Acessibilidade / Reportar erro

Pollen types of Sapindaceae from Brazilian forest fragments: apertural variation

ABSTRACT

Morphological variations in angiosperm pollen grains may aid in the differentiation of families, genera and species. Sapindaceae pollen morphology holds promise for the recognition of taxa of this cosmopolitan family, which is well distributed in tropical regions and possesses great morphological diversity. This study presents the pollen morphology of 23 native Brazilian species of Sapindaceae from forest fragments in the state of São Paulo, Brazil. The aim was to identify pollen types in order to expand the morphological knowledge of the analyzed species and contribute to the taxonomy and conservation of the family. Pollen grains were acetolysed, measured and photographed using light and scanning electron microscopy. Qualitative data were described for three pollen types, while quantitative data were analyzed by descriptive and multivariate statistics. The pollen grains are monads, isopolar or heteropolar, small to medium in size, peroblate to oblate-spheroidal and with a subcircular to quadrangular amb. Variation in the type of the apertures [3-porate, 3-(4)-colporate, 3-syncolporate or 3-parasyncolporate] allowed the analyzed genera to be separated into three pollen types. Furthermore, differences in ornamentation (psilate, rugulate, striate, microreticulate, reticulate) delimit species within the established pollen types.

Keywords:
Brazil; eurypalynous; palynotaxonomy; pollen grains; pollen morphology

Introduction

Human activities often result in the fragmentation of forest habitats, particularly in tropical regions. Due to this fragmentation, the knowledge of biodiversity in these areas favors preservation, avoiding large losses (Kronka et al. 2005Kronka FJN, Nalon MA, Matsukuma CK, et al. 2005. Inventário florestal da vegetação natural do Estado de São Paulo Inventário florestal do Estado de São Paulo. São Paulo, Instituto Federal.). The Brazilian forest fragments are composed of seasonal semideciduous forest in Cerrado areas, comprising examples of plant formations that have resisted fragmentation processes in the Northwest of the State of São Paulo, being Sapindaceae one of the most representative families in this area (Ranga et al. 2012Ranga NT, Rezende AA, Cavasan O, Toniato MTZ, Cielo-Filho R, Stranghetti V. 2012. Caracterização florística de remanescentes de vegetação nativa da região noroeste do Estado de São Paulo. Ribeirão Preto, Holos Editora.).

Sapindaceae is the largest and most important family of Sapindales (APG IV 2016APG IV - Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. The Linnean Society of London, Botanical Journal of the Linnean Society 181: 1-20. ) and comprises about 140 genera and 1,900 species, distributed mainly in tropical regions (Acevedo-Rodríguez et al. 2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.). In Brazil, the family is represented by 28 genera and 417 species, of which 190 species are endemic (BFG 2015BFG. 2015. Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia 66: 1085-1113. ). The greatest diversity within the group occurs in the areas of Atlantic and Amazonian forests (Acevedo-Rodriguez 1993Acevedo-Rodriguez P. 1993. Systematics of Serjania (Sapindaceae). Part I: A revision of Serjania sect. Platycoccus. Memoirs of the New York Botanical Garden 67: 1-93. ), biomes known for high species richness and high rates of endemism of angiosperms (Daly & Mitchell 2000Daly DC, Mitchell JD. 2000. Lowland vegetation of tropical South America - an overview. In: Lentz D. (ed.) Imperfect balance: landscape transformations in the pre-Columbian Americas. New York, Columbia University Press. p. 391-454.).

Some floristic surveys point out the richness of Sapindaceae species in forest fragments in Brazil (among them Santos & Kinoshita 2003Santos K, Kinoshita LS. 2003. Flora arbustivo-arbórea do fragmento de Floresta Estacional Semidecidual do Ribeirão Cachoeira, município de Campinas, SP. Acta Botanica Brasilica 17: 325-486. , Durigan et al. 2008Durigan G, Mamede MCH, Ivanauskas NM, et al. 2008. Fanerógamas. In: Rodrigues RR, Bononi VLR. (eds.) Diretrizes para a conservação e restauração da biodiversidade no Estado de São Paulo. São Paulo, Instituto de Botânica/Imprensa Oficial do Estado de São Paulo. p. 104-109. , Cielo-Filho et al. 2009Cielo-Filho R, Baitello JB, Pastore JA. 2009. Increasing the botanical collecting density at the Alto Paranapanema Basin region: Floristic survey of the State Forest and Ecological Station of Paranapanema. Biota Neotropica 9: 255-276. , Costa et al. 2011Costa JT, Estevan DA, Bianchini E, Fonseca ICB. 2011. Composição florística das espécies vasculares e caráter sucessional da flora arbórea de um fragmento de Floresta Estacional Semidecidual no Sul do Brasil. Brazilian Journal of Botany 34: 411-422. and Rosado et al. 2014Rosado A, Souza MC, Ferrucci MS. 2014. Lista de espécies de Sapindaceae para um remanescente de Floresta Estacional Semidecidual no sul do Brasil: Estação Ecológica do Caiuá. Revista Brasileira de Biociências 12: 148-157. ). These studies emphasize that the richness of climbing plants in these environments is usually concentrated in a few families, among them Sapindaceae (Stranghetti & Ranga 1998Stranghetti V, Ranga NT. 1998. Levantamento florístico das espécies vasculares da floresta estacional mesófila semidecídua da Estação Ecológica de Paulo de Faria - SP. Brazilian Journal of Botany 21: 289-298. ; Rezende & Ranga 2005Rezende AA, Ranga NT. 2005. Lianas da Estação Ecológica do Noroeste Paulista, São José do Rio Preto/Mirassol, SP. Acta Botanica Brasilica 19: 273-279. ; Rezende et al. 2007Rezende AA, Ranga NT, Pereira RAS. 2007. Lianas de uma floresta estacional semidecidual, município de Paulo de Faria, Norte do Estado de São Paulo, Brasil. Brazilian Journal of Botany 30: 451-461. ; Santos et al. 2009Santos K, Kinoshita LS, Rezende AA. 2009. Species composition of climbers in seasonal semideciduous forest fragments of Southeastern Brazil. Biota Neotropica 9: 175-188.).

Currently, several authors describe for Sapindaceae sensu lato four subfamilies: Dodonaeoideae, Hippocastanoideae, Sapindoideae and Xanthoceroideae (Harrington et al. 2005Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA. 2005. Phylogenetic inference in Sapindaceae s. lat. Using plastid matK and rbcL DNA sequences. Systematic Botany 30: 366-382. ; Thorne & Reveal 2007Thorne RF, Reveal JL. 2007. An update classification of the class Magnoliopsida (“Angiospermae”). The Botanical Review 73: 67-182. ; Buerki et al. 2009Buerki S, Forest F, Acevedo-Rodríguez P, et al. 2009. Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Molecular Phylogenetics and Evolution 51: 238-258. , 2010aBuerki S, Phillipson PB, Lowry IIPP, Callmander MW. 2010a. Molecular phylogenetics and morphological evidence support recognition of Gereaua, a new endemic genus of Sapindaceae from Madagascar. Systematic Botany 35: 172-180.). Buerki et al. (2010b) Buerki S, Lowry PP, Alvarez N, Razafimandimbison SG, Kupfer P, Callmander MW. 2010b. Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae. Plant Ecology and Evolution 143: 148-159. reviewed the circumscription of Sapindaceae using molecular, morphological and biogeographic data, and they included in this analysis several important genera that had not been discussed in taxonomic studies. These authors indicated two approaches to treat the genera of Sapindaceae: the classification proposed by APG IV (2016)APG IV - Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. The Linnean Society of London, Botanical Journal of the Linnean Society 181: 1-20. where the family has a broad definition in Sapindaceae sensu lato, or the choice to consider Aceraceae, Hippocastanaceae and Sapindaceae as distinct families and to exclude Xanthoceras Bunge, considering this genus as the monotypic family Xanthoceraceae (Buerki et al. 2010bBuerki S, Lowry PP, Alvarez N, Razafimandimbison SG, Kupfer P, Callmander MW. 2010b. Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae. Plant Ecology and Evolution 143: 148-159. ).

