Acessibilidade / Reportar erro

Anatomical and histochemical analysis of Dysphania ambrosioides supported by light and electron microscopy

ABSTRACT

Dysphania ambrosioides (L.) Mosyakin & Clemants (syn: Chenopodium ambrosoides L.), Amaranthaceae, popularly known as “mastruz”, is an herb widely used in Brazil as anthelmintic. To contribute to the knowledge about medicinal plants, a microscopic analysis was accomplished to describe the main anatomical characters of root, stem, petiole and leaf blade of D. ambrosioides and histochemical tests were performed on the leaf blade. Cross-sections were obtained, by hand, for microscopic analysis of root, stem, petiole and leaf blade; to the leaf blade were still made paradermal sections, scanning electron microscopy analysis, maceration and histochemical tests. The main characters useful in the identification of the plant were: anomalous secondary thickening in the root and stem; presence of idioblasts containing crystal sand in the root, stem, petiole and leaf blade; in these there are also idioblasts with druses; presence of non-glandular and glandular trichomes in the stem, petiole and leaf blade; stomata on the stem, petiole and leaf blade, identified in these as anomocytic and anisocytic; dorsiventral mesophyll and collateral vascular bundles. Maceration revealed that the vessel elements are helical type. Through the histochemical tests, it was evidenced the presence of lipophilic substances, essential oils, oleoresins, phenolic compounds, starch, lignin and calcium oxalate crystals. This work provides support to the quality control of the species.

Keywords:
Anatomy; Amaranthaceae; Dysphania ambrosioides; Histochemistry; Mastruz; Microscopic analysis

Introduction

The family Chenopodiaceae was comprised about 102 genera and 1400 species distributed worldwide (Joly, 2002Joly, A.B., 2002. Botânica: introdução à taxonomia vegetal, 13th ed. Companhia Editora, São Paulo.). Recent molecular phylogenetic studies include representatives of the family Chenopodiaceae in the family Amaranthaceae. Some species of the genus Chenopodium were transferred to the genus Dysphania, as Chenopodium ambrosioides L., which is currently known as Dysphania ambrosioides (L.) Mosyakin & Clemants (Fuentes-Bazan et al., 2012aFuentes-Bazan, S., Mansion, G., Borsch, T., 2012a. Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol. Phylogenetics Evol. 62, 359-374.,bFuentes-Bazan, S., Uotila, P., Borsch, T., 2012b. A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42, 5-24.; Senna, 2016Senna, L., 2016. Dysphania in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB139867 (accessed January 2016).
http://floradobrasil.jbrj.gov.br/jabot/f...
).

D. ambrosioides is popularly known as epazote, Mexican tea, American wormseed, paico, mastruz and erva-de-Santa-Maria (Kliks, 1985Kliks, M.M., 1985. Studies on the traditional herbal anthelmintic Chenopodium ambrosioides L.: ethnopharmacological evaluation and clinical field trials. Soc. Sci. Med. 21, 879-886.; Albuquerque et al., 2009Albuquerque, U.P., Araújo, T.A.S., Ramos, M.A., Nascimento, V.T., Lucena, R.F.P., Monteiro, J.M., Alencar, N.L., Araújo, E.L., 2009. How ethnobotany can aid biodiversity conservation: reflections on investigations in the semi-arid region of NE Brazil. Biodivers. Conserv. 18, 127-150.). The species is native to Central and South America, originated, probably, from Mexico. It has spontaneous growth in tropical and subtropical regions (mainly America and Africa) and also in temperate zones (from the Mediterranean to Central Europe) (Kismann, 1991Kismann, K.G., 1991. Plantas infestantes e nocivas. BASF Brasileira, São Paulo.). In Brazil, its distribution is extensive, occurring in almost all the territory (Sousa et al., 2004Sousa, M.P., Matos, M.E.O., Matos, F.J.A., Machado, M.I.L., Craveiro, A.A., 2004. Constituintes químicos ativos e propriedades biológicas de plantas medicinais brasileiras. Editora UFC, Fortaleza.; Lima et al., 2006Lima, J.L.S., Furtado, D.A., Pereira, J.P.G., Baracuthy, J.G.V., Xavier, H.S., 2006. Plantas medicinais de uso comum no Nordeste do Brasil. Campina Grande.).

It is an herb that reaches up to 1 m high, being highly branched. The leaves are alternate, elongated, with jagged edges, acute apex, hairy and have different sizes, where the smaller are located on top of the plant and are sessile; the largest stand at the bottom and have short petiole. They have a strong and characteristic smell. The inflorescence is the racemosa type, presenting small flowers green colored. The seeds are numerous, spherical and have black color (Cruz, 1995Cruz, G.L., 1995. Dicionário das plantas úteis do Brasil, 5th ed. Editora Bertrand Brasil, Rio de Janeiro.; Lorenzi and Matos, 2002Lorenzi, H., Matos, F.J.A., 2002. Plantas medicinais no Brasil: nativas e exóticas. Editora Instituto Plantarum, Nova Odessa.; Matos, 2007Matos, F.J.A., 2007. Plantas medicinais: guia de seleção e emprego das plantas usadas em fitoterapia no Nordeste do Brasil, 3rd ed. Imprensa Universitária, Fortaleza.; Lorenzi, 2008Lorenzi, H., 2008. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas, 4th ed. Editora Instituto Plantarum, Nova Odessa.).

The plant is considered by the World Health Organization as one of the most used among traditional medicines in the world (Lorenzi and Matos, 2002Lorenzi, H., Matos, F.J.A., 2002. Plantas medicinais no Brasil: nativas e exóticas. Editora Instituto Plantarum, Nova Odessa.). The leaves are the part of the plant most often used in folk medicine as anthelmintic and also as antifungal (Taylor, 2005Taylor, L., 2005. The Healing Power of Rainforest Herbs: A Guide to Understanding and Using Herbal Medicinals. Square One Publishers, Garden City Park, NY.; Fenner et al., 2006Fenner, R., Betti, A.H., Mentz, L.A., Rates, S.M.K., 2006. Plantas utilizadas na medicina popular brasileira com potencial atividade antifúngica. Rev. Bras. Cienc. Farm. 42, 369-394.; Neiva et al., 2011Neiva, V.A., Ribeiro, M.N.S., Cartágenes, M.S.S., Moraes-Coutuinho, D.F., Nascimento, F.R.F., Reys, A.S., Amaral, F.M.M., 2011. Estudos pré-clínicos de atividade giardicida de Chenopodium ambrosioides L. e a padronização dos extratos na pesquisa e desenvolvimento de fitoterápicos. Rev. Ciên. Saúde 13, 155-165.), for digestive disorders, muscle pains and bone fractures (Santayana et al., 2005Santayana, M.P., Blanco, E., Morales, R., 2005. Plants known as té in Spain: an ethno-pharmaco-botanical review. J. Ethnopharmacol. 98, 1-19.; Garcia et al., 2010Garcia, D., Domingues, M.V., Rodrigues, E., 2010. Ethnopharmacological survey among migrants living in the southeast Atlantic forest of Diadema, São Paulo, Brazil. J. Ethnobiol. Ethnomed. 6, 1-19.). In the Northeast of Brazil, where the species is widely used, the leaves are mixed in a blender with milk for flu treatments (Morais et al., 2005Morais, S.M., Dantas, J.D.P., Silva, A.R.A., Magalhães, E.F., 2005. Plantas medicinais usadas pelos índios Tapebas do Ceará. Rev. Bras. Farmacogn. 15, 169-177.). In endemic areas of leishmaniasis, the population often uses its leaves in the topical treatment of ulcers caused by the disease (França et al., 1996França, F., Lago, E.L., Marsden, P.D., 1996. Plants used in the treatment of leishmanial ulcers due to Leishmania (viannia) braziliensis in the endemic area of Bahia, Brazil. Rev. Soc. Bras. Med. Trop. 29, 229-232.).

