Acessibilidade / Reportar erro

Pollen profile of bee pollen from semiarid Northeastern Brazil

ABSTRACT

The Northeastern Brazil has xerical vegetation with different biomes. Its botanical heterogeneity represents shelter for diverse fauna. The region is rich in bees, which demand the resources offered by the plants, and provide pollination services. Bee pollen has been used as a beneficial food source for humans due to its high nutritional content and being a natural antioxidant. Pollen analysis can determine the plant species visited by bees, using them as the source of pollen supply. This study aimed to identify the main pollen types present in the pollen collected by Apis mellifera in the Northeastern Brazil and to define its botanical affinity. Commercial bee pollen samples produced in the region were treated by acetolysis method, mounted on slides, and the frequency of occurrence was estimated for each type of pollen. It was possible to distinguish 113 pollen types belonging to 35 botanical families, distributed in 92 genera. Fabaceae and Asteraceae were the families that most contributed to pollen types. Pollen types of Cocos nucifera and Myrcia were found in more than 50% of the samples. The families Arecaceae and Fabaceae showed high beekeeping potential. There is a striking similarity between the pollen samples from the states of Pernambuco and Rio Grande Norte.

Keywords:
Melittopalynology; Bee product; Bee plants.

Introduction

The Northeastern Brazil has a territorial area that corresponds to 18.2% of the national territory and includes the states of Bahia, Sergipe, Alagoas, Pernambuco, Paraíba, Rio Grande do Norte, Ceará, Piauí, and Maranhão. It’s different geographic and climatic characteristics allow this region to encompass four biomes: Amazonia, Caatinga, Cerrado, and Atlantic Forest (IBGE 2019IBGE - Instituto Brasileiro de Geografia e Estatística. 2019. http://www.ibge.gov.br
http://www.ibge.gov.br...
), showing high botanical variation, with approximately 11,740 plant species belonging to 2,056 genera and 212 families (Flora do Brasil 2020Flora do Brasil. 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro . http://floradobrasil.jbrj.gov.br/
http://floradobrasil.jbrj.gov.br/...
).

This high flora diversity reported for the Northeastern region, along with favorable climatic conditions, makes this region highly suitable for beekeeping, with the sustainability of bees helping forest conservation. Therefore, beekeeping is an economic and ecological alternative for the conservation of natural resources (Souza 2007Souza DC. 2007. Importância socioeconômica. In: Souza DC (ed.). Apicultura: manual do agente de desenvolvimento rural. Brasília, SEBRAE. p. 29-36.).

In this context, Apis mellifera L. is a species that stands out because of its ability to adapt to different environments, and one of the factors that may contribute to this ability is its generalist behavior. A. mellifera has a broad foraging habit and does not prefer any specific group of plants as food, foraging all the flowering species available in the landscape (Oliveira & Santos 2014Oliveira PP, Santos FAR. 2014. Prospecção palinológica em méis da Bahia. Feira de Santana, Print Mídia.), covering a wide foraging area in search of pollen and nectar, and encompassing a variety of plant groups (Proctor et al. 1996Proctor M, Yeo P, Lack A. 1996. The natural history of pollination. Portland, Timber Press.; Santos et al. 2006Santos FAR, Oliveira JM, Oliveira PP, Leite KRB, Carneiro CE. 2006. Plantas do semiárido importantes para as abelhas. In: Santos FAR. (ed.) Apium plantae. Recife, IMSEAR. p. 61-86.; Köppler et al. 2007Köppler K, Vorwohl G, Koeniger N. 2007. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie 38: 341-353.; Muniz & Brito 2007Muniz FH, Brito ER. 2007. Levantamento da flora apícola do município de Itapicuru-Mirim, Maranhão. Revista Brasileira de Biociência 5: 111-113.). However, the source of pollen directly influences the nutritional value of resources (Andrada & Tellería 2005Andrada AC, Tellería MC. 2005. Pollen collected by honey bees (Apis mellifera L.) from south of Caldén district (Argentina): botanical origin and protein content. Grana 44: 115-122.).

During the collection of pollen grains, honey bees agglutinate and mix them with nectar and salivary enzymes, thus forming bee pollen (Brasil 2001Brasil - Ministério de Agricultura e do Abastecimento. 2001. Instrução Normativa n. 3, de 19 de janeiro de 2001. Regulamento Técnico de Identidade e Qualidade do Pólen Apícola. Diário Oficial da União da República Federativa do Brasil. Brasília, 23 de janeiro de 2001, Seção 16-I, 18-23. http://www.prodapys.com.br/navega.php?idioma=fr&item=qualidade⊂=aV.
http://www.prodapys.com.br/navega.php?id...
), which is stored in the cells of the honeycombs (Camazine 1993Camazine S. 1993. The regulation of pollen foraging by honey bees: How foragers assess the colony’s need for pollen. Behavioral Ecology and Sociobiology 32: 265-272.; Brasil 2001Brasil - Ministério de Agricultura e do Abastecimento. 2001. Instrução Normativa n. 3, de 19 de janeiro de 2001. Regulamento Técnico de Identidade e Qualidade do Pólen Apícola. Diário Oficial da União da República Federativa do Brasil. Brasília, 23 de janeiro de 2001, Seção 16-I, 18-23. http://www.prodapys.com.br/navega.php?idioma=fr&item=qualidade⊂=aV.
http://www.prodapys.com.br/navega.php?id...
; Almeida-Muradian et al. 2005Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM. 2005. Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis 18: 105-111.). In the hive, pollen is essential because it is the primary source of proteins necessary for the survival of bees, in addition to having lipids, minerals, and vitamins needed for feeding the larvae and for the development of the bees that have recently emerged (Baldi et al. 2004Baldi CB, Grasso D, Pereira SC, Fernández G. 2004. Caracterización bromatológica del pólen apícola argentino. Ciencia Docencia Tecnologia 29: 145-181.).

