Acessibilidade / Reportar erro

Chemical and biological aspects of octocorals from the Brazilian coast

Abstract

This review explores the chemical and biological aspects/results reported in the literature of the octocoral species collected at the Brazilian Coast. This article summarizes the biological activities (including pharmacological, antifouling and others related to chemical ecology) for the compounds and/or extracts described elsewhere. Data and references of compounds isolated from species belonging to the same genus, which have not been investigated in Brazil yet, are presented, emphasizing the importance for research in this area.

Bioactivity; Brazilian Coast; Marine biodiversity; Marine natural products; Octocorallia


Introduction

Octocorals or soft-corals (phylum Cnidaria, class Anthozoa, subclass Octocorallia = Alcyonaria) are soft-bodied invertebrates found throughout the world's oceans. The phylum Cnidaria, which includes mostly marine invertebrates with specialized cells called nematocysts, is divided into five classes: Anthozoa, Hydrozoa, Cubozoa, Staurozoa and Scyphozoa (Daly et al., 2007Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C.S., Opresko, D.M., Rodríguez, E., Romano, S.L., Stake, J.L., 2007. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668,127-182.). From Class Anthozoa, we found colonial or solitary clonal animals, exclusively polypoid, separated into the Subclasses Hexacorallia (= Zoantharia) and Octocorallia (= Alcyonaria), each one further divided into multiples orders (Daly et al., 2007Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C.S., Opresko, D.M., Rodríguez, E., Romano, S.L., Stake, J.L., 2007. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668,127-182.). Hexacorallia polyps have six tentacles and mesenteries or multiples thereof, and include black corals, sea anemones, tube anemones and stony corals, which comprise the main reef-building species (Daly et al., 2007Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C.S., Opresko, D.M., Rodríguez, E., Romano, S.L., Stake, J.L., 2007. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668,127-182.). Octocorals are comprised by soft corals, sea pens and gorgonians, with eight tentacles and eight internal mesenteries that exhibit less variation in polyp morphology than hexacorals (Daly et al., 2007Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C.S., Opresko, D.M., Rodríguez, E., Romano, S.L., Stake, J.L., 2007. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668,127-182.; McFadden et al., 2010McFadden, C.S., Sánchez, J.A., France, S.C., 2010. Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr. Comp. Biol. 50,389-410.).

Both groups can have endosymbiotic associations with dinoflagellates called zooxanthellae (Symbiodinium sp.). The host provides nitrogenous waste and receives photosynthetic products from the symbiont in return. Most zooxanthellate corals with obligate associates are restricted to shallow waters, such as some tropical scleractinians, and are the main reef-builders (Wells, 1956Wells, J.W., 1956. Scleractinia. R., In Moore, C. (Ed.) Treatise on Invertebrate Paleontology, Part F, Coelenterata. Washington: Kansas Press, p. 328-444.). Others can maintain facultative symbioses or survive without symbionts, being able to live in Polar Regions and deep-sea environments (Wells, 1956Wells, J.W., 1956. Scleractinia. R., In Moore, C. (Ed.) Treatise on Invertebrate Paleontology, Part F, Coelenterata. Washington: Kansas Press, p. 328-444.; Cairns, 1982Cairns, S.D., 1982. Antarctic and Subantarctic Scleractinia. Antarct. Res. Series 34,1-74.; Huston, 1985Huston, M.A., 1985. Patterns of species diversity on coral reefs. An. Rev. Ecol. System. 16, 149-177.; Cairns and Kitahara, 2012Cairns, S.D., Kitahara, M.V., 2012. An illustrated key to the genera and subgenera of the Recent azooxanthellate Scleractinia (Cnidaria, Anthozoa), with an attached glossary. ZooKeys 227,1-47.). Unlike stony corals (Hexacorallia, Scleractinia), most soft corals thrive in nutrient-rich waters with a less intense illumination. Almost all utilize symbiotic photosynthetic zooxanthella as a major energy source. However, most will readily eat, as passive suspensivorous feeders, any free-floating food, such as phytoplankton and zooplankton out of the water column (Lira et al., 2009Lira, A.K.F., Naud, J.P., Gomes, P.B., Santos, A.M., Perez, C.D., 2009. Trophic ecology of the octocoral Carijoa riisei from littoral of Pernambuco, Brazil. I. Composition and spatiotemporal variation of the diet. J. Mar. Biol. Ass. U. K. 89,89-99.; Gomes et al., 2012Gomes, P.B., Lira, A.K.F., Naud, J., Santos, A.M., Perez, C.D., 2012. Prey selectivity of the octocoral Carijoa riisei from littoral of Pernambuco, Brazil. An. Acad. Bras. Cienc. 84,157-164.). They are integral members of the reef ecosystem and provide a habitat for fish, snails, algae and other marine species.

Octocorallia comprises approximately 3200 species of soft corals found in all marine environments. These are diverse on shallow tropical reefs and in deep-sea habitats, where they are often dominant space-occupiers and important structural components of the community (McFadden et al., 2010McFadden, C.S., Sánchez, J.A., France, S.C., 2010. Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr. Comp. Biol. 50,389-410.).

The Brazilian octocoral fauna, particularly deep-sea species, is still poorly known compared to the Caribbean fauna (Arantes et al., 2009Arantes, R.C.M., Castro, C.B., Pires, D.O., Seoane, J.C.S., 2009. Depth and water mass zonation and species associations of cold-water octocoral and stony coral communities in the southwestern Atlantic. Mar. Ecol. Prog Ser. 397,71-79.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). Around 107 species and/or morphotypes have been reported in Brazilian waters, some only recently. Fourteen of these species are endemic to the Brazilian coast (Arantes et al., 2006Arantes, R.C.M., Medeiros, M.S., 2006. Primeiro registro de Anthothela grandiflora (Sars, 1856) (Cnidaria, Octocorallia, Anthothelidae) no Brasil. Arq. Mus. Nac. 64,11-17.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.; Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.; Ofwegen and Haddad, 2011Ofwegen, L.P. van, Haddad, M.A., 2011. A probably invasive new genus and new species of soft coral (Octocorallia: Alcyonacea: Clavulariidae) from Brazil. Zootaxa 3107,38-46.; Pérez et al., 2011Pérez, C.D., Neves, B.M, Oliveira, D.H.R., 2011. New records of octocorals (Cnidaria: Anthozoa) from the Brazilian coast. Aquat. Biol. 13,203-214.; Neves and Pérez, 2012Neves, B.M., Pérez, C.D., 2012. A new species of Sclerobelemnon Kölliker, 1872 from Brazil (Octocorallia: Pennatulacea: Kophobelemnidae). Cah. Biol. Mar. 53,429-434.). Investigating the diversity and distribution of the Brazilian octocoral fauna is a complicated task, as the available literature is sparse and mainly found in gray literature, such as theses and dissertations (Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). In contrast to deepwater species, shallow-water Octocorallia are well known on the Brazilian coast. According to a review published in early 2010 (Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.), seventeen reef species have been registered in Brazilian shallow waters, distributed from Amapá to Santa Catarina (Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). The distribution of octocorals over large spatial areas is mainly regulated by substrate, temperature and salinity, while on smaller areas, food supply is one of the most important factors that control species distribution (Mortensen and Buhl-Mortensen, 2004Mortensen, P.B., Buhl-Mortensen, L., 2004. Distribution of deepwater gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada). Mar. Biol. 144,1223-1238.; Arantes et al., 2006Arantes, R.C.M., Medeiros, M.S., 2006. Primeiro registro de Anthothela grandiflora (Sars, 1856) (Cnidaria, Octocorallia, Anthothelidae) no Brasil. Arq. Mus. Nac. 64,11-17.; 2009Arantes, R.C.M., Castro, C.B., Pires, D.O., Seoane, J.C.S., 2009. Depth and water mass zonation and species associations of cold-water octocoral and stony coral communities in the southwestern Atlantic. Mar. Ecol. Prog Ser. 397,71-79.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.; Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.; Ofwegen and Haddad, 2011Ofwegen, L.P. van, Haddad, M.A., 2011. A probably invasive new genus and new species of soft coral (Octocorallia: Alcyonacea: Clavulariidae) from Brazil. Zootaxa 3107,38-46.; Pérez et al., 2011Pérez, C.D., Neves, B.M, Oliveira, D.H.R., 2011. New records of octocorals (Cnidaria: Anthozoa) from the Brazilian coast. Aquat. Biol. 13,203-214.; Neves and Pérez, 2012Neves, B.M., Pérez, C.D., 2012. A new species of Sclerobelemnon Kölliker, 1872 from Brazil (Octocorallia: Pennatulacea: Kophobelemnidae). Cah. Biol. Mar. 53,429-434.). The species distribution in deeper water may be related to water masses, as these influence food availability patterns (Clark et al., 2006Clark, M.R., Tittensor, D., Rogers, A.D., Brewin, P., Schlacher, T., Rowden, A., Stocks, K., Consalvey, M., 2006. Seamounts, deep-sea corals and fisheries: vulnerability of deep-sea corals to fishing on seamounts beyond areas of national jurisdiction. Cambridge: UNEP-WCMC.).

Shallow-water samples from coral reefs are the usual targets of natural product chemists, mainly due to their abundance and easy collection. Nevertheless, in the past few years, deep-water species from less diverse environments, such as temperate and Antarctic seas, have also led to the discovery of some interesting compounds (Rodríguez Brasco et al., 2007Rodríguez Brasco, M.F., Genzano, G.N., Palermo, J.A., 2007. New C-secosteroids from the gorgonian Tripalea clavaria. Steroids 72,908-913.). Octocorals from tropical and temperate waters have been a prolific source of novel secondary metabolites, most of them derived from the mevalonate pathway, such as terpenoid and steroidal derivatives (Blunt et al., 2005Blunt, J.W., Copp, B.R., Munro, M.H.G., Northcote, P.T., Prinsep, M.R., 2005. Marine Natural Products. Nat. Prod. Rep. 22,15-61.; Rocha et al., 2011Rocha, J., Peixe, L., Gomes, N.C.M., Calado, R., 2011. Cnidarians as a source of new marine bioactive compounds - an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9,1860-1886.; Leal et al., 2012Leal, M.C., Madeira, C., Brandão, C.A., Puga, J., Calado, R., 2012. Bioprospecting of marine invertebrates for new natural products - A chemical and zoogeographical perspective. Molecules 17,9842-9854.). Notably, the families Gorgoniidae and Plexauridae, the most abundant in Brazil, have been demonstrated to contain a wide variety of compounds including steroids, acetogenins, sesquiterpenes and diterpenes. This group of marine invertebrates is recognized as an extremely rich source of bioactive secondary metabolites: and since these animals lack physical defenses, these compounds are generally believed to function as chemical defenses. It has been reported that 50% of soft coral extracts exhibited ichthyotoxic activities (Sammarco and Coll, 1998Sammarco, P.W., Coll, J.C., 1998. The chemical ecology of alcyonarian corals (Coelenterata: Octocorallia). In Scheuer, P.J. (Ed.) Bioorganic marine chemistry, Berlin: Springer Verlag, p. 87-116.). An encyclopedic review of the octocoral chemistry published by Coll (1992)Coll, J.C., 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem. Rev. 92,613-631. reviews the natural products, chemotaxonomy, chemical ecology and biosynthetic derivation of octocoral metabolites. Many of cembranoid diterpenes, secondary metabolites from soft corals, may be involved in ecological interactions (Coll, 1992Coll, J.C., 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem. Rev. 92,613-631.), while other metabolites have antimicrobial (Correa et al., 2011Correa, H., Aristizabal, F., Duque D., Kerr, R., 2011. Cytotoxic and antimicrobial activity of pseudopterosins and secopseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar. Drugs 9,334-344.), cytotoxic (Wang and Duh, 2012Wang, L.H., Sheu, J.H., Kao, S.Y., Su, J.H., Chen, Y.H., Chen, Y.H., Su, Y.D., Chang, Y.C., Fang, L.S., Wang, W.H., Wu, Y.C., Sung, P.J., 2012. Natural product chemistry of gorgonian corals of the family Plexauridae distributed in the Indo-Pacific Ocean. Mar. Drugs 10,2415-2434.), antiviral (Yeh et al., 2012Yeh, T.T., Wang, S.K., Dai, C.F., Duh, C.Y., 2012. Briacavatolides A-C, new briaranes from the Taiwanese octocorals Briareum excavatum. Mar. Drugs 10,1019-1026.) and anti-inflammatory activities (Reina et al., 2011Reina, E., Puentes, C., Rojas, J., García, J., Ramos, F.A., Castellanos, L., Aragón, M., Ospina, L.F., 2011. Fuscoside E: a strong antiinflammatory diterpene from Caribbean octocoral Eunicea fusca. Bioorg. Med. Chem. Lett. 21,5888-5891.). In a recent review, the order Alcyonacea was proven to be the most promising source of compounds for therapeutic use. In the case of isolated compounds, terpenoids proved to be the most auspicious. The greatest interest, for which the most studies have been carried out, is antitumor activity (Rocha et al., 2011Rocha, J., Peixe, L., Gomes, N.C.M., Calado, R., 2011. Cnidarians as a source of new marine bioactive compounds - an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9,1860-1886.).

Marine organisms are an important source of new bioactive molecules; thus the scientific community worldwide is focusing its efforts on the isolation and characterization of biologically active natural products. A relatively small number of marine organisms studied have already yielded thousands of new chemical compounds; Porifera (class Demospongiae) and Cnidaria (class Anthozoa) being two main sources of new molecules (Blunt et al., 2014Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G., Prinsep, M.R., 2014. Marine Natural Products. Nat. Prod. Rep. 31,160-258.). Moreover, research of species from unexplored geographical sites with a high biological diversity and endemisms, such as species found in tropical regions, can provide novel marine bioactive compounds (Leal et al., 2012Leal, M.C., Madeira, C., Brandão, C.A., Puga, J., Calado, R., 2012. Bioprospecting of marine invertebrates for new natural products - A chemical and zoogeographical perspective. Molecules 17,9842-9854.).

Despite the great biodiversity present along the Brazilian coastline, an important source of potential biologically active compounds, chemical analysis of Brazilian marine organisms is still incipient. So far, the chemistry of marine natural products in Brazil has focused on sponges, tunicates and brown algae (Berlinck et al., 2004Berlinck, R.G.S., Hajdu, E., Rocha, R.M., Oliveira, J.H.H.L., Hernández, I.L.C., Seleghim, M.H.R., Granato, A.C., de Almeida, E.V.R., Nuñez, C.V., Muricy, G., Peixinho, S., Pessoa, C., Moraes, M.O., Cavalcanti, B.C., Nascimento, G.G.F., Thiemann, O., Silva, M., Souza, A.O., Silva, C. L., Minarini, P.R.R., 2004. Challenges and rewards of reseach in marine natural products chemistry in Brazil. J. Nat. Prod. 67,510-522.). Regarding the chemical studies on octocorals, of the approximately 107 species reported in Brazil, to date only twenty have been studied, from which thirteen have been studied by Brazilian research groups (Chart 1).

Chart 1
Biological activities of extracts and/or compounds reported for octocorals recorded in Brazil.

In this review we report the secondary metabolites isolated from octocorals present or collected in Brazil, specifically focusing on their structures and biological activities, as well as their importance in chemical ecology.

The reported results are organized and discussed in light of the currently accepted taxonomical classification, and the compounds found in each family are exemplified. The results obtained from species collected in Brazil are shown, highlighting the most representative compounds present. Also, the results obtained from species present in Brazil, but collected worldwide, are further discussed. In conclusion, octocorals represent a potential source of new bioactive molecules that could be exploited more productively in this country.

Subclass Octocorallia

The octocorals present on the Brazilian Coast, from which secondary metabolites have been isolated, or that are believed to be potential sources of bioactive compounds, belong to the orders Alcyonacea and Pennatulacea. The former consists of the families Clavulariidae (Carijoa riisei), Nephtheidae (Chromonephthea braziliensis and Neospongodes atlantica), Ellisellidae (Ellisella elongate and Nicella goreaui), Primnoidae (Convexella magelhaenica, Dasystenella acanthina, and Plumarella aculeata), Acanthogorgiidae (Acanthogorgia spp.), Gorgoniidae (Leptogorgia punicea, L. setacea, L. violacea and Phyllogorgia dilatata), Plexauridae (Bebryce spp., Heterogorgia uatumani, Muricea spp., Muriceides hirtus, Muriceopsis flavida, Paramuricea placomus, Placogorgia atlantica, Plexaurella dichotoma, Plexaurella regia and Swiftia exserta), Anthothelidae (Tripalea clavaria), Coralliidae (Corallium spp.), and Paragorgiidae (Paragorgia johnsoni). The order Pennatulacea consists of the families Anthoptilidae (Anthoptilum murrayi), Virgulariidae (Stylatula spp.and Virgularia presbytes) and Renillidae (Renilla reniformis and R. muelleri). The species or genera of greatest interest are presented below.

Order Alcyonacea

The order Alcyonacea is comprised of soft corals (octocorals without a supporting skeletal axis) and gorgonians (octocorals with a supporting skeletal axis of scleroproteinous gorgonin and/or calcite). Families from the order Alcyonacea are primarily distinguished by their overall colony growth form, the presence or absence of a supporting skeletal axis and details of axial composition (Bayer, 1981Bayer, F.M., 1981. On some genera of stoloniferous octocorals (Coelenterata: Anthozoa), with descriptions of new taxa. Proc. Biol. Soc. Washington 94,878-901.). The order entails 31 families (McFadden et al., 2010McFadden, C.S., Sánchez, J.A., France, S.C., 2010. Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr. Comp. Biol. 50,389-410.) and 59 species from seventeen families are present in Brazil (Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.).

Family Clavulariidae

This family, widely distributed around the world, includes encrusting or branching colonies; the latter having primary polyps with lateral daughter polyps (Devictor and Morton, 2010Devictor, S.T., Morton, S.L., 2010. Identification guide to the shallow water (0-200 m) octocorals of the South Atlantic Bight. Zootaxa 2599,1-62.).