Phytochemical studies have identified polyphenols and terpenes as the main constituents of D. ambrosioides (Jorge et al., 1986Jorge, L.I.F., Ferro, V.O., Koschtschak, M.R.W., 1986. Diagnose comparativa das espécies Chenopodium ambrosioides L. (erva-de-santa-maria) e Coronopus didymus (L.) Sm (mastruço): principais características morfo-histológicas e químicas. Rev. Bras. Farmacogn. 1, 143-153.; Jain et al., 1990Jain, N., Sarwar Alam, M., Kamil, M., Ilyas, M., Niwa, M., Sakae, A., 1990. Two flavonol glycosides from Chenopodium ambrosioides. Phytochemistry 29, 3988-3991.; Paré et al., 1993Paré, P.W., Zajicek, J., Ferracini, V.L., Melo, I.S., 1993. Antifungal terpenoids from Chenopodium ambrosioides. Biochem. Syst. Ecol. 21, 649-653.; Kiuchi et al., 2002Kiuchi, F., Itano, Y., Uchiyama, N., Honda, G., Tsubouchi, A., Nakajima-Shimada, J., Aoki, T., 2002. Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J. Nat. Prod. 65, 509-512.; Hegazy and Farrag, 2007Hegazy, A.K., Farrag, H.F., 2007. Allelopathic potential of Chenopodium ambrosioides on germination and seedling growth of some cultivated and weed plants. Glob. J. Biotechnol. Biochem. 2, 1-9.; Hallala et al., 2010Hallala, A., Benalia, S., Markouk, M., Bekkouchea, K., Larhsinia, M., Chaitb, A., Romanec, A., Abbada, A., El Abdounid, M.K., 2010. Evaluation of the analgesic and antipyretic activities of Chenopodium ambrosioides L. Asian J. Exp. Biol. Sci. 1, 894-897.; Jardim et al., 2010Jardim, C.M., Jham, G.N., Dhingra, O.D., Freire, M.M., 2010. Chemical composition and antifungal activity of the hexane extract of the Brazilian Chenopodium ambrosioides L. J. Braz. Chem. Soc. 21, 1814-1818.; Neiva et al., 2011Neiva, V.A., Ribeiro, M.N.S., Cartágenes, M.S.S., Moraes-Coutuinho, D.F., Nascimento, F.R.F., Reys, A.S., Amaral, F.M.M., 2011. Estudos pré-clínicos de atividade giardicida de Chenopodium ambrosioides L. e a padronização dos extratos na pesquisa e desenvolvimento de fitoterápicos. Rev. Ciên. Saúde 13, 155-165.; Okhale et al., 2012Okhale, S.E., Egharevba, H.O., Ona, E.C., Kunle, O.F., 2012. Phytochemical and proximate analyses and thin layer chromatography fingerprinting of the aerial part of Chenopodium ambrosioides Linn. (Chenopodiaceae). J. Med. Plants Res. 6, 2289-2294.; Barros et al., 2013Barros, L., Pereira, E., Calhelha, R.C., Dueñas, M., Carvalho, A.M., Santos-Buelga, C., Ferreira, I.C.F.R., 2013. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 5, 1732-1740.; Sá, 2013Sá, R.D., 2013. Estudo farmacognóstico de Chenopodium ambrosioides L. (Chenopodiaceae). Recife, 104f. Dissertação de Mestrado, Programa de Pós-graduação em Ciências Farmacêuticas. Universidade Federal de Pernambuco.). The essential oil of the leaves is mainly composed of monoterpenes, but the literature shows that there is wide variation both in its composition and in its percentage of constituents (Onocha et al., 1999Onocha, P.A., Ekundayo, O., Eramo, T., Laakso, I., 1999. Essential oil constituents of Chenopodium ambrosioides L. leaves from Nigeria. J. Essent. Oil Res. 11, 220-222.; Gupta et al., 2002Gupta, D., Charles, R., Mehta, V.K., Garg, S.N., Kumar, S., 2002. Chemical composition of the essential oil of Chenopodium ambrosioides L. from the southern hills of India. J. Essent. Oil Res. 14, 93-94.; Cavalli et al., 2004Cavalli, J., Tomi, F., Bernardini, A., Casanova, J., 2004. Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC–MS and 13C NMR spectroscopy: quantitative determination of ascaridole a heat-sensitive compound. Phytochem. Anal. 15, 275-279.; Jardim et al., 2010Jardim, C.M., Jham, G.N., Dhingra, O.D., Freire, M.M., 2010. Chemical composition and antifungal activity of the hexane extract of the Brazilian Chenopodium ambrosioides L. J. Braz. Chem. Soc. 21, 1814-1818.; Sá et al., 2014Sá, R.D., Galvão, M.A.M., Ferreira, M.R.A., Soares, L.A.L., Randau, K.P., 2014. Chemical composition of the essential oil from leaves of Chenopodium ambrosioides L. grown in Recife-PE, Brazil. Rev. Bras. Farm. 95, 855-866.).

Several biological activities have been reported for D. ambrosioides (Sá et al., 2015Sá, R.D., Soares, L.A.L., Randau, K.P., 2015. Óleo essencial de Chenopodium ambrosioides L.: estado da arte. Rev. Ciênc. Farm. Básica Apl. 36, 267-276.), such as antitumor (Nascimento et al., 2006Nascimento, F.R.F., Cruz, G.V.B., Pereira, P.V.S., Maciel, M.C.G., Silva, L.A., Azevedo, A.P.S., Barroqueiro, E.S.B., Guerra, R.N.M., 2006. Ascitic and solid Ehrlich tumor inhibition by Chenopodium ambrosioides L. treatment. Life Sci. 78, 2650-2653.; Barros et al., 2013Barros, L., Pereira, E., Calhelha, R.C., Dueñas, M., Carvalho, A.M., Santos-Buelga, C., Ferreira, I.C.F.R., 2013. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 5, 1732-1740.), antipyretic, analgesic, anti-inflammatory, antinociceptive (Hallala et al., 2010Hallala, A., Benalia, S., Markouk, M., Bekkouchea, K., Larhsinia, M., Chaitb, A., Romanec, A., Abbada, A., El Abdounid, M.K., 2010. Evaluation of the analgesic and antipyretic activities of Chenopodium ambrosioides L. Asian J. Exp. Biol. Sci. 1, 894-897.; Trivellato Grassi et al., 2013Trivellato Grassi, L., Malheiros, A., Meyre-Silva, C., Buss, Z.S., Monguilhott, E.D., Fröde, T.S., Silva, K.A.B.S., Souza, M.M., 2013. From popular use to pharmacological validation: a study of the anti-inflammatory, anti-nociceptive and healing effects of Chenopodium ambrosioides extract. J. Ethnopharmacol. 145, 127-138.), antifungal (Jardim et al., 2010Jardim, C.M., Jham, G.N., Dhingra, O.D., Freire, M.M., 2010. Chemical composition and antifungal activity of the hexane extract of the Brazilian Chenopodium ambrosioides L. J. Braz. Chem. Soc. 21, 1814-1818.), anthelmintic (Guimaraes et al., 2001Guimaraes, D.L., Llanos, R.S.N., Acevedo, J.H.R., 2001. Ascaridisis: comparison of the therapeutic efficacy between paico and albendazole in children from Huaraz. Rev. Gastroenterol. Perú 21, 212-219.; Neiva et al., 2011Neiva, V.A., Ribeiro, M.N.S., Cartágenes, M.S.S., Moraes-Coutuinho, D.F., Nascimento, F.R.F., Reys, A.S., Amaral, F.M.M., 2011. Estudos pré-clínicos de atividade giardicida de Chenopodium ambrosioides L. e a padronização dos extratos na pesquisa e desenvolvimento de fitoterápicos. Rev. Ciên. Saúde 13, 155-165.) and antiprotozoal (Monzote et al., 2007Monzote, L., Montalvo, A.M., Scull, R., Miranda, M., Abreu, J., 2007. Activity, toxicity and analysis of resistance of essential oil from Chenopodium ambrosioides after intraperitoneal oral and intralesional administration in BALB/c mice infected with Leishmania amazonensis: a preliminary study. Biomed. Pharmacother. 61, 148-153.; Patrício et al., 2008Patrício, F.J., Costa, G.C., Pereira, P.V.S., Aragão-Filho, W.C., Sousa, S.M., Frazão, J.B., Pereira, W.S., Maciel, M.C.G., Silva, L.A., Amaral, F.M.M., Rebêlo, J.M.M., Guerra, R.N.M., Ribeiro, M.N.S., Nascimento, F.R.F., 2008. Efficacy of the intralesional treatment with Chenopodium ambrosioides in the murine infection by Leishmania amazonensis. J. Ethnopharmacol. 115, 313-319.; Monzote et al., 2014Monzote, L., García, M., Pastor, J., Gil, L., Scull, R., Maes, L., Cos, P., Gille, L., 2014. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania their mitochondria and other microorganisms. Exp. Parasitol. 136, 20-26.).