Furthermore, bee pollen is an interesting nutritional source not only for bees but also for humans (Pascoal et al. 2014Pascoal A, Rodrigues S, Teixeira A, Feás X, Estevinho LM. 2014. Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology 63: 233-239.). It has even been called the "only perfectly complete food" because it contains all the essential amino acids necessary for the human body (Silva et al. 2006Silva TMS, Camara CA, Lins ACS, Barbosa-Filho JM, Silva EMS, Freitas BM, Santos, FAR. 2006. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis 19: 507-511.). Bee pollen also has bioactive compounds, which positively affect human health; is considered a "functional food" (Mărgăoan et al. 2019Mărgăoan R, Strant M, Varadi A, Topal E, Yücel B, Cornea-Cipcigan M, Campos MG, Vodnar DC. 2019. Bee collected pollen and bee bread: bioactive constituents and health benefits. Antioxidants 8: 568.), including about 200 different substances; and is significantly rich in natural antioxidants (Komosinska-Vassev et al. 2015Komosinska-Vassev K, Olczyk P, Kaźmierczak J, Mencner L, Olczyk K. 2015. Bee pollen: chemical composition and therapeutic application. Evidence Based Complementary and Alternative Medicine 2015: 297425). This implies that an increasing number of studies have focused on the composition of bee pollen and its use as a nutritional supplement for the human diet leading to development of a favorable trade system for the consumption of this product and the beekeeping industry (Barreto et al. 2006Barreto LMRC, Funari RC, Orsi RO, Dib APS. 2006. Produção de pólen no Brasil. Taubaté, Editora Cabral e Livraria Universitária.).

Considering that bee pollen is an essential food for bees and an important nutritional source for man, the importance of studies that contribute to the knowledge of pollen flora throughout the Northeastern Brazil arises. Therefore, this research aimed to evaluate the botanical profile of bee pollen produced in this region, to provide information that contributes to beekeepers in the elaboration of management plans, and to help them in the indication of the most productive sources for the hives.

Material and methods

Study area

The Northeast region of Brazil (Fig. 1) is the third-largest region in the country (1,552,175,412 km2) and incorporates the largest number of states (nine). It is divided into four subregions based on its edaphological characteristics: Meio-Norte, Agreste, Sertão, and Zona da Mata. Furthermore, its vegetation encompasses four biomes: Amazonia, Caatinga, Cerrado, and Atlantic Forest, which allows the region to have a high richness of varied botanical species.

Figure 1
Northeastern Brazil (in grey) from where the bee pollen samples were obtained. The states: BA=Bahia, SE=Sergipe, AL=Alagoas, PE=Pernambuco, PB=Paraíba; RN=Rio Grande do Norte, CE=Ceará, and PI=Piauí.

Bee pollen samples

The samples of bee pollen used in this research were produced in several areas of the Northeastern Brazil. For this reason, beekeepers’ associations and/or cooperatives established throughout the region and municipal agricultural departments were contacted. In addition, samples were acquired by participating in congresses and meetings focused on beekeeping held in the northeastern states of Brazil, and from markets and natural product stores. A total of 28 samples of dehydrated bee pollen from different Northeastern states were used, distributed in the following way: Alagoas (2), Bahia (12), Ceará (2), Paraíba (2), Pernambuco (3), Piauí (2), Rio Grande do Norte (3), and Sergipe (2). Samples from the state of Maranhão were not included in this study.

Pollen analysis

Bee pollen analysis was performed following the method proposed by Alvarado & Delgado-Rueda (1985Alvarado JL, Delgado-Rueda MD. 1985. Flora apicola em Uxpanapa, Veracruz, Mexico. Biotica 10: 257-275.), with some modifications Novais & Absy (2013Novais JS, Absy ML. 2013. Palynological examination of the pollen pots of native stingless bees from the Lower Amazon region in Pará, Brazil. Palynology 37: 218-230.) using the acetolysis method (Erdtman 1960Erdtman G. 1960. The acetolysis method. A revised description. Svensk Botanisk Tidskrift 39: 561-564.). The sediment was mounted on slides in glycerin jelly and sealed with paraffin wax. To perform qualitative and quantitative analyses of the pollen spectrum, five permanent slides were prepared for each sample.