Studies on Sapindaceae pollen morphology have been conducted by Erdtman (1952Erdtman G. 1952. Pollen morphology and plant taxonomy: Angiosperms. Stockholm, Almqvist and Wiksell.), Merville (1965Merville M. 1965. Le pollen des Sapindacees D’Afrique occidentale. Pollen Spores 7: 465-489.), Barros (1969Barros MM. 1969. Pólen das plantas silvestres do Ceara. II. Município de Fortaleza - Familia Ochnaceae, Simarubaceae e Sapindaceae. Boletim Cearense de Agronomia 10: 53-58.), Campos & Melhem (1969Campos AC, Melhem TS. 1969. Pollen grains of the Cerrado-XXIII- Icacinaceae, Martyniaceae and Sapindaceae. Anais da Academia Brasileira de Ciências 41: 471-483.), Salgado-Labouriau (1973Salgado-Labouriau ML. 1973. Contribuição à palinologia dos cerrados. Rio de Janeiro, Academia Brasileira de Ciências.), Carreira (1976Carreira LMM. 1976. Morfologia polínica de plantas lenhosas da Campina. Acta Amazonica 6: 247-269. ), Muller & Leenhouts (1976Muller J, Leenhouts PW. 1976. A general survey of pollen types in Sapindaceae in relation to taxonomy. In: Ferguson IK, Müller J. (eds.) The evolutionary significance of the exine. London, Academic Press. p. 407-445. ), Markgraf & D'Antoni (1978Markgraf V, D'Antoni HL. 1978. Pollen flora of Argentina: modern spore and pollen types of Pteridophyta, Gymnospermae, and Angiospermae. Tuson, The University of Arizona Press.), Cruz & Melhem (1984Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25.), Roubik & Moreno (1991Roubik DW, Moreno JE. 1991. Pollen and Spores of Barro Colorado Island [Panama]. In: Monographs in Systematic Botany from the Missouri Botanical Garden. vol. 36. St Louis, MO, Missouri Botanical Garden. p. 1-268.), Ferrucci & Anzotegui (1993Ferrucci MS, Anzoategui LM. 1993. El polen de Paullinieae (Sapindaceae). Bonplandia 6: 211-243.), Ham & Tmolik (1994Ham RWJM, Tomlik A. 1994. Serjania pollen and the origin of the tribe Paullineae (Sapindaceae). Review of Palaeobotany and Palynology 83: 43-53.), Pire et al. (1998Pire SM, Anzoátegui LM, Cuadrado GA. 1998. Flora Polínica del Nordeste Argentino. Corrientes, Editora Universitaria de la Universidad Nacional del Nordeste.), Luz & Barth (1999Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36.), Perveen (2000Perveen A. 2000. Pollen characters and their evolutionary significance with specialreference to the flora of Karachi. Journal Biology 24: 365-377.), Melhem et al. (2003)Melhem TS, Cruz-Barros MAV, Corrêa AS, Makino-Watanabe H, Silvestre-Capelato MSF, Gonçalves-Esteves VL. 2003. Variabilidade polínica em plantas de Campos do Jordão, São Paulo, Brazil. Boletim do Instituto de Botânica de São Paulo 16: 1-104., Marinho (2017Marinho EB. 2017. Palinologia aplicada a sistemática de Paullinia L. (Sapindaceae). PhD Thesis, Universidade Federal do Rio de Janeiro, Brazil.) and Siahkolaee et al. (2017Siahkolaee SN, Sheidai M, Assadi M, Noormohammadi Z. 2017. Pollen morphological diversity in the genus Acer L. (Sapindaceae) in Iran. Acta Biologica Szegediensis 61: 95-104.). These studies present the morphological description of the pollen grains of some species and genera of the family. Other species had their pollen grains described in some taxonomic studies, such as Somner & Ferrucci (2009Somner GV, Ferrucci MS. 2009. Serjania littoralis (Sapindaceae), a new species from Brazil. Annales Botanici Fennici 46: 479-483.), Somner et al. (2013)Somner GV, Frazao A, Ferrucci MS. 2013. Allophylus exappendiculatus (Sapindaceae), a new species from Rio de Janeiro, Brazil. Annales Botanici Fennici 50: 401-404. and Acevedo-Rodriguez et al. (2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.).

Sapindaceae pollen presents variations in the polarity, shape, amb, size and mainly regarding the type and number of apertures and the ornamentation of the exine. However, morphological studies rarely describe the pollen types for the family, which could help in the morphological grouping of genera and species. Thus, the aim of this work was to identify pollen types in Sapindaceae and to expand the morphological knowledge of the analyzed species from Brazilian forest fragments, increasing the studies on pollen conducted for the area (Souza & Gasparino 2014Souza CN, Gasparino EC. 2014. Pollen morphology of Fridericia Mart. (Bignoniaceae) from Brazilian forest fragments. Brazilian Journal of Botany 37: 83-94. ; Belonsi & Gasparino 2015Belonsi TK, Gasparino EC. 2015. Pollen morphology of Malpighiaceae from Brazilian Forest fragments. Brazilian Journal of Botany 38: 379-393. ; Dutra & Gasparino 2018Dutra FV, Gasparino EC. 2018. Pollen morphology of Rutaceae from Brazilian forest fragments. Palynology 42: 43-54. ; Landi & Gasparino 2018Landi LADC, Gasparino EC. 2018. Palinologia de Amaranthaceae e Araliaceae nativas em fragmentos florestais remanescentes da região noroeste do Estado de São Paulo. Hoehnea 45: 115-125. and Souza et al. 2019Souza CN, Rezende AA, Gasparino EC. 2019. Pollen morphology of Bignoniaceae from Brazilian forest fragments and its systematic significance. Palynology 43: 333-347. ).

Materials and methods

We studied the pollen grains of Sapindaceae species (Tab. 1) native of the remnant forest fragments of the northwest area of the State of São Paulo. These species occur throughout the Brazilian territory (Fig. 1, Specieslink 2019Specieslink. 2020. Sistema de Informação Distribuído para Coleções Biológicas. http://splink.cria.org.br. 20 Jan. 2020.
http://splink.cria.org.br...
). Ranga et al. (2012Ranga NT, Rezende AA, Cavasan O, Toniato MTZ, Cielo-Filho R, Stranghetti V. 2012. Caracterização florística de remanescentes de vegetação nativa da região noroeste do Estado de São Paulo. Ribeirão Preto, Holos Editora.) and Sprengel-Lima & Rezende (2013)Sprengel-Lima C, Rezende AA. 2013. Sapindaceae do noroeste paulista: lista de espécies e chave de identificação baseada em caracteres vegetativos. Biota Neotropica 13: 270-282. describe 23 Sapindaceae species in the northwest area of the State of São Paulo (area used as the basis for this study); nonetheless, Allophylus sericeus Cambess., Paullinia rhomboidea Radlk., Serjania glutinosa Radlk., S. marginata Casar. and Thinouia mucronata Radlk. were not analyzed due to a lack of pollen material. The species Allophylus racemosus Sw., Paullinia spicata Benth, P. stipularis Benth, Urvillea rufescens Cambess, and U. uniloba Radlk. have also been described for the Brazilian forest fragments and were included in the analysis. Pollen grains of 35 specimens were studied by light microscopy (LM) and scanning electron microscopy (SEM). The materials were obtained from dried herbarium specimens supplied from INPA, SJRP and SP herbaria (acronyms according to Thiers 2016Thiers B. 2016. Index herbariorum: a global directory of public herbaria and associated staff. (New York Botanical Garden’s Virtual herbarium) (New York Botanical Garden’s Virtual herbarium) http://sweetgum.nybg.org/ih/ . 20 Jan. 2020.
http://sweetgum.nybg.org/ih/...
). The pollen samples were acetolyzed according to the method described by Erdtman (1960Erdtman G. 1960. The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54: 561-564.), with the modifications cited by Melhem et al. (2003Melhem TS, Cruz-Barros MAV, Corrêa AS, Makino-Watanabe H, Silvestre-Capelato MSF, Gonçalves-Esteves VL. 2003. Variabilidade polínica em plantas de Campos do Jordão, São Paulo, Brazil. Boletim do Instituto de Botânica de São Paulo 16: 1-104.). Pollen grain diameters (n = 25), aperture and exine thickness (n = 10) were measured within seven days of preparation. For SEM, acetolyzed and non-acetolyzed pollen grains were used, following Melhem et al. (2003)Melhem TS, Cruz-Barros MAV, Corrêa AS, Makino-Watanabe H, Silvestre-Capelato MSF, Gonçalves-Esteves VL. 2003. Variabilidade polínica em plantas de Campos do Jordão, São Paulo, Brazil. Boletim do Instituto de Botânica de São Paulo 16: 1-104.. Permanent slides of light microscopy are deposited in the pollen reference collection of the Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, Brazil.