Many secondary metabolites have been isolated from species belonging to the Clavulariidae family, including prostanoids as claviridenone-A (1) (Kitagawa et al., 1985Kitagawa, I., Kobayashi, M., Yasuzawa, T., Son, B.W., Yoshihara, M., Kyogoku, Y., 1985. Marine natural products. XIII. New prostanoids from soft coral. Tetrahedron 41,995-1005.), steroids as yonarasterol A (2) (Iwashima et al., 2001Iwashima, M., Nara, K., Nakamichi, Y., Iguchi, K., 2001. Three new chlorinated marine steroids, yonarasterols G, H and I, isolated from the Okinawan soft coral, Clavularia viridis. Steroids 66,25-32.), both from Clavularia viridis, and terpenoids as the aromadendrane-type sesquiterpenoid (3) from Clavularia koelliker (Iguchi et al., 2004Iguchi, K., Fukaya, T., Yasumoto, A., Watanabe, K., 2004. New marine sesquiterpenoids and diterpenoids from the Okinawan Soft Coral Clavularia koellikeri. J. Nat. Prod. 67,577-583.).

Carijoa riisei (Duchassaing & Michelotti, 1860)

This species is an azooxanthellate octocoral commonly called "snowflake" or "branched pipe" coral. Its senior synonym Telesto riisei is still used in the literature. C. riisei commonly occurs from Florida (USA) to Santa Catarina state (Brazil) and across the Caribbean Sea (Pérez, 2002Pérez, C.D., 2002. Octocorais (Cnidaria, Octocorallia) do litoral pernambucano (Brasil). In Tabarelli, M., Silva, J.M.P. (Eds.) Diagnóstico da biodiversidade de Pernambuco. Recife: Massangana, p. 365-368.). C. riisei has also been reported on the Hawaiian coast and other sites in the Pacific Ocean (Zanzibar, Gulf of Sion, Singapore, Shanghai, Sumatra, Manila and Indonesia), as well as in the East Atlantic Ocean (Concepcion et al., 2008Concepcion, G.T., Crepeau, M.W., Wagner, D., Kahng, S.E., Toonen, R.J., 2008. An alternative to ITS, a hypervariable, single-copy nuclear intron in corals, and its use in detecting cryptic species within the octocoral genus Carijoa. Coral Reefs 27,323-336.). In Brazil,, this species can be found from the mouth of the Amazon River (AP/PA) to Santa Catarina state, and at the Saint Peter and Saint Paul Archipelago. It is mainly found in shallow waters (< 30 m), but it can be found at depths of up to 95 meters (Bayer, 1959Bayer, F.M., 1959. Octocorals from Surinam and the adjacent coasts of South America. Stud. Fauna Suriname and other Guyanas 6,1-43.; Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.).

In general, pregnane-based steroids (Ciavatta et al., 2004Ciavatta, M.L., Gresa, M.P.L., Manzo, E., Gavagnin, M., Wahidulla, S., Cimino, G., 2004. New C21∆20 pregnanes, inhibitors of mitochondrial respiratory chain, from Indopacific octocoral Carijoa sp. Tetrahedron Lett. 45,7745-7748.; Diaz-Marrero et al., 2011Diaz-Marrero, A.R., Porras, G., Aragon, Z., de la Rosa, J.M., Dorta, E., Cueto, M., D'Croz, L., Mate, J., Darias, J., 2011. Carijodienone from the octocoral Carijoa multiflora. A spiropregnane-based steroid. J. Nat. Prod. 74,292-295.), polyhydroxy steroids (Sung and Liu, 2010Sung, P.J., Liu, C.Y., 2010. New 3β,5α,6β-trihydroxysteroids from the octocorals Bebryce sp. (Plexauridae) and Carijoasp. (Clavulariidae). Chem. Pharm. Bull. 58,1240-1242.) and sterol glycosides (Liu et al., 2010Liu, C.Y., Hwang, T.L., Lin, M.R., Chen, Y.H., Chang, Y.C., Fang, L.S., Wang, W. H., Wu, Y.C., Sung, P.J., 2010. Carijoside A, a bioactive sterol glycoside from an octocoral Carijoa sp. (Clavulariidae). Mar. Drugs 8,2014-2020.) have been reported for the genus Carijoa. From C. riiseispecimens collected in Hawaii, punaglandins (4-11) were isolated (Baker and Scheuer, 1994Baker, B.J., Scheuer, P.J., 1994. The punaglandins: 10-chloroprostanoids from the octocorals Telesto riisei. J. Nat. Prod. 57,1346-1353.; Baker et al., 1985Bandurraga, M.M., Fenical, W., 1985. Isolation of the muricins. Evidence of a chemical adaptation against fouling in the marine octocoral Muricea fruticosa (Gorgonacea). Tetrahedron 4,1057-1065.). These compounds, highly functionalized cyclopentadienone and cyclopentenone prostaglandins, are chlorinated at the endocyclic α-carbon position and showed antiproliferative properties (Verbitski et al., 2004Verbitski, S.M., Mullally, J.E., Fitzpatrick, F.A., Ireland, C.M., 2004. Punaglandins, chlorinated prostaglandins, function as potent Michael receptors to inhibit ubiquitin isopeptidase activity. J. Med. Chem. 47,2062-2070.). Two acyl derivatives of β-phenylethylamine (12 and 13), and two tetrahydroxysterols (14 and 15), have been reported for C. riisei collected in Micronesia. All of them elicited mild toxicity to murine leukemia cells (P388) in culture (Liyanage and Schmitz, 1996Liyanage, G.K., Schmitz, F.J., 1996. Cytotoxic amides from the octocorals Telesto riisei. J. Nat. Prod. 59,148-151.).

Concerning the species collected in Brazil, a polyhydroxy sterol (16) and sterol glycosides riiseins A and B (17 and 18) were isolated from the CH2Cl2 crude extract of C. riisei collected in Rio de Janeiro. These compounds elicited in vitro cytotoxicity to HCT 116, a human colon adenocarcinoma cell line (Maia et al., 2000Maia, L.F., Epifanio, R.A., Fenical, W., 2000. New cytotoxic sterol glycosides from the octocoral Carijoa (Telesto) riisei. J. Nat. Prod. 63,1427-1430.). Also, three C2120 pregnanes and seven cholestane derivatives, ranging from steriods C26 to C29, were identified. The major component was found to be pregna-1,4,20-trien-3-one (19) (Maia et al., 1998Maia, L.F., Epifanio, R.A., Pinto, A.C., 1998. Steroid composition in Carijoa riisei (Telestacea). Bol. Soc. Chil. Quim. 43,39-45.). In 2007, Seleghim et al. (2007)Seleghim, M.H.R., Lira, S.P., Kossuga, M.H., Batista, T., Berlinck, R.G.S., Hajdu, E., Muricy, G., Rocha, R.M., Nascimento, G.G.F., Silva, M., Pimenta, E.F., Thiemann, O., Olivo, G., Cavalcanti, B.C., Pessoa, C., de Moraes, M.O., Galetti, F.C.S., Silva, C.L., de Souza, A.O., Peixinho, S., 2007. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Rev. Bras. Farmacogn. 17,287-318. reported the extract of Carijoa sp. from the São Paulo coastline elicit a high cytotoxic activity (against MC7- breast cancer cells, HCT8- colon cancer cells and B16- murine melanoma cancer cells), as well as having a growth inhibition effect on cancer cells growth of more than 75%. In the same year, Kossuga et al. (2007)Kossuga, M.H., de Lira, S.P., Nascimento, A.M., Gambardella, M.T.P., Berlinck, R.G.S., Torres, Y.R., Nascimento, G.G.F., Pimenta, E.F., Silva, M., Thiemann, O.H., Oliva, G., Tempone, A.G., Melhem, M.S.C., de Souza, A.O., Galetti, F.C.S., Silva, C.L., Cavalcanti, B., Pessoa, C.O., Moraes, M.O., Hadju, E., Peixinho, S. Rocha, R.M., 2007. Isolamento e atividades Biológicas de produtos naturais das esponjas Monanchora arbuscula, Aplysina sp., Petromica ciocalyptoides e Topsentia ophiraphidites, da ascídia Didemnum ligulum e do octocoral Carijoa riisei. Quim. Nova 30,1194-1202. reported the isolation of 18-acetoxypregna-1,4,20trien-3-one (20), previously isolated from C. riisei collected at Hawaii (Ross and Scheuer, 1979Ross, R.A., Scheuer, P.J., 1979. 18-Acetoxy- and 18-hydroxypregna-1,4,20-trien-3-one from telestacean octocoral Telesto riisei (Duchassaing & Michelotti). Tetrahedron Lett. 69,4701-4704.). This compound displayed mild cytotoxic activity against the cancer cell lines SF295, MDA-MB435, HCT8 and HL60. The steroid (18-acetoxypregna-1,4,20-trien-3-one) also displayed antileishmanial activity, with an IC50 value of 5.5 microg/ml against promastigotes and 16.88 microg/ml against intracellular amastigotes of L.chagasi; ,and showed mammalian cytotoxicity with an IC50 of 10.6 microg/ ml (Reimão et al., 2008Reimão, J.Q., Migotto, A.E., Kossuga, M.H., Berlinck, R.G.S., Tempone, A.G., 2008. Antiprotozoan activity of Brazilian marine cnidarian extracts and of a modified steroid from the octocoral Carijoa riisei. Parasitol. Res. 103,1445-1450.). More recently, Almeida et al. (2012)Almeida, M.T.R., Tonini, M.L., Guimarães, T.R., Bianco, E.M., Moritz, M.I.G., Oliveira, S.Q., Cabrera, G.M., Palermo, J.A., Reginatto, F.H., Steindel, M., Schenkel, E.P., 2012. Antiinfective pregnane steroid from the octocoral Carijoa riisei collected in South Brazil. Lat. Am. J. Pharm. 31,1489-1495. described the antileishmanial activity against L. braziliensis of pregna-1,4, 20-trien-3-one (19), isolated from C. riisei collected in southern Brazil. Later on, Maia et al. (2013)Maia, L.F., De Oliveira, V.E., Oliveira, M.E.R., Reis, F.D., Fleury, B.G., Edwards, H.G.M., De Oliveira, L.F.C., 2013. Colour diversification in octocorals based on conjugated polyenes: A Raman spectroscopic view. J. Raman Spectrosc. 44,560-566. studied the nature of carotenoids present in the same species collected at Rio de Janeiro.



Family Nephtheidae

This family comprises twenty genera of azooxanthellate species, most of them arborescent, known as carnation corals, tree corals or colt corals. Two species of this family are found in Brazil (Daly et al., 2007Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C.S., Opresko, D.M., Rodríguez, E., Romano, S.L., Stake, J.L., 2007. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668,127-182.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). Numerous secondary metabolites have been isolated from these species, including steroids, diterpenoids, sesquiterpenoids and quinones; and many of them exhibit biological properties (Hu et al., 2011Hu, J.B.Y., Xiuping, L., Xuefeng, Z., Xianwen, Y., Lijuan, L., Yonghong, L. 2011. Chemical and biological studies of soft corals of the Nephtheidae Family. Chem. Biodivers. 8,1011-1032.). Some examples of interesting compounds found in the family Nephtheidae are: acetoxycapnellene 2α,8β,13-triacetoxycapnell9(12)-ene-10α-ol (21) from Dendronephthya rebeola (Grote et al., 2007Grote, D., Hänel, F., Dahse, H.M., Seifert, K., 2007. Capnellenes from the soft coral Dendronephya rubeola. Chem. Biodivers. 4,1683-1693.), paralemnolin A (22) from Paralemnalia thyrsoides (Huang et al., 2005Huang, H.C., Chao, C.H., Liao, J.H., Chiang, M.Y., Dai, C.F., Wu, Y.C., Sheu, J.H., 2005. A novel chlorinated norsesquiterpenoid and two related new metabolites from the soft coral Paralemnalia thyrsoides. Tetrahedron Lett. 46,7711-7714.), a guaiane-based sesquiterpene (23) from Nepthea chabrolii (Coll et al., 1985Coll, J.C., Bowden, B.F., Tapiolas, D.M., Willis, R.H., Djura, P., Streamer, M., Trott, L., 1985. Studies of Australian soft corals-XXXV. Tetrahedron 41,1085-1092.), flavalin E (24) from Lemnalia flava (Su et al., 2011Su, J.H., Lu, Y., Hung, W.Y., Huang, C.Y., Chiang, M.Y., Sung, P.Y., Kuo, Y.H., Sheu, J.H., 2011. Sesquiterpenoids from the Formosan Soft Coral Lemnalia flava. Chem. Pharm. Bull. 59,698-702.), sclerosteroid J (25) from Scleronephthya gracillimum (Fang et al., 2013Fang, H.Y., Hsu, C.H., Chao, C.H., Wen, Z.H., Wu, Y.C., Dai, C.F., Sheu, J.H., 2013. Cytotoxic and anti-inflammatory metabolites from the soft coral Scleronephthya gracillimum. Mar. Drugs 11,1853-1865.), polyoxygenated steroid cholesta-1,4-dien12β,16β, 20α-triol-3-one from Chromonephthea sp. (26) (Geng et al., 2009Geng, H.W., Liao, X.J., Xu, S.H., 2009. 1H and 13C NMR assignments for two new steroids from the coral Chromonephthea sp. Magn. Reson. Chem. 47,359-361.) and tetraprenyl-benzoquinone derivatives from Nepthea sp. (27) (Coll et al., 1985Coll, J.C., Bowden, B.F., Tapiolas, D.M., Willis, R.H., Djura, P., Streamer, M., Trott, L., 1985. Studies of Australian soft corals-XXXV. Tetrahedron 41,1085-1092.).

Chromonephthea braziliensis van Ofwegen, 2005

Ferreira (2003)Ferreira, C.E.L., 2003. Non-indigenous corals at marginal sites. Coral Reefs 22,498. reported in the state of Rio de Janeiro this species as Stereonephthya aff. curvata (8-10 m) and in 2005 Ofwegen (Ofwegen, 2005Ofwegen, L.P., 2005. A new genus of nephtheid soft corals (Octocorallia): Alcyonacea: Nephtheidae from the Indo-Pacific. Zool. Mededelingen 79,1-236.) identified the same specimens as a new species of Chromonephthea. Ferreira noted that it was probably an invasive species possibly introduced to Brazil by an oil platform, in the same way as the scleractinian Tubastraea (Ofwegen, 2005Ofwegen, L.P., 2005. A new genus of nephtheid soft corals (Octocorallia): Alcyonacea: Nephtheidae from the Indo-Pacific. Zool. Mededelingen 79,1-236.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). C. braziliensis holds potential chemical activity which has been proposed by its allelopathic effect against the gorgonian Phyllogorgia dilatata (Ofwegen, 2005Ofwegen, L.P., 2005. A new genus of nephtheid soft corals (Octocorallia): Alcyonacea: Nephtheidae from the Indo-Pacific. Zool. Mededelingen 79,1-236.; Lages et al., 2006Lages, B.G., Fleury, B.G., Ferreira, C.E.L., Pereira, R.C., 2006. Chemical defense of an exotic coral as invasion strategy. J. Exp. Mar. Biol. Ecol. 328,127-135.). The n-hexane extract of C. braziliensis collected in Rio de Janeiro exhibited potent feeding-deterrent properties against a natural assemblage of fish at the natural concentration, and led to the isolation of the compound 23-keto-cladiellin-A (28) (Fleury et al., 2008Fleury, B.G., Lages, B.G., Barbosa, J.P., Kaiser, C.R., Pinto, A.C., 2008. New hemiketal steroid from the introduced soft coral Chromonephthea braziliensis is a chemical defense against predatory fishes. J. Chem. Ecol. 34,987-993.).


Polyenes belonging to the class of parrodienes were also characterized in this species (Maia et al., 2011bMaia, L.F., Fleury, B.G., Lages, B.G., Barbosa, J.P., Pinto, A. C., Castro, H.V., 2011b. Oliveira, V.E., Edwards, H.G.M., Oliveira, L.F.C. Identification of reddish pigments in octocorals by Raman Spectroscopy. J. Raman Spectrosc. 42,653-658.). Recent investigations show that extracts of C. braziliensis are genotoxic when evaluated by micronucleus formation and DNA breakage (Carpes et al., 2013Carpes, R.M., Fleury, B.G., Lages, B.G., Pinto, A.C., Aiub, C.A.F., Felzenszwalb, I., 2013. Mutagenicity, genotoxicity, and scavenging activities of extracts from the soft coral Chromonephthea braziliensis: a possibility of new bioactive compounds. Genet. Mol. Res. 12,3575-3587.). From Chromonephthea sp. collected in the South China Sea, some sterols were isolated (Geng et al., 2009Geng, H.W., Liao, X.J., Xu, S.H., 2009. 1H and 13C NMR assignments for two new steroids from the coral Chromonephthea sp. Magn. Reson. Chem. 47,359-361.), including polyhydroxysteroids (Zhang et al., 2010Zhang, F., Wang, N., Geng, H., Liao, X., Xu, S., 2010. Isolation and identification of two new polyhydroxysteroids. Youji Huaxue 30,1745-1748.).

Neospongodes atlantica Kükenthal, 1903

This is an endemic species found off the coasts of northeastern and eastern Brazil (Castro et al. 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). The feeding deterrence property of the crude extract of N. atlantica collected from the National Marine Park of Abrolhos (Bahia state), was investigated; however it had no apparent effect over this property. In fact, it seemed to stimulate feeding (Epifanio et al., 1999Epifanio, R.A., Martins, D.L., Villaca, R., Gabriel, R., 1999. Chemical defenses against fish predation in three Brazilian octocorals: 11β,12β-epoxypukalide as a feeding deterrent in Phyllogorgia dilatata. J. Chem. Ecol. 25,2255-2265.).