Our study was based on the morphological characteristics of each pollen type to identify specific taxon (e.g., a species, a group of species, a genus, or a family) to which the bee pollen samples belonged. Thus, pollen type identification was carried out using a light microscope by referring to scientific articles, specialized palynological catalogs (Roubik & Moreno 1991Roubik DW, Moreno JE. 1991. Pollen and spores of Barro Colorado Island. Monographs in Systematic Botany. St. Louis, Missouri Botanical Garden.; Carreira et al. 1996Carreira LMM, Silva MF, Lopes JRC, Nascimento LA. 1996. Catálogo de Pólen das Leguminosas da Amazônia Brasileira. Belém, Museu Paraense Emílio Goeldi.; Melhem et al. 2003Melhem TS, Cruz-Barros MAV, Corrêa AMS, Makino-Watanabe H, Silvestre-Capelato MS F, Esteves VLG. 2003. Variabilidade polínica em plantas de Campos de Jordão (São Paulo, Brasil). Boletim do Instituto de Botânica (São Paulo) 16: 1-104.; Lima et al. 2008Lima LCL, Silva FHM, Santos FAR. 2008. Palinologia de espécies de Mimosa L. (Leguminosae-Mimosoideae) do semiárido brasileiro. Acta Botanica Brasilica 22: 794-805.; Bauermann et al. 2013Bauermann SG, Radaeski JN, Evaldt ACP, Queiroz EP, Mourelle D, Prieto AR, Silva CI. 2013. Polen nas angiospermas: diversidade e evolução. Canoas, Editora Ulbra.; Silva et al. 2016Silva FHM, Santos FAR, Lima LCL. 2016. Flora polínica das caatingas: Estação Biológica de Canudos, Bahia, Brasil. Feira de Santana, Micron Bahia.), and the pollen library of the Laboratory of Plant Micromorphology, Department of Biological Sciences, State University of Feira de Santana (LAMIV/DCBio/UEFS), as proposed by Santos (2011Santos FAR. 2011. Identificação botânica do pólen apícola. Magistra 23: 4-9. ).

To estimate the percentage of occurrence of each pollen type in the sample set, the frequency of occurrence (FO) was calculated. For this, a minimum of 500 pollen grains were counted in each sample (Bucher et al. 2004Bucher E, Kofler V, Vorwohl G, Zieger E. 2004. Lo spettro pollinico dei mieli dell’Alto Adige. Laives, Agenzia Provinciale per la Protezione dell’Ambiente e la Tutela del Lavoro.). Based on FO values, pollen types were classified according to the following classes: very frequent (>50%), frequent (21-50%), low frequent (10-20%), and rare (<10%) (Jones & Bryant Jr. 1996Jones GD, Bryant Jr VM. 1996. Melissopalynology. In: Jansonius J, McGregor DC (eds.) Palynology: Principles and applications. Dallas, American Association of Stratigraphic Palynologists Foundation. p. 933-938.).

Through quantitative analysis, only pollen types with an FO value greater than 10% per sample were considered as “important sources” of pollen (Imperatriz-Fonseca et al. 1994Imperatriz-Fonseca VL, Ramalho M, Kleinert-Giovannini A. 1994. Abelhas sociais e flores: Análise polínica como método de estudo. In: Pirani JR, Cortopassi-Laurino M (eds.), Flores e abelhas em São Paulo. São Paulo, EDUSP, FAPESP. p. 17-30.), while those with FO value between 1%-10% were regarded as “secondary sources.” Furthermore, samples in which the predominance of a particular pollen type exceeded 80% were deemed to be monofloral products (Campos et al. 2008Campos MGR, Bogdanov S, Almeida-Murdian LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F. 2008. Pollen composition and standardization of analytical methods. Journal of Apicultural Research 47: 156-163.).

Statistical analysis

The similarity between the samples was analyzed using the Jaccard coefficient, as it does not consider the shared absences as evidence of similarity. Analysis was performed using the PAST software - Paleontological Statistics, version 3.15 - (Hammer et al. 2001Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 4.).

Results

According to the analyzed pollen spectra, 113 pollen types were distinguished in A. mellifera bee pollen produced in the Northeastern Brazil. Pollen types were associated with 35 botanical families, and Fabaceae contributed the highest number of pollen types (29), followed by Asteraceae (14), Rubiaceae (6), Anacardiaceae (5), Arecaceae (5), Euphorbiaceae (5), Myrtaceae (4), Malvaceae (3), Convolvulaceae (2), Malpighiaceae (2), and Salicaceae (2). The remaining families registered one pollen type.

Four pollen types were present in more than 50% of the samples and were classified as very frequent (VF): Cocos nucifera (Arecaceae), Mimosa pudica/sensitiva (Fabaceae), Myrcia (Myrtaceae), and Poaceae type (Poaceae) (Fig. 2). By analyzing the samples individually, it was possible to perceive that 25 of these pollen types are considered as important sources (FO>10%): Amaranthus spinosus and Alternanthera (Amaranthaceae), Spondias and Tapirira guianensis (Anacardiaceae), Cocos and Elaeis (Arecaceae), Baccharis, Eupatorium, Mikania, and Vernonanthura (Asteraceae), Brassica (Brassicaceae), Aeschynomene, Chamaecrista, Copaifera, Fabaceae 1, Mimosa caesalpiniifolia, Mimosa candollei, M. pudica/sensitiva, and M. ulbrichiana (Fabaceae), Eucalyptus and Myrcia (Myrtaceae), Borreria verticillata and Guettarda (Rubiaceae), Banara (Salicaceae), and Cecropia (Urticaceae) (Tab. 1, Fig. 3).