Table 1
Voucher specimens of Sapindaceae from Brazilian forest fragments. SJRP = UNESP, Campus São José Rio Preto; Location: Brazil. São Paulo. São José do Rio Preto. INPA = Instituto Nacional de Pesquisas Amazônicas; Location: Brazil. Amazonas. Manaus.

Figure 1
Occurrence map of the analyzed Sapindaceae species in Brazil. The filled squares correspond to the geographical coordinates and the empty squares, to the localities of collections available in the Specieslink database (http://splink.cria.org.br/).

Statistical analysis was conducted to obtain the means (x), standard deviation (sx), standard error (s), 95 % confidence intervals (CI), coefficient of variability (V), and range (R) following Vieira (2011)Vieira S. 2011. Introdução à Bioestatística. Rio de Janeiro, Elsevier. and Zar (2010)Zar JH. 2010. Biostatistical analysis. New Jersey, Prentice-Hall.. To compare the values of the pollen grain diameters, the graphs of the software MINITAB10.3 for Windows were employed, which represent the mean and the confidence interval values. To determine whether the pollen data permitted the grouping of species, a principal component analysis (PCA) was performed using the programs FITOPAC 1 (Shepherd 1996Shepherd GJ. 1996. Fitopac 1: Manual do Usuário. Campinas, Departamento de Botânica, Universidade Estadual de Campinas.) and PC-ORD version 5.15 (McCune & Mefford 2011McCune B, Mefford MJ. 2011. PC-ORD. Multivariate Analysis of Ecological Data Version 6. Oregon, Gleneden Beach, MjM Software Design.). Seven metric variables were used for the PCA: PDEV (polar diameter equatorial view), EDEV (equatorial diameter in equatorial view), WAPE (width aperture), EXIN (exine thickness), SEXI (sexine thickness), NEXI (nexine thickness) and SHAP (shape).

Furthermore, to determine whether the pollen characteristics provided additional discrimination among the genera and species analyzed, the data obtained for the pollen grains were compared by a cluster analysis (UPGMA and Euclidean distance) also using the software PC-ORD (McCune & Mefford 2011McCune B, Mefford MJ. 2011. PC-ORD. Multivariate Analysis of Ecological Data Version 6. Oregon, Gleneden Beach, MjM Software Design.).

The pollen terminologies follow Punt et al. (2007Punt W, Hoen PP, Blackmore S, Nilsson S, Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1-81. ) and Hesse et al. (2009Hesse M, Halbritter H, Zetter R, et al. 2009. Pollen Terminology an illustrated Handbook. New York, Springer Wien.). We adopted Faegri & Iversen (1966Faegri G, Iversen J. 1966. Textbook of modern pollen analysis. Denmark, Scandinavian University Books.) and Gasparino et al. (2013Gasparino EC, Cruz-Barros MAV, Chautems A. 2013. Pollen morphology in Brazilian species of Codonanthe (Mart.) Hanst. and Nematanthus Schrader (Gesneriaceae). Grana 52: 285-274. ) for the polar area index and the width index of colpi, respectively. The pollen description is presented in the following order: pollen unit, polarity, size (P x E means), amb, polar area details, shape, apertures (number, type, length and width), details of ectoapertures, details of endoapertures, pollen wall stratification, ornamentation, sexine and nexine thickness. This sequence is a model for the detailed presentation of qualitative data on the pollen grains. Photomicrographs were performed with a light microscope Leica IM50, for LM photos, and the electromicrographs with a JEOL, JSM5410 scanning electron microscope for the SEM images.

Results

General description

The pollen grains of the studied Sapindaceae species are monads; isopolar or heteropolar; small to medium; with subcircular, subtriangular, triangular or quadrangular amb in polar view; peroblate, oblate, suboblate to oblate-spheroidal; 3-porate, 3-(4)-colporate or 3-colporate with long and narrow ectoapertures (3-syncolporate or 3-parasyncolporate); circular, lalongate or lolongate endoaperture. The exine is tectate with striate or rugulate ornamentation, or semitectate, microreticulate or reticulate. The sexine is thicker than the nexine (Figs. 2-7).

Figure 2
Illustrative scheme of Sapindaceae pollen grains. A. Pollen Type I -3-porate. B. Pollen Type II - 3-(4)-colporate. C. Pollen Type III - 3-syncolporate or 3-parasyncolporate.

Figure 3
Photomicrographs of the Sapindaceae pollen grains. Type I. A-C. Allophylus racemosus Sw. A. General aspect, polar view; B. General aspect, equatorial view; C. Optical section, ornamentation. D-F. Paullinia elegans Cambess. D. General aspect, polar view; E. Polar view, ornamentation; F. General aspect, equatorial view and porate aperture. G-I. Paullinia spicata Benth. G. Polar view, porate aperture; H. General aspect, optical section; I. Equatorial view, porate aperture. J-L. Paullinia stipularis Benth. J. General aspect, polar view; K. General aspect, equatorial view; L. Equatorial view, ornamentation. Scale bars: C-C’ = 5 µm; A-B, D-L = 10 µm.

Figure 4
Photomicrographs of the Sapindaceae pollen grains. Type II. A-C. Diatenopteryx sorbifolia Radlk. A. General aspect, polar view; B. General aspect, equatorial view; C. Equatorial view, colporate aperture. D-F. Dilodendron bipinnatum Radlk.; D. General aspect, polar view; E. Polar view, ornamentation; F. Equatorial view, aperture. G-I. Magonia pubescens A. St-Hil. G. Polar view, optical section; H. Polar view, 4-colporate pollen grain; I. Equatorial view, aperture. Scale bars: 10 µm.

Figure 5
Photomicrographs of the Sapindaceae pollen grains. Type IIIa. A-B. Cardiospermum grandiflorum Sw. A. Polar view, ornamentation and syncolporate aperture; B. General aspect, equatorial view. C-D Serjania caracasana (Jacq.) Wild. C. General aspect, polar view; D. Optical section, ornamentation. E-F. Serjania hebecarpa Benth. E. General aspect, polar view; F. Equatorial view, aperture. G-H. Serjania laruotteana Cambess. G. Polar view, aperture and ornamentation; H. Optical section, ornamentation; I. Serjania lethalis A. St. Hil., polar view. J-K. Serjania meridionalis Cambess. J. General aspect, polar view and syncolporate aperture; K. Equatorial view, aperture. L-N. Serjania pinnatifolia Radlk. L. Polar view, aperture and ornamentation; M. Equatorial view, ornamentation; N. Optical section, ornamentation. O. Serjania tristis Radlk., ornamentation. P-Q. Urvillea rufescens Cambess. P. Polar view, aperture and ornamentation; Q. Equatorial view, ornamentation; R. Urvillea ulmacea Kunth., polar view, ornamentation. S-T. Urvillea uniloba Radlk. S. Polar view, ornamentation; T. Equatorial view, aperture. Scale bars: D-D’, H-H’, N-N’, O-O’ = 5 µm; A-C , E-G, I-M, P-T = 10 µm.