Family Ellisellidae

The family Ellisellidae is represented by four genera and is found mainly at shelf depths, although they can also occur at depths of up to 819 meters. Species of this family are characterized by the presence of sclerites, consisting of double heads and spindles or rods (Cairns, 2007Cairns, S.D., 2007. Studies on western Atlantic Octocorallia (Gorgonacea: Ellisellidae). Part 7: The genera Riisea Duchassaing and Michelotti, 1860 and Nicella Gray, 1870. P. Biol. Soc. Wash. 120,1-38.). For the soft corals of the family Ellisellidae, mainly briarane-type diterpenoids were reported, such as gemmacolide A (29), and polyoxygenated steroids such as suberoretisteroid A (30) from Verrucella umbraculum and glycosides of steroids such as Junceelloside C (31) from Dichotella gemmacea (Jiang et al., 2013Jiang, M., Sun, P., Tang, H., Liu, B.S., Li, T.J., Li, C., Zhang, W., 2013. Steroids glycosylated with both D- and L-arabinoses from the South China sea gorgonian Dichotella gemmacea. J. Nat. Prod. 76,764-768.; Sun et al., 2010Sun, L.L., Shao, C.L., Mei, W.L., Huang, H., Wang, C.Y., 2010. Chemical constituents of gorgonian Verrucella umbraculum from the South China Sea. Biochem. Syst. Ecol. 38,1085-1087.; Li et al., 2013aLi, C., Jiang, M., La, M.P., Li, T.J., Tang, H., Sun, P., Liu, B.S., Yi, Y.H., Liu, Z., Zhang, W., 2013a. Chemistry and tumor cell growth inhibitory activity of 11,20-epoxy-3Z,5(6)E-diene briaranes from the South China sea gorgonian Dichotella gemmaea. Mar. Drugs 11,1565-1582.). Five species of this family are found in Brazil.

Ellisella elongata (Pallas, 1766)

Occurs in the western Atlantic, Florida, the Gulf of Mexico, the Caribbean, the northern coast of South America, and Brazil, where it can be found from Amapá to Santa Catarina (9-706 m) and at some submarine banks in the southeastern region (Deichmann, 1936Deichmann E., 1936. The Alcyonaria of the western part of the Atlantic Ocean. Cambridge: Museum of Comparative Zoology at Harvard College, p. 488.; Bayer, 1959Bayer, F.M., 1959. Octocorals from Surinam and the adjacent coasts of South America. Stud. Fauna Suriname and other Guyanas 6,1-43.; Bayer, 1961Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.; Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). Bayer (1959)Bayer, F.M., 1959. Octocorals from Surinam and the adjacent coasts of South America. Stud. Fauna Suriname and other Guyanas 6,1-43. previously reported two species from Brazilian waters: E. elongata and E. barbadensis. However Castro et al. (2010)Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827. analyzed several Brazilian specimens and opted to classify them as a single species. There are no chemical studies on Ellisella elongata, but many briarane-type diterpenes have been reported for the genera (Sung et al., 2008Sung, P.J., Sheu, J.H., Wang, W.H., Fang, L.S., Chung, H.M., Pai, C.H., Su, Y.D., Tsai, W.T., Chen, B.Y., Lin, M.R., Li, G.Y., 2008. Survey of briarane-type diterpenoids - part III. Heterocycles 75,2627-2648.), including chlorinated compounds, mostly isolated from Ellisella robusta (Wang et al., 2010Wang, S.H., Chang, Y.C., Chiang, M.Y., Chen, Y.H., Hwang, T.L., Weng, C.F., Sung, P.J. 2010. Chlorinated briarane diterpenoids from the sea whip gorgonian corals Junceella fragilis and Ellisella robusta(Ellisellidae). Chem. Pharm. Bull. 58,928-933.; Chang et al., 2010Chang, Y.C., Hwang, T.L., Huang, S.K., Huang, L.W., Lin, M.R., Sung, P.J., 2010. 12-epi-Fragilide G, a new briarane-type diterpenoid from the gorgonian coral Ellisella robusta. Heterocycles 81,991-996.). 11,20-Epoxybriaranes were found to be a chemical marker for gorgonians belonging to the family Ellisellidae (Su et al., 2007Su, Y.M., Fan, T.Y., Sung, P.J., 2007. 11,20-Epoxybriaranes from the gorgonian coral Elisella robusta (Ellisellidae). Nat. Prod. Res. 21,1085-1090.).



Nicella goreaui Bayer, 1973

This species forms delicate colonies that distribute in the waters of the Bahamas, the southern Caribbean, and the state of Maranhão (Brazil) at depths ranging from 45 to 146 m (Cairns, 2007Cairns, S.D., 2007. Studies on western Atlantic Octocorallia (Gorgonacea: Ellisellidae). Part 7: The genera Riisea Duchassaing and Michelotti, 1860 and Nicella Gray, 1870. P. Biol. Soc. Wash. 120,1-38.). Crude extract of N. goreau collected in the Caribbean showed feeding deterrence activity (O'Neal and Pawlik, 2002O'Neal, W., Pawlik, J.R., 2002. A reappraisal of the chemical and physical defenses of Caribbean gorgonian corals against predatory fishes. Mar. Ecol. Prog. Ser. 240,117-126.). 56276900 ext22710

Family Primnoidae

Among the Octocorallia, Primnoidae is the fourth largest family in terms of species richness, and it has worldwide distribution. It is found at depths from 8 to 5,850 m, although there are few records in shallower waters. Some primnoids are very abundant in deep waters, providing a habitat for fish and invertebrates (Cairns and Bayer, 2009Cairns, S.D., Bayer, F.M., 2009. A generic revision and phylogenetic analysis of the Primnoidae (Cnidaria: Octocorallia). Smithsonian Instit. Schol. Press. 629,1-79.). Six species of this family are found in Brazil (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.; Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.). The family Primnoidae is typical of environments that are difficult to access, with low water temperatures and strong currents, which may explain the lack of chemical information on these species. Previous chemical investigations on soft corals of the family Primnoidae led to the isolation of polyoxynated steroid (24R,22E)-24-hydroxycholest-4,22-dien-3-one (32) (Mellado et al., 2004Mellado, G.G., Zubıa, E., Ortega, M.J., Lopez, G.P.J., 2004. New polyoxygenated steroids from the Antarctic octocorals Dasystenella acanthine. Steroids 69,291-299.) and the diterpenoids plumarellide (33) (Stonik et al., 2002Stonik, V.A., Kapustina, I.I., Kalinovsky, A.I., Dmitrenok, P.S., Grebnev, B.B., 2002. New diterpenoids from the far-eastern gorgonian coral Plumarella sp. Tetrahedron Lett. 43,315-317.) and ainigmaptilone A (34) (Iken and Baker, 2003Iken, K.B., Baker, B.J., 2003. Ainigmaptilones, sesquiterpenes from the antarctic gorgonian coral Ainigmaptilon antarcticus. J. Nat. Prod. 66,888-890.).

Convexella magelhaenica (Studer, 1879)

This sea whip has an amphiamerican subantarctic distribution, recorded in southern Chile and Argentina, as well as the Malvinas Islands, Burdwood Bank, and South Orkney Islands (Bayer, 1996Bayer, F.M., 1996. The antarctic genus Callozostron and its relationship to Primnoella (Octocorallia: Gorgonacea:Primnoidae). P. Biol. Soc. Wash. 109,150-203.). In Brazilian waters, C. magelhaenica has been reported in the state of Rio Grande do Sul (Bemvenuti, 1998Bemvenuti, C.E., 1998. Invertebrados Bentônicos. In. Seeliger, U., Odebrecht, U, C., Castello J.P. (Eds). Os ecossistemas costeiro e marinho do extremo sul do Brasil. Rio Grande: Ecoscientia, p. 341).

Almeida et al. (2010)Almeida, M.T.R., Siless, G.E., Perez, C.D., Veloso, M.J., Schejter, L., Puricelli, L., Palermo, J.A., 2010. Dolabellane Diterpenoids from the South Atlantic gorgonian Convexella magelhaenica. J. Nat. Prod. 73,1714-1717. isolated two new bioactive dolabellane diterpenoids (35 and 36) from C. magelhaenica collected in Argentina at a depth of 100m. Both compounds were cytotoxic against a human pancreatic adenocarcinoma cell line at micromolar concentrations.

Dasystenella acanthina (Wright & Studer, 1889)

D. acanthina has been reported in the southwestern Atlantic as well as in Brazilian waters, off the coast of the state of Rio Grande do Sul (8,101 m) (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.).

Two furanosesquiterpenoids; trans-β-farnesene (37) and isofuranodiene (38) (Gavagnin et al., 2003Gavagnin, M., Mollo, E., Castelluccio, F., Crispino, A., Cimino, G., 2003. Sesquiterpene metabolites of the antarctic gorgonian Dasystenella acanthine. J. Nat. Prod. 66,1517-1519.), and polyoxygenated steroids (39-46) (Mellado et al., 2004Mellado, G.G., Zubıa, E., Ortega, M.J., Lopez, G.P.J., 2004. New polyoxygenated steroids from the Antarctic octocorals Dasystenella acanthine. Steroids 69,291-299.), have been isolated from the Patagonian gorgonian D. acanthina.


Plumarella aculeata Cairns & Bayer, 2004

This species is commonly found in the Western Atlantic, on the coasts of Florida (USA), the Bahamas (Caribbean) and the state of São Paulo (Brazil) at depths of 400 to 900 m (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.; Cairns, 2007Cairns, S.D., 2007. Studies on western Atlantic Octocorallia (Gorgonacea: Ellisellidae). Part 7: The genera Riisea Duchassaing and Michelotti, 1860 and Nicella Gray, 1870. P. Biol. Soc. Wash. 120,1-38.). There are no chemical studies on P. aculeata. Two cytotoxic diterpenoids, plumarellide and the ethyl ester of plumarellic acid were isolated from Plumarella sp., found in the Russian Kuril Islands (Stonik et al., 2002Stonik, V.A., Kapustina, I.I., Kalinovsky, A.I., Dmitrenok, P.S., Grebnev, B.B., 2002. New diterpenoids from the far-eastern gorgonian coral Plumarella sp. Tetrahedron Lett. 43,315-317.).

Family Acanthogorgiidae

This family is distributed over the Atlantic Ocean and the Mediterranean Sea, it is subdivided in eight genera, of which only one has been reported in Brazil, represented by two species, (Acanthogorgia aspera and Acanthogorgia schrammi), and yet no chemical studies have been published. For other species of the family Acanthogorgiidae, 9,10-secosterols isolated from methanolic extract of a gorgonian octocoral collected in Japan was lethal to Artemia salina, (LD50 values ranging from 1.0 to 10 ppm) and inhibited insect growth in the silkworm, Bombyx mori (Ochi et al., 1990Ochi, M., Yamada, K., Kume, Y., Kotsuki, H., Shibata, K., 1990. Biologically active constituents of a marine invertebrate Acanthogorgiidae sp. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 32,49-56.). From species of the family Acanthogorgiidae, steroids as Acanthovagasteroid A (47) (Zhang et al., 2004Zhang, W., Guo, Y.W., Mollo, E., Fontana, A., Cimino, G., 2004. Acanthovagasteroids A-D, four new 19-hydroxylated steroids from the South China Sea gorgonian Acanthogorgia vagae Aurivillius. J. Nat. Prod. 67,2083-2085.) and a diversity of terpenes such as eunicellin diterpenes from Muricella subogae (48) (Li et al., 2013bLi, T.T., Tang, X.L., Chen, C.L., Zhang, X.W., Wu, R.C., Zhu, H.Y., Li, P.L., Li, G.Q., 2013b. New eunicellin diterpenes and 9,10-secosteroids from the gorgonian Muricella sibogae. Helv. Chim. Acta 96,1188-1196.), xenicane norditerpenes and diterpenes from Acalycigorgia inermis, such as 9-deoxy-xeniolide-A (49) (Rho et al., 2001Rho, J.-R., Oh, M., Jang, K.H., Cho, K. W., Shin, J., 2001. New xenicane diterpenoids from the gorgonian Acalycigorgia inermis. J. Nat. Prod. 64,540-543.), and guaiazulene-based terpenoids (50, 51) (Seo et al., 1996Seo, Y., Rho, J., Geum, N., Yoon, J.B., Shin, J., 1996. Isolation of guaianoid pigments from the gorgonian Calicogorgia granulosa. J. Nat. Prod. 59,985-986.; Chen et al., 2012aChen, D., Liu, D., Shen, S., Cheng, W., Lin, W., 2012a. Terpenoids from a Chinese gorgonian Anthogorgia sp. and their antifouling activities. Chin. J. Chem. 30,1459-1463.,bChen, D., Yu, S., Ofwegen, L., Proksch, P., Lin, W., 2012b. Anthogorgienes A-O, new guaiazulene-derived terpenoids from Chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities. J Agric Food Chem. 60,112-123.) were isolated.

The steroids acanthovagasteroids A-D were isolated from the gorgonian Acanthogorgia vagae from the South China Sea. This was the first report of the 19-hydroxy steroid from a gorgonian, and the suggested biosynthetic route between 19-nor and 19-hydroxy steroids (Zhang et al., 2004Zhang, W., Guo, Y.W., Mollo, E., Fontana, A., Cimino, G., 2004. Acanthovagasteroids A-D, four new 19-hydroxylated steroids from the South China Sea gorgonian Acanthogorgia vagae Aurivillius. J. Nat. Prod. 67,2083-2085.). Besides steroids, the authors have isolated lindenene, lindestrene, bebryazulene, furanodiene (Zhang et al., 2003Zhang, W., Guo, Y.W., Mollo, E., Cimino, G., 2003. Chemical studies on the sesquiterpenes from the Chinese gorgonian Acanthogorgia vagae aurivillius. Zhongguo Tianran Yaowu 1,13-15.), germacrone, 15-acetoxyfuranodiene, (1R,2E,4Z,7E,11E)cembra-2,4,7,11-tetraene, thunbergol and its 4-epimer (Zhang et al., 2005Zhang, W., Guo, Y.W., Mollo, E., Cimino, G., 2005. Chemical studies on the terpenes from gorgonian Acanthogorgia vagae Aurivillius (II). Zhongguo Tianran Yaowu 3,280-283.). It also has been described a xenicane-based norditerpene, isoacalycixeniolide-A, from the gorgonian Acanthogorgia turgida, found in the coasts of India. Other xenicane norditerpenes from the genus were reported previously (Manzo et al., 2009Manzo, E., Ciavatta, M.L., Gavagnin, M., Villani, G., Quaranta, C., D'Souza, L., Cimino G., 2009. A new xenicane norditerpene from the Indian marine gorgonian Acanthogorgia turgida. Nat. Prod. Res. 23,1664-1670.).

Family Gorgoniidae

The family Gorgoniidae is one of the most abundant and diverse in the Atlantic Ocean. It is characterized by its high morphological plasticity, among other morphological traits, which often complicate taxonomic classification. The polyps are retractable and the stems have an axis of gorgonin surrounding a narrow, hollow, cross-chambered central core. Ten species of this family are found in Brazil (Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.; Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.). The features that separate the members of the different genera include the presence of furanocembranolides, as pukalide (52) and lophotoxin (53) (Missakian et al., 1973Missakian, M.G., Burreson, B.J., Scheuer, P.J., 1973. Pukalide, a furanocembranolide from the soft coral Sinularia abrupta. Tetrahedron 31,2513-2515.; Fenical et al., 1981Fenical, W., Okuda, R.K., Bandurraga, M.M., Culver, P., Jacobs, R.S., 1981. Lophotoxin: a novel neuromuscular toxin from Pacific sea whips of the genus Lophogorgia. Science 212,1512-1514.), the branching pattern, and the morphology of the whole colony. There is an increase in complexity from unbranched whip forms to open branched forms, reticulate forms, and leafy frond forms. The most common natural products from gorgonians are diterpenes (Berrue and Kerr, 2009Berrue, F., Kerr, R.G., 2009. Diterpenes from gorgonian corals. Nat. Prod. Rep. 26,681-710.).

The genus Leptogorgia is, in general, chemically well studied. Initial works isolated some cembrene diterpenoids like lophotoxin (53), a neurotoxin originally isolated from the Pacific Ocean gorgonians L. rigida, L. alba and L.cuspidata (Fenical et al., 1981Fenical, W., Okuda, R.K., Bandurraga, M.M., Culver, P., Jacobs, R.S., 1981. Lophotoxin: a novel neuromuscular toxin from Pacific sea whips of the genus Lophogorgia. Science 212,1512-1514.). In addition to the diterpenoids, some species present cytotoxic polyoxygenated steroids, such as compound 54, isolated from L. sarmentosa collected in the Strait of Gibraltar (Garrido et al., 2000Garrido L., Zubia E., Ortega M.J., Salva J., 2000. Isolation and structure elucidation of new cytotoxic steroids from the gorgonian Leptogorgia sarmentosa. Steroids 65,85-88.).

Leptogorgia punicea (Milne Edwards & Haime, 1857)

Recorded for shallow waters on the Brazilian coast (up to 22 m depth), it can also be found in deeper waters (72 m depth on Florida, USA) (Bayer, 1961Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.; Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). From L. punicea, collected in southeastern Brazil, hydroquinone, common C26 to C29 cholestane sterols, and an uncommon polyhydroxylated sterol, punicin (55), which possess a C-17 hydroxyl group, were isolated (Epifanio et al., 1998Epifanio, R.A., Maia, L.F., Pinto, A.C., Hardt, I., Fenical, W., 1998. Natural products from gorgonian Lophogorgia punicea: isolation and structure elucidation of an unusual 17-hydroxy sterol. J. Braz. Chem. Soc. 9,187-192.). Pigments related to the carotenoid astaxanthin were also characterized in the same species by Raman spectroscopy (Maia et al., 2013Maia, L.F., De Oliveira, V.E., Oliveira, M.E.R., Reis, F.D., Fleury, B.G., Edwards, H.G.M., De Oliveira, L.F.C., 2013. Colour diversification in octocorals based on conjugated polyenes: A Raman spectroscopic view. J. Raman Spectrosc. 44,560-566.).