Figure 2
Pollen type representativeness (%) in commercialized bee pollen samples from states of the Northeastern Brazil.

Table 1
Relative frequency (%) and frequency of occurrence (FO) classes of pollen types in commercialized bee pollen samples produced in the Northeastern Brazil. VF: Very frequent (>50%); F: Frequent (20- 50%); LF: Low frequent (10-20%); R: Rare (<10%).

Figure 3
Predominant pollen types in commercialized bee pollen from the Northeastern Brazil: A-B. Amaranthaceae: Alternanthera; C-E. Arecaceae: C-D. Cocos nucifera, E. Syagrus; F-G. Asteraceae: F. Baccharis, G. Mikania; H. Commelinaceae: Commelina; I. Euphorbiaceae: Ricinus; J-L. Fabaceae: J. Mimosa caesalpinifolia, K. M. candolei, L. M. pudica/sensitiva; M-O. Myrtaceae: M-N. Eucalyptus, O. Myrcia; P. Nyctaginaceae: Guapira; Q. Poaceae: Poaceae; R-S. Rubiaceae: R. Borreria verticillata; S. Richardia; T. Urticaceae: Cecropia. Scale = 10 µm.

Cocos nucifera pollen type was registered in 23 analyzed samples (88.5%), classified as an important source in 17 samples, and stood out in one sample from Bahia and one from Piauí since it registered representativeness higher than 50% in both samples (65% and 86%, respectively). Furthermore, Myrcia pollen type was present in 21 analyzed samples, representing 80.8% of the total samples, was important in 10 of them, stood out in two samples from Alagoas (54% and 73%), and exhibited the highest participation as a secondary source (11 samples). M. pudica/sensitiva pollen type was observed in 20 samples (76.9%), and it was classified as an important source in 13 of them. In addition, it registered more than 80% of the representativeness of two samples from Bahia. Finally, although the Poaceae pollen type showed an FO value of 57.7%, it was classified as a secondary source in all samples in which it was present (<10% per sample) (Fig. 4).

Figure 4
Dendrogram of similarity (Jaccard index) for samples of bee pollen produced and commercialized in the Northeastern Brazil. See Table 1 for sample codes.

Some pollen types did not exceed 50% of representativeness when considering the total sample set; however, they stood out by showing a percentage value higher than 50% in some specific samples: M. candollei (71%), Baccharis type (59%), and M. caesalpiniifolia (54,6%) were predominant in one sample from Paraíba, Bahia, and Rio Grande do Norte, respectively.

The pollen type richness showed an average value of 16 pollen types for samples from Ceará, 15 from Bahia, 13 for Sergipe and Pernambuco, 12 for Rio Grande do Norte, and 6 for Piauí (Table 1). On the other hand, three samples were considered monofloral, namely, PI1, which was represented by C. nucifera (86.1%), and BA7 and BA10, both represented by M. pudica/sensitiva pollen type (84.8% and 87.6%, respectively). Although some beekeepers affirmed that samples from Sergipe were monofloral with a predominance of Arecaceae, our results did not corroborate this information.

The statistical analysis showed a higher similarity index value between the Pernambuco 1 and Rio Grande do Norte 3 samples (approximately 62%). The presence of C. nucifera, M. caesalpiniifolia, M. pudica/sensitiva, Commelina, and B. verticillata contributed to the similarity between these samples.

Discussion

The pollen richness recorded in this study evidenced the vegetal diversity of the Northeastern Brazil; however, some pollen types indicated that certain plant species are more visited for the collection of pollen grains by honey bees in this region.

The presence of pollen grains belonging to C. nucifera (Arecaceae) is an important characteristic of bee pollens produced in the Northeastern Brazil. Consequently, it is considered a geographical indicator and it is also essential to produce bee pollen in Rio Grande do Norte, Bahia, and Sergipe (Freitas et al. 2013Freitas AS, Arruda VAS, Almeida-Muradian LBD, Barth OM. 2013. The botanical profiles of dried bee pollen loads collected by Apis mellifera (Linnæus) in Brazil. Sociobiology 60: 56-64.; Alves & Santos 2016Alves RF, Santos FAR. 2016. Arecaceae potential for production of monofloral bee pollen. Grana 57: 1-10.; 2018Alves RF, Santos FAR. 2018. Pollen foraged by bees (Apis mellifera L.) on the Atlantic Forest of Bahia, Brazil. Palynology 43: 523-529.). This species is critical in the study area, even in the beekeeping industry. Although it is regarded as an anemophilous species (Alves & Santos 2016Alves RF, Santos FAR. 2016. Arecaceae potential for production of monofloral bee pollen. Grana 57: 1-10.), it is highly polliniferous and desirable to honey bees (Conceição et al. 2004Conceição ES, Delabie JHC, Neto AOC. 2004. A entomofilia do coqueiro em questão: avaliação do transporte de pólen por formigas e abelhas nas inflorescências. Neotropical Entomology 33: 679-683.). According to Leite & Conceição (2002Leite IRM, Conceição CRF. 2002. Fenologia de coqueiro na zona costeira de Pernambuco. Revista Brasileira de Agropecuária Sustentável 37: 745-752.), C. nuciferaflowers all year long, strengthening this species' utilization by honey bees. This fact is of interest from the commercial point of view since, according to Bauermann et al. (2010Bauermann SG, Evaldt ACP, Zanchin JR, Bordignon SAL. 2010. Diferenciação polínica de Butia, Euterpe, Geonoma, Syagrus e Thritrinax e implicações paleoecológicas de Arecaceae para o Rio Grande do Sul. Iheringia 65: 35-46.), Arecaceae pollen grains contribute to texture and taste that please the consumer.