Figure 6
Photomicrographs of the Sapindaceae pollen grains. Type IIIb. A-C. Cupania vernalis Cambess. A. Polar view, parasyncolporate on both poles; B. Polar view, parasyncolporate aperture; C. General aspect, equatorial view. D-F. Matayba elaeagnoides Radlk. D. Polar view, parasyncolporate on both poles; E. Polar view, parasyncolporate aperture; F. General aspect, equatorial view. G-I. Serjania fuscifolia Radlk. G. General aspect, polar view; H. Polar view, aperture and ornamentation; I. Equatorial view, aperture. Scale bars: 10 µm.

Figure 7
Scanning electron micrographs (SEM) of the Sapindaceae pollen grains. Type I. A-B. Paullinia spicata Benth. A. General aspect, polar view; B. General aspect, equatorial view; Type II. C-D. Dilodendron bipinnatum Radlk. C. Equatorial view, aperture and ornamentation; D. Several pollens grains. E. Magonia pubescens A. St-Hil.; polar view; Type IIIa. F. Cardiospermum grandiflorum Sw.; polar view. G. Serjania caracasana (Jacq.) Wild.; polar view. H-I. Serjania lethalis A. St. Hil. H. Polar views; I. Equatorial view; J. Serjania pinnatifolia Radlk., equatorial view. K-L. Urvillea laevis Radlk. K. Polar view; L. Polar view; M. Urvillea ulmacea Kunth., polar view; Type IIIb; N. Matayba elaeagnoides Radlk., polar view. Scale bars: 10 µm.

Type I. 3-porate (Figs. 2A, 3, Fig. 7A-B; Tabs. 2 - 4)

Pollen grains heteropolar, small to medium 19.90-25.62 µm x 29.95-40.62 µm (Tabs. 2-3); triangular or subtriangular amb (A. racemosus, Fig. 3A and P. stipularis, Fig. 3J); oblate (P/E = 0.56-0.66, Tab. 2); 3-porate (1.29-5.65 µm - Fig. 2A, Tab. 4); the exine is tectate rugulate (P. spicata, Fig. 7A-B), semitectate, microreticulate (P. elegans, Fig. 3E-F) or semitectate, reticulate homobrochate (A. racemosus, Fig. 3C-C’ and P. stipularis, Fig. 3L); exine (2.16-2.96 µm), sexine (1.41-1.95 µm) and nexine (0.55-0.62 µm - Tab. 4).

Comments: The largest pollen grains were observed in Paullinia spicata and the smallest pollen grains, in Allophylus racemosus (Tab. 3). The thickest exine was observed in P. spicata and the pollen grains with thinnest exine are those of P. elegans (Tab. 4).

Species included: Allophylus racemosus, Paullinia elegans, P. spicata and P. stipularis.

Table 2
Morphological characterization of Sapindaceae pollen grains. P/E = Ratio between polar and equatorial diameter; PT = Pollen type; Endo = Endoaperture; EO = Exine ornamentation; S = Small; M = Medium; O = Oblate; P = Peroblate; OE = Oblate-spheroidal; SO = Suboblate; I = 3-porate; II = 3-(4)-colporate; III = 3-syncolporate or 3-parasyncolporate; LO = Lolongate; LA = Lalongate; CIR = Circular; RT = Reticulate; RU = Rugulate; MR = Microreticulate; ST = Striate; PS = Psilate.

Table 3
Quantitative data of Brazilian Sapindaceae pollen grain, n = 25. R = Range (µm); x = Mean (µm); sx = Standard deviation (µm); s = Standard error (µm); CI = Confidence interval in 95 % (µm); V = Coefficient of variability (%).

Table 4
Measurements (in µm) of Brazilian Sapindaceae pollen grain, apertures and exine (n = 10). WCI = Width colpus index.

Type II. 3-(4)-colporate (Figs. 2B, 4, 7C-E; Tabs. 2 - 4)

Pollen grains isopolar, small to medium 19.49-27.08 µm x 21.13-31.49 µm (Tabs. 2-3); subcircular or quadrangular amb (Fig. 4H); suboblate or oblate-spheroidal (Diatenopteryx sorbifolia) (Tab. 2); 3-colporate (Fig. 2B), long and narrow ectoapertures, without anastomose in the polar area (Tab. 4), lalongate (D. sorbifolia, Fig. 4C) or lolongate endoapertures (Tab. 4); the exine is tectate striate (Dilodendron bipinnatum, Figs. 4E, 7C-D) or semitectate microreticulate homobrochate (D. sorbifolia,Fig. 4C and Magonia pubescens, Fig. 7E); exine (2.29-2.91 µm), sexine (1.57-1.92 µm) and nexine (0.58-0.69 µm - Tab. 4).

Comments: Magonia pubescens presents pollen grains and exine thickness greater than the other species (Tabs. 3-4). In this species, 4-colporate and quadrangular amb pollen grains were also observed (Figs. 2B, 4H).

Species included: Diatenopteryx sorbifolia, Dilodendron bipinnatum and Magonia pubescens.

Type III. 3-syncolporate or 3-parasyncolporate (Figs. 2C, 5-6, 7F-N; Tabs. 2 - 4)

Subtype a. Syncolporate (Figs. 5, 7F-M)

Pollen grains isopolar (Urvillea rufescens, Fig. 5Q) or heteropolar, small to medium 16.51-22.87 µm x 30.90-37.23 µm or medium 25.70-28.21 µm x 43.70-46.97 µm (S. hebecarpa, S. laruotteana, S. orbicularis and S. pinnatifolia) (Tabs. 2-3); subtriangular (U. ulmacea, Fig. 5R) or triangular amb; oblate (P/E = 0.53-0.63, Tab. 3); 3-syncolporate (Fig. 2C), very long and narrow ectoapertures, anastomose in the polar area, lolongate (Cardiospermum grandiflorum, S. caracasana, S. hebecarpa, S. laruotteana, S. meridionalis, S. orbicularis, S. pinnatifolia and S. tristis) or circular (S. lethalis, U. laevis, U. rufescens, U. ulmacea and U. uniloba, Tabs. 2 - 4) endoapertures; the exine is semitectate microreticulate homobrochate (C. grandiflorum. Figs. 5A-B, 7F, S. caracasana,Fig. 5D, and S. meridionalis) or heterobrochate (S. hebecarpa, S. laruotteana,Fig. 5G-H, U. laevis, Fig. 7K-L and U. rufescens, Fig. 5P-Q), sometimes not evident (S. orbicularis); reticulate heterobrochate (S. lethalis,Fig 7H, S. pinnatifolia, Figs. 5L-7J, S. tristis, Fig. 5O, U. ulmacea, Figs. 5R-7M, and U. uniloba); exine (2.15-3.00) µm, sexine (1.44-2.01 µm) and nexine (0.46-0.60 µm - Tab. 4).

Comments: The largest pollen grains were observed in Serjania laruotteana, S. orbicularis and S. hebecarpa (Tab. 3). The species with the greatest thickness of the exine pollen is S. meridionalis (Tab. 4).

Species included: Cardiospermum grandiflorum, Serjania caracasana, S. hebecarpa, S. laruotteana, S. lethalis, S. meridionalis, S. orbicularis, S. pinnatifolia, S. tristis, Urvillea laevis, U. rufescens, U. ulmacea and U. uniloba.