Leptogorgia setacea (Pallas, 1766)

The species distributes from Chesapeake Bay (USA) to Uruguay at depths up to 60 m (Deichmann, 1936Deichmann E., 1936. The Alcyonaria of the western part of the Atlantic Ocean. Cambridge: Museum of Comparative Zoology at Harvard College, p. 488.; Bayer, 1961Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.; Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). Targett et al. (1983)Targett, N.M., Bishop, S.S., McConnell, O.J., Yoder, J. A., 1983. Antifouling agents against the benthic marine diatom, Navicula salinicola: homarine from the gorgonians Leptogorgia virgulata and L. setacea and analogs. J. Chem. Ecol. 9,817-829. showed that homarine (N-methyl-2-carboxypyridine) (56) isolated from L. setacea inhibits the growth of the fouling diatom, N. salinicola, by 50-60%. A furanocembranolide, 11β,12β-epoxypukalide (57), was isolated from the gorgonian L. setacea, collected in Texas (Ksebati et al., 1984Ksebati, M.B., Ciereszko, L.S., Schmitz, F.J., 1984. 11β,12β-Epoxypukalide, a furanocembranolide from the gorgonian Leptogorgia setacea. J. Nat. Prod. 47,1009-1012.). L. virgulata (= L. setacea) extract inhibits the settlement of the barnacle Balanus amphitrite, activity was attributed to the diterpenoids pukalide (52) and epoxypukalide 57 (Gerhart et al., 1988Gerhart, D.J., Rittschof, D., Mayo, S.W., 1988. Chemical ecology and the search for marine antifoulants. Studies of a predatorprey symbiosis. J. Chem. Ecol. 14,1905-1917.). Gerhart and Coll (1993)Gerhart, D.J., Coll, J.C., 1993. Pukalide, a widely distributed octocoral diterpenoid, induces vomiting in fish. J. Chem. Ecol. 19,2697-2704. demonstrated that pukalide (52), which comprises as much as 0.1-0.5% of the wet tissue weight of L. virgulata, induces vomiting in fish and may function as a defensive toxin by inducing emesis and learned aversion in potential octocoral predators. Further, the reported antimicrobial activity of extract of L. virgulata was attributed to the compound homarine 56 (Shapo et al., 2007Shapo, J.L., Moeller, P.D., Galloway, S.B., 2007. Antimicrobial activity in the common seawhip Leptogorgia virgulata (Cnidaria: Gorgonaceae). Comp. Biochem. Phys. B 148B,65-73.). Conjugated polyenals were also investigated in L. setacea from Brazil (Maia et al., 2011bMaia, L.F., Fleury, B.G., Lages, B.G., Barbosa, J.P., Pinto, A. C., Castro, H.V., 2011b. Oliveira, V.E., Edwards, H.G.M., Oliveira, L.F.C. Identification of reddish pigments in octocorals by Raman Spectroscopy. J. Raman Spectrosc. 42,653-658.; 2013Maia, L.F., De Oliveira, V.E., Oliveira, M.E.R., Reis, F.D., Fleury, B.G., Edwards, H.G.M., De Oliveira, L.F.C., 2013. Colour diversification in octocorals based on conjugated polyenes: A Raman spectroscopic view. J. Raman Spectrosc. 44,560-566.).


Leptogorgia violacea (Pallas, 1766)

Endemic to the Brazilian coast, Leptogorgia violacea is found at Espírito Santo state and Rio de Janeiro (3-60 m) (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). A complex mixture of furanocembranolides from L. violacea was found to be responsible for feeding deterrence of generalist fish. The most potent feeding deterrent identified was lophotoxin (53), followed by deoxylophotoxin (58), and 13-acetoxy-11β,12β-epoxypukalide (59), as well as the furanocembranolides 7-acetoxy-8-hydroxylophotoxin (60) and 3-methoxy-8-hydroxylophotoxin (61) (Epifanio et al, 2000Epifanio, R.A., Maia, L.F., Fenical, W., 2000. Chemical defenses of the endemic Brazilian gorgonian Lophogorgia violacea Pallas (Octocorallia, Gorgonacea). J. Braz. Chem. Soc. 11,584-591.). Polyenals such as parrodienes were also identified in the same species (Maia et al., 2011bMaia, L.F., Fleury, B.G., Lages, B.G., Barbosa, J.P., Pinto, A. C., Castro, H.V., 2011b. Oliveira, V.E., Edwards, H.G.M., Oliveira, L.F.C. Identification of reddish pigments in octocorals by Raman Spectroscopy. J. Raman Spectrosc. 42,653-658.).

Phyllogorgia dilatata (Esper, 1806)

This genus Phyllogorgia is endemic to Brazil and can be found from Fortaleza (Ceará) to Cabo Frio (Rio de Janeiro), Rocas Atoll, Fernando de Noronha and Trindade Island (Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.; Bayer, 1961Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.). The first chemical study of P. dilatata, collected in the state of Rio de Janeiro, revealed the presence of 23,24ξ-dimethylcholesta-5,22-dien-3β-ol (62) ( Kelecom et al., 1980Kelecom, A., Sole-Cava, A.M., Kannengiesser, G.J., 1980. Occurrence of 23,24ε-dimethylcholesta-5,22-dien-3β-ol in the Brazilian gorgonian Phyllogorgia dilatata (Octocorallia, Gorgonacea) and in its associated zooxanthella. B. Soc. Chim. Belg. 89,1013-1014. ). Moreover, nardosinane sesquiterpenes, 11,12-epoxynardosin-1(10)-ene (63) and 12-hydroxynardosin1(10),11(13)-diene (64), were isolated from the same species (Kelecom et al., 1990Kelecom, A., Brick-Peres, M., Fernandes, L., 1990. A new nardosinane sesquiterpene from the Brazilian endemic gorgonian Phyllogorgia dilatata. J. Nat. Prod. 53, 750-752.; Fernandes and Kelecom, 1995Fernandes, L., Kelecom, A., 1995. A further nardosinane sesquiterpene from the gorgonian Phyllogorgia dilatata (Octocorallia, Gorgonacea). An. Acad. Bras. Cienc. 67,171-173.). Further investigation isolated the symbiotic pigment peridinin, a C37 carotenoid with an allenic-lactonic group (65) (Martins and Epifanio, 1998Martins, D.L., Epifanio, R.A., 1998. A new germacrane sesquiterpene from the Brazilian endemic gorgonian Phyllogorgia dilatata Esper. J. Braz. Chem. Soc. 9,586-590.), diadinoxanthin (66) (Maia et al., 2013Maia, L.F., De Oliveira, V.E., Oliveira, M.E.R., Reis, F.D., Fleury, B.G., Edwards, H.G.M., De Oliveira, L.F.C., 2013. Colour diversification in octocorals based on conjugated polyenes: A Raman spectroscopic view. J. Raman Spectrosc. 44,560-566.) and characterized long-chain polyenal pigments, such as compound 67 (Maia et al., 2011aMaia, L.F., Oliveira, V.E., Oliveira, M.E.R., Fleury, B. G., Oliveira, L.F.C., 2011a. Polyenic pigments from the Brazilian octocoral Phyllogorgia dilatata Esper, 1806 characterized by Raman spectroscopy. J. Raman Spectrosc. 43,161-164.).

The icthyodeterrent diterpene 11β,12β-epoxypukalide (57), isolated previously from L. setacea, and the sesquiterpene (E)-germacra-1(10),4(15),7(11)-trien-5-ol-8-one (68) were found in P. dilatata (Martins and Epifanio, 1998Martins, D.L., Epifanio, R.A., 1998. A new germacrane sesquiterpene from the Brazilian endemic gorgonian Phyllogorgia dilatata Esper. J. Braz. Chem. Soc. 9,586-590.). The diterpene 11β,12β -epoxypukalide (57) was proven to to be used as a chemical defensive strategy against natural generalist fish predators (Lages et al., 2006Lages, B.G., Fleury, B.G., Ferreira, C.E.L., Pereira, R.C., 2006. Chemical defense of an exotic coral as invasion strategy. J. Exp. Mar. Biol. Ecol. 328,127-135.). Also, the compound displayed antifouling property when tested on Perna perna (Epifanio et al., 2006Epifanio, R.A., da Gama, B.A.P., Pereira, R.C., 2006. 11β,12βepoxypukalide as the antifouling agent from the Brazilian endemic sea fan Phyllogorgia dilatata Esper. Biochem. Syst. Ecol. 34,446-448.). In another study, the crude organic extract of P. dilatata elicited antifouling activity, inhibiting the settlement of barnacles (Pereira et al., 2002Pereira, R.C., Carvalho, A.G.V., Gama, B.A.P., Coutinho, R., 2002. Field experimental evaluation of secondary metabolites from marine invertebrates as antifoulants. Braz. J. Biol. 62,311-320.). A novel antimicrobial peptide was recently reported for this species, which was able to control the growth of K. pneumoniae, S. flexineri and S. aureus (de Lima et al., 2013De Lima, L.A., Migliolo L., Barreiro e Castro, C., Pires, D. O., Lopez-Abarrategui, C., Goncalves, E.F., Vasconcelos, I.M., Oliveira, J.T.A. Otero-Gonzalez, A.J., Franco, O.L. Dias, S.C. 2013. Identification of a novel antimicrobial peptide from Brazilian coast coral Phyllogorgia dilatata. Protein. Pept. Lett. 20,1153-1158.).


Family Plexauridae

The Plexauridae is a highly diverse family, widely distributed around the world. Currently it comprises the ancient family Paramuriceidae as a subfamily. Twenty-six species of this family are found in Brazil (Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.; Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.).

A recent review of the natural products of the family Plexauridae describes substances already isolated from several species; the most common are terpenoids, mainly guaiane-type diterpenes (69) and other classes of diterpenes like eunicellin (70) and clerodane (71). Moreover, alkaloids as nuttingin A for Euplexaura nuttingi (72), and polyoxygenated steroids such as bebrycoside from Bebryce indica(73) were also isolated (Wang et al., 2012Wang, S.K., Duh, C.Y., 2012. New cytotoxic cembranolides from the soft coral Lobophytum michaelae. Mar. Drugs 10,306-318.).

Bebryce spp.

Two species of this genus have been reported in Brazil: B. cinereaDeichmann, 1936 and B. parastellata Deichmann, 1936 (Jiang et al., 2013Jiang, M., Sun, P., Tang, H., Liu, B.S., Li, T.J., Li, C., Zhang, W., 2013. Steroids glycosylated with both D- and L-arabinoses from the South China sea gorgonian Dichotella gemmacea. J. Nat. Prod. 76,764-768.). There are no chemical studies on this species, but for other species of Bebryce, the presence of a guaiane sesquiterpene (Aknin et al., 1998Aknin, M., Rudi, A., Kashman, Y., Gaydou, E.M., 1998. Bebryazulene, a new guaiane metabolite from the Indian ocean gorganian coral, Bebryce grandicalyx. J. Nat. Prod. 61,1286-1287.), a steroidal glycoside (Yang et al., 2007Yang, J., Qi, S.H., Zhang, S., Xiao, Z.H., Li, Q.X., 2007. Bebrycoside, a new steroidal glycoside from the Chinese gorgonian coral Bebryce indica. Pharmazie, 62,154-155.), and polyhydroxysterols (Sung and Liu, 2010Sung, P.J., Liu, C.Y., 2010. New 3β,5α,6β-trihydroxysteroids from the octocorals Bebryce sp. (Plexauridae) and Carijoasp. (Clavulariidae). Chem. Pharm. Bull. 58,1240-1242.) have been reported.

Heterogorgia uatumani Barreira e Castro, 1990

Registered in the Caribbean and Brazil, this is the only record of the genus on the Atlantic Ocean (Breedy and Guzman, 2011Breedy, O., Guzman, H.M., 2011. A revision of the genus Heterogorgia Verrill, 1868 (Anthozoa: Octocorallia: Plexauridae). Zootaxa 2995,27-44.), found mainly in shallow waters (< 50 m) (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). In Brazil, this species has been recorded at the states of Amapá, Bahia, Espírito Santo, Rio de Janeiro, São Paulo and Santa Catarina at depths up to 68 m (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). Studies of the Brazilian gorgonian H. uatumani have resulted in the discovery of two metabolites, the eunicellane diterpenoid, (6E)-2α,9α-epoxyeunicella6,11(12)-dien-3β-ol (74) and the sesquiterpene lactone heterogorgiolide (75), which inhibit fish feeding under natural conditions (Maia et al., 1999Maia, L.F., Epifanio, R.A., Eve, T., Fenical, W., 1999. New fish feeding deterrents, including a novel sesquiterpenoid heterogorgiolide, from the Brazilian gorgonian Heterogorgia uatumani (Octocorallia, Gorgonacea). J. Nat. Prod. 62,1322-1324.).

Muricea spp.

Four species from the genus Muricea have been registered in Brazil, Muricea atlantica (Kukenthal, 1911Kukenthal, W., 1911. Alcyonarien von der Aru- und Kei-Inseln nach den Sammlungen von Dr. H. Merton, Frankfurt: Senckenbergische Naturforschende Gesellschaft, p. 19-23.), M. flamma (Marques and Castro, 1995Marques, A.C.S.J., Castro, C.B., 1995. Muricea(Cnidaria, Octocorallia) from Brazil, with description of a new species. B. Mar. Sci. 56,161-172.; Breedy and Guzman, 2011Breedy, O., Guzman, H.M., 2011. A revision of the genus Heterogorgia Verrill, 1868 (Anthozoa: Octocorallia: Plexauridae). Zootaxa 2995,27-44.), M. laxa Verrill, 1864 and M. midas Bayer, 1959 (Bayer, 1959Bayer, F.M., 1959. Octocorals from Surinam and the adjacent coasts of South America. Stud. Fauna Suriname and other Guyanas 6,1-43.). Several compounds have been reported for Muricea species: hydrocarbons and eicosanoids (Camacho et al., 2011Camacho, A., D'Armas, H., Ordaz, G., Hernandez, J., 2011. Chemical constituents of the some bioactive fractions of the non-polar extract from the Caribbean octocorals Muricea sp. identified by GC/MS. Ciencia 19,285-292.), tyramine derivatives, sesquiterpenoids, steroidal pregnane glycosides (Murillo-Alvarez and Encarnacion-Dimayuga, 2003Murillo-Alvarez, J., Encarnacion-Dimayuga, R., 2003. New bioactive pregnadiene-derived glycosides from the Gulf of California gorgonian Muricea cf. austere. Pharm. Biol. 41,531-535.; Gutierrez et al, 2006Gutierrez, M., Capson, T., Guzman, H.M., Gonzalez, J., Ortega-Barria, E., Quinoa, E., Riguera, R., 2006. Antiplasmodial metabolites isolated from the marine octocorals Muricea austere. J. Nat. Prod. 69,1379-1383.), norsteroid (Popov et al., 1983Popov, S., Carlson, R.M.K., Djerassi, C., 1983. Minor and trace sterols in marine invertebrates. Part 43. Occurrence and seasonal variation of 19-norcholest-4-en-3-one and 3β-monohydroxy sterols in the Californian gorgonian Muricea californica. Steroids 41,537-548.), 24(28)-epoxide sterol (Lorenzo et al., 2006Lorenzo, M., Cueto, M., D'Croz, L., Mate, J.L., San-Martin, A., Darias, J., 2006. Muriceanol, a 24(28)-epoxide sterol link in the carbon flux toward side-chain dealkylation of sterols. Eur. J. Org. Chem. 3,582-585.), degraded pregnanes (Ortega et al., 2002Ortega, M.J., Zubia, E., Rodríguez, S., Carballo, J.L., Salva, J., 2002. Muricenones A and B: new degraded pregnanes from a gorgonian of the genus Muricea. Eur. J. Org. Chem. 19,3250-3253.), and saponins (Bandurraga and Fenical, 1985Bandurraga, M.M., Fenical, W., 1985. Isolation of the muricins. Evidence of a chemical adaptation against fouling in the marine octocoral Muricea fruticosa (Gorgonacea). Tetrahedron 4,1057-1065.; Gutierrez et al., 2004Gutierrez, M., Capson, T., Guzman, H.M., Quinoa, E., Riguera, R., 2004. L-Galactose as a natural product: isolation from a marine octocoral of the first α-L-galactosyl saponin. Tetrahedron Lett. 45,7833-7836.). Regarding the species collected in Brazil, astaxanthin and polyenals have been identified in M. atlantica and M. flamma, respectively (Maia et al., 2013Maia, L.F., De Oliveira, V.E., Oliveira, M.E.R., Reis, F.D., Fleury, B.G., Edwards, H.G.M., De Oliveira, L.F.C., 2013. Colour diversification in octocorals based on conjugated polyenes: A Raman spectroscopic view. J. Raman Spectrosc. 44,560-566.).


Muriceides hirtus (Pourtalès, 1868)

The species occurs in the western Atlantic off the coasts of Florida (USA), the Caribbean and Brazil, where it has been reported in Amapá (off Amazon River mouth, 234 m) and Rio Grande do Sul (Bayer, 1996Bayer, F.M., 1996. The antarctic genus Callozostron and its relationship to Primnoella (Octocorallia: Gorgonacea:Primnoidae). P. Biol. Soc. Wash. 109,150-203.; Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). The only chemical study of the genera describes the presence of common sterols and nucleosides from Muriceides collaris from China (Shi et al., 2009Shi, X., Tang, X., Li, G., Wang, C., Guan, H., 2009. Studies on chemical constituents of gorgonian Muriceides collaris from the South China Sea. Zhongguo Haiyang Yaowu 282,18-21.).

Muriceopsis flavida (Lamarck, 1815)

Recently recorded in Brazilian waters, Muriceopsis flavida can be distinguished by its pinnate colonies with sparse branches. Previously registered for the Caribbean, it can also be found off the coasts of the states of Maranhão, Pernambuco and Alagoas (Brazil) (Pérez et al., 2011Pérez, C.D., Neves, B.M, Oliveira, D.H.R., 2011. New records of octocorals (Cnidaria: Anthozoa) from the Brazilian coast. Aquat. Biol. 13,203-214.; Bayer, 1961Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.). The first chemical study on M. flavida reported the presence of sterols, 76-82, including 4α-Me sterols 83-87, the biosynthesis of which is normally attributed to the dinoflagellate symbionts in zooxanthellated octocorals (Kokke et al., 1982Kokke, W.C.M.C., Bohlin, L., Fenical, W., Djerassi, C., 1982. Novel dinoflagellate 4α-methylated sterols from four Caribbean gorgonians. Phytochemistry 21,881-887.). From M. flavida collected in the China Sea, two antimicrobial sesquiterpenes, menverins C (88) and D (89) (Liu et al., 2012Liu, T., Tang, H., Gong, W., Sun, P., Liu, B., Li, L., Zhang, W., 2012. Sesquiterpenes from the South China Sea gorgonian Muriceopsis flavida. Yaoxue Shijian Zazhi 30,100-102.), as well as five epidioxy sterols, like 90-94 (Liu et al., 2011Liu, T.F., Tang, H., Li, L., Gong, W., Sun, P., Zhang, W., 2011. 5-α, 8α-epidioxy sterol components in gorgonian Muriceopsis flavidacollected from the South China Sea. Dier Junyi Daxue Xuebao 32,469-472.), were isolated. More recently, three new polyhydroxysterols, named muriflasteroids A-C (95-97), together with sixteen known analogs, were isolated also and exhibited different levels of growth inhibition activity against A549 and MG63 cell lines. Some can significantly induce apoptosis in A549 cells. The same study suggests that the acetylation on 3-OH and the appearance of D7 may decrease the apoptotic activity, while the substitution of 1-OH and the nature of the side chain may also play an important role in the activity (Liu et al., 2013Liu, T.F., Lu, X., Tang, H., Zhang, M.M., Wang, P., Sun, P., Liu, Z.Y., Wang, Z.L., Li, L., Rui, Y.C., Li, T.J., Zhang, W., 2013. 3β, 5α, 6β-Oxygenated sterols from the South China Sea gorgonian Muriceopsis flavida and their tumor cell growth inhibitory activity and apoptosis-inducing function. Steroids 78,108-114.).