The Fabaceae family also stood out in this study, and it has been highlighted in several studies focused on bee pollen produced in the Northeastern region (Muniz & Brito 2007Muniz FH, Brito ER. 2007. Levantamento da flora apícola do município de Itapicuru-Mirim, Maranhão. Revista Brasileira de Biociência 5: 111-113.; Novais et al. 2010Novais JS, Lima LCL, Santos FAR. 2010. Bee pollen loads and their use in indicating flowering in the Caatinga region of Brazil. Journal of Arid Environments 74: 1355-1358.; Poderoso et al. 2012Poderoso JCM, Correia-Oliveira ME, Paz LC, Souza TMS, Vilca FZ, Dantas PC, Ribeiro GT. 2012. Botanical preferences of Africanized Bees (Apis mellifera) on the Coast and in the Atlantic Forest of Sergipe, Brazil. Sociobiology 59: 97-105.; Costa et al. 2015Costa SN, Alves RMO, Carvalho CAL, Conceição PJ. 2015. Fontes de pólen utilizadas por Apis mellifera Latreille na Região Semiárida. Ciência Animal Brasileira (Online) 16: 491-497.; and Alves & Santos 2018Alves RF, Santos FAR. 2018. Pollen foraged by bees (Apis mellifera L.) on the Atlantic Forest of Bahia, Brazil. Palynology 43: 523-529.). Carvalho & Marchini (1999Carvalho CAL, Marchini LC. 1999. Plantas visitadas por Apis mellifera L. no vale do rio Paraguaçu, município de Castro Alves, Bahia. Revista Brasileira de Botânica 22: 333-338.) emphasized that within Fabaceae, the Mimosoideae clade includes several species with an important polliniferous potential that are constantly visited by honey bees. In addition to their pollen production, these species bloom almost year-round (Carvalho et al. 2001Carvalho CAL, Moreti ACCC, Marchini LC, Alves RM, De Oliveira PCF. 2001. Pollen spectrum of honey of “uruçu” bee (Melipona scutellaris Latreille, 1811). Brazilian Journal of Biology 61: 63-67. ; Santos Júnior & Santos 2003Santos Júnior MC, Santos FAR. 2003. Espectro polınico de amostras de méis coletadas na microrregião do Paraguassu, Bahia. Magistra 15: 79-78. ; Silva et al. 2004Silva JMC, Tabarelli M, Fonseca MT, Lins LV. 2004. Biodiversidade da caatinga: áreas e ações prioritárias para a conservação. Brasília, Ministério do Meio Ambiente/Universidade Federal de Pernambuco.). The M. pudica/sensitiva pollen type, which was present in most of the analyzed samples, presented high beekeeping potential (Alves & Santos 2016Alves RF, Santos FAR. 2016. Arecaceae potential for production of monofloral bee pollen. Grana 57: 1-10.) owing to the invasive nature and rapid spreading of these species in anthropogenic environments (Queiroz 2009Queiroz LP. 2009. Leguminosas da Caatinga. Feira de Santana, UEFS/ Kew, Royal Botanic Gardens. ; Dutra et al. 2020Dutra VF, Morales M, Jordão LSB, Borges LM, Silveira FS, Simon MF, Santos-Silva J, Nascimento JGA, Ribas ODS. 2020. Mimosa. In: Flora do Brasil 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/fb83463
http://floradobrasil.jbrj.gov.br/reflora...
).

Myrtaceae family was also highlighted in this work, mainly due to the presence of Myrcia pollen type. According to Queiroz et al. (2006Queiroz LP, Conceição AA, Giulietti AM. 2006. Nordeste semi-árido: caracterização geral e lista das fanerógamas. In: Giulietti AM, Conceição AA, Queiroz LP (eds.) Diversidade e caracterização das fanerogamas do semi-árido brasileiro. Recife, APNE. p. 15-360.), Myrtaceae is one of the best-represented families in the Brazilian semiarid region and is one of the most diverse families in the Caatinga. Furthermore, Myrcia is the second most represented pollen type in melissopalynological studies throughout Brazil and the seventh in the Northeastern (Souza et al. 2018Souza RR, Abreu VHR, Novais JS. 2018. Melissopalynology in Brazil: a map of pollen types and published productions between 2005 and 2017. Palynology 43: 690-700.). According to Freitas et al. (2013Freitas AS, Arruda VAS, Almeida-Muradian LBD, Barth OM. 2013. The botanical profiles of dried bee pollen loads collected by Apis mellifera (Linnæus) in Brazil. Sociobiology 60: 56-64.) and Alves & Santos (2016Alves RF, Santos FAR. 2016. Arecaceae potential for production of monofloral bee pollen. Grana 57: 1-10.; 2018Alves RF, Santos FAR. 2018. Pollen foraged by bees (Apis mellifera L.) on the Atlantic Forest of Bahia, Brazil. Palynology 43: 523-529.), this pollen type stood out in bee pollen samples from Bahia, Sergipe, and Rio Grande do Norte as it was classified as very frequent, which was corroborated in this research.