Subtype b. Parasyncolporate (Figs. 2C, 6, 7N; Tabs. 2-4)

Pollen grains isopolar (Cupania vernalis,Fig. 6C and Matayba elaeagnoides, Fig. 6F) or heteropolar (Serjania fuscifolia, Fig. 6I), small 14.26 µm x 29.85 µm (C. vernalis) or small to medium 16.62-22.46 µm x 25.90-38.56 µm (Tabs. 2-3); triangular amb (Figs. 6B, E, G-H); peroblate (C. vernalis) or oblate (M. elaeagnoides and S. fuscifolia, Tab. 2); 3-parasyncolporate (Figs. 2C, 6A-B, D-E, H, 7N), very long and narrow ectoapertures with the apices divided into two branches and anastomose in the polar area, lolongate (C. vernalis and S. fuscifolia) or circular (M. elaeagnoides, Tabs. 2 - 4) endoapertures; the exine is tectate psilate (M. elaeagnoides, Fig. 6D-F), rugulate (C. vernalis, Fig. 6B-C), or semitectate microreticulate homobrochate (S. fuscifolia, Fig. 6H-I); exine (1.94-2.11 µm), sexine (1.36-1.46 µm) and nexine (0.44-0.51 µm - Tab. 4).

Comments: Cupania vernalis and Matayba elaegnoides have small pollen grains (Tab. 3); and all Type III (subtype b) species present similar values of exine in their pollen grains (Tab. 4).

Species included: Cupania vernalis, Matayba elaeagnoides and Serjania fuscifolia.

Key to the pollen types and taxa studied

1. Pollen grains with simple apertures (porate)…………………. Type I (3-porate, Fig. 2A)

1’. Pollen grains with compound apertures (colporate)…...….…………………………….2

2. Ectoapertures not anastomosed in the polar area……………………………Type II (3-(4)-colporate, Fig. 2B)

2’. Ectoapertures (or their apices) anastomosed in the polar area.................... Type III (3-syncolporate or 3-parasyncolporate, Fig. 2C)

Analysis of quantitative data

Based on the measurements of pollen grains in equatorial view and comparing the means and the interval of the diameters, it was observed that most of the Paullinia and Serjania species have pollen grains with larger diameters (Fig. 8A, B). Cupania vernalis differs from other species by having the smallest polar diameter. All other species analyzed form a large group by the polar diameter values in equatorial view, especially S. laroutteana, with the largest pollen grains (Fig. 8A). Diatenopteryx sorbifolia has the smallest equatorial diameter of pollen grains (Fig. 8B); also with low values of equatorial diameter are the species Dilodendron bipinnatum and Matayba elaeagnoides, whereas the other species form a group with the highest values for this diameter (Fig. 8B).

Figure 8
Representation of the confidence interval of the mean in 95 % of the Sapindaceae pollen grains. A. Polar diameter in equatorial view. B. Equatorial diameter in equatorial view. The higher and lower boundaries show the confidence interval; the average circle shows the arithmetic mean. Alrac = Allophylus racemosus, Cagran = Cardiospermum grandiflorum, Cuver = Cupania vernalis, Dilbi = Dilodendron bipinnatum, Disor = Diatenopteryx sorbifolia, Magpu = Magonia pubescens, Matela = Matayba elaeagnoides, Paela = Paullinia elegans, Paspi = Paullinia spicata, Pasti = Paullinia stipularis, Serca = Serjania caracasana, Serfus = Serjania fuscufolia, Serheb = Serjania hebecarpa, Serlar = Serjania laruotteana, Serlet = Serjania lethalis, Sermer = Serjania meridionalis, Seorb = Serjania orbicularis, Serpin = Serjania pinnatifolia, Sertri = Serjania tristis, Urvlae = Urvillea laevis, Urvru = Urvillea rufescens, Urvulm = Urvilea ulmacea, Urvuni = Urvillea uniloba.

The principal components analysis (PCA, Fig. 9) is an exploratory analysis of quantitative data of the Sapindaceae pollen grains. This analysis was performed with seven metric variables measured in the studied pollen grains (Tab. 5) with the first two axes summarizing 83.47 % of the total data variation in their two axes.

Figure 9
Principal component analysis performed with the pollen metrical variables from Sapindaceae species. Alrac = Allophylus racemosus, Cagran = Cardiospermum grandiflorum, Cuver = Cupania vernalis, Disor = Diatenopteryx sorbifolia, Dilbi = Dilodendron bipinnatum, Magpu = Magonia pubescens, Matela = Matayba elaeagnoides, Paela = Paullinia elegans, Paspi = Paullinia spicata, Pasti = Paullinia stipularis, Serca = Serjania caracasana, Serfus = Serjania fuscufolia, Serheb = Serjania hebecarpa, Serlar = Serjania laruotteana, Serlet = Serjania lethalis, Sermer = Serjania meridionalis, Seorb = Serjania orbicularis, Serpin = Serjania pinnatifolia, Sertri = Serjania tristis, Urvlae = Urvillea laevis, Urvru = Urvillea rufescens, Urvulm = Urvilea ulmacea, Urvuni = Urvillea uniloba.

Table 5
Pearson & Kendall correlation coefficients for pollen grain metric variables of the first and the second axis of PCA ordination in Sapindaceae species.

The first axis was the most significant for species ordination and summarized 52.19 % of the total variation of the analyzed data. This component explained the variance based mainly on the values of width aperture (WAPE) and equatorial diameter in equatorial view (EDEV), respectively (Tab. 5). Additionally, in the first axis it was observed that the species Paullinia elegans and Paullinia spicata were separated from the other species due to the values of width aperture. On the other hand, most of the Serjania species (S. hebecarpa, S. laruotteana, S. orbicularis, S. pinnatifolia and S. tristis) were separated because of the values of the equatorial diameter in equatorial view (EDEV).

The second axis of the principal components analysis explains 31.28 % of the metric variability of the pollen grains of the species analyzed here. The most significant variables for ordering on this axis, as well as on axis 1, were width aperture (WAPE) and equatorial diameter in equatorial view (EDEV) (Tab. 5). It was observed that, due to the variable EDEV, the species of Serjania (except S. meridionalis) were grouped on the positive side of the second axis.

In the similarity analysis (Cluster analysis, Fig. 10) we observed that the studied species formed two groups by the measurements made on their pollen grains. The first group includes the species Paulinia elegans and P. spicata (as was also observed in the PCA). The other species comprise the second group of the analysis, and 80 % of similarity arranged most Serjania species within this large group (S. pinnatifolia, S. orbicularis and S. herbecarpa presented about 97 % of similarity - Type III - subtype a). In addition, Diatenopteryx sorbifolia, Dilodendron bipinnatum and Magonia pubescens are closely related (both Type II - with approximately 55 % of similarity). Most Type III species - subtypes a and b (except for the previously treated Serjania species) were grouped with 65 % of similarity. Within this grouping, the presence of Allophylus racemosus and Paullinia stipularis can be observed distant from other Type I species. The species Serjania fuscifolia and Serjania lethalis were 100 % similar to each other. Thus, cluster analysis (which includes pollen grain quantitative data) can partly confirm the definition of pollen types (based on qualitative data - details of apertures), since Type II species are grouped separately from the others and the majority of Type III species (subtypes a and b) also form groups among themselves. In this analysis, the quantitative data do not confirm qualitative data for Type I species.

Figure 10
Cluster analysis (UPGMA and Euclidean distance) performed with the pollen metrical variables from Sapindaceae species. Alrac = Allophylus racemosus, Cagran = Cardiospermum grandiflorum, Cuver = Cupania vernalis, Dilbi = Dilodendron bipinnatum Disor = Diatenopteryx sorbifolia, Magpu = Magonia pubescens, Matela = Matayba elaeagnoides, Paela = Paullinia elegans, Paspi = Paullinia spicata, Pasti = Paullinia stipularis, Serca = Serjania caracasana, Serfus = Serjania fuscufolia, Serheb = Serjania hebecarpa, Serlar = Serjania laruotteana, Serlet = Serjania lethalis, Sermer = Serjania meridionalis, Seorb = Serjania orbicularis, Serpin = Serjania pinnatifolia, Sertri = Serjania tristis, Urvlae = Urvillea laevis, Urvru = Urvillea rufescens, Urvulm = Urvilea ulmacea, Urvuni = Urvillea uniloba.