Given the recognized popular use and the pharmacological studies that have demonstrated the therapeutic potential, D. ambrosioides is one of 71 species of plants that arouse the Brazilian government's interest for the production of phytotherapics, being present in the National Relation Medicinal Plants of Interest to Unified Health System (MS, 2009MS, 2009. Plantas de interesse ao SUS. Ministério da Saúde, Brasília, DF.).

Considering that the knowledge of the microscopic characteristics is fundamental for the standardization of plants used as medicines, this study aims to describe the main anatomical characters of the root, stem, petiole and leaf blade of D. ambrosioides and perform histochemical tests on the leaf blade.

Materials and methods

Plant material

Several adult specimens of Dysphania ambrosioides (L.) Mosyakin & Clemants (syn: Chenopodium ambrosioides L.), Amaranthaceae, cultivated under full sun, were collected in the garden of the Laboratório de Fitoterapia, in the company Pernambuco Participações e Investimentos S/A, located in Recife at the Pernambuco State in Brazil. The voucher specimen was deposited in the Herbarium UFP-Geraldo Mariz, of the Universidade Federal de Pernambuco, Brazil, under registration number 69718.

Anatomical characterization

For their structural characterization, various cross-sections at the middle region of the root, stem, petiole and leaf blade fixed in FAA 50% (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill, New York.) were obtained by hand, using a common razor blade. For leaf blade were also performed paradermal sections on the adaxial and abaxial faces. All sections were clarified in sodium hypochlorite solution (50%) (Kraus and Arduin, 1997Kraus, J.E., Arduin, M., 1997. Manual básico de métodos em morfologia vegetal. EDUR, Rio de Janeiro.). Posteriorly, cross-sections were stained with safranin and astra blue (Bukatsch, 1972Bukatsch, F., 1972. Bemerkungen zur doppelfärbung Astrablau-Safranin. Mikrokosmos 61, 255.) and paradermal sections were stained with methylene blue (1%) (Krauter, 1985Krauter, D., 1985. Erfahrungen mit Etzolds FSA-Färbung für Pflanzenschnitte. Mikrokosmos 74, 231-233.). Subsequently, semipermanent histological slides were prepared containing cross-sections and paradermal sections of botanical material, following usual plant anatomy procedures (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill, New York.; Sass, 1951Sass, J.E., 1951. Botanical Microtechnique, 2nd ed. Iowa State College Press, Ames.). Analyses were performed on images in software (Toup View Image), obtained by digital camera coupled to a light microscope (Alltion).

Maceration

The maceration was performed using leaf blade fragments that were disintegrated with the mixture of 10% nitric acid and 10% chromic acid (1:1), according to the method of Jeffrey (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill, New York.). Analyses were carried out on images in software (Toup View Image), obtained by digital camera coupled to a light microscope (Alltion).

Histochemical characterization

Histochemical tests were made on cross-sections of fresh leaf blades obtained by the same method used in anatomical study. The following specific reagents were used to show the secretion sites and/or accumulation of substances: Sudan III for lipophilic substances (Sass, 1951Sass, J.E., 1951. Botanical Microtechnique, 2nd ed. Iowa State College Press, Ames.); Nadi reagent for essential oils and oleoresins (David and Carde, 1964David, R., Carde, J.P., 1964. Coloration différentielle dês inclusions lipidique et terpeniques dês pseudophylles du Pin maritime au moyen du reactif nadi. C. R. Acad. Sci. Paris Ser. D 258, 1338-1340.); potassium dichromate (10%) for phenolic compounds (Gabe, 1968Gabe, M., 1968. Techniques Histologiques. Masson & Cie, Paris.); Lugol's iodine reagent for starch (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill, New York.); phloroglucinol for lignin (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill, New York.); Dragendorff's reagent for detecting alkaloids (Farmacopeia Brasileira, 20102010. Farmacopeia Brasileira, 5th ed. Agência Nacional de Vigilância Sanitária, Brasília.); antimony trichloride for triterpenes and steroids (Mace et al., 1974Mace, M.E., Bell, A.A., Stipanovic, R.D., 1974. Histochemistry and isolation of gossypol and related terpenoids in root of cotton seedlings. Phytophatology 64, 1297-1302.); vanillin chloridric for tannins (Mace and Howell, 1974Mace, M.Z., Howell, C.R., 1974. Histochemistry and identification of condensed tanin precursors in roots of cotton seedlings. Can. J. Bot. 52, 2423-2426.) and hydrochloric acid (10%) to establish the nature of the crystals (Jensen, 1962Jensen, W.A., 1962. Botanical Histochemistry: Principles and Practice. W. H. Freeman & Co., San Francisco.).

Controls were performed in parallel with the tests and semipermanent histological slides were prepared containing the cross-sections (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill, New York.; Sass, 1951Sass, J.E., 1951. Botanical Microtechnique, 2nd ed. Iowa State College Press, Ames.). Analyses were performed on images in software (Toup View Image), obtained by digital camera coupled to a light microscope (Alltion).

Scanning electron microscopy (SEM)

Leaf blades samples were fixed in 2.5% glutaraldehyde (buffered with 0.1 M sodium cacodylate) and post fixed in 2% osmium solution (buffered with 0.1 M sodium cacodylate). After dehydration in ethanol series, the material was submitted to critical point drying (Bal-Tec CPD 030). Suitable portions were mounted onto SEM stubs using double-sided adhesive tape and sputter-coated with gold (Leica EM SCD 500) (Silveira, 1989Silveira, M., 1989. Preparação de amostras biológicas para microscopia eletrônica de varredura. In: Manual sobre técnicas básicas em microscopia eletrônica. USP, São Paulo, pp. 71–79.). Both adaxial and abaxial surfaces were examined with a QUANTA 200 FEG scanning electron microscope in the Centro de Tecnologias Estratégicas do Nordeste (CETENE).

Results

Root

In cross-section the root has a circular shape (Fig. 1A) and presents periderm and a very small cortical region (Fig. 1B), due to the development of anomalous secondary thickening, characterized by a concentric zone of collateral vascular bundles irregularly distributed, that arise from a succession of arcs of cambium (Fig. 1C). It is observed in all root several cells containing starch and idioblasts with crystal sand (Fig. 1D).

Fig. 1
Dysphania ambrosioides (L.) Mosyakin & Clemants, cross-sections of the root. (A) General aspect, showing peridermis (pd), cortex (cx) and vascular bundle (vb); (B) Detail of periderm (pd) and cortex (cx); (C) Secondary growth with vascular bundles (vb) irregularly distributed; (D) Detail of amyloplast (am) and idioblast (id) with crystal sand. Bars: A = 500 µm; B, D = 50 µm; C = 200 µm.

Stem

In cross-section, the stem has a polygonal shape, with regions more prominent (Fig. 2A). Trichomes are located throughout its extension (Fig. 2A and D), which are non-glandular trichome, multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell (Fig. 2B) and also glandular trichomes. These can be of two types: non-capitate glandular trichome with short uniseriate stalk and a small globoid apex and bents toward the epidermis (Fig. 2C), and the capitate glandular trichome, with a short pedicel and a large unicellular head (Fig. 2D).