Paramuricea placomus (Linnaeus, 1758)

Reported in Europe, North America, the Mediterranean Sea and Brazil, where it can be found in the states of Bahia and Espírito Santo (665 to 935 m) (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). There are no chemical studies on this species, but from the genus Paramuricea, cytotoxic linderazulenes (Reddy et al., 2005Reddy, N.S., Reed, J.K., Longley, R.E., Wright, A.E., 2005. Two new cytotoxic linderazulenes from a deep-sea gorgonian of the genus Paramuricea. J. Nat. Prod. 68,248-250.137.), caffeine (Imre et al., 1987Imre, S., Oztunc, A., Celik, T., Wagner, H., 1987. Isolation of caffeine from the gorgonian Paramuricea chamaeleon. J. Nat. Prod. 50,1187.), linderazulene (Imre et al., 1981Imre, S., Thomson, R.H., Yalhi, B., 1981. Linderazulene, a new naturally occurring pigment from the gorgonian Paramuricea chamaeleon. Experientia 37,442-443.), and simple indole derivatives in P. chamaeleon (Cimino and De Stefano, 1978Cimino, G., De Stefano, S., 1978. Chemistry of mediterranean gorgonians. Simple indole derivatives from Paramuricea chamaeleon. Comp. Biochem. Phys. 61C,361-362.) have been isolated.

Placogorgia atlantica Wright & Studer, 1889

Occurs in Barbados (Caribbean), Amapá, Saint Peter and Saint Paul Archipelago and Bahia at depths up to 1,700 m (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). There are no chemical studies on this species, but a guaianolide yellow pigment was isolated from Placogorgia sp. from Hawaiian waters (Li and Scheuer, 1984Li, M.K.W., Scheuer, P.J., 1984. A guaianolide pigment from a deep sea gorgonian. Tetrahedron Lett. 25,2109-2110.).

Plexaurella dichotoma (Esper, 1791)

Found in Bermuda, Florida, Bahamas, the Antilles (Caribbean) and Parcel Manuel Luiz, Rocas Atoll, and Fernando de Noronha (Brazil) (Bayer, 1961Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). The species has considerable morphological variability, which may explain the high number of synonymies (Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.). The first chemical studies on P. dichotoma, and also the first study on octocorals in Brazil, identified cetyl palmitate in its wax (Sharapin, 1968Sharapin, N., 1968. Composition of Plexaurella dichotoma. Rev. Bras. Farm. 49,331-332.; Rodríguez et al., 1983Rodríguez, A., Benito-Pruna, L., Huneck, S., Henriques, R.D., 1983. Chemical studies of Cuban gorgonians. Part II: Chimyl and batyl dipalmitate from Plexaurella dichotoma. Pharmazie 38,267-269.). Furthermore, Weinheimer et al. (1967)Weinheimer, A.J., Schmitz, F.J., Ciereszko, L.S., 1967. Chemistry of coelenterates. VII. The occurrence of terpenoid compounds in gorgonians. In Drugs Sea, Trans. Drugs Sea Symp. Whashington, USA. p. 135-140. showed that P. dichotoma from Jamaica contained (+)-α-muurolene (98) and (+)-β-bisabolene (99). These sesquiterpenes isolated from gorgonians were enantiomers of those commonly found in terrestrial plants. Di Marzo (1996)Di Marzo, V., Ventriglia, M., Mollo, E., Mosca, M., Cimino, G., 1996. Occurrence and biosynthesis of 11(R)-hydroxyeicosatetraenoic acid (11-R-HETE) in the Caribbean soft coral Plexaurella dichotoma. Experientia 52,834-838. presented evidence in P. dichotoma for the presence of 11-R-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid (100), as well as the enzyme responsible for its biosynthesis.

Plexaurella regia Castro, 1986

This endemic species is found off the coast of the southern parts of Bahia, Brazil. Typical of shallow waters, Castro et al. (2010)Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827. pointed out that this species seems to be restricted to reefs located more than 5 km from the coast.

Epifanio (1999)Epifanio, R.A., Martins, D.L., Villaca, R., Gabriel, R., 1999. Chemical defenses against fish predation in three Brazilian octocorals: 11β,12β-epoxypukalide as a feeding deterrent in Phyllogorgia dilatata. J. Chem. Ecol. 25,2255-2265. studied the potential chemical defenses of the crude extract of P. regia, collected at the National Marine Park of Abrolhos (state of Bahia), and found that it appeared to stimulate feeding, presenting no feeding deterrence property. Octocorals of the genus Plexaurella are known to be the source of a diverse array of sesquiterpenes. A study involving an examination of the terpene chemistry of five of the six known species of this genus to identify links between sesquiterpene composition and species, location, and depth, indicated a high level of variability of sesquiterpene content and essentially no correlation between species and sesquiterpene chemistry, concluding that Plexaurella spp. is a chemically indistinguishable species with respect to terpene chemistry (Frenz-Ross and Kerr, 2009Frenz-Ross, J.L., Kerr, R.G., 2009. Sesquiterpene variability in the gorgonian genus Plexaurella. Comp. Biochem. Phys. C. 150C,125-131.). In addition, gorgonians from the Plexaurella genera are known to contain prostaglandinlike compounds, as well as other products of arachidonic acid lipoxygenation, and the formation of the latter has been suggested as representing the first step in prostaglandin biosynthesis. PGA2 and its ester derivatives comprise as much as 8% of the wet tissue weight of some octocoral species, such as Plexaura homomalla. These high levels of prostaglandins, although initially palatable to fish, may function as defensive toxins by inducing emesis and learned aversions in potential predators (Gerhart and Emesis, 1991Gerhart, D.J., 1991. Emesis, learned aversion, and chemical defense in octocorals: a central role for prostaglandins? Am. J. Physiol. 260,839-843.). For Plexaurella spp. sesquiterpenes and sterols have been reported (Jeffs and Lytle, 1974Jeffs, P.W., Lytle, L.T., 1974. Isolation of (-)-α-curcumene, (-)-β-curcumene, and (+)-β-bisabolene from gorgonian corals. Absolute configuration of (-)-β-curcumene. Lloydia 37,315-17.; Gopichand et al., 1980Gopichand, Y., Schmitz, F.J., Schmidt, P.G., 1980. Marine natural products: two new acyclic sesquiterpene hydrocarbons from the gorgonian Plexaurella grisea. J. Org. Chem. 45,2523-2526.; Pruna et al., 1982Pruna, B.L., Huneck, S., Henriques, R.D., 1982. Chemical studies of a Cuban gorgonian. VIII. (1). Sesquiterpene of the aristolene and open chain type in Plexaurella grisea. Rev. Cub. Farm. 16,280-285.; Rueda et al., 2001aRueda, A., Zubia, E., Ortega, M.J., Salva, J., 2001a. New acyclic sesquiterpenes and norsesquiterpenes from the Caribbean gorgonian Plexaurella grisea. J. Nat. Prod. 64,401-405.,bRueda, A., Zubia, E., Ortega, M.J., Salva, J., 2001b. Structure and cytotoxicity of new polyhydroxylated sterols from the Caribbean gorgonian Plexaurella grisea. Steroids 66, 897-904.; Bashyal et al., 2006Bashyal, B., Desai, P., Rao, K.V., Hamann, M.T., Avery, B.A., Reed, J.K., Avery, M.A., 2006. Terpenes from Eunicea laciniata and Plexaurella nutans. J. Chem. Res. 3,165-167.).

Swiftia exserta (Ellis & Solander, 1786)

Distributed in the western Atlantic along the coast of Florida (USA), the Gulf of Mexico, the eastern Caribbean and Brazil, this species has been seen in the states of Pará (110 m), Maranhão (110 m) and Rio de Janeiro (50 m) (Deichmann, 1936Deichmann E., 1936. The Alcyonaria of the western part of the Atlantic Ocean. Cambridge: Museum of Comparative Zoology at Harvard College, p. 488.; Goldberg, 2001Goldberg, W.M., 2001. The sclerites and geographic distribution of the gorgonian Swiftia exserta (Coelenterata: Octocorallia: Holaxonia). Bull. Biol. Soc. Wash. 10,100-109.; Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). It distributes mainly in deep water, but can also be found in shallower environments (Goldberg, 2001Goldberg, W.M., 2001. The sclerites and geographic distribution of the gorgonian Swiftia exserta (Coelenterata: Octocorallia: Holaxonia). Bull. Biol. Soc. Wash. 10,100-109.).

Two patents exist for S. exserta: one relating to its source of terpenes, obtained through direct culture of microbial populations derived from coral homogenates (Kerr and Brueck, 2007Kerr, R.G., Brueck, T., 2007. Sustainable supply of bioactive marine products PCT, US Patent WO 007037791220070405.) and the other related to an antiproliferative glycosylated pregnene (Wright et al., 2004Wright, A.E., Reed, J.K., Longley, R.E., 2004. Biologically active pregnene compounds,US patent US6784160B120040831.), swiftiapregnene (101).


Family Anthothelidae

The family is composed of species with a ring of longitudinal boundary canals separating the medulla from the cortex (Bayer, 1961Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.). There are thirteen genera, of which four occur in Brazilian waters. Previous studies have reported a tricyclic sesquiterpene and its dimer, named alertenone (102 and 103) from Alertigorgia sp. collected in Australia, and secosteroids (104-110) from Tripalea clavaria (Rodríguez Brasco et al., 2007Rodríguez Brasco, M.F., Genzano, G.N., Palermo, J.A., 2007. New C-secosteroids from the gorgonian Tripalea clavaria. Steroids 72,908-913.; Bokesch et al., 1999Bokesch, H.R., Blunt, J.W., Westergaard, C.K., Cardellina, J.H., Johnson, T.R., Michael, J.A., McKee, T.C., Hollingshead, M.G., Boyd, M.R., 1999. Alertenone, a dimer of suberosenone from Alertigorgia sp. J. Nat. Prod. 62,633-635.).

Tripalea clavaria (Studer, 1878)

This species is a colonial octocoral adapted to different environments. It is distributed across South America, from the coast of Bahia (Brazil) to Argentina (Bayer, 1961Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.; Pérez and Neves, 2007Pérez, C.D., Neves, B.M., 2007. Cnidaria, Anthozoa, Octocorallia, Anthotelidae, Tripalea clavaria (Studer, 1878): Distribution extension, first record for subtropical waters, Bahia, Brazil. Check List 3,91-93.). Seven ∆5, 9,11-secosteroid with a 22S hydroxyl 104-110 were isolated from T. clavaria collected in Argentina (Rodríguez Brasco et al., 2007Rodríguez Brasco, M.F., Genzano, G.N., Palermo, J.A., 2007. New C-secosteroids from the gorgonian Tripalea clavaria. Steroids 72,908-913.). Some of them presented antimicrobial activities.

Family Coralliidae

Two species of the family are recorded in Brazil, Corallium medeaBayer, 1964 and C. niobe Bayer, 1964 (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.), but there are no chemical studies. The only compounds reported for this family were isolated from Corallium sp. and Corallium rubrum. The diterpenes, corabohcin (111) and the coraxeniolides A (112), B (113) and the epimers C and C' (114 and 115) were isolated from the Hawaiian deep sea gorgonian Corallium sp. (Schwartz et al., 1981Schwartz, R.E., Scheuer, P.J., Zabel, V., Watson, W.H., 1981. The coraxeniolides, constituents of pink coral, Corallium sp. Tetrahedron 37,2725-2733.). Corallium rubrum, another species from the Mediterranean Sea, has been widely studied for its polyconjugated pigments. Initial works proposed that canthaxanthin (116) is the main carotenoid in this species (Cvejic et al., 2007Cvejic, J., Tambutte, S., Lotto, S., Mikov, M., Slacanin, I., Allemand, D., 2007. Determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection. Mar. Biol. 152,855-862.), however, recent studies have demonstrated that the nature of the pigments is probably demethylated polyenes (Brambilla et al., 2012Brambilla, L., Tommasini, M., Zerbi, R., 2012. Raman spectroscopy of polyconjugated molecules with eletronic and mechanical confinement the spectrum of Corallium rubrum. J. Raman Spectrosc. 43,1449-1458.).

Family Paragorgiidae

Also known as bubblegum octocorals, the species of this family are abundant and widely distributed in deep waters all over the world. They have unfused sclerites instead of the calcified or corneous skeletons found on most octocorals, and they are extremely important as they provide a three-dimensional habitat for many deep-sea communities of species (Herrera et al., 2010Herrera, S., Baco, A., Sánchez, J.A., 2010. Molecular systematic of the bubblegum coral genera (Paragorgiidae, Octocorallia) and description of a new deep-sea-species. Molecular Phylogenet. Evol. 55,123-135.). The family is comprised by two genera, one of them present in Brazilian waters. The only isolated compounds reported are those from species of Paragorgia genus.

Paragorgia johnsoni Gray, 1862

This species has been reported off the coast of Florida, central Atlantic Ocean, the Mediterranean Sea and the coasts of Brazil, from Bahia (up to 750 m) to Rio de Janeiro (up to 1,059 m) (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.). There are no chemical studies for Paragorgia johnsoni, but some compounds have been reported for the genera. The first natural steroid bearing a C22 thioester in its side chain, parathiosteroids A (117), was isolated from the 2-propanol extract of Paragorgia sp. collected in Madagascar. These compounds displayed cytotoxicity against three human tumor cell lines at micromolar level, and its structureactivity relationship has been investigated (Poza et al., 2008Poza, J.J., Fernandez, R., Reyes, F., Rodríguez, J., Jimenez, C., 2008. Isolation, biological significance, synthesis, and cytotoxic evaluation of new natural parathiosteroids A-C and analogues from the soft coral Paragorgia sp. J. Org. Chem. 73,7978-7984.). In P. arborea, joastaxanthin and canthaxanthin-like carotenoids were identified (Elde et al., 2012Elde, A.C., Pettersen, R., Bruheim, P., Jarnegren, J., Johnsen, G., 2012. Pigmentation and spectral absorbance signatures in deep-water corals from the Trondheimsfjord, Norway. Mar. Drugs 10,1400-1411.). Also, it was shown that lipophilic compounds at high concentrations stimulate defensive responses in red-colored P. arborea, while in white coral colonies it did not produce significant defensive behavioral responses in fish (Bright-Diaz et al., 2011Bright-Diaz, L.M., Strychar, K.B., Shirley, T.C., 2011. Compounds from deep-sea bubblegum corals, Paragorgia arborea, elicit anti-predation behavior in fish. Open Mar. Biol. J. 5,58-67.). For the same species, diterpenes of the xeniane series (118) (D'Ambrosio et al., 1984D'Ambrosio, M., Guerriero, A., Pietra, F., 1984. Arboxeniolide-1, a new naturally occurring xeniolide diterpenoid from the gorgonian Paragorgia arborea of the Crozet Is. (S. Indian Ocean). Z. Naturforsch. 39C,1180-1183.; Stonik et al., 1990Stonik, V.A., Makareva, T.N., Dmitrenok, A.S., 1990. New diterpenoid of the xeniane series from the gorgonian Paragorgia arborea. Khimiya Prirodnykh Soedinenii 1,125-162.) and tetracosapentaenoic acid (Vysotskii et al., 1990Vysotskii, M.V., Popkov, A.A., Svetashev, V.I., 1990. Tetracosapentaenoic (24:5ω6) acid in lipids of some marine coelenterates. Bioorg. Khim. 16,250-253.) have been reported.


Order Pennatulacea

The order includes sea pens and sea pansies, which are distributed throughout all oceans in polar and tropical regions, at depths up to 6,100 meters. The majority is adapted to soft sediments, and has a peduncle, which they use to anchor onto sand or mud. Since these corals do not depend on hard substrate, they can frequently distribute over large areas (Williams, 2011Williams, G.C., 2011. The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PloS ONE 6, e22747.). Pennatulaceans are a highly specialized group of octocorals that differ markedly from other soft corals with reference to their colonial structure and habitat utilization. Morphologically, they are highly diverse, with perhaps 300 or more valid species within 35 genera of fourteen families (McFadden et al., 2010McFadden, C.S., Sánchez, J.A., France, S.C., 2010. Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr. Comp. Biol. 50,389-410.), seven of them reported for Brazil, represented by seventeen species/morphotypes (Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.; Neves and Pérez, 2012Neves, B.M., Pérez, C.D., 2012. A new species of Sclerobelemnon Kölliker, 1872 from Brazil (Octocorallia: Pennatulacea: Kophobelemnidae). Cah. Biol. Mar. 53,429-434.). Regarding chemical studies, briarane-type diterpenes predominate among Pennatulacea (Sung et al., 2008Sung, P.J., Sheu, J.H., Wang, W.H., Fang, L.S., Chung, H.M., Pai, C.H., Su, Y.D., Tsai, W.T., Chen, B.Y., Lin, M.R., Li, G.Y., 2008. Survey of briarane-type diterpenoids - part III. Heterocycles 75,2627-2648.; 2011Sung, P.J., Su, J.H., Wang, W.H., Sheu, J.H., Fang, L.S., Wu, Y.C., Chen, Y.H., Chung, H.M., Su, Y.D., Chang, Y.C., 2011. Survey of briarane-type diterpenoids. Part IV. Heterocycles 83, 1241-1258.).

Family Anthoptilidae

This family, comprised of only two species classified as a single genus, seems to be cosmopolitan, occurring from shelf to abyssal environments.