Discussion

The pollen grains of the Type I porate have been analyzed palynologically by several authors, such as Cruz & Melhem (1984Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25.), Luz & Barth (1999Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36.), Perdiz (2011Perdiz RO. 2011. Sapindaceae Juss. em remanescentes de floresta montana no sul da Bahia, Brasil, Feira de Santana - BA. MSc Thesis, Universidade de Feira de Santana, Brazil.), Perdiz et al. (2012)Perdiz RO, Amorim AM, Ferrucci MS. 2012. Paullinia unifoliolata, a remarkable new species of Sapindaceae from the Atlantic Forest of southern Bahia, Brazil. Brittonia 64: 114-118. , Acevedo-Rodriguez et al. (2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.) and Marinho (2017Marinho EB. 2017. Palinologia aplicada a sistemática de Paullinia L. (Sapindaceae). PhD Thesis, Universidade Federal do Rio de Janeiro, Brazil.). All these studies confirm the 3-porate aperture for Type I species (genera Allophylus and Paullinia).

Cruz & Melhem (1984Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25.) reported reticulate pollen for Allophylus, as observed in this study; however, Luz & Barth (1999Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36.) cited rugulate and microreticulate ornamentation for species of this genus, and Perdiz (2011Perdiz RO. 2011. Sapindaceae Juss. em remanescentes de floresta montana no sul da Bahia, Brasil, Feira de Santana - BA. MSc Thesis, Universidade de Feira de Santana, Brazil.) described perforate pollen grains. Analyzing the pollen of Paullinia species, Cruz & Melhem (1984)Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25. described reticulate ornamentation, Perdiz et al. (2012)Perdiz RO, Amorim AM, Ferrucci MS. 2012. Paullinia unifoliolata, a remarkable new species of Sapindaceae from the Atlantic Forest of southern Bahia, Brazil. Brittonia 64: 114-118. cited perforate pollen grains for P. unifoliata, and in a detailed study about the palynology of the genus, Marinho (2017Marinho EB. 2017. Palinologia aplicada a sistemática de Paullinia L. (Sapindaceae). PhD Thesis, Universidade Federal do Rio de Janeiro, Brazil.) presented perforate and scabrate pollen grains for the analyzed species. Thus, Allophylus and Paullinia species show variations in the ornamentation of their pollen grains with smaller or larger lumina, which define perforated, microreticulate or reticulate ornamentation; nevertheless, the 3-porate type of aperture is constant for the species of these genera.

Pollen grains of Diatenopteryx (pollen type II) were studied by Luz & Barth (1999Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36.) and Acevedo-Rodriguez et al. (2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.), and these authors presented aperture data similar to those analyzed here; however, the microreticulate pollen grains observed for Diatenopteryx sorbifolia were not described by these authors, who reported striate-rugulate pollen grains, which may indicate a variation in pollen morphology ornamentation for the genus.

For Dilodendron, Acevedo-Rodriguez et al. (2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.) characterized the pollen grains as colporate and with striate ornamentation, which was also verified in this study. These same authors studied the pollen grains of Magonia (Type II), characterizing them as tetrads, colporate and with striate-gemate ornamentation. We also observed colporate pollen grains in Magonia pubencens, but pollen in monads and with microreticulate ornamentation.

Besides the type of aperture, the quantitative data also confirm the similarity among species of pollen type II (Diatenopteryx sorbifolia, Dilodendron bipinnatum and Magonia pubencens) as we can see in the cluster analysis. The studied species of pollen type II have suboblate or oblate spheroidal pollen grains which also differentiate them from other species analyzed (pollen types I and III).

Cardiospermum pollen grains (Type III - subtype a) are described in the literature as monad, heteropolar, 3-colporate, reticulate ornamentation with perforation (Acevedo-Rodriguez et al. 2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.; Perveen 2000Perveen A. 2000. Pollen characters and their evolutionary significance with specialreference to the flora of Karachi. Journal Biology 24: 365-377.; Ferrucci & Urdampilleta 2011aFerrucci MS, Urdampilleta JD. 2011a. Cardiospermum cristobaliae (Sapindaceae, Paullinieae), una nueva especie de Minas Gerais, Brazil. Brittonia 63: 478-483. , bFerrucci MS, Urdampilleta JD. 2011b. Cardiospermum bahianum (Sapindaceae: Paullinieae), a new species from Bahia, Brazil. Systematic Botany 36: 950-956. ), confirming the results obtained here for C. grandiflorum. However, Ferrucci & Anzotegui (1993)Ferrucci MS, Anzoategui LM. 1993. El polen de Paullinieae (Sapindaceae). Bonplandia 6: 211-243. described colpoids for this species and Acevedo-Rodriguez et al. (2011)Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407. cited 3-demicolporate pollen grains in the genus, characteristics that were not observed in the present study.

Data on Serjania pollen morphology (Type III) have been described by Cruz & Melhem (1984Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25.), Ferrucci & Anzotegui (1993Ferrucci MS, Anzoategui LM. 1993. El polen de Paullinieae (Sapindaceae). Bonplandia 6: 211-243.), Ham & Tmolik (1994Ham RWJM, Tomlik A. 1994. Serjania pollen and the origin of the tribe Paullineae (Sapindaceae). Review of Palaeobotany and Palynology 83: 43-53.), Somner & Ferrucci (2009Somner GV, Ferrucci MS. 2009. Serjania littoralis (Sapindaceae), a new species from Brazil. Annales Botanici Fennici 46: 479-483.) and Acevedo-Rodriguez et al. (2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.). These authors suggest the presence of heteropolar pollen grains, 3-syncolporate (hemi or demisyncolporate) with variations in shape and ornamentation, reticulate (Cruz & Melhem 1984)Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25. psilate, perforate or slightly rugulate (Ferrucci & Azontegui 1993Ferrucci MS, Anzoategui LM. 1993. El polen de Paullinieae (Sapindaceae). Bonplandia 6: 211-243.), perforate or perforate-fossulate (Ham & Tmolik 1994Ham RWJM, Tomlik A. 1994. Serjania pollen and the origin of the tribe Paullineae (Sapindaceae). Review of Palaeobotany and Palynology 83: 43-53.), perforate (Somner & Ferrucci 2009Somner GV, Ferrucci MS. 2009. Serjania littoralis (Sapindaceae), a new species from Brazil. Annales Botanici Fennici 46: 479-483.) and perforate-reticulate (Acevedo-Rodriguez et al. 2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.). Our results confirm the type of aperture described for Serjania species, except for S. fuscifolia with 3-parasyncolporate pollen grains (Type III - subtype b). Regarding ornamentation, the Serjania pollen grains analyzed here have microreticulate or reticulate exine, confirming the data of Cruz & Melhem (1984)Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25. and Acevedo-Rodriguez et al. (2011)Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407..

Heteropolar and 3-syncolporate pollen grains such as those described in type III subtype a for Urvillea species have also been described by Ferrucci & Anzotegui (1993Ferrucci MS, Anzoategui LM. 1993. El polen de Paullinieae (Sapindaceae). Bonplandia 6: 211-243.) and Acevedo-Rodriguez et al. (2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.). Ferrucci & Anzotegui (1993)Ferrucci MS, Anzoategui LM. 1993. El polen de Paullinieae (Sapindaceae). Bonplandia 6: 211-243. observed oblate pollen grains with microreticulate or foveolate ornamentation for U. laevis, U. ulmacea and U. uniloba, while Acevedo-Rodriguez et al. (2011)Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407. cited for U. ulmacea a perforate-reticulate ornamentation. In the present work, oblate pollen grains were also observed, but with microreticulate (Urvillea laevis, U. rufescens) or reticulate ornamentation (U. ulmacea, U. uniloba) following the definitions proposed by Punt et al. (2007Punt W, Hoen PP, Blackmore S, Nilsson S, Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1-81. ).