Fig. 2
Dysphania ambrosioides (L.) Mosyakin & Clemants, cross-sections of the stem. (A) General aspect, showing epidermis (ep), trichome (tr), collenchyma (co), parenchyma (pa), vascular bundles (vb) and idioblast (id) with crystal sand; (B) Detail of non-glandular trichome (tr), multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell; (C) Detail of non-capitate glandular trichome (tr) with short uniseriate stalk and a small globoid apex and bents toward the epidermis; (D) Detail of capitate glandular trichome (tr) with a short pedicel and a large unicellular head, stomata (st) and epidermis (ep); (E) Detail of epidermis (ep), trichome (tr), collenchyma (co), parenchyma (pa), endodermis (end), vascular bundles (vb) and idioblast (id) with crystal sand. (F) Detail of idioblast (id) with crystal sand. Bars: A = 500 µm; B, C, D, F = 50 µm; E = 200 µm.

The epidermis consists of a single layer of cells coated with a thin cuticle (Fig. 2A, D and E). Stomata are inserted above the level of the epidermal cells (Fig. 2D). In less prominent regions of the stem, adjacent to the epidermis, is found a layer of cells that may be part of the epidermis, making it multilayered, or may constitute a hypodermis. Already in more prominent regions, the angular collenchyma is located beneath the epidermis, being composed of four to nine layers of cells (Fig. 2A and E). In the cortical parenchyma are present idioblasts with crystal sand (Fig. 2A, E and F). The endodermis is seen as a last cortical layer (Fig. 2E). As well as the root, the stem also exhibits anomalous secondary thickening. It is distinguished two different zones of vascular bundles: a zone closer to the endodermis, in which the collateral bundles are distributed forming a continuous ring; and other zone closest to the medullary region, in which the collateral bundles are distributed discontinuously, separated from each other by parenchyma (Fig. 2A and E).

Petiole

The petiole, in cross-section, has concave–convex shape, with two lateral extremities (Fig. 3A). The epidermis is composed of a single layer of rounded cells and covered with a smooth and thin cuticle (Fig. 3A and B). Stomata are inserted in the same level of epidermal cells (Fig. 3B). As epidermal attachments, are present non-glandular trichome, multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell (Fig. 3C), besides non-capitate glandular trichome with short uniseriate stalk and a small globoid apex and bents toward the epidermis (Fig. 3D) and capitate glandular trichome, with a short pedicel and a large unicellular head (Fig. 3E). The collenchyma of the angular type is observed below the epidermis in the central region of the petiole (Fig. 3A and F), being formed by two or three layers of cells. This tissue is also present in the lateral extremities and adjacent to phloem (Fig. 3A, B and F). The vascular bundles are collateral and are arranged in a semicircle in the central region of the petiole (Fig. 3A and F). Smaller vascular bundles are displayed in the lateral extremities (Fig. 3B and G). In the parenchyma are observed idioblasts containing crystal sand (Fig. 3A, F and H).

Fig. 3
Dysphania ambrosioides (L.) Mosyakin & Clemants, cross-sections of the petiole. (A) General aspect, showing epidermis (ep), collenchyma (co), parenchyma (pa), vascular bundles (vb) and idioblast (id) with crystal sand; (B) Lateral extremity, showing uniseriate epidermis (ep) with stomata (st) and trichome (tr), collenchyma (co), parenchyma (pa) and vascular bundles (vb); (C) Detail of non-glandular trichome (tr), multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell; (D) Detail of non-capitate glandular trichome (tr) with short uniseriate stalk and a small globoid apex and bents toward the epidermis; (E) Detail of capitate glandular trichomes (tr) with a short pedicel and a large unicellular head; (F) Central region, showing epidermis (ep), collenchyma (co), parenchyma (pa), idioblast (id) with crystal sand and collateral vascular bundles (vb) arranged in a semicircle; (G) Detail of a vascular bundle (vb) located in lateral extremity; (H) Detail of idioblast (id) with crystal sand. Bars: A = 500 µm; B, F = 200 µm; C, D, E = 50 µm.

Leaf blade

The epidermis, in frontal view, consists of cells with straight or slightly sinuous walls on the adaxial face (Fig. 4A) and of cells with walls more sinuous on the abaxial face (Fig. 4B). The stomata, that are anomocytic and anisocytic, are present on both sides (Fig. 4A and B). Non-glandular trichomes (Fig. 4C and D) and glandular trichomes (Fig. 4EH) occur both on the adaxial face (Fig. 4E and G) as on the abaxial face (Fig. 4F and H) and are of the same type previously described in the stem and petiole. However, the glandular trichomes occur in greater number on the adaxial face, among the two types of glandular trichomes found, predominate the capitate glandular trichome. In this cut is still possible to view idioblasts with crystal sand (Fig. 4A) and druses (Fig. 4G).

Fig. 4
Dysphania ambrosioides (L.) Mosyakin & Clemants, frontal view of the leaf blade. (A) View of the adaxial face showing epidermal (ep) cells with straight or slightly sinuous walls, stomata (st) anomocytic and anisocytic, and idioblast with crystal sand (crs); (B) View of the abaxial face showing epidermal (ep) cells with sinuous walls and stomata (st) anomocytic and anisocytic; (C) Detail of non-glandular trichome (tr), multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell on the adaxial face; (D) Detail of non-glandular trichome (tr), multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell on the abaxial face; (E) Detail of non-capitate glandular trichome (tr) with short uniseriate stalk and a small globoid apex and bents toward the epidermis on the adaxial face; (F) Detail of non-capitate glandular trichome (tr) with short uniseriate stalk and a small globoid apex and bents toward the epidermis on the abaxial face; (G) Detail of capitate glandular trichome (tr) with a short pedicel and a large unicellular head on the adaxial face and idioblasts with druses (dr); (H) Detail of capitate glandular trichome (tr) with a short pedicel and a large unicellular head on the abaxial face. Bars: A–H = 50 µm.

In the leaf blade analysis in SEM it was possible observed with more detail the largest sinuosity of the epidermal cells walls on the abaxial face (Fig. 5A and B) and that on this face the stomata are situated on the same level or slightly above of epidermal cells (Fig. 5B), while on the adaxial face they are located on the same level of epidermal cells (Fig. 5C). It was also observed the non-glandular (Fig. 5A) and glandular trichomes (Fig. 5AC).

Fig. 5
Dysphania ambrosioides (L.) Mosyakin & Clemants, SEM of the leaf blade. (A) View of the abaxial face showing epidermal (ep) cells with sinuous walls, stomata (st) and non-glandular and glandular trichomes (tr); (B) View of the abaxial face showing epidermal (ep) cells with sinuous walls, stomata (st) and glandular trichomes (tr); (C) View of the adaxial face showing epidermal (ep) cells with slightly sinuous walls, stomata (st) and glandular trichome (tr). Bars: A, B = 100 µm; C = 40 µm.

In cross-section of the leaf blade were observed all the trichomes (Fig. 6AF) viewed in the paradermal cut and in SEM, also ratifying the fact that the glandular trichomes are predominant in the abaxial face. The epidermis is uniseriate, coated with a thin cuticle layer and is made of rounded cells or slightly elongated (Fig. 6G). The mesophyll has organization dorsiventral. It consists of one or two layers of palisade parenchyma and two to four layers of dense spongy parenchyma (Fig. 6G). Secretory cavities (Fig. 6G) and idioblasts with crystal sand and druses (Fig. 6G and H) are found in the mesophyll.

Fig. 6
Dysphania ambrosioides (L.) Mosyakin & Clemants, cross-sections of the leaf blade. (A) Detail of non-glandular trichome (tr), multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell on the adaxial face; (B) Detail of non-glandular trichome (tr), multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell on the abaxial face; (C) Detail of non-capitate glandular trichome (tr) with short uniseriate stalk and a small globoid apex and bents toward the epidermis on the adaxial face; (D) Detail of non-capitate glandular trichome (tr) with short uniseriate stalk and a small globoid apex and bents toward the epidermis on the abaxial face; (E) Detail of capitate glandular trichome (tr) with a short pedicel and a large unicellular head on the adaxial face; (F) Detail of capitate glandular trichome (tr) with a short pedicel and a large unicellular head on the abaxial face; (G) Detail of the epidermis (ep), palisade parenchyma (pp), spongy parenchyma (sp), secretory cavity (scv), vascular bundle (vb) and idioblast with druse (dr); (H) Detail of idioblast with crystal sand (crs). Bars: A–H = 50 µm.