Anthoptilum murrayi Kölliker, 1880

This deepwater species is found in southern Brazil, in the Campos Basin at depths of 1,059 to 1,114 meters (Arantes et al., 2009Arantes, R.C.M., Castro, C.B., Pires, D.O., Seoane, J.C.S., 2009. Depth and water mass zonation and species associations of cold-water octocoral and stony coral communities in the southwestern Atlantic. Mar. Ecol. Prog Ser. 397,71-79.). There are no chemical studies on this species, but briarane-type diterpenes, as anthoptilide A, have been isolated from the Australian A. kukenthai(119) (Pham et al., 2000Pham, N.B., Butler, M.S., Healy, P.C., Quinn, R.J., 2000. Anthoptilides A-E, new briarane diterpenes from the Australian sea pen Anthoptilum cf. kukenthali. J. Nat. Prod. 63,318-321.).

Family Virgulariidae

This family has colonies with bilateral symmetry and autozooids arranged in leaves (Devictor and Morton, 2010Devictor, S.T., Morton, S.L., 2010. Identification guide to the shallow water (0-200 m) octocorals of the South Atlantic Bight. Zootaxa 2599,1-62.). Five species of this family are found in Brazil (Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.). Chemical studies report their terpenoid content, mainly briarane diterpenoids (120), sesquiterpenoids (121) and steroids (122) (Do and Erickson, 1983Do, M.N., Erickson, K.L., 1983. An aristolane sesquiterpenoid from the sea pen Scytalium splendens. J. Org. Chem. 48,4410-4413.).

Stylatula spp.

Three species have been identified in Brazil: Stylatula brasiliensis Gray, 1870, S. darwini Kölliker, 1870 and S. diadema Bayer, 1959 (Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.). There are no chemical studies on these species, but the diterpene toxin stylatulide, as well as other briaranes, have been isolated from Stylatula sp. collected in shallow waters of Baja California, and Mexico (Wratten et al., 1977Wratten, S.J., Faulkner, D.J., Hirotsu, K., Clardy, J., 1977. Stylatulide, a sea pen toxin. J. Am. Chem. Soc. 99,2824-2825.; Wratten and Faulkner, 1979Wratten, S.J., Faulkner, D.J., 1979. Some diterpenes from the sea pen Stylatula sp. Tetrahedron 35,1907-1912.).

Virgularia presbytes Bayer, 1955

This sea whip is distributed along the east coast of America from Florida to Rio de Janeiro, Brazil (Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.). There are no chemical studies regarding this species, however, fatty acids, sterols, sesquiterpenes and diterpenes have been reported for V. juncea,collected in shallow-waters located on the west coast of Taiwan (Chen et al., 2001Chen, S.P., Sung, P.J., Duh, C.Y., Dai, C.F., Sheu, J.H., 2001. Junceol A, a new sesquiterpenoid from the sea pen Virgularia juncea. J. Nat. Prod. 64,1241-1242.).

Family Renillidae

This family includes only the genus Renilla, known as "sea pansy". It is distinguished by its heart-shaped colonies containing a primary polyp that is broad and flattened, with siphonozooids and autozooids on the upper surface (Devictor and Morton, 2010Devictor, S.T., Morton, S.L., 2010. Identification guide to the shallow water (0-200 m) octocorals of the South Atlantic Bight. Zootaxa 2599,1-62.). Anthozoan octocorals belonging to the genus Renilla are members of sublittoral soft-bottom communities, ranging from nearshore (2 m) to deeper (128 m) waters (Clavico et al., 2007Clavico, E.E.G., Souza, A.T., Gama, B.A.P., Pereira, R.C., 2007. Antipredator defense and phenotypic plasticity of sclerites from Renilla muelleri, a tropical Sea Pansy. Biol. Bull. 213,135-140.). Five species of this family are found in Brazil (Zamponi et al., 1997Zamponi, M.O., Pérez, C.D., Capitoli, E., 1997. El Genero Renilla Lamarck, 1816 (Anthozoa, Pennatulaceae) en aguas de plataforma del sur brasilero. Ann. Mus. Civ. Storia Nat. Giacomo Doria 91,541-553.; Neves, 2010Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.). The only compounds reported are those isolated from R. reniformis, R.muelleri and R. octadentata.

Two conjugated polyunsaturated fatty acids, renillenoic acids, were isolated from the Patagonian species Renilla octodentata. These compounds showed both anti-feeding properties against the generalist fish predator Pagrus pagrus, and anti-settlement activity against cypris larvae of the barnacle Amphibalanus amphitrite (Garcia-Matucheski et al., 2012Garcia-Matucheski, S., Muniain, C., Cutignano, A., Cimino, G., Faimali, M., Piazza, V., Aristizabal, E., Fontana, A., 2012. Renillenoic acids: feeding deterrence and antifouling properties of conjugated fatty acids in Patagonian sea pen. J. Exp. Mar. Biol. Ecol. 416-417,208-214.).

Regarding the species found in Brazil, recent chemical and ecological studies were performed on R. muelleri and R. reniformis collected at Rio de Janeiro: polyenals were characterized by Raman spectroscopy in R. muelleri (Maia et al., 2013Maia, L.F., De Oliveira, V.E., Oliveira, M.E.R., Reis, F.D., Fleury, B.G., Edwards, H.G.M., De Oliveira, L.F.C., 2013. Colour diversification in octocorals based on conjugated polyenes: A Raman spectroscopic view. J. Raman Spectrosc. 44,560-566.) and both species were investigated for their potential chemical and physical defenses against fishes in field feeding assays (Clavico et al., 2013Clavico E.E.G., Gama, B.A.P., Soares, A.R., Cassiano, R.C., 2013. Interaction of chemical and structural components providing defences to sea pansies Renilla reniformis and Renilla muelleri. Mar. Biol. Res. 9,285-292.). On the other hand, briaranetype diterpenoids are the main active secondary metabolites isolated from R. reniformis species.

Renilla reniformis (Pallas, 1766)

This species has been reported in the USA, the Caribbean, Brazil and Argentina. In Brazilian waters, it can be found on Ceará, the Campos Basin, São Paulo, Paraná and Rio Grande do Sul (Medeiros, 2005Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.; Castro et al., 2010Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.; Da Silveira and Morandini, 2011Da Silveira, F.L., Morandini, A.C., 2011. Checklist dos Cnidaria do estado de São Paulo, Brasil. Biota Neotropica 11,1a.). R. reniformisis capable of exhibiting bioluminescence when disturbed, due to the interplay between a luciferase and a Green Fluorescent Protein. The Renilla genus is widely studied in relation to those molecules that have become extremely important for modern biological science (Loening et al., 2007Loening, A., Fenn, T.D., Gambhir, S.S., 2007. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374,1017-1028.). However there are few reports regarding the secondary metabolites of this species. Prior studies on the chemistry of a North Carolina population of R. reniformis resulted in the isolation of antifouling briarane diterpenoids, renillafoulins A-C (123-125), which inhibit the settlement of the larvae of the barnacle Balanus amphitrite, indicating a promising use of those compounds as a method of inhibiting fouling by these organisms, thus providing an alternative to the current toxic materials used in coatings, which cause serious environmental problems (Keifer et al., 1986Keifer, P.A., Rinehart, K.L., Hooper, I.R., 1986. Renilla foulins, antifouling diterpenes from the Sea Pansy Renilla reniformis (Octocorallia). J. Org. Chem., 51,4450-4454.). From the sea pansy collected in shallow waters of Georgia, renillins A-D (126-129) were isolated and it was demonstrated that they deterred feeding of the predatory lesser blue crab, Callinectes similis, as well as of the predatory mummichog fish, Fundulus heteroclitus(Barsby and Kubanek, 2005Barsby, T., Kubanek, J., 2005. Isolation and structure elucidation of feeding deterrent diterpenoids from the Sea Pansy Renilla reniformis. J. Nat. Prod. 68,511-516.).

Concluding remarks

Notwithstanding the extensive Brazilian coastline (ca. 8.000 km), and the distribution of octocorals in most tropical and subtropical marine habitats, only a limited number of these organisms has been described for this region so far. Regarding their chemical or biological activities, from the ca. 107 species of occurrence in Brazil, only twenty species have been studied, thirteen by Brazilian research groups. Among the studied species, 20% are endemic to this country and most belong to families Gorgoniidae (20%) and Plexauridae (35%); some of the richest sources of bioactive compounds in Phylum Cnidaria. A total of 106 compounds were isolated from these twenty species, consisting mostly of steroids (ca. 58%), diterpenes (ca. 15%), sesquiterpenes (ca. 8%) and prostaglandins (ca. 8%), with 3% amines and ca. 6% other compounds from diverse classes. In addition, 9% of the isolated substances are halogenated. The most frequently reported biological activities were antimicrobial, antiproliferative, antipredatory, antifouling, cytotoxic and antiprotozoal.


As pointed out by Leal and co-authors (2012), research strategies focused on less explored taxonomical groups or geographical regions help improve the chances of finding new bioactive molecules. Thus, research on octocorals collected on the Brazilian coasts could represent an interesting source of investigation. This review provides data and references for further chemical and biological research on octocorals, and highlights the great richness of Octocorallia as an important source of new bioactive compounds, with the aim to stimulate research on this promising and abundant class of organisms, which could be better exploited in Brazil.

Acknowledgment

The author M.T.R. de Almeida is grateful to CAPES/PNPD for her research fellowship. The authors M.I.G. Moritz and E.P. Schenkel thank for financial support received by the CNPq. The author C.D. Pérez is grateful to the CNPq (Edital PROTAX 2010) and FACEPE (APQ-2012).

