.
  • Nilsson S. 1990. Taxonomic and evolutionary significance of pollen morphology in the Apocynaceae. Plant Systematics and Evolution 5: 91-102.
  • Olesen P, Mogensen GS. 1978. Ultrastructure, histochemistry and notes on germination stages of spores in selected mosses. The Bryologist 81: 493-516.
  • Patzak SDF, Renner MAM, Schäfer-Verwimp A, et al. 2016. A phylogeny of Lophocoleaceae-Plagiochilaceae-Brevianthaceae and a revised classification of Plagiochilaceae. Organisms Diversity & Evolution 16: 481-495.
  • Punt W, Hoen P, Blackmore S, Nilsson S, Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1-81.
  • R Development Core Team. 2018. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. http://www.R-project.org
    » http://www.R-project.org
  • Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ. 2000. Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philosophical Transactions of the Royal Society B: Biological Sciences 355: 769-793.
  • Reynolds ED. 1963. The use of lead citrate at high Ph as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17: 208-212.
  • Rocha LM, Gonçalves-Esteves V, Luizi-Ponzo AP. 2008. Morfologia de esporos de espécies de Polytrichaceae Schwägr. (Bryophyta) do Brasil. Revista Brasileira de Botânica 31: 537-548.
  • Rodrigues RS, Luizi-Ponzo AP. 2015. Palinologia de espécies selecionadas da família Pottiaceae (Bryophyta). Pesquisas, Botânica 67: 303-317.
  • Rohlf J, Fisher DR. 1968. Tests for hierarchical structure in random data sets. Systematic Zoology 17: 407-412.
  • Savaroğlu F. 2015 Spore morphology of some Orthotrichaceae Arn. species (Bryophyta) from Turkey. Bangladesh Journal of Botany 44: 499-506.
  • Savaroğlu F, Erkara IP, Koyuncu O. 2017. Observations of spore morphology of some species of Hypnaceae Schimp. (Bryophyta) in Turkey. Bangladesh Journal of Botany 46: 9-17.
  • Schiffner, V. 1900. Die Hepaticae der Flora von Buitenzorg. I. Leiden, Band. E. J. Brill.
  • Schuster RM. 1959. A monograph of the Nearctic Plagiochilaceae. Part. I. Introduction and section I. Asplenioides. American Midland Naturalist 62: 1-166.
  • Schuster RM. 1960. A monograph of the Nearctic Plagiochilaceae. Part. III. Sectio Contiguae to conclusion. American Midland Naturalist 63: 1-130.
  • Schuster RM. 1980. The Hepaticae and Anthocerotae of North America. IV. New York, Columbia University Press.
  • Silva-e-Costa JC. 2015. Palinologia de Frullaniaceae Lorch (Marchantiophyta) do Brasil. MSc Thesis. Universidade Federal de Juiz de Fora, Juiz de Fora.
  • Silva-e-Costa JC, Luizi-Ponzo AP, Resende CF, Peixoto PHP. 2017. Spore germination, early development and some notes on the effects of in vitro culture medium on Frullania ericoides (Nees) Mont. (Frullaniaceae, Marchantiophyta). Acta Botanica Brasilica 31: 19-28
  • Silveira M. 2007. Preparo de amostras para Microscopia Eletrônica de Varredura. In: Souza W. (eds.) Técnicas de microscopia eletrônica aplicadas às ciências biológicas. Rio de Janeiro, Sociedade brasileira de microscopia e microanálise. p 47-59.
  • So ML. 2001. Plagiochila (Hepaticae, Plagiochilaceae) in China. Monographs in Systematic Botany 60: 1-214.
  • So ML, Grolle R. 2000. Checklist of Plagiochila (Hepaticae). Journal of the Hattori Botanical Laboratory 88: 199-243.
  • Söderström L, Crandall-Stotler B, Stotler RE, Váňa J, Hagborg A, Konrat M. 2013. Notes on Early Land plants today. 36. Generic treatment of Lophocoleaceae (Marchantiophyta). Phytotaxa 97: 36-43.
  • Söderström L, Hagborg A, Konrat M, et al. 2016. World checklist of hornworts and liverworts. PhytoKeys 59: 1-828.
  • Sokal RR, Rohlf J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd. edn. New York, W.H. Freeman and Company.
  • Spruce R. 1885. Hepaticae amazonicae et andinae. II. Transactions and Proceedings of the Botanical Society of Edinburgh 15: 309-588.
  • Steinkamp MP, Doyle WT. 1979. Spore wall ultrastructure in four species of the liverwort Riccia. American Journal of Botany 66: 546-556.
  • Stephani F. 1902. Species hepaticarum 2. Bulletin de l’Herbier Boissier, Série 2 2: 657-688.
  • Thiers B. [continuously updated]. 2018. Index Herbariorum: A global directory of public herbaria and associated staff. New York, New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/science/ih/
    » http://sweetgum.nybg.org/science/ih/
  • Vojtkó A. 1993. The spore morphology of Hepaticae species. Acta Biologica Szegediensis 39: 59-69.
  • Wallace S, Fleming A, Wellman CH, Beerling DJ. 2011. Evolutionary development of the plant spore and pollen wall. AoB PLANTS 2011(1). plr027. doi:10.1093/aobpla/plr027
    » https://doi.org/10.1093/aobpla/plr027
  • Wellman CH. 2004. Origin, function and development of the spore wall in early land plants. In: Hemsley AR, Poole I. (eds.) The evolution of plant physiology: From whole plants of ecosystems. London, Linnean Society of London, Paleobotany Specialist Group Elsevier Academic Press. p. 43-60.
  • Wodehouse RP. 1935. Pollen grains: Their structure, identification and significance in science and medicine. New York, McGraw-Hill.
  • Yano O, Luizi-Ponzo AP. 2006. Chonecolea doellingeri (Chonecoleaceae, Hepaticae), taxonomia e distribuição geográfica no Brasil. Acta Botanica Brasilica 20: 783-788.
  • Yano O, Luizi-Ponzo AP. 2011. Dumortiera hirsuta (Dumortieraceae, Marchantiophyta), taxonomy, palynology and geographic distribution. Boletim do Instituto de Botânica 21: 9-18.
  • Zhao DP, Bai XL, Wang LH. 2011. Observations of spore morphology of some hepatics species (Marchantiophyta) in China. Arctoa 20: 205-210.

Publication Dates

  • Publication in this collection
    25 Mar 2019
  • Date of issue
    Jul-Sep 2019

History

  • Received
    28 Nov 2018
  • Accepted
    30 Jan 2019
Sociedade Botânica do Brasil SCLN 307 - Bloco B - Sala 218 - Ed. Constrol Center Asa Norte CEP: 70746-520 Brasília/DF. - Alta Floresta - MT - Brazil
E-mail: acta@botanica.org.br