The midrib has biconvex cross-section (Fig. 7A). It presents similar epidermis to which is situated in the mesophyll (Fig. 7B). Furthermore, all three types of trichomes visualized in the mesophyll are also present in the midrib (Fig. 7CE). Angular collenchyma appears in subepidermal position, formed by two to three layers of cells (Fig. 7A and B), and also adjacent to phloem (Fig. 7A and F). In this tissue and in the parenchyma are observed idioblasts with crystal sand and druses (Fig. 7B and F). The vascular system is composed of collateral bundles arranged in a circle in the center of midrib (Fig. 7F).

Fig. 7
Dysphania ambrosioides (L.) Mosyakin & Clemants, cross-sections of midri(B) (A) General aspect, showing collenchyma (co), parenchyma (pa), vascular bundles (vb) and trichome (tr); (B) Detail of the epidermis (ep), collenchyma (co) and idioblasts with crystal sand (crs) and druse (dr); (C) Detail of non-glandular trichome (tr), multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell; (D) Detail of non-capitate glandular trichome (tr) with short uniseriate stalk and a small globoid apex and bents toward the epidermis; (E) Detail of capitate glandular trichome (tr) with a short pedicel and a large unicellular head; (F) Detail of the vascular bundles (vb) located in the parenchyma (pa), collenchyma (co) adjacent to phloem and idioblasts with crystal sand (crs) and druse (dr). Bars: A = 500 µm; B, C, D, E = 50 µm; F = 200 µm.

The leaf of D. ambrosioides, after maceration, presents epidermal cells, stomata (Fig. 8A), vessel elements of the helical type (Fig. 8B) and idioblasts with druses (Fig. 8C). The three types of trichomes viewed in transverse and paradermal sections and in SEM are also found in macerated leaf (Fig. 8DF).

Fig. 8
Dysphania ambrosioides (L.) Mosyakin & Clemants, maceration of the leaf. (A) Epidermis (ep) and stomata (st); (B) Vessel element of the helical type; (C) Idioblasts with druses (dr); (D) Non-glandular trichome (tr), multicellular and uniseriate, with enlarged cells at the base and an elongated apical cell; (E) Non-capitate glandular trichome (tr) with short uniseriate stalk and a small globoid apex and bents toward the epidermis; (F) Capitate glandular trichome (tr) with a short pedicel and a large unicellular head. Bars: A = 200 µm; B–F = 50 µm.

Fig. 9AD shows cross-sections of fresh leaf blades without addition of reagent.

Fig. 9
Dysphania ambrosioides (L.) Mosyakin & Clemants, cross-sections of the leaf blade without adding reagents. (A) Midrib showing epidermis (ep), collenchyma (co), parenchyma (pa) and vascular bundles (vb); (B) Detail of vascular bundle (vb); (C) Details of cuticle (ct), epidermis (ep), palisade parenchyma (pp) and spongy parenchyma (sp); (D) Detail of capitate glandular trichome (tr) with a short pedicel and a large unicellular head. Bars: A = 200 µm; B–D = 50 µm.

After using Sudan III, lipophilic substances were found in the cuticle covering the adaxial and abaxial faces (Fig. 10A), and are also present within capitate glandular trichomes with unicellular head (Fig. 10B). In these trichomes, lipophilic substances may be those which constitute the essential oil and oleoresins of D. ambrosioides, considering that, with the Nadi reagent, these compounds exhibit blue and pink colorations, respectively (Fig. 10C and D). Oleoresins were also found in the parenchyma cells of the midrib (Fig. 10E) and in the upper epidermis cells next to the mesophyll (Fig. 10F).

Fig. 10
Dysphania ambrosioides (L.) Mosyakin & Clemants, cross-sections of the leaf blade after reaction with Sudan III and Nadi reagent. (A) Lipophilic substances in the cuticle (ct) lining the epidermis; (B) Lipophilic substances inside capitate glandular trichome (tr); (C) Essential oil inside capitate glandular trichome (tr); (D) Oleoresin inside capitate glandular trichome (tr); (E) Oleoresin in parenchyma (pa); (F) Oleoresin in epidermal (ep) cells. Bars: A–F = 50 µm.

Potassium dichromate (10%) revealed the presence of phenolic compounds in the adaxial epidermal cells (Fig. 11A and B), as well as inside the capitate glandular trichome with unicellular head (Fig. 11C). Starch is present in the epidermal cells and in the mesophyll (Fig. 11D), as also in the parenchyma of the midrib (Fig. 11E). The phloroglucinol evidenced lignification of xylematic vessel in midrib (Fig. 11F). Fig. 11G and H show, respectively, the presence of crystals in leaf of D. ambrosioides and their dissolution with the test of hydrochloric acid (10%), confirming that they are of calcium oxalate. Tests with Dragendorff's reagent, antimony trichloride and vanillin chloridric were negative.

Fig. 11
Dysphania ambrosioides (L.) Mosyakin & Clemants, cross-sections of the leaf blade after reaction with potassium dichromate (10%), Lugol's iodine reagent, phloroglucinol and hydrochloric acid (10%). (A) View of the leaf showing phenolic compounds in epidermal (ep) cells; (B) Detail of epidermal (ep) cells containing phenolic compounds; (C) Detail of phenolic compounds inside capitate glandular trichome (tr); (D) Starch in epidermal (ep) cells, palisade parenchyma (pp) and spongy parenchyma (sp); (E) Detail of starch in parenchyma (pa); (F) View of vascular bundles (vb) with lignified walls; (G) Detail of idioblast with crystal sand (crs) before reaction with hydrochloric acid (10%); (H) Detail of idioblast (id) after reaction with hydrochloric acid (10%). Bars: A = 200 µm; B–H = 50 µm.

Discussion

The transition of some species of the family Chenopodiaceae to the family Amaranthaceae is recent. Although the modification, the literature still treats D. ambrosioides as C. ambrosioides. For this reason, the discussion of this work took into consideration the aspects of the family Chenopodiaceae.

According to Metcalfe and Chalk (1972)Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford., the family Chenopodiaceae has many anatomical points in common with other families, such as the Amaranthaceae. One of these points is the cambium variation, or anomalous secondary thickening (Wilson, 1924Wilson, C.L., 1924. Medullary bundlein reletion to primary vascular system in Chenopodiaceae e Amaranthaceae. Bot. Gaz. 78, 175-200.; Joshi, 1937Joshi, A.C., 1937. Some salient points in the evolution of the secondary vascular cylinder of Amaranthaceae and Chenopodiaceae. Am. J. Bot. 24, 3-9.; Balfour, 1965Balfour, E., 1965. Anomalous secondary thickening in Chenopodiaceae, Nyctaginaceae and Amaranthaceae. Phytomorphology 15, 111-122.). The formation of successive cambia is known in 34 species of dicotyledons, being that in lianas this phenomenon occurs more frequently (Metcalfe and Chalk, 1972Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford.; Carlquist, 2007Carlquist, S., 2007. Successive cambia revisited: ontogeny, histology, diversity, and functional significance. J. Torrey Bot. Soc. 134, 301-332.). In Chenopodiaceae, the secondary growth starts from a cambium in a normal position. Subsequently, the other cambia emerge furthest from the first, producing xylem to inside and phloem to outside (Esau, 1997Esau, K., 1997. Anatomia das plantas com sementes. Editora Edgard Blücher, São Paulo.). The successive cambia and the vascular bundles are embedded in parenchymal tissue (Metcalfe and Chalk, 1972Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford.).