The Poaceae pollen type analyzed in the bee pollen samples in this study is an important representative of an anemophilous taxon. This pollen type represents plant species that are highly polliniferous and that contribute significantly to bee pollen composition (Alves & Santos 2014Alves RF, Santos FAR. 2014. Plant sources for bee pollen load production in Sergipe, northeast Brazil. Palynology 38: 90-100.). Souza et al. (2018Souza RR, Abreu VHR, Novais JS. 2018. Melissopalynology in Brazil: a map of pollen types and published productions between 2005 and 2017. Palynology 43: 690-700.) corroborated this information by reporting that Poaceae is the sixth most represented pollen type in melissopalynological studies in Brazil. Alves & Santos (2016Alves RF, Santos FAR. 2016. Arecaceae potential for production of monofloral bee pollen. Grana 57: 1-10.; 2018Alves RF, Santos FAR. 2018. Pollen foraged by bees (Apis mellifera L.) on the Atlantic Forest of Bahia, Brazil. Palynology 43: 523-529.) also identified this pollen type in bee pollen samples from Bahia and Sergipe. Dórea et al. (2010Dórea MC, Novais JS, Santos FAR. 2010. Botanical profile of bee pollen from the southern coastal region of Bahia, Brazil. Acta Botanica Brasilica 24: 862-867.) pointed out that despite the high frequency of the Poaceae pollen type when considering the entire sample set, it was present in low percentages per sample, which indicates its importance as a secondary source, as confirmed by our results.

Although a total of 113 pollen types were registered in the analyzed samples, which reinforces the generalist behavior of A. mellifera (Köppler et al. 2007Köppler K, Vorwohl G, Koeniger N. 2007. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie 38: 341-353.), some samples were classified as monofloral (PI1, BA7, and BA10). This corroborates the results obtained by Suwannapong et al. (2012Suwannapong G, Eiri DM, Benbow ME. 2012. Honeybee communication and pollination. In: Bandani AR (ed.). New Perspectives in Plant Protection. Rijeka, IntechOpen. p. 39-62.), who reported honey bees preference for plants that provide resources in greater quantity, taking advantage of the pollen source until its exhaustion.

Other samples from the state of Sergipe were indicated as monofloral because of the content of C. nucifera pollen grains present at the time of its sale. Nonetheless, this information was not confirmed in this study. In addition to the insufficient presentation of more precise information on the label of commercialized products, beekeepers lack a better understanding of the polliniferous sources of their apiaries and knowledge for developing a management plan for beehives and cultivation of plant species of beekeeping importance.

Conclusion

Based on the analyzed data, the richness of pollen types found in this study provides essential information about the flora visited by A. mellifera in the Northeastern Brazil, highlighting the contribution of some botanical groups to the protein diet.

Fabaceae and Asteraceae were the primary polliniferous sources used by A. mellifera in this region. In contrast, pollen types of C. nucifera, M. pudica/sensitiva, Myrcia, and Poaceae were very frequent in the samples. The first two sources contributed to samples that were considered monofloral bee pollen. This result is excellent for beekeepers because these species are widely distributed in the Northeast region. Cocos nucifera, in addition to contribute significantly to the composition of bee pollen samples in the region, also adds appreciable flavor and texture for human consumption.

The knowledge about the botanical sources that support the pollen (protein) diet of A. mellifera in Northeastern of Brazil contributes to the preservation of plant species of beekeeping importance in the region, as well as favoring the commercialization of pollen from these bees by beekeepers.

Acknowledgements

The authors express special thanks to CNPq for the scholarship for the first author and a scientific grant to FARS and TMSS; and FACEPE for grant to TMSS. Thanks to the Postgraduate Program in Botany and Plant Micromorphology Laboratory of State University of Feira de Santana for allowing the use of their facilities for this research.