REFERENCES

  • Aknin, M., Rudi, A., Kashman, Y., Gaydou, E.M., 1998. Bebryazulene, a new guaiane metabolite from the Indian ocean gorganian coral, Bebryce grandicalyx J. Nat. Prod. 61,1286-1287.
  • Almeida, M.T.R., Siless, G.E., Perez, C.D., Veloso, M.J., Schejter, L., Puricelli, L., Palermo, J.A., 2010. Dolabellane Diterpenoids from the South Atlantic gorgonian Convexella magelhaenica J. Nat. Prod. 73,1714-1717.
  • Almeida, M.T.R., Tonini, M.L., Guimarães, T.R., Bianco, E.M., Moritz, M.I.G., Oliveira, S.Q., Cabrera, G.M., Palermo, J.A., Reginatto, F.H., Steindel, M., Schenkel, E.P., 2012. Antiinfective pregnane steroid from the octocoral Carijoa riisei collected in South Brazil. Lat. Am. J. Pharm. 31,1489-1495.
  • Arantes, R.C.M., Castro, C.B., Pires, D.O., Seoane, J.C.S., 2009. Depth and water mass zonation and species associations of cold-water octocoral and stony coral communities in the southwestern Atlantic. Mar. Ecol. Prog Ser. 397,71-79.
  • Arantes, R.C.M., Medeiros, M.S., 2006. Primeiro registro de Anthothela grandiflora (Sars, 1856) (Cnidaria, Octocorallia, Anthothelidae) no Brasil. Arq. Mus. Nac. 64,11-17.
  • Baker, B.J., Okuda, R.K., Yu, P.T.K., Scheuer, P.J., 1985. Punaglandins: halogenated antitumor eicosanoids from the octocoral Telesto riisei J. Am. Chem. Soc. 107,2976-2977.
  • Baker, B.J., Scheuer, P.J., 1994. The punaglandins: 10-chloroprostanoids from the octocorals Telesto riisei J. Nat. Prod. 57,1346-1353.
  • Bandurraga, M.M., Fenical, W., 1985. Isolation of the muricins. Evidence of a chemical adaptation against fouling in the marine octocoral Muricea fruticosa (Gorgonacea). Tetrahedron 4,1057-1065.
  • Barsby, T., Kubanek, J., 2005. Isolation and structure elucidation of feeding deterrent diterpenoids from the Sea Pansy Renilla reniformis J. Nat. Prod. 68,511-516.
  • Bashyal, B., Desai, P., Rao, K.V., Hamann, M.T., Avery, B.A., Reed, J.K., Avery, M.A., 2006. Terpenes from Eunicea laciniata and Plexaurella nutans J. Chem. Res. 3,165-167.
  • Bayer, F.M., 1959. Octocorals from Surinam and the adjacent coasts of South America. Stud. Fauna Suriname and other Guyanas 6,1-43.
  • Bayer, F.M., 1961. The shallow-water Octocorallia of the West Indian region. A manual for marine biologists. Stud. Fauna Curaç. Caribb. Isl. 12,1-373.
  • Bayer, F.M., 1981. On some genera of stoloniferous octocorals (Coelenterata: Anthozoa), with descriptions of new taxa. Proc. Biol. Soc. Washington 94,878-901.
  • Bayer, F.M., 1996. The antarctic genus Callozostron and its relationship to Primnoella (Octocorallia: Gorgonacea:Primnoidae). P. Biol. Soc. Wash. 109,150-203.
  • Bemvenuti, C.E., 1998. Invertebrados Bentônicos. In. Seeliger, U., Odebrecht, U, C., Castello J.P. (Eds). Os ecossistemas costeiro e marinho do extremo sul do Brasil. Rio Grande: Ecoscientia, p. 341
  • Berlinck, R.G.S., Hajdu, E., Rocha, R.M., Oliveira, J.H.H.L., Hernández, I.L.C., Seleghim, M.H.R., Granato, A.C., de Almeida, E.V.R., Nuñez, C.V., Muricy, G., Peixinho, S., Pessoa, C., Moraes, M.O., Cavalcanti, B.C., Nascimento, G.G.F., Thiemann, O., Silva, M., Souza, A.O., Silva, C. L., Minarini, P.R.R., 2004. Challenges and rewards of reseach in marine natural products chemistry in Brazil. J. Nat. Prod. 67,510-522.
  • Berrue, F., Kerr, R.G., 2009. Diterpenes from gorgonian corals. Nat. Prod. Rep. 26,681-710.
  • Blunt, J.W., Copp, B.R., Munro, M.H.G., Northcote, P.T., Prinsep, M.R., 2005. Marine Natural Products. Nat. Prod. Rep. 22,15-61.
  • Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G., Prinsep, M.R., 2014. Marine Natural Products. Nat. Prod. Rep. 31,160-258.
  • Bokesch, H.R., Blunt, J.W., Westergaard, C.K., Cardellina, J.H., Johnson, T.R., Michael, J.A., McKee, T.C., Hollingshead, M.G., Boyd, M.R., 1999. Alertenone, a dimer of suberosenone from Alertigorgia sp. J. Nat. Prod. 62,633-635.
  • Brambilla, L., Tommasini, M., Zerbi, R., 2012. Raman spectroscopy of polyconjugated molecules with eletronic and mechanical confinement the spectrum of Corallium rubrum J. Raman Spectrosc. 43,1449-1458.
  • Breedy, O., Guzman, H.M., 2011. A revision of the genus Heterogorgia Verrill, 1868 (Anthozoa: Octocorallia: Plexauridae). Zootaxa 2995,27-44.
  • Bright-Diaz, L.M., Strychar, K.B., Shirley, T.C., 2011. Compounds from deep-sea bubblegum corals, Paragorgia arborea, elicit anti-predation behavior in fish. Open Mar. Biol. J. 5,58-67.
  • Cairns, S.D., 1982. Antarctic and Subantarctic Scleractinia. Antarct. Res. Series 34,1-74.
  • Cairns, S.D., 2007. Studies on western Atlantic Octocorallia (Gorgonacea: Ellisellidae). Part 7: The genera Riisea Duchassaing and Michelotti, 1860 and Nicella Gray, 1870. P. Biol. Soc. Wash. 120,1-38.
  • Cairns, S.D., Bayer, F.M., 2009. A generic revision and phylogenetic analysis of the Primnoidae (Cnidaria: Octocorallia). Smithsonian Instit. Schol. Press. 629,1-79.
  • Cairns, S.D., Kitahara, M.V., 2012. An illustrated key to the genera and subgenera of the Recent azooxanthellate Scleractinia (Cnidaria, Anthozoa), with an attached glossary. ZooKeys 227,1-47.
  • Camacho, A., D'Armas, H., Ordaz, G., Hernandez, J., 2011. Chemical constituents of the some bioactive fractions of the non-polar extract from the Caribbean octocorals Muricea sp. identified by GC/MS. Ciencia 19,285-292.
  • Carpes, R.M., Fleury, B.G., Lages, B.G., Pinto, A.C., Aiub, C.A.F., Felzenszwalb, I., 2013. Mutagenicity, genotoxicity, and scavenging activities of extracts from the soft coral Chromonephthea braziliensis: a possibility of new bioactive compounds. Genet. Mol. Res. 12,3575-3587.
  • Castro, C.B., Medeiros, M.S., Loiola, L.L., 2010. Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist. 44,763-827.
  • Chang, Y.C., Hwang, T.L., Huang, S.K., Huang, L.W., Lin, M.R., Sung, P.J., 2010. 12-epi-Fragilide G, a new briarane-type diterpenoid from the gorgonian coral Ellisella robusta Heterocycles 81,991-996.
  • Chen, D., Liu, D., Shen, S., Cheng, W., Lin, W., 2012a. Terpenoids from a Chinese gorgonian Anthogorgia sp. and their antifouling activities. Chin. J. Chem. 30,1459-1463.
  • Chen, D., Yu, S., Ofwegen, L., Proksch, P., Lin, W., 2012b. Anthogorgienes A-O, new guaiazulene-derived terpenoids from Chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities. J Agric Food Chem. 60,112-123.
  • Chen, S.P., Sung, P.J., Duh, C.Y., Dai, C.F., Sheu, J.H., 2001. Junceol A, a new sesquiterpenoid from the sea pen Virgularia juncea J. Nat. Prod. 64,1241-1242.
  • Ciavatta, M.L., Gresa, M.P.L., Manzo, E., Gavagnin, M., Wahidulla, S., Cimino, G., 2004. New C21∆20 pregnanes, inhibitors of mitochondrial respiratory chain, from Indopacific octocoral Carijoa sp. Tetrahedron Lett. 45,7745-7748.
  • Cimino, G., De Stefano, S., 1978. Chemistry of mediterranean gorgonians. Simple indole derivatives from Paramuricea chamaeleon Comp. Biochem. Phys. 61C,361-362.
  • Clark, M.R., Tittensor, D., Rogers, A.D., Brewin, P., Schlacher, T., Rowden, A., Stocks, K., Consalvey, M., 2006. Seamounts, deep-sea corals and fisheries: vulnerability of deep-sea corals to fishing on seamounts beyond areas of national jurisdiction. Cambridge: UNEP-WCMC.
  • Clavico E.E.G., Gama, B.A.P., Soares, A.R., Cassiano, R.C., 2013. Interaction of chemical and structural components providing defences to sea pansies Renilla reniformis and Renilla muelleri Mar. Biol. Res. 9,285-292.
  • Clavico, E.E.G., Souza, A.T., Gama, B.A.P., Pereira, R.C., 2007. Antipredator defense and phenotypic plasticity of sclerites from Renilla muelleri, a tropical Sea Pansy. Biol. Bull. 213,135-140.
  • Coll, J.C., 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem. Rev. 92,613-631.
  • Coll, J.C., Bowden, B.F., Tapiolas, D.M., Willis, R.H., Djura, P., Streamer, M., Trott, L., 1985. Studies of Australian soft corals-XXXV. Tetrahedron 41,1085-1092.
  • Concepcion, G.T., Crepeau, M.W., Wagner, D., Kahng, S.E., Toonen, R.J., 2008. An alternative to ITS, a hypervariable, single-copy nuclear intron in corals, and its use in detecting cryptic species within the octocoral genus Carijoa Coral Reefs 27,323-336.
  • Correa, H., Aristizabal, F., Duque D., Kerr, R., 2011. Cytotoxic and antimicrobial activity of pseudopterosins and secopseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar. Drugs 9,334-344.
  • Cvejic, J., Tambutte, S., Lotto, S., Mikov, M., Slacanin, I., Allemand, D., 2007. Determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection. Mar. Biol. 152,855-862.
  • Da Silveira, F.L., Morandini, A.C., 2011. Checklist dos Cnidaria do estado de São Paulo, Brasil. Biota Neotropica 11,1a.
  • Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C.S., Opresko, D.M., Rodríguez, E., Romano, S.L., Stake, J.L., 2007. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668,127-182.
  • D'Ambrosio, M., Guerriero, A., Pietra, F., 1984. Arboxeniolide-1, a new naturally occurring xeniolide diterpenoid from the gorgonian Paragorgia arborea of the Crozet Is. (S. Indian Ocean). Z. Naturforsch. 39C,1180-1183.
  • Deichmann E., 1936. The Alcyonaria of the western part of the Atlantic Ocean. Cambridge: Museum of Comparative Zoology at Harvard College, p. 488.
  • De Lima, L.A., Migliolo L., Barreiro e Castro, C., Pires, D. O., Lopez-Abarrategui, C., Goncalves, E.F., Vasconcelos, I.M., Oliveira, J.T.A. Otero-Gonzalez, A.J., Franco, O.L. Dias, S.C. 2013. Identification of a novel antimicrobial peptide from Brazilian coast coral Phyllogorgia dilatata Protein. Pept. Lett. 20,1153-1158.
  • Devictor, S.T., Morton, S.L., 2010. Identification guide to the shallow water (0-200 m) octocorals of the South Atlantic Bight. Zootaxa 2599,1-62.
  • Di Marzo, V., Ventriglia, M., Mollo, E., Mosca, M., Cimino, G., 1996. Occurrence and biosynthesis of 11(R)-hydroxyeicosatetraenoic acid (11-R-HETE) in the Caribbean soft coral Plexaurella dichotoma Experientia 52,834-838.
  • Diaz-Marrero, A.R., Porras, G., Aragon, Z., de la Rosa, J.M., Dorta, E., Cueto, M., D'Croz, L., Mate, J., Darias, J., 2011. Carijodienone from the octocoral Carijoa multiflora. A spiropregnane-based steroid. J. Nat. Prod. 74,292-295.
  • Do, M.N., Erickson, K.L., 1983. An aristolane sesquiterpenoid from the sea pen Scytalium splendens J. Org. Chem. 48,4410-4413.
  • Elde, A.C., Pettersen, R., Bruheim, P., Jarnegren, J., Johnsen, G., 2012. Pigmentation and spectral absorbance signatures in deep-water corals from the Trondheimsfjord, Norway. Mar. Drugs 10,1400-1411.
  • Epifanio, R.A., da Gama, B.A.P., Pereira, R.C., 2006. 11β,12βepoxypukalide as the antifouling agent from the Brazilian endemic sea fan Phyllogorgia dilatata Esper. Biochem. Syst. Ecol. 34,446-448.
  • Epifanio, R.A., Maia, L.F., Fenical, W., 2000. Chemical defenses of the endemic Brazilian gorgonian Lophogorgia violacea Pallas (Octocorallia, Gorgonacea). J. Braz. Chem. Soc. 11,584-591.
  • Epifanio, R.A., Maia, L.F., Pinto, A.C., Hardt, I., Fenical, W., 1998. Natural products from gorgonian Lophogorgia punicea: isolation and structure elucidation of an unusual 17-hydroxy sterol. J. Braz. Chem. Soc. 9,187-192.
  • Epifanio, R.A., Martins, D.L., Villaca, R., Gabriel, R., 1999. Chemical defenses against fish predation in three Brazilian octocorals: 11β,12β-epoxypukalide as a feeding deterrent in Phyllogorgia dilatata J. Chem. Ecol. 25,2255-2265.
  • Fang, H.Y., Hsu, C.H., Chao, C.H., Wen, Z.H., Wu, Y.C., Dai, C.F., Sheu, J.H., 2013. Cytotoxic and anti-inflammatory metabolites from the soft coral Scleronephthya gracillimum Mar. Drugs 11,1853-1865.
  • Fenical, W., Okuda, R.K., Bandurraga, M.M., Culver, P., Jacobs, R.S., 1981. Lophotoxin: a novel neuromuscular toxin from Pacific sea whips of the genus Lophogorgia Science 212,1512-1514.
  • Fernandes, L., Kelecom, A., 1995. A further nardosinane sesquiterpene from the gorgonian Phyllogorgia dilatata (Octocorallia, Gorgonacea). An. Acad. Bras. Cienc. 67,171-173.
  • Ferreira, C.E.L., 2003. Non-indigenous corals at marginal sites. Coral Reefs 22,498.
  • Fleury, B.G., Lages, B.G., Barbosa, J.P., Kaiser, C.R., Pinto, A.C., 2008. New hemiketal steroid from the introduced soft coral Chromonephthea braziliensis is a chemical defense against predatory fishes. J. Chem. Ecol. 34,987-993.
  • Frenz-Ross, J.L., Kerr, R.G., 2009. Sesquiterpene variability in the gorgonian genus Plexaurella Comp. Biochem. Phys. C. 150C,125-131.
  • Garcia-Matucheski, S., Muniain, C., Cutignano, A., Cimino, G., Faimali, M., Piazza, V., Aristizabal, E., Fontana, A., 2012. Renillenoic acids: feeding deterrence and antifouling properties of conjugated fatty acids in Patagonian sea pen. J. Exp. Mar. Biol. Ecol. 416-417,208-214.
  • Garrido L., Zubia E., Ortega M.J., Salva J., 2000. Isolation and structure elucidation of new cytotoxic steroids from the gorgonian Leptogorgia sarmentosa Steroids 65,85-88.
  • Gavagnin, M., Mollo, E., Castelluccio, F., Crispino, A., Cimino, G., 2003. Sesquiterpene metabolites of the antarctic gorgonian Dasystenella acanthine J. Nat. Prod. 66,1517-1519.
  • Geng, H.W., Liao, X.J., Xu, S.H., 2009. 1H and 13C NMR assignments for two new steroids from the coral Chromonephthea sp. Magn. Reson. Chem. 47,359-361.
  • Gerhart, D.J., 1991. Emesis, learned aversion, and chemical defense in octocorals: a central role for prostaglandins? Am. J. Physiol. 260,839-843.
  • Gerhart, D.J., Coll, J.C., 1993. Pukalide, a widely distributed octocoral diterpenoid, induces vomiting in fish. J. Chem. Ecol. 19,2697-2704.
  • Gerhart, D.J., Rittschof, D., Mayo, S.W., 1988. Chemical ecology and the search for marine antifoulants. Studies of a predatorprey symbiosis. J. Chem. Ecol. 14,1905-1917.
  • Goldberg, W.M., 2001. The sclerites and geographic distribution of the gorgonian Swiftia exserta (Coelenterata: Octocorallia: Holaxonia). Bull. Biol. Soc. Wash. 10,100-109.
  • Gomes, P.B., Lira, A.K.F., Naud, J., Santos, A.M., Perez, C.D., 2012. Prey selectivity of the octocoral Carijoa riisei from littoral of Pernambuco, Brazil. An. Acad. Bras. Cienc. 84,157-164.
  • Gopichand, Y., Schmitz, F.J., Schmidt, P.G., 1980. Marine natural products: two new acyclic sesquiterpene hydrocarbons from the gorgonian Plexaurella grisea J. Org. Chem. 45,2523-2526.
  • Grote, D., Hänel, F., Dahse, H.M., Seifert, K., 2007. Capnellenes from the soft coral Dendronephya rubeola Chem. Biodivers. 4,1683-1693.
  • Gutierrez, M., Capson, T., Guzman, H.M., Gonzalez, J., Ortega-Barria, E., Quinoa, E., Riguera, R., 2006. Antiplasmodial metabolites isolated from the marine octocorals Muricea austere J. Nat. Prod. 69,1379-1383.
  • Gutierrez, M., Capson, T., Guzman, H.M., Quinoa, E., Riguera, R., 2004. L-Galactose as a natural product: isolation from a marine octocoral of the first α-L-galactosyl saponin. Tetrahedron Lett. 45,7833-7836.
  • Herrera, S., Baco, A., Sánchez, J.A., 2010. Molecular systematic of the bubblegum coral genera (Paragorgiidae, Octocorallia) and description of a new deep-sea-species. Molecular Phylogenet. Evol. 55,123-135.
  • Hu, J.B.Y., Xiuping, L., Xuefeng, Z., Xianwen, Y., Lijuan, L., Yonghong, L. 2011. Chemical and biological studies of soft corals of the Nephtheidae Family. Chem. Biodivers. 8,1011-1032.
  • Huang, H.C., Chao, C.H., Liao, J.H., Chiang, M.Y., Dai, C.F., Wu, Y.C., Sheu, J.H., 2005. A novel chlorinated norsesquiterpenoid and two related new metabolites from the soft coral Paralemnalia thyrsoides Tetrahedron Lett. 46,7711-7714.
  • Huston, M.A., 1985. Patterns of species diversity on coral reefs. An. Rev. Ecol. System. 16, 149-177.
  • Iguchi, K., Fukaya, T., Yasumoto, A., Watanabe, K., 2004. New marine sesquiterpenoids and diterpenoids from the Okinawan Soft Coral Clavularia koellikeri J. Nat. Prod. 67,577-583.
  • Iken, K.B., Baker, B.J., 2003. Ainigmaptilones, sesquiterpenes from the antarctic gorgonian coral Ainigmaptilon antarcticus J. Nat. Prod. 66,888-890.
  • Imre, S., Oztunc, A., Celik, T., Wagner, H., 1987. Isolation of caffeine from the gorgonian Paramuricea chamaeleon J. Nat. Prod. 50,1187.
  • Imre, S., Thomson, R.H., Yalhi, B., 1981. Linderazulene, a new naturally occurring pigment from the gorgonian Paramuricea chamaeleon Experientia 37,442-443.
  • Iwashima, M., Nara, K., Nakamichi, Y., Iguchi, K., 2001. Three new chlorinated marine steroids, yonarasterols G, H and I, isolated from the Okinawan soft coral, Clavularia viridis Steroids 66,25-32.
  • Jeffs, P.W., Lytle, L.T., 1974. Isolation of (-)-α-curcumene, (-)-β-curcumene, and (+)-β-bisabolene from gorgonian corals. Absolute configuration of (-)-β-curcumene. Lloydia 37,315-17.
  • Jiang, M., Sun, P., Tang, H., Liu, B.S., Li, T.J., Li, C., Zhang, W., 2013. Steroids glycosylated with both D- and L-arabinoses from the South China sea gorgonian Dichotella gemmacea J. Nat. Prod. 76,764-768.
  • Keifer, P.A., Rinehart, K.L., Hooper, I.R., 1986. Renilla foulins, antifouling diterpenes from the Sea Pansy Renilla reniformis (Octocorallia). J. Org. Chem., 51,4450-4454.
  • Kelecom, A., Brick-Peres, M., Fernandes, L., 1990. A new nardosinane sesquiterpene from the Brazilian endemic gorgonian Phyllogorgia dilatata J. Nat. Prod. 53, 750-752.
  • Kelecom, A., Sole-Cava, A.M., Kannengiesser, G.J., 1980. Occurrence of 23,24ε-dimethylcholesta-5,22-dien-3β-ol in the Brazilian gorgonian Phyllogorgia dilatata (Octocorallia, Gorgonacea) and in its associated zooxanthella. B. Soc. Chim. Belg. 89,1013-1014.
  • Kerr, R.G., Brueck, T., 2007. Sustainable supply of bioactive marine products PCT, US Patent WO 007037791220070405.
  • Kitagawa, I., Kobayashi, M., Yasuzawa, T., Son, B.W., Yoshihara, M., Kyogoku, Y., 1985. Marine natural products. XIII. New prostanoids from soft coral. Tetrahedron 41,995-1005.
  • Kokke, W.C.M.C., Bohlin, L., Fenical, W., Djerassi, C., 1982. Novel dinoflagellate 4α-methylated sterols from four Caribbean gorgonians. Phytochemistry 21,881-887.