With respect yet to the secondary growth of the plant, it is observed the periderm formation in roots, but not in stems. The absence of periderm in stem was already observed in 12 species of Chenopodium, including D. ambrosioides (Bonzani et al., 2003Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225.), as well as in other species of Chenopodiaceae, such as Atriplex halimus, Atriplex cristata, Atriplex oestophora (Fahn and Zimmermann, 1982Fahn, A., Zimmermann, M.H., 1982. Development of the successive cambia in Atriplex halimus (Chenopodiaceae). Bot. Gaz. 143, 353-357.; Jáuregui et al., 2014Jáuregui, D., Castro, M., Ruiz-Zapata, T., LAPP, M., 2014. Anatomía de los órganos vegetativos de dos especies de Atriplex (Chenopodiaceae) de Venezuela. Rev. Biol. Trop. 62, 1625-1636.); Allenrolfea patagonica, Heterostachys olivascens, Heterostachys ritteriana (Cuadra and Hermann, 2014Cuadra, V.P., Hermann, P.M., 2014. Anatomía foliar y caulinar de tres Salicornieae (Chenopodiaceae) halófilas argentinas. Phyton Int. J. Exp. Bot. 83, 369-377.); and in Salsola kali subsp. Ruthenica (Bercu and Bavaru, 2004Bercu, R., Bavaru, E., 2004. Anatomical aspects of Salsola kali subsp ruthenica (Chenopodiaceae). Phytol. Balc. 10, 227-232.).

The polygonal shape of the stem with the presence of regions more prominent formed by collenchymatic tissue is common in Chenopodiaceae (Fahn and Zimmermann, 1982Fahn, A., Zimmermann, M.H., 1982. Development of the successive cambia in Atriplex halimus (Chenopodiaceae). Bot. Gaz. 143, 353-357.; Bonzani et al., 2003Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225.; Bercu and Bavaru, 2004Bercu, R., Bavaru, E., 2004. Anatomical aspects of Salsola kali subsp ruthenica (Chenopodiaceae). Phytol. Balc. 10, 227-232.; Jáuregui et al., 2014Jáuregui, D., Castro, M., Ruiz-Zapata, T., LAPP, M., 2014. Anatomía de los órganos vegetativos de dos especies de Atriplex (Chenopodiaceae) de Venezuela. Rev. Biol. Trop. 62, 1625-1636.). Bonzani et al. (2003)Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225. observed that in Chenopodium burkartii and Chenopodium retusum the collenchyma becomes lignified when these species are in secondary growth. Already in other species of Chenopodium studied, including D. ambrosioides, the collenchyma remains composed of cellulosic walls in secondary growth.

Stomata were found in the stem, petiole and leaf blade of the plant. Amphistomatic leaves are characteristics of the Chenopodiaceae family (Metcalfe and Chalk, 1972Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford.; Moris et al., 1996Moris, M., Gonzalez, J.A., Gallardo, M., Prado, F.E., 1996. Anatomical and functional differences and nyctinastic leaf movements in Chenopodium album L. and Chenopodium hircinum Schrad. (Chenopodiaceae). Bot. J. Linn. Soc. 121, 133-141.; Bonzani et al., 2003Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225.; Cuadra and Hermann, 2014Cuadra, V.P., Hermann, P.M., 2014. Anatomía foliar y caulinar de tres Salicornieae (Chenopodiaceae) halófilas argentinas. Phyton Int. J. Exp. Bot. 83, 369-377.; Jáuregui et al., 2014Jáuregui, D., Castro, M., Ruiz-Zapata, T., LAPP, M., 2014. Anatomía de los órganos vegetativos de dos especies de Atriplex (Chenopodiaceae) de Venezuela. Rev. Biol. Trop. 62, 1625-1636.). Anomocytic stomata are the most frequent, but are also found anisocytic stomata in Chenopodium chilense, tetracytic in Chenopodium multifidum (Bonzani et al., 2003Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225.) and paracytic in Salsola kali subsp. ruthenica (Bercu and Bavaru, 2004Bercu, R., Bavaru, E., 2004. Anatomical aspects of Salsola kali subsp ruthenica (Chenopodiaceae). Phytol. Balc. 10, 227-232.). Previous studies with D. ambrosioides only affirmed the presence of anomocytic stomata, different from the results found in this study, which are described stomata anomocytic and anisocytic (Jorge et al., 1986Jorge, L.I.F., Ferro, V.O., Koschtschak, M.R.W., 1986. Diagnose comparativa das espécies Chenopodium ambrosioides L. (erva-de-santa-maria) e Coronopus didymus (L.) Sm (mastruço): principais características morfo-histológicas e químicas. Rev. Bras. Farmacogn. 1, 143-153.; Costa and Tavares, 2006Costa, M.V.L., Tavares, E.S., 2006. Anatomia foliar de Chenopodium ambrosioides L. (Chenopodiaceae) – erva-de-Santa-Maria. Rev. Bras. Plantas Med. 8, 63-71.).

The presence of different types of trichomes in Chenopodiaceae was reported by some authors (Holm, 1923Holm, T., 1923. Chenopodium ambrosioides L. a morphological study. Am. J. Sci. 6, 157-167.; Metcalfe and Chalk, 1972Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford.; Silva Filho et al., 1992Silva Filho, F.A., Oliveira, P.L., Mariath, J.E.A., 1992. Tricomas de Chenopodium retusum Juss. ex Moq. Insula 21, 43-58.; Bonzani et al., 2003Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225.). According to Metcalfe and Chalk (1972)Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford., in the family are present trichomes uniseriate, branched, stellate and capitate glandular trichome. In the genus Chenopodium are most common the non-glandular trichome uniseriate and the capitate glandular trichome. Both were observed in the stem, petiole and leaf blade of D. ambrosioides, but it was also found the glandular trichome uniseriate with body bent toward epidermis and with secretory distal cell rounded. This latter type of trichome is not described by Metcalfe and Chalk (1972)Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford., however, in a detailed study of the trichomes of the stem and leaves of Chenopodium species, Bonzani et al. (2003)Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225. cited all kinds of trichomes found in this work.

There is still controversy regarding the presence of glandular trichomes on the faces of the leaf blade of D. ambrosioides. As are seen in this study, the presence on both faces was also identified by Holm (1923)Holm, T., 1923. Chenopodium ambrosioides L. a morphological study. Am. J. Sci. 6, 157-167., Jorge et al. (1986)Jorge, L.I.F., Ferro, V.O., Koschtschak, M.R.W., 1986. Diagnose comparativa das espécies Chenopodium ambrosioides L. (erva-de-santa-maria) e Coronopus didymus (L.) Sm (mastruço): principais características morfo-histológicas e químicas. Rev. Bras. Farmacogn. 1, 143-153. and Bonzani et al. (2003)Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225. in D. ambrosioides. Jorge et al. (1986)Jorge, L.I.F., Ferro, V.O., Koschtschak, M.R.W., 1986. Diagnose comparativa das espécies Chenopodium ambrosioides L. (erva-de-santa-maria) e Coronopus didymus (L.) Sm (mastruço): principais características morfo-histológicas e químicas. Rev. Bras. Farmacogn. 1, 143-153. affirmed that the glandular trichomes predominate in the adaxial face, in agreement with the results described in this paper and differing from Costa and Tavares (2006)Costa, M.V.L., Tavares, E.S., 2006. Anatomia foliar de Chenopodium ambrosioides L. (Chenopodiaceae) – erva-de-Santa-Maria. Rev. Bras. Plantas Med. 8, 63-71., who reported these trichomes restricted to abaxial face.

Studies suggest that the density and the change in the proportion of non-glandular and glandular trichomes can be influenced by environmental conditions, including herbivory and water availability (Rautio et al., 2002Rautio, P., Markkola, A., Martel, J., Tuomi, J., Härmä, E., Kuíkka, K., Siitonen, A., Riesco, I.L., Roitto, M., 2002. Developmental plasticity in birch leaves: defoliation causes a shift from glandular to nonglandular trichomes. Oikos 98, 437-446.; Gonzales et al., 2008Gonzales, W.L., Negritto, M.A., Suárez, L.H., Gianoli, E., 2008. Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecol. 33, 128-132.). Since the species is found in tropical, subtropical and temperate zones (Kismann, 1991Kismann, K.G., 1991. Plantas infestantes e nocivas. BASF Brasileira, São Paulo.), it can be expected that these variations occur in D. ambrosioides.

Most species of Chenopodiaceae have dorsiventral mesophyll (Metcalfe and Chalk, 1972Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford.). There are some exceptions, such as C. retusum, Chenopodium oblanceolatum (Bonzani et al., 2003Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225.) and Salsola sp. (Metcalfe and Chalk, 1972Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford.) that present isobilateral mesophyll.