References

  • Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM. 2005. Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis 18: 105-111.
  • Alvarado JL, Delgado-Rueda MD. 1985. Flora apicola em Uxpanapa, Veracruz, Mexico. Biotica 10: 257-275.
  • Alves RF, Santos FAR. 2014. Plant sources for bee pollen load production in Sergipe, northeast Brazil. Palynology 38: 90-100.
  • Alves RF, Santos FAR. 2016. Arecaceae potential for production of monofloral bee pollen. Grana 57: 1-10.
  • Alves RF, Santos FAR. 2018. Pollen foraged by bees (Apis mellifera L.) on the Atlantic Forest of Bahia, Brazil. Palynology 43: 523-529.
  • Andrada AC, Tellería MC. 2005. Pollen collected by honey bees (Apis mellifera L.) from south of Caldén district (Argentina): botanical origin and protein content. Grana 44: 115-122.
  • Baldi CB, Grasso D, Pereira SC, Fernández G. 2004. Caracterización bromatológica del pólen apícola argentino. Ciencia Docencia Tecnologia 29: 145-181.
  • Barreto LMRC, Funari RC, Orsi RO, Dib APS. 2006. Produção de pólen no Brasil. Taubaté, Editora Cabral e Livraria Universitária.
  • Bauermann SG, Evaldt ACP, Zanchin JR, Bordignon SAL. 2010. Diferenciação polínica de Butia, Euterpe, Geonoma, Syagrus e Thritrinax e implicações paleoecológicas de Arecaceae para o Rio Grande do Sul. Iheringia 65: 35-46.
  • Bauermann SG, Radaeski JN, Evaldt ACP, Queiroz EP, Mourelle D, Prieto AR, Silva CI. 2013. Polen nas angiospermas: diversidade e evolução. Canoas, Editora Ulbra.
  • Brasil - Ministério de Agricultura e do Abastecimento. 2001. Instrução Normativa n. 3, de 19 de janeiro de 2001. Regulamento Técnico de Identidade e Qualidade do Pólen Apícola. Diário Oficial da União da República Federativa do Brasil. Brasília, 23 de janeiro de 2001, Seção 16-I, 18-23. http://www.prodapys.com.br/navega.php?idioma=fr&item=qualidade⊂=aV
    » http://www.prodapys.com.br/navega.php?idioma=fr&item=qualidade⊂=aV
  • Bucher E, Kofler V, Vorwohl G, Zieger E. 2004. Lo spettro pollinico dei mieli dell’Alto Adige. Laives, Agenzia Provinciale per la Protezione dell’Ambiente e la Tutela del Lavoro.
  • Camazine S. 1993. The regulation of pollen foraging by honey bees: How foragers assess the colony’s need for pollen. Behavioral Ecology and Sociobiology 32: 265-272.
  • Campos MGR, Bogdanov S, Almeida-Murdian LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F. 2008. Pollen composition and standardization of analytical methods. Journal of Apicultural Research 47: 156-163.
  • Carreira LMM, Silva MF, Lopes JRC, Nascimento LA. 1996. Catálogo de Pólen das Leguminosas da Amazônia Brasileira. Belém, Museu Paraense Emílio Goeldi.
  • Carvalho CAL, Marchini LC. 1999. Plantas visitadas por Apis mellifera L. no vale do rio Paraguaçu, município de Castro Alves, Bahia. Revista Brasileira de Botânica 22: 333-338.
  • Carvalho CAL, Moreti ACCC, Marchini LC, Alves RM, De Oliveira PCF. 2001. Pollen spectrum of honey of “uruçu” bee (Melipona scutellaris Latreille, 1811). Brazilian Journal of Biology 61: 63-67.
  • Conceição ES, Delabie JHC, Neto AOC. 2004. A entomofilia do coqueiro em questão: avaliação do transporte de pólen por formigas e abelhas nas inflorescências. Neotropical Entomology 33: 679-683.
  • Costa SN, Alves RMO, Carvalho CAL, Conceição PJ. 2015. Fontes de pólen utilizadas por Apis mellifera Latreille na Região Semiárida. Ciência Animal Brasileira (Online) 16: 491-497.
  • Dórea MC, Novais JS, Santos FAR. 2010. Botanical profile of bee pollen from the southern coastal region of Bahia, Brazil. Acta Botanica Brasilica 24: 862-867.
  • Dutra VF, Morales M, Jordão LSB, Borges LM, Silveira FS, Simon MF, Santos-Silva J, Nascimento JGA, Ribas ODS. 2020. Mimosa. In: Flora do Brasil 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/fb83463
    » http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/fb83463
  • Erdtman G. 1960. The acetolysis method. A revised description. Svensk Botanisk Tidskrift 39: 561-564.
  • Flora do Brasil. 2020. Rio de Janeiro, Jardim Botânico do Rio de Janeiro . http://floradobrasil.jbrj.gov.br/
    » http://floradobrasil.jbrj.gov.br/
  • Freitas AS, Arruda VAS, Almeida-Muradian LBD, Barth OM. 2013. The botanical profiles of dried bee pollen loads collected by Apis mellifera (Linnæus) in Brazil. Sociobiology 60: 56-64.
  • Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 4.
  • IBGE - Instituto Brasileiro de Geografia e Estatística. 2019. http://www.ibge.gov.br
    » http://www.ibge.gov.br
  • Imperatriz-Fonseca VL, Ramalho M, Kleinert-Giovannini A. 1994. Abelhas sociais e flores: Análise polínica como método de estudo. In: Pirani JR, Cortopassi-Laurino M (eds.), Flores e abelhas em São Paulo. São Paulo, EDUSP, FAPESP. p. 17-30.