The species of the genera Cupania and Matayba described here with 3-parasyncolporate pollen grains (type III - subtype b) have already been described with syncolporate or parasyncolporate apertures (Cruz & Melhem 1984Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25.; Luz & Barth 1999Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36.; Perdiz 2011Perdiz RO. 2011. Sapindaceae Juss. em remanescentes de floresta montana no sul da Bahia, Brasil, Feira de Santana - BA. MSc Thesis, Universidade de Feira de Santana, Brazil.; Acevedo-Rodriguez et al. 2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.). Cruz & Melhem (1984)Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25. reported for Cupania vernalis 3-syncolporate and reticulate pollen grains. To Perdiz (2011)Perdiz RO. 2011. Sapindaceae Juss. em remanescentes de floresta montana no sul da Bahia, Brasil, Feira de Santana - BA. MSc Thesis, Universidade de Feira de Santana, Brazil., the pollen grains of Cupania racemosa have 3-parasyncolporate apertures, and Acevedo-Rodriguez et al. (2011)Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407. report for the species of this genus syncolporate or parasyncolporate pollen grains, with regulate ornamentation. Our data for C. vernalis corroborate the data of Luz & Barth (1999)Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36., who observed grains of 3-parasyncolporate pollen with rugulate ornamentation.

Syncolporate and parasyncolporate pollen grains with psilate, perforate, reticulate, rugulate and pilate ornamentation are also described for Matayba species. Muller & Leenhouts (1976Muller J, Leenhouts PW. 1976. A general survey of pollen types in Sapindaceae in relation to taxonomy. In: Ferguson IK, Müller J. (eds.) The evolutionary significance of the exine. London, Academic Press. p. 407-445. ) describe the genus with syncolpate pollen grains, with small endoapertures and psilate, perforate or reticulate sexine. Erdtman (1952Erdtman G. 1952. Pollen morphology and plant taxonomy: Angiosperms. Stockholm, Almqvist and Wiksell.), Luz & Barth (1999Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36.) and Perdiz (2011Perdiz RO. 2011. Sapindaceae Juss. em remanescentes de floresta montana no sul da Bahia, Brasil, Feira de Santana - BA. MSc Thesis, Universidade de Feira de Santana, Brazil.) characterize the apertures of Matayba as 3-parasyncolporate, and the rugulate (with perforations) ornamentation was observed by Luz & Barth (1999)Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36. in Matayba cristae, M. elaeagnoides, M. guianensis and M. juglandifolia. Acevedo-Rodriguez et al. (2011Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.) indicate that there may be a variation between syncolporate or parasyncolporate pollen grains in the genus and cite the rugulate ornamentation. Matayba elaeagnoides was also analyzed by Cruz & Melhem (1984Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25.), having parasyncolporate and isopolar pollen grains with pilate ornamentation. This same species described here also has parasyncolporate pollen grains, but with psilate ornamentation. The morphological differences reported for Matayba pollen grains may contribute to the definition of the genus as eurypalynos.

This study indicated that the qualitative characteristics of the aperture types and, in some cases, the ornamentation of the pollen grain, are important characters to describe the genera of Sapindaceae, establishing pollen types for the analyzed species. In addition, quantitative data (pollen grain measurements) confirm, in some cases, the attributes used to define pollen types. The results reinforce the importance of studying pollen morphology for the distinction and identification of genera and species and reaffirm the eurypalynous character of Sapindaceae.

Acknowledgements

The authors thank the curators of Herbaria SJRP and INPA for kindly allowing pollen sampling from the herbarium for the present study. T. K. Bellonzi is funded by a FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) scholarship (2014/18028-1).