Idioblasts containing crystal sand were often found in all plant parts examined. Only in the leaf blade were observed druses. The confirmation, by testing with hydrochloric acid that the crystals are of calcium oxalate corroborates the result of Costa and Tavares (2006)Costa, M.V.L., Tavares, E.S., 2006. Anatomia foliar de Chenopodium ambrosioides L. (Chenopodiaceae) – erva-de-Santa-Maria. Rev. Bras. Plantas Med. 8, 63-71.. According Metcalfe and Chalk (1972)Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford., the occurrence of these crystals gives important diagnostic value for the species, since they are restricted between dicotyledonous.

The maceration of plant tissue is used to reveal some peculiarities of the nature of the cells that compose them. It is a technique recommended by the Brazilian Pharmacopeia for microscopic analysis of the plant material (Farmacopeia Brasileira, 20102010. Farmacopeia Brasileira, 5th ed. Agência Nacional de Vigilância Sanitária, Brasília.) and a requirement for the registration of phytotherapic and traditional phytotherapic products (Anvisa, 2014Anvisa, 2014. Resolução RDC nº 26 de 13/05/14, Dispõe sobre o registro de medicamentos fitoterápicos e o registro e a notificação de produtos tradicionais fitoterápicos. Agência Nacional de Vigilância Sanitária, Brasilia, DF.). It is also important when the plant raw materials are marketed crushed or powdered, not being possible performing sections to the anatomical study (Farmacopeia Brasileira, 20102010. Farmacopeia Brasileira, 5th ed. Agência Nacional de Vigilância Sanitária, Brasília.).

They were detected in the leaf blades lipophilic and hydrophilic substances, evidencing lipids, essential oils, oleoresins and phenolic compounds. These data corroborate the findings in the literature for the species, known for producing various compounds of metabolism used in the defense and adaptation of plants to the environment and also in medicine (Sá et al., 2015Sá, R.D., Soares, L.A.L., Randau, K.P., 2015. Óleo essencial de Chenopodium ambrosioides L.: estado da arte. Rev. Ciênc. Farm. Básica Apl. 36, 267-276.). Most plants store starch as a reserve. This carbohydrate, as well as being related as an energy source is also an adaptive strategy of the species to adverse environmental conditions (Oliveira and Marquis, 2002Oliveira, P.S., Marquis, R.J., 2002. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York.). The lignin present in the wall of the xylem vessels is responsible for sustaining the plant and also provides defense for the plant, because it is considered as a substance resistant to pathogens, hidering their colonization (Silva et al., 2005Silva, L.M., Alquini, Y., Cavllet, V.J., 2005. Inter-relações entre a anatomia vegetal e a produção vegetal. Acta Bot. Bras. 19, 183-194.).

Conclusion

Through the different microscopy techniques it was possible to establish anatomical features that are useful in the identification of D. ambrosioides, which were: anomalous secondary thickening in the root and stem; presence of idioblasts containing crystal sand in the root, stem, petiole and leaf blade; in these there are also idioblasts with druses; presence of non-glandular and glandular trichomes in the stem, petiole and leaf blade; stomata on the stem, petiole and leaf blade, identified in that as anomocytic and anisocytic; dorsiventral mesophyll and collateral vascular bundles. The maceration showed to be a useful tool when it cannot make cuts to the anatomical study. In addition to contributing significantly to the knowledge of the anatomy, it was also possible to see the histolocalization of some groups of metabolites present in the leaf blade of the species. Thus, the work provides quality parameters for the species studied, since it does not have appropriate monograph in current official codes.

Acknowledgments

The authors are grateful to CNPq (132722/2011-9) for financial support in the form of grants and fellowship awards. They also thank to PERPART for supplying the plant material.