  • Kossuga, M.H., de Lira, S.P., Nascimento, A.M., Gambardella, M.T.P., Berlinck, R.G.S., Torres, Y.R., Nascimento, G.G.F., Pimenta, E.F., Silva, M., Thiemann, O.H., Oliva, G., Tempone, A.G., Melhem, M.S.C., de Souza, A.O., Galetti, F.C.S., Silva, C.L., Cavalcanti, B., Pessoa, C.O., Moraes, M.O., Hadju, E., Peixinho, S. Rocha, R.M., 2007. Isolamento e atividades Biológicas de produtos naturais das esponjas Monanchora arbuscula, Aplysina sp., Petromica ciocalyptoides e Topsentia ophiraphidites, da ascídia Didemnum ligulum e do octocoral Carijoa riisei Quim. Nova 30,1194-1202.
  • Ksebati, M.B., Ciereszko, L.S., Schmitz, F.J., 1984. 11β,12β-Epoxypukalide, a furanocembranolide from the gorgonian Leptogorgia setacea J. Nat. Prod. 47,1009-1012.
  • Kukenthal, W., 1911. Alcyonarien von der Aru- und Kei-Inseln nach den Sammlungen von Dr. H. Merton, Frankfurt: Senckenbergische Naturforschende Gesellschaft, p. 19-23.
  • Lages, B.G., Fleury, B.G., Ferreira, C.E.L., Pereira, R.C., 2006. Chemical defense of an exotic coral as invasion strategy. J. Exp. Mar. Biol. Ecol. 328,127-135.
  • Leal, M.C., Madeira, C., Brandão, C.A., Puga, J., Calado, R., 2012. Bioprospecting of marine invertebrates for new natural products - A chemical and zoogeographical perspective. Molecules 17,9842-9854.
  • Li, C., Jiang, M., La, M.P., Li, T.J., Tang, H., Sun, P., Liu, B.S., Yi, Y.H., Liu, Z., Zhang, W., 2013a. Chemistry and tumor cell growth inhibitory activity of 11,20-epoxy-3Z,5(6)E-diene briaranes from the South China sea gorgonian Dichotella gemmaea Mar. Drugs 11,1565-1582.
  • Li, M.K.W., Scheuer, P.J., 1984. A guaianolide pigment from a deep sea gorgonian. Tetrahedron Lett. 25,2109-2110.
  • Li, T.T., Tang, X.L., Chen, C.L., Zhang, X.W., Wu, R.C., Zhu, H.Y., Li, P.L., Li, G.Q., 2013b. New eunicellin diterpenes and 9,10-secosteroids from the gorgonian Muricella sibogae Helv. Chim. Acta 96,1188-1196.
  • Lira, A.K.F., Naud, J.P., Gomes, P.B., Santos, A.M., Perez, C.D., 2009. Trophic ecology of the octocoral Carijoa riisei from littoral of Pernambuco, Brazil. I. Composition and spatiotemporal variation of the diet. J. Mar. Biol. Ass. U. K. 89,89-99.
  • Liu, C.Y., Hwang, T.L., Lin, M.R., Chen, Y.H., Chang, Y.C., Fang, L.S., Wang, W. H., Wu, Y.C., Sung, P.J., 2010. Carijoside A, a bioactive sterol glycoside from an octocoral Carijoa sp. (Clavulariidae). Mar. Drugs 8,2014-2020.
  • Liu, T., Tang, H., Gong, W., Sun, P., Liu, B., Li, L., Zhang, W., 2012. Sesquiterpenes from the South China Sea gorgonian Muriceopsis flavida Yaoxue Shijian Zazhi 30,100-102.
  • Liu, T.F., Tang, H., Li, L., Gong, W., Sun, P., Zhang, W., 2011. 5-α, 8α-epidioxy sterol components in gorgonian Muriceopsis flavidacollected from the South China Sea. Dier Junyi Daxue Xuebao 32,469-472.
  • Liu, T.F., Lu, X., Tang, H., Zhang, M.M., Wang, P., Sun, P., Liu, Z.Y., Wang, Z.L., Li, L., Rui, Y.C., Li, T.J., Zhang, W., 2013. 3β, 5α, 6β-Oxygenated sterols from the South China Sea gorgonian Muriceopsis flavida and their tumor cell growth inhibitory activity and apoptosis-inducing function. Steroids 78,108-114.
  • Liyanage, G.K., Schmitz, F.J., 1996. Cytotoxic amides from the octocorals Telesto riisei. J. Nat. Prod. 59,148-151.
  • Loening, A., Fenn, T.D., Gambhir, S.S., 2007. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis J. Mol. Biol. 374,1017-1028.
  • Lorenzo, M., Cueto, M., D'Croz, L., Mate, J.L., San-Martin, A., Darias, J., 2006. Muriceanol, a 24(28)-epoxide sterol link in the carbon flux toward side-chain dealkylation of sterols. Eur. J. Org. Chem. 3,582-585.
  • Maia, L.F., Oliveira, V.E., Oliveira, M.E.R., Fleury, B. G., Oliveira, L.F.C., 2011a. Polyenic pigments from the Brazilian octocoral Phyllogorgia dilatata Esper, 1806 characterized by Raman spectroscopy. J. Raman Spectrosc. 43,161-164.
  • Maia, L.F., De Oliveira, V.E., Oliveira, M.E.R., Reis, F.D., Fleury, B.G., Edwards, H.G.M., De Oliveira, L.F.C., 2013. Colour diversification in octocorals based on conjugated polyenes: A Raman spectroscopic view. J. Raman Spectrosc. 44,560-566.
  • Maia, L.F., Epifanio, R.A., Eve, T., Fenical, W., 1999. New fish feeding deterrents, including a novel sesquiterpenoid heterogorgiolide, from the Brazilian gorgonian Heterogorgia uatumani (Octocorallia, Gorgonacea). J. Nat. Prod. 62,1322-1324.
  • Maia, L.F., Epifanio, R.A., Fenical, W., 2000. New cytotoxic sterol glycosides from the octocoral Carijoa (Telesto) riisei. J. Nat. Prod. 63,1427-1430.
  • Maia, L.F., Epifanio, R.A., Pinto, A.C., 1998. Steroid composition in Carijoa riisei (Telestacea). Bol. Soc. Chil. Quim. 43,39-45.
  • Maia, L.F., Fleury, B.G., Lages, B.G., Barbosa, J.P., Pinto, A. C., Castro, H.V., 2011b. Oliveira, V.E., Edwards, H.G.M., Oliveira, L.F.C. Identification of reddish pigments in octocorals by Raman Spectroscopy. J. Raman Spectrosc. 42,653-658.
  • Manzo, E., Ciavatta, M.L., Gavagnin, M., Villani, G., Quaranta, C., D'Souza, L., Cimino G., 2009. A new xenicane norditerpene from the Indian marine gorgonian Acanthogorgia turgida Nat. Prod. Res. 23,1664-1670.
  • Marques, A.C.S.J., Castro, C.B., 1995. Muricea(Cnidaria, Octocorallia) from Brazil, with description of a new species. B. Mar. Sci. 56,161-172.
  • Martins, D.L., Epifanio, R.A., 1998. A new germacrane sesquiterpene from the Brazilian endemic gorgonian Phyllogorgia dilatata Esper. J. Braz. Chem. Soc. 9,586-590.
  • McFadden, C.S., Sánchez, J.A., France, S.C., 2010. Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr. Comp. Biol. 50,389-410.
  • Medeiros, M.S., 2005. Octocorais (Cnidaria: Anthozoa) da Plataforma, Talude e Bancos Oceânicos ao Largo do Brasil. Brazil. PhD Thesis, Universidade Federal do Rio de Janeiro.
  • Mellado, G.G., Zubıa, E., Ortega, M.J., Lopez, G.P.J., 2004. New polyoxygenated steroids from the Antarctic octocorals Dasystenella acanthine Steroids 69,291-299.
  • Missakian, M.G., Burreson, B.J., Scheuer, P.J., 1973. Pukalide, a furanocembranolide from the soft coral Sinularia abrupta Tetrahedron 31,2513-2515.
  • Mortensen, P.B., Buhl-Mortensen, L., 2004. Distribution of deepwater gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada). Mar. Biol. 144,1223-1238.
  • Murillo-Alvarez, J., Encarnacion-Dimayuga, R., 2003. New bioactive pregnadiene-derived glycosides from the Gulf of California gorgonian Muricea cf. austere Pharm. Biol. 41,531-535.
  • Neves, B.M., 2010. Octocorais (Cnidaria, Anthozoa) da coleção de invertebrados do Departamento de Oceanografia da Universidade Federal de Pernambuco. Brazil PhD Thesis, Universidade Federal de Pernambuco.
  • Neves, B.M., Pérez, C.D., 2012. A new species of Sclerobelemnon Kölliker, 1872 from Brazil (Octocorallia: Pennatulacea: Kophobelemnidae). Cah. Biol. Mar. 53,429-434.
  • Ochi, M., Yamada, K., Kume, Y., Kotsuki, H., Shibata, K., 1990. Biologically active constituents of a marine invertebrate Acanthogorgiidae sp. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 32,49-56.
  • Ofwegen, L.P. van, Haddad, M.A., 2011. A probably invasive new genus and new species of soft coral (Octocorallia: Alcyonacea: Clavulariidae) from Brazil. Zootaxa 3107,38-46.
  • Ofwegen, L.P., 2005. A new genus of nephtheid soft corals (Octocorallia): Alcyonacea: Nephtheidae from the Indo-Pacific. Zool. Mededelingen 79,1-236.
  • O'Neal, W., Pawlik, J.R., 2002. A reappraisal of the chemical and physical defenses of Caribbean gorgonian corals against predatory fishes. Mar. Ecol. Prog. Ser. 240,117-126.
  • Ortega, M.J., Zubia, E., Rodríguez, S., Carballo, J.L., Salva, J., 2002. Muricenones A and B: new degraded pregnanes from a gorgonian of the genus Muricea Eur. J. Org. Chem. 19,3250-3253.
  • Pereira, R.C., Carvalho, A.G.V., Gama, B.A.P., Coutinho, R., 2002. Field experimental evaluation of secondary metabolites from marine invertebrates as antifoulants. Braz. J. Biol. 62,311-320.
  • Pérez, C.D., 2002. Octocorais (Cnidaria, Octocorallia) do litoral pernambucano (Brasil). In Tabarelli, M., Silva, J.M.P. (Eds.) Diagnóstico da biodiversidade de Pernambuco. Recife: Massangana, p. 365-368.
  • Pérez, C.D., Neves, B.M., 2007. Cnidaria, Anthozoa, Octocorallia, Anthotelidae, Tripalea clavaria (Studer, 1878): Distribution extension, first record for subtropical waters, Bahia, Brazil. Check List 3,91-93.
  • Pérez, C.D., Neves, B.M, Oliveira, D.H.R., 2011. New records of octocorals (Cnidaria: Anthozoa) from the Brazilian coast. Aquat. Biol. 13,203-214.
  • Pham, N.B., Butler, M.S., Healy, P.C., Quinn, R.J., 2000. Anthoptilides A-E, new briarane diterpenes from the Australian sea pen Anthoptilum cf. kukenthali J. Nat. Prod. 63,318-321.
  • Popov, S., Carlson, R.M.K., Djerassi, C., 1983. Minor and trace sterols in marine invertebrates. Part 43. Occurrence and seasonal variation of 19-norcholest-4-en-3-one and 3β-monohydroxy sterols in the Californian gorgonian Muricea californica Steroids 41,537-548.
  • Poza, J.J., Fernandez, R., Reyes, F., Rodríguez, J., Jimenez, C., 2008. Isolation, biological significance, synthesis, and cytotoxic evaluation of new natural parathiosteroids A-C and analogues from the soft coral Paragorgia sp. J. Org. Chem. 73,7978-7984.
  • Pruna, B.L., Huneck, S., Henriques, R.D., 1982. Chemical studies of a Cuban gorgonian. VIII. (1). Sesquiterpene of the aristolene and open chain type in Plexaurella grisea Rev. Cub. Farm. 16,280-285.
  • Reddy, N.S., Reed, J.K., Longley, R.E., Wright, A.E., 2005. Two new cytotoxic linderazulenes from a deep-sea gorgonian of the genus Paramuricea J. Nat. Prod. 68,248-250.137.
  • Reimão, J.Q., Migotto, A.E., Kossuga, M.H., Berlinck, R.G.S., Tempone, A.G., 2008. Antiprotozoan activity of Brazilian marine cnidarian extracts and of a modified steroid from the octocoral Carijoa riisei Parasitol. Res. 103,1445-1450.
  • Reina, E., Puentes, C., Rojas, J., García, J., Ramos, F.A., Castellanos, L., Aragón, M., Ospina, L.F., 2011. Fuscoside E: a strong antiinflammatory diterpene from Caribbean octocoral Eunicea fusca Bioorg. Med. Chem. Lett. 21,5888-5891.
  • Rho, J.-R., Oh, M., Jang, K.H., Cho, K. W., Shin, J., 2001. New xenicane diterpenoids from the gorgonian Acalycigorgia inermis J. Nat. Prod. 64,540-543.
  • Rocha, J., Peixe, L., Gomes, N.C.M., Calado, R., 2011. Cnidarians as a source of new marine bioactive compounds - an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9,1860-1886.
  • Rodríguez Brasco, M.F., Genzano, G.N., Palermo, J.A., 2007. New C-secosteroids from the gorgonian Tripalea clavaria Steroids 72,908-913.
  • Rodríguez, A., Benito-Pruna, L., Huneck, S., Henriques, R.D., 1983. Chemical studies of Cuban gorgonians. Part II: Chimyl and batyl dipalmitate from Plexaurella dichotoma Pharmazie 38,267-269.
  • Ross, R.A., Scheuer, P.J., 1979. 18-Acetoxy- and 18-hydroxypregna-1,4,20-trien-3-one from telestacean octocoral Telesto riisei (Duchassaing & Michelotti). Tetrahedron Lett. 69,4701-4704.
  • Rueda, A., Zubia, E., Ortega, M.J., Salva, J., 2001a. New acyclic sesquiterpenes and norsesquiterpenes from the Caribbean gorgonian Plexaurella grisea. J. Nat. Prod. 64,401-405.
  • Rueda, A., Zubia, E., Ortega, M.J., Salva, J., 2001b. Structure and cytotoxicity of new polyhydroxylated sterols from the Caribbean gorgonian Plexaurella grisea. Steroids 66, 897-904.
  • Sammarco, P.W., Coll, J.C., 1998. The chemical ecology of alcyonarian corals (Coelenterata: Octocorallia). In Scheuer, P.J. (Ed.) Bioorganic marine chemistry, Berlin: Springer Verlag, p. 87-116.
  • Schwartz, R.E., Scheuer, P.J., Zabel, V., Watson, W.H., 1981. The coraxeniolides, constituents of pink coral, Corallium sp. Tetrahedron 37,2725-2733.
  • Seleghim, M.H.R., Lira, S.P., Kossuga, M.H., Batista, T., Berlinck, R.G.S., Hajdu, E., Muricy, G., Rocha, R.M., Nascimento, G.G.F., Silva, M., Pimenta, E.F., Thiemann, O., Olivo, G., Cavalcanti, B.C., Pessoa, C., de Moraes, M.O., Galetti, F.C.S., Silva, C.L., de Souza, A.O., Peixinho, S., 2007. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Rev. Bras. Farmacogn. 17,287-318.
  • Seo, Y., Rho, J., Geum, N., Yoon, J.B., Shin, J., 1996. Isolation of guaianoid pigments from the gorgonian Calicogorgia granulosa J. Nat. Prod. 59,985-986.
  • Shapo, J.L., Moeller, P.D., Galloway, S.B., 2007. Antimicrobial activity in the common seawhip Leptogorgia virgulata (Cnidaria: Gorgonaceae). Comp. Biochem. Phys. B 148B,65-73.
  • Sharapin, N., 1968. Composition of Plexaurella dichotoma Rev. Bras. Farm. 49,331-332.
  • Shi, X., Tang, X., Li, G., Wang, C., Guan, H., 2009. Studies on chemical constituents of gorgonian Muriceides collaris from the South China Sea. Zhongguo Haiyang Yaowu 282,18-21.
  • Stonik, V.A., Kapustina, I.I., Kalinovsky, A.I., Dmitrenok, P.S., Grebnev, B.B., 2002. New diterpenoids from the far-eastern gorgonian coral Plumarella sp. Tetrahedron Lett. 43,315-317.
  • Stonik, V.A., Makareva, T.N., Dmitrenok, A.S., 1990. New diterpenoid of the xeniane series from the gorgonian Paragorgia arborea Khimiya Prirodnykh Soedinenii 1,125-162.
  • Su, J.H., Lu, Y., Hung, W.Y., Huang, C.Y., Chiang, M.Y., Sung, P.Y., Kuo, Y.H., Sheu, J.H., 2011. Sesquiterpenoids from the Formosan Soft Coral Lemnalia flava Chem. Pharm. Bull. 59,698-702.
  • Su, Y.M., Fan, T.Y., Sung, P.J., 2007. 11,20-Epoxybriaranes from the gorgonian coral Elisella robusta (Ellisellidae). Nat. Prod. Res. 21,1085-1090.
  • Sun, L.L., Shao, C.L., Mei, W.L., Huang, H., Wang, C.Y., 2010. Chemical constituents of gorgonian Verrucella umbraculum from the South China Sea. Biochem. Syst. Ecol. 38,1085-1087.
  • Sung, P.J., Liu, C.Y., 2010. New 3β,5α,6β-trihydroxysteroids from the octocorals Bebryce sp. (Plexauridae) and Carijoasp. (Clavulariidae). Chem. Pharm. Bull. 58,1240-1242.
  • Sung, P.J., Sheu, J.H., Wang, W.H., Fang, L.S., Chung, H.M., Pai, C.H., Su, Y.D., Tsai, W.T., Chen, B.Y., Lin, M.R., Li, G.Y., 2008. Survey of briarane-type diterpenoids - part III. Heterocycles 75,2627-2648.
  • Sung, P.J., Su, J.H., Wang, W.H., Sheu, J.H., Fang, L.S., Wu, Y.C., Chen, Y.H., Chung, H.M., Su, Y.D., Chang, Y.C., 2011. Survey of briarane-type diterpenoids. Part IV. Heterocycles 83, 1241-1258.
  • Targett, N.M., Bishop, S.S., McConnell, O.J., Yoder, J. A., 1983. Antifouling agents against the benthic marine diatom, Navicula salinicola: homarine from the gorgonians Leptogorgia virgulata and L. setacea and analogs. J. Chem. Ecol. 9,817-829.
  • Verbitski, S.M., Mullally, J.E., Fitzpatrick, F.A., Ireland, C.M., 2004. Punaglandins, chlorinated prostaglandins, function as potent Michael receptors to inhibit ubiquitin isopeptidase activity. J. Med. Chem. 47,2062-2070.
  • Vysotskii, M.V., Popkov, A.A., Svetashev, V.I., 1990. Tetracosapentaenoic (24:5ω6) acid in lipids of some marine coelenterates. Bioorg. Khim. 16,250-253.
  • Wang, L.H., Sheu, J.H., Kao, S.Y., Su, J.H., Chen, Y.H., Chen, Y.H., Su, Y.D., Chang, Y.C., Fang, L.S., Wang, W.H., Wu, Y.C., Sung, P.J., 2012. Natural product chemistry of gorgonian corals of the family Plexauridae distributed in the Indo-Pacific Ocean. Mar. Drugs 10,2415-2434.
  • Wang, S.H., Chang, Y.C., Chiang, M.Y., Chen, Y.H., Hwang, T.L., Weng, C.F., Sung, P.J. 2010. Chlorinated briarane diterpenoids from the sea whip gorgonian corals Junceella fragilis and Ellisella robusta(Ellisellidae). Chem. Pharm. Bull. 58,928-933.
  • Wang, S.K., Duh, C.Y., 2012. New cytotoxic cembranolides from the soft coral Lobophytum michaelae Mar. Drugs 10,306-318.
  • Weinheimer, A.J., Schmitz, F.J., Ciereszko, L.S., 1967. Chemistry of coelenterates. VII. The occurrence of terpenoid compounds in gorgonians. In Drugs Sea, Trans. Drugs Sea Symp. Whashington, USA. p. 135-140.
  • Wells, J.W., 1956. Scleractinia. R., In Moore, C. (Ed.) Treatise on Invertebrate Paleontology, Part F, Coelenterata. Washington: Kansas Press, p. 328-444.
  • Williams, G.C., 2011. The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PloS ONE 6, e22747.
  • Wratten, S.J., Faulkner, D.J., 1979. Some diterpenes from the sea pen Stylatula sp. Tetrahedron 35,1907-1912.
  • Wratten, S.J., Faulkner, D.J., Hirotsu, K., Clardy, J., 1977. Stylatulide, a sea pen toxin. J. Am. Chem. Soc. 99,2824-2825.
  • Wright, A.E., Reed, J.K., Longley, R.E., 2004. Biologically active pregnene compounds,US patent US6784160B120040831.
  • Yang, J., Qi, S.H., Zhang, S., Xiao, Z.H., Li, Q.X., 2007. Bebrycoside, a new steroidal glycoside from the Chinese gorgonian coral Bebryce indica Pharmazie, 62,154-155.
  • Yeh, T.T., Wang, S.K., Dai, C.F., Duh, C.Y., 2012. Briacavatolides A-C, new briaranes from the Taiwanese octocorals Briareum excavatum Mar. Drugs 10,1019-1026.
  • Zamponi, M.O., Pérez, C.D., Capitoli, E., 1997. El Genero Renilla Lamarck, 1816 (Anthozoa, Pennatulaceae) en aguas de plataforma del sur brasilero. Ann. Mus. Civ. Storia Nat. Giacomo Doria 91,541-553.
  • Zhang, F., Wang, N., Geng, H., Liao, X., Xu, S., 2010. Isolation and identification of two new polyhydroxysteroids. Youji Huaxue 30,1745-1748.
  • Zhang, W., Guo, Y.W., Mollo, E., Cimino, G., 2003. Chemical studies on the sesquiterpenes from the Chinese gorgonian Acanthogorgia vagae aurivillius Zhongguo Tianran Yaowu 1,13-15.
  • Zhang, W., Guo, Y.W., Mollo, E., Cimino, G., 2005. Chemical studies on the terpenes from gorgonian Acanthogorgia vagae Aurivillius (II). Zhongguo Tianran Yaowu 3,280-283.
  • Zhang, W., Guo, Y.W., Mollo, E., Fontana, A., Cimino, G., 2004. Acanthovagasteroids A-D, four new 19-hydroxylated steroids from the South China Sea gorgonian Acanthogorgia vagae Aurivillius J. Nat. Prod. 67,2083-2085.

Publication Dates

  • Publication in this collection
    Jul-Aug 2014

History

  • Received
    11 Mar 2014
  • Accepted
    29 May 2014
Sociedade Brasileira de Farmacognosia Universidade Federal do Paraná, Laboratório de Farmacognosia, Rua Pref. Lothario Meissner, 632 - Jd. Botânico, 80210-170, Curitiba, PR, Brasil, Tel/FAX (41) 3360-4062 - Curitiba - PR - Brazil
E-mail: revista@sbfgnosia.org.br