  • Jones GD, Bryant Jr VM. 1996. Melissopalynology. In: Jansonius J, McGregor DC (eds.) Palynology: Principles and applications. Dallas, American Association of Stratigraphic Palynologists Foundation. p. 933-938.
  • Komosinska-Vassev K, Olczyk P, Kaźmierczak J, Mencner L, Olczyk K. 2015. Bee pollen: chemical composition and therapeutic application. Evidence Based Complementary and Alternative Medicine 2015: 297425
  • Köppler K, Vorwohl G, Koeniger N. 2007. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera Apidologie 38: 341-353.
  • Leite IRM, Conceição CRF. 2002. Fenologia de coqueiro na zona costeira de Pernambuco. Revista Brasileira de Agropecuária Sustentável 37: 745-752.
  • Lima LCL, Silva FHM, Santos FAR. 2008. Palinologia de espécies de Mimosa L. (Leguminosae-Mimosoideae) do semiárido brasileiro. Acta Botanica Brasilica 22: 794-805.
  • Mărgăoan R, Strant M, Varadi A, Topal E, Yücel B, Cornea-Cipcigan M, Campos MG, Vodnar DC. 2019. Bee collected pollen and bee bread: bioactive constituents and health benefits. Antioxidants 8: 568.
  • Melhem TS, Cruz-Barros MAV, Corrêa AMS, Makino-Watanabe H, Silvestre-Capelato MS F, Esteves VLG. 2003. Variabilidade polínica em plantas de Campos de Jordão (São Paulo, Brasil). Boletim do Instituto de Botânica (São Paulo) 16: 1-104.
  • Muniz FH, Brito ER. 2007. Levantamento da flora apícola do município de Itapicuru-Mirim, Maranhão. Revista Brasileira de Biociência 5: 111-113.
  • Novais JS, Lima LCL, Santos FAR. 2010. Bee pollen loads and their use in indicating flowering in the Caatinga region of Brazil. Journal of Arid Environments 74: 1355-1358.
  • Novais JS, Absy ML. 2013. Palynological examination of the pollen pots of native stingless bees from the Lower Amazon region in Pará, Brazil. Palynology 37: 218-230.
  • Oliveira PP, Santos FAR. 2014. Prospecção palinológica em méis da Bahia. Feira de Santana, Print Mídia.
  • Pascoal A, Rodrigues S, Teixeira A, Feás X, Estevinho LM. 2014. Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology 63: 233-239.
  • Poderoso JCM, Correia-Oliveira ME, Paz LC, Souza TMS, Vilca FZ, Dantas PC, Ribeiro GT. 2012. Botanical preferences of Africanized Bees (Apis mellifera) on the Coast and in the Atlantic Forest of Sergipe, Brazil. Sociobiology 59: 97-105.
  • Proctor M, Yeo P, Lack A. 1996. The natural history of pollination. Portland, Timber Press.
  • Queiroz LP, Conceição AA, Giulietti AM. 2006. Nordeste semi-árido: caracterização geral e lista das fanerógamas. In: Giulietti AM, Conceição AA, Queiroz LP (eds.) Diversidade e caracterização das fanerogamas do semi-árido brasileiro. Recife, APNE. p. 15-360.
  • Queiroz LP. 2009. Leguminosas da Caatinga. Feira de Santana, UEFS/ Kew, Royal Botanic Gardens.
  • Roubik DW, Moreno JE. 1991. Pollen and spores of Barro Colorado Island. Monographs in Systematic Botany. St. Louis, Missouri Botanical Garden.
  • Santos FAR, Oliveira JM, Oliveira PP, Leite KRB, Carneiro CE. 2006. Plantas do semiárido importantes para as abelhas. In: Santos FAR. (ed.) Apium plantae. Recife, IMSEAR. p. 61-86.
  • Santos FAR. 2011. Identificação botânica do pólen apícola. Magistra 23: 4-9.
  • Santos Júnior MC, Santos FAR. 2003. Espectro polınico de amostras de méis coletadas na microrregião do Paraguassu, Bahia. Magistra 15: 79-78.
  • Silva FHM, Santos FAR, Lima LCL. 2016. Flora polínica das caatingas: Estação Biológica de Canudos, Bahia, Brasil. Feira de Santana, Micron Bahia.
  • Silva JMC, Tabarelli M, Fonseca MT, Lins LV. 2004. Biodiversidade da caatinga: áreas e ações prioritárias para a conservação. Brasília, Ministério do Meio Ambiente/Universidade Federal de Pernambuco.
  • Silva TMS, Camara CA, Lins ACS, Barbosa-Filho JM, Silva EMS, Freitas BM, Santos, FAR. 2006. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis 19: 507-511.
  • Souza DC. 2007. Importância socioeconômica. In: Souza DC (ed.). Apicultura: manual do agente de desenvolvimento rural. Brasília, SEBRAE. p. 29-36.
  • Souza RR, Abreu VHR, Novais JS. 2018. Melissopalynology in Brazil: a map of pollen types and published productions between 2005 and 2017. Palynology 43: 690-700.
  • Suwannapong G, Eiri DM, Benbow ME. 2012. Honeybee communication and pollination. In: Bandani AR (ed.). New Perspectives in Plant Protection. Rijeka, IntechOpen. p. 39-62.

Publication Dates

  • Publication in this collection
    07 Nov 2022
  • Date of issue
    2022

History

  • Received
    10 Aug 2022
  • Accepted
    11 Oct 2022
Sociedade Botânica do Brasil SCLN 307 - Bloco B - Sala 218 - Ed. Constrol Center Asa Norte CEP: 70746-520 Brasília/DF. - Alta Floresta - MT - Brazil
E-mail: acta@botanica.org.br