References

  • Acevedo-Rodriguez P. 1993. Systematics of Serjania (Sapindaceae). Part I: A revision of Serjania sect. Platycoccus Memoirs of the New York Botanical Garden 67: 1-93.
  • Acevedo-Rodriguez P, Welzen PC, Adema F, Ham RWJM. 2011. Sapindaceae In: The families and Genera of Vascular Plants - Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Verlag Berlin Heidelberg, Springer. p. 357-407.
  • APG IV - Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. The Linnean Society of London, Botanical Journal of the Linnean Society 181: 1-20.
  • Barros MM. 1969. Pólen das plantas silvestres do Ceara. II. Município de Fortaleza - Familia Ochnaceae, Simarubaceae e Sapindaceae. Boletim Cearense de Agronomia 10: 53-58.
  • Belonsi TK, Gasparino EC. 2015. Pollen morphology of Malpighiaceae from Brazilian Forest fragments. Brazilian Journal of Botany 38: 379-393.
  • BFG. 2015. Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia 66: 1085-1113.
  • Buerki S, Forest F, Acevedo-Rodríguez P, et al 2009. Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Molecular Phylogenetics and Evolution 51: 238-258.
  • Buerki S, Phillipson PB, Lowry IIPP, Callmander MW. 2010a. Molecular phylogenetics and morphological evidence support recognition of Gereaua, a new endemic genus of Sapindaceae from Madagascar. Systematic Botany 35: 172-180.
  • Buerki S, Lowry PP, Alvarez N, Razafimandimbison SG, Kupfer P, Callmander MW. 2010b. Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae. Plant Ecology and Evolution 143: 148-159.
  • Campos AC, Melhem TS. 1969. Pollen grains of the Cerrado-XXIII- Icacinaceae, Martyniaceae and Sapindaceae. Anais da Academia Brasileira de Ciências 41: 471-483.
  • Carreira LMM. 1976. Morfologia polínica de plantas lenhosas da Campina. Acta Amazonica 6: 247-269.
  • Cielo-Filho R, Baitello JB, Pastore JA. 2009. Increasing the botanical collecting density at the Alto Paranapanema Basin region: Floristic survey of the State Forest and Ecological Station of Paranapanema. Biota Neotropica 9: 255-276.
  • Costa JT, Estevan DA, Bianchini E, Fonseca ICB. 2011. Composição florística das espécies vasculares e caráter sucessional da flora arbórea de um fragmento de Floresta Estacional Semidecidual no Sul do Brasil. Brazilian Journal of Botany 34: 411-422.
  • Cruz MAV, Melhem TS. 1984. Estudos polínicos em Sapindaceae. Revista Brasileira de Botânica 7: 5-25.
  • Daly DC, Mitchell JD. 2000. Lowland vegetation of tropical South America - an overview. In: Lentz D. (ed.) Imperfect balance: landscape transformations in the pre-Columbian Americas. New York, Columbia University Press. p. 391-454.
  • Durigan G, Mamede MCH, Ivanauskas NM, et al 2008. Fanerógamas. In: Rodrigues RR, Bononi VLR. (eds.) Diretrizes para a conservação e restauração da biodiversidade no Estado de São Paulo. São Paulo, Instituto de Botânica/Imprensa Oficial do Estado de São Paulo. p. 104-109.
  • Dutra FV, Gasparino EC. 2018. Pollen morphology of Rutaceae from Brazilian forest fragments. Palynology 42: 43-54.
  • Erdtman G. 1952. Pollen morphology and plant taxonomy: Angiosperms. Stockholm, Almqvist and Wiksell.
  • Erdtman G. 1960. The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54: 561-564.
  • Faegri G, Iversen J. 1966. Textbook of modern pollen analysis. Denmark, Scandinavian University Books.
  • Ferrucci MS, Anzoategui LM. 1993. El polen de Paullinieae (Sapindaceae). Bonplandia 6: 211-243.
  • Ferrucci MS, Urdampilleta JD. 2011a. Cardiospermum cristobaliae (Sapindaceae, Paullinieae), una nueva especie de Minas Gerais, Brazil. Brittonia 63: 478-483.
  • Ferrucci MS, Urdampilleta JD. 2011b. Cardiospermum bahianum (Sapindaceae: Paullinieae), a new species from Bahia, Brazil. Systematic Botany 36: 950-956.
  • Gasparino EC, Cruz-Barros MAV, Chautems A. 2013. Pollen morphology in Brazilian species of Codonanthe (Mart.) Hanst. and Nematanthus Schrader (Gesneriaceae). Grana 52: 285-274.
  • Ham RWJM, Tomlik A. 1994. Serjania pollen and the origin of the tribe Paullineae (Sapindaceae). Review of Palaeobotany and Palynology 83: 43-53.
  • Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA. 2005. Phylogenetic inference in Sapindaceae s. lat. Using plastid matK and rbcL DNA sequences. Systematic Botany 30: 366-382.
  • Hesse M, Halbritter H, Zetter R, et al 2009. Pollen Terminology an illustrated Handbook. New York, Springer Wien.
  • Kronka FJN, Nalon MA, Matsukuma CK, et al 2005. Inventário florestal da vegetação natural do Estado de São Paulo Inventário florestal do Estado de São Paulo. São Paulo, Instituto Federal.
  • Landi LADC, Gasparino EC. 2018. Palinologia de Amaranthaceae e Araliaceae nativas em fragmentos florestais remanescentes da região noroeste do Estado de São Paulo. Hoehnea 45: 115-125.
  • Luz CFP, Barth OM. 1999. Catálogo Sistemático do pólen das plantas arbóreas do Brasil meridional XXXIII: Sapindaceae. Rio de Janeiro. Leandra 14: 25-36.
  • Marinho EB. 2017. Palinologia aplicada a sistemática de Paullinia L. (Sapindaceae). PhD Thesis, Universidade Federal do Rio de Janeiro, Brazil.
  • Markgraf V, D'Antoni HL. 1978. Pollen flora of Argentina: modern spore and pollen types of Pteridophyta, Gymnospermae, and Angiospermae. Tuson, The University of Arizona Press.
  • McCune B, Mefford MJ. 2011. PC-ORD. Multivariate Analysis of Ecological Data Version 6. Oregon, Gleneden Beach, MjM Software Design.
  • Melhem TS, Cruz-Barros MAV, Corrêa AS, Makino-Watanabe H, Silvestre-Capelato MSF, Gonçalves-Esteves VL. 2003. Variabilidade polínica em plantas de Campos do Jordão, São Paulo, Brazil. Boletim do Instituto de Botânica de São Paulo 16: 1-104.
  • Merville M. 1965. Le pollen des Sapindacees D’Afrique occidentale. Pollen Spores 7: 465-489.
  • Muller J, Leenhouts PW. 1976. A general survey of pollen types in Sapindaceae in relation to taxonomy. In: Ferguson IK, Müller J. (eds.) The evolutionary significance of the exine. London, Academic Press. p. 407-445.
  • Perdiz RO. 2011. Sapindaceae Juss. em remanescentes de floresta montana no sul da Bahia, Brasil, Feira de Santana - BA. MSc Thesis, Universidade de Feira de Santana, Brazil.
  • Perdiz RO, Amorim AM, Ferrucci MS. 2012. Paullinia unifoliolata, a remarkable new species of Sapindaceae from the Atlantic Forest of southern Bahia, Brazil. Brittonia 64: 114-118.
  • Perveen A. 2000. Pollen characters and their evolutionary significance with specialreference to the flora of Karachi. Journal Biology 24: 365-377.
  • Pire SM, Anzoátegui LM, Cuadrado GA. 1998. Flora Polínica del Nordeste Argentino. Corrientes, Editora Universitaria de la Universidad Nacional del Nordeste.
  • Punt W, Hoen PP, Blackmore S, Nilsson S, Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1-81.
  • Ranga NT, Rezende AA, Cavasan O, Toniato MTZ, Cielo-Filho R, Stranghetti V. 2012. Caracterização florística de remanescentes de vegetação nativa da região noroeste do Estado de São Paulo. Ribeirão Preto, Holos Editora.
  • Rezende AA, Ranga NT. 2005. Lianas da Estação Ecológica do Noroeste Paulista, São José do Rio Preto/Mirassol, SP. Acta Botanica Brasilica 19: 273-279.
  • Rezende AA, Ranga NT, Pereira RAS. 2007. Lianas de uma floresta estacional semidecidual, município de Paulo de Faria, Norte do Estado de São Paulo, Brasil. Brazilian Journal of Botany 30: 451-461.
  • Rosado A, Souza MC, Ferrucci MS. 2014. Lista de espécies de Sapindaceae para um remanescente de Floresta Estacional Semidecidual no sul do Brasil: Estação Ecológica do Caiuá. Revista Brasileira de Biociências 12: 148-157.
  • Roubik DW, Moreno JE. 1991. Pollen and Spores of Barro Colorado Island [Panama]. In: Monographs in Systematic Botany from the Missouri Botanical Garden. vol. 36. St Louis, MO, Missouri Botanical Garden. p. 1-268.
  • Salgado-Labouriau ML. 1973. Contribuição à palinologia dos cerrados. Rio de Janeiro, Academia Brasileira de Ciências.
  • Santos K, Kinoshita LS. 2003. Flora arbustivo-arbórea do fragmento de Floresta Estacional Semidecidual do Ribeirão Cachoeira, município de Campinas, SP. Acta Botanica Brasilica 17: 325-486.
  • Santos K, Kinoshita LS, Rezende AA. 2009. Species composition of climbers in seasonal semideciduous forest fragments of Southeastern Brazil. Biota Neotropica 9: 175-188.
  • Shepherd GJ. 1996. Fitopac 1: Manual do Usuário. Campinas, Departamento de Botânica, Universidade Estadual de Campinas.
  • Siahkolaee SN, Sheidai M, Assadi M, Noormohammadi Z. 2017. Pollen morphological diversity in the genus Acer L. (Sapindaceae) in Iran. Acta Biologica Szegediensis 61: 95-104.
  • Somner GV, Ferrucci MS. 2009. Serjania littoralis (Sapindaceae), a new species from Brazil. Annales Botanici Fennici 46: 479-483.
  • Somner GV, Frazao A, Ferrucci MS. 2013. Allophylus exappendiculatus (Sapindaceae), a new species from Rio de Janeiro, Brazil. Annales Botanici Fennici 50: 401-404.
  • Souza CN, Gasparino EC. 2014. Pollen morphology of Fridericia Mart. (Bignoniaceae) from Brazilian forest fragments. Brazilian Journal of Botany 37: 83-94.
  • Souza CN, Rezende AA, Gasparino EC. 2019. Pollen morphology of Bignoniaceae from Brazilian forest fragments and its systematic significance. Palynology 43: 333-347.
  • Specieslink. 2020. Sistema de Informação Distribuído para Coleções Biológicas. http://splink.cria.org.br 20 Jan. 2020.
    » http://splink.cria.org.br
  • Sprengel-Lima C, Rezende AA. 2013. Sapindaceae do noroeste paulista: lista de espécies e chave de identificação baseada em caracteres vegetativos. Biota Neotropica 13: 270-282.
  • Stranghetti V, Ranga NT. 1998. Levantamento florístico das espécies vasculares da floresta estacional mesófila semidecídua da Estação Ecológica de Paulo de Faria - SP. Brazilian Journal of Botany 21: 289-298.
  • Thiers B. 2016. Index herbariorum: a global directory of public herbaria and associated staff. (New York Botanical Garden’s Virtual herbarium) (New York Botanical Garden’s Virtual herbarium) http://sweetgum.nybg.org/ih/ 20 Jan. 2020.
    » http://sweetgum.nybg.org/ih/
  • Thorne RF, Reveal JL. 2007. An update classification of the class Magnoliopsida (“Angiospermae”). The Botanical Review 73: 67-182.
  • Vieira S. 2011. Introdução à Bioestatística. Rio de Janeiro, Elsevier.
  • Zar JH. 2010. Biostatistical analysis. New Jersey, Prentice-Hall.

Publication Dates

  • Publication in this collection
    03 Aug 2020
  • Date of issue
    Apr-Jun 2020

History

  • Received
    24 Jan 2020
  • Accepted
    19 Mar 2020
Sociedade Botânica do Brasil SCLN 307 - Bloco B - Sala 218 - Ed. Constrol Center Asa Norte CEP: 70746-520 Brasília/DF. - Alta Floresta - MT - Brazil
E-mail: acta@botanica.org.br