References

  • Albuquerque, U.P., Araújo, T.A.S., Ramos, M.A., Nascimento, V.T., Lucena, R.F.P., Monteiro, J.M., Alencar, N.L., Araújo, E.L., 2009. How ethnobotany can aid biodiversity conservation: reflections on investigations in the semi-arid region of NE Brazil. Biodivers. Conserv. 18, 127-150.
  • Anvisa, 2014. Resolução RDC nº 26 de 13/05/14, Dispõe sobre o registro de medicamentos fitoterápicos e o registro e a notificação de produtos tradicionais fitoterápicos. Agência Nacional de Vigilância Sanitária, Brasilia, DF.
  • Balfour, E., 1965. Anomalous secondary thickening in Chenopodiaceae, Nyctaginaceae and Amaranthaceae. Phytomorphology 15, 111-122.
  • Barros, L., Pereira, E., Calhelha, R.C., Dueñas, M., Carvalho, A.M., Santos-Buelga, C., Ferreira, I.C.F.R., 2013. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 5, 1732-1740.
  • Bercu, R., Bavaru, E., 2004. Anatomical aspects of Salsola kali subsp ruthenica (Chenopodiaceae). Phytol. Balc. 10, 227-232.
  • Bonzani, N.E., Barboza, G.E., Bugatti, M.A., Ariza Espinar, L., 2003. Morpho-histological studies in the aromatic species of Chenopodium from Argentina. Fitoterapia 74, 207-225.
  • Bukatsch, F., 1972. Bemerkungen zur doppelfärbung Astrablau-Safranin. Mikrokosmos 61, 255.
  • Carlquist, S., 2007. Successive cambia revisited: ontogeny, histology, diversity, and functional significance. J. Torrey Bot. Soc. 134, 301-332.
  • Cavalli, J., Tomi, F., Bernardini, A., Casanova, J., 2004. Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC–MS and 13C NMR spectroscopy: quantitative determination of ascaridole a heat-sensitive compound. Phytochem. Anal. 15, 275-279.
  • Costa, M.V.L., Tavares, E.S., 2006. Anatomia foliar de Chenopodium ambrosioides L. (Chenopodiaceae) – erva-de-Santa-Maria. Rev. Bras. Plantas Med. 8, 63-71.
  • Cruz, G.L., 1995. Dicionário das plantas úteis do Brasil, 5th ed. Editora Bertrand Brasil, Rio de Janeiro.
  • Cuadra, V.P., Hermann, P.M., 2014. Anatomía foliar y caulinar de tres Salicornieae (Chenopodiaceae) halófilas argentinas. Phyton Int. J. Exp. Bot. 83, 369-377.
  • David, R., Carde, J.P., 1964. Coloration différentielle dês inclusions lipidique et terpeniques dês pseudophylles du Pin maritime au moyen du reactif nadi. C. R. Acad. Sci. Paris Ser. D 258, 1338-1340.
  • Esau, K., 1997. Anatomia das plantas com sementes. Editora Edgard Blücher, São Paulo.
  • Fahn, A., Zimmermann, M.H., 1982. Development of the successive cambia in Atriplex halimus (Chenopodiaceae). Bot. Gaz. 143, 353-357.
  • 2010. Farmacopeia Brasileira, 5th ed. Agência Nacional de Vigilância Sanitária, Brasília.
  • Fenner, R., Betti, A.H., Mentz, L.A., Rates, S.M.K., 2006. Plantas utilizadas na medicina popular brasileira com potencial atividade antifúngica. Rev. Bras. Cienc. Farm. 42, 369-394.
  • França, F., Lago, E.L., Marsden, P.D., 1996. Plants used in the treatment of leishmanial ulcers due to Leishmania (viannia) braziliensis in the endemic area of Bahia, Brazil. Rev. Soc. Bras. Med. Trop. 29, 229-232.
  • Fuentes-Bazan, S., Mansion, G., Borsch, T., 2012a. Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol. Phylogenetics Evol. 62, 359-374.
  • Fuentes-Bazan, S., Uotila, P., Borsch, T., 2012b. A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42, 5-24.
  • Gabe, M., 1968. Techniques Histologiques. Masson & Cie, Paris.
  • Garcia, D., Domingues, M.V., Rodrigues, E., 2010. Ethnopharmacological survey among migrants living in the southeast Atlantic forest of Diadema, São Paulo, Brazil. J. Ethnobiol. Ethnomed. 6, 1-19.
  • Gonzales, W.L., Negritto, M.A., Suárez, L.H., Gianoli, E., 2008. Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecol. 33, 128-132.
  • Guimaraes, D.L., Llanos, R.S.N., Acevedo, J.H.R., 2001. Ascaridisis: comparison of the therapeutic efficacy between paico and albendazole in children from Huaraz. Rev. Gastroenterol. Perú 21, 212-219.
  • Gupta, D., Charles, R., Mehta, V.K., Garg, S.N., Kumar, S., 2002. Chemical composition of the essential oil of Chenopodium ambrosioides L. from the southern hills of India. J. Essent. Oil Res. 14, 93-94.
  • Hallala, A., Benalia, S., Markouk, M., Bekkouchea, K., Larhsinia, M., Chaitb, A., Romanec, A., Abbada, A., El Abdounid, M.K., 2010. Evaluation of the analgesic and antipyretic activities of Chenopodium ambrosioides L. Asian J. Exp. Biol. Sci. 1, 894-897.
  • Hegazy, A.K., Farrag, H.F., 2007. Allelopathic potential of Chenopodium ambrosioides on germination and seedling growth of some cultivated and weed plants. Glob. J. Biotechnol. Biochem. 2, 1-9.
  • Holm, T., 1923. Chenopodium ambrosioides L. a morphological study. Am. J. Sci. 6, 157-167.
  • Jain, N., Sarwar Alam, M., Kamil, M., Ilyas, M., Niwa, M., Sakae, A., 1990. Two flavonol glycosides from Chenopodium ambrosioides Phytochemistry 29, 3988-3991.
  • Jardim, C.M., Jham, G.N., Dhingra, O.D., Freire, M.M., 2010. Chemical composition and antifungal activity of the hexane extract of the Brazilian Chenopodium ambrosioides L. J. Braz. Chem. Soc. 21, 1814-1818.
  • Jáuregui, D., Castro, M., Ruiz-Zapata, T., LAPP, M., 2014. Anatomía de los órganos vegetativos de dos especies de Atriplex (Chenopodiaceae) de Venezuela. Rev. Biol. Trop. 62, 1625-1636.
  • Jensen, W.A., 1962. Botanical Histochemistry: Principles and Practice. W. H. Freeman & Co., San Francisco.
  • Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill, New York.
  • Joly, A.B., 2002. Botânica: introdução à taxonomia vegetal, 13th ed. Companhia Editora, São Paulo.
  • Jorge, L.I.F., Ferro, V.O., Koschtschak, M.R.W., 1986. Diagnose comparativa das espécies Chenopodium ambrosioides L. (erva-de-santa-maria) e Coronopus didymus (L.) Sm (mastruço): principais características morfo-histológicas e químicas. Rev. Bras. Farmacogn. 1, 143-153.
  • Joshi, A.C., 1937. Some salient points in the evolution of the secondary vascular cylinder of Amaranthaceae and Chenopodiaceae. Am. J. Bot. 24, 3-9.
  • Kismann, K.G., 1991. Plantas infestantes e nocivas. BASF Brasileira, São Paulo.
  • Kiuchi, F., Itano, Y., Uchiyama, N., Honda, G., Tsubouchi, A., Nakajima-Shimada, J., Aoki, T., 2002. Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides J. Nat. Prod. 65, 509-512.
  • Kliks, M.M., 1985. Studies on the traditional herbal anthelmintic Chenopodium ambrosioides L.: ethnopharmacological evaluation and clinical field trials. Soc. Sci. Med. 21, 879-886.
  • Kraus, J.E., Arduin, M., 1997. Manual básico de métodos em morfologia vegetal. EDUR, Rio de Janeiro.
  • Krauter, D., 1985. Erfahrungen mit Etzolds FSA-Färbung für Pflanzenschnitte. Mikrokosmos 74, 231-233.
  • Lima, J.L.S., Furtado, D.A., Pereira, J.P.G., Baracuthy, J.G.V., Xavier, H.S., 2006. Plantas medicinais de uso comum no Nordeste do Brasil. Campina Grande.
  • Lorenzi, H., Matos, F.J.A., 2002. Plantas medicinais no Brasil: nativas e exóticas. Editora Instituto Plantarum, Nova Odessa.
  • Lorenzi, H., 2008. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas, 4th ed. Editora Instituto Plantarum, Nova Odessa.
  • Mace, M.E., Bell, A.A., Stipanovic, R.D., 1974. Histochemistry and isolation of gossypol and related terpenoids in root of cotton seedlings. Phytophatology 64, 1297-1302.
  • Mace, M.Z., Howell, C.R., 1974. Histochemistry and identification of condensed tanin precursors in roots of cotton seedlings. Can. J. Bot. 52, 2423-2426.
  • Matos, F.J.A., 2007. Plantas medicinais: guia de seleção e emprego das plantas usadas em fitoterapia no Nordeste do Brasil, 3rd ed. Imprensa Universitária, Fortaleza.
  • Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy With Notes on Economic Uses. Clarendon Press, Oxford.
  • Monzote, L., Montalvo, A.M., Scull, R., Miranda, M., Abreu, J., 2007. Activity, toxicity and analysis of resistance of essential oil from Chenopodium ambrosioides after intraperitoneal oral and intralesional administration in BALB/c mice infected with Leishmania amazonensis: a preliminary study. Biomed. Pharmacother. 61, 148-153.
  • Monzote, L., García, M., Pastor, J., Gil, L., Scull, R., Maes, L., Cos, P., Gille, L., 2014. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania their mitochondria and other microorganisms. Exp. Parasitol. 136, 20-26.
  • Morais, S.M., Dantas, J.D.P., Silva, A.R.A., Magalhães, E.F., 2005. Plantas medicinais usadas pelos índios Tapebas do Ceará. Rev. Bras. Farmacogn. 15, 169-177.
  • Moris, M., Gonzalez, J.A., Gallardo, M., Prado, F.E., 1996. Anatomical and functional differences and nyctinastic leaf movements in Chenopodium album L. and Chenopodium hircinum Schrad. (Chenopodiaceae). Bot. J. Linn. Soc. 121, 133-141.
  • MS, 2009. Plantas de interesse ao SUS. Ministério da Saúde, Brasília, DF.
  • Nascimento, F.R.F., Cruz, G.V.B., Pereira, P.V.S., Maciel, M.C.G., Silva, L.A., Azevedo, A.P.S., Barroqueiro, E.S.B., Guerra, R.N.M., 2006. Ascitic and solid Ehrlich tumor inhibition by Chenopodium ambrosioides L. treatment. Life Sci. 78, 2650-2653.
  • Neiva, V.A., Ribeiro, M.N.S., Cartágenes, M.S.S., Moraes-Coutuinho, D.F., Nascimento, F.R.F., Reys, A.S., Amaral, F.M.M., 2011. Estudos pré-clínicos de atividade giardicida de Chenopodium ambrosioides L. e a padronização dos extratos na pesquisa e desenvolvimento de fitoterápicos. Rev. Ciên. Saúde 13, 155-165.
  • Okhale, S.E., Egharevba, H.O., Ona, E.C., Kunle, O.F., 2012. Phytochemical and proximate analyses and thin layer chromatography fingerprinting of the aerial part of Chenopodium ambrosioides Linn. (Chenopodiaceae). J. Med. Plants Res. 6, 2289-2294.
  • Oliveira, P.S., Marquis, R.J., 2002. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York.
  • Onocha, P.A., Ekundayo, O., Eramo, T., Laakso, I., 1999. Essential oil constituents of Chenopodium ambrosioides L. leaves from Nigeria. J. Essent. Oil Res. 11, 220-222.
  • Paré, P.W., Zajicek, J., Ferracini, V.L., Melo, I.S., 1993. Antifungal terpenoids from Chenopodium ambrosioides Biochem. Syst. Ecol. 21, 649-653.
  • Patrício, F.J., Costa, G.C., Pereira, P.V.S., Aragão-Filho, W.C., Sousa, S.M., Frazão, J.B., Pereira, W.S., Maciel, M.C.G., Silva, L.A., Amaral, F.M.M., Rebêlo, J.M.M., Guerra, R.N.M., Ribeiro, M.N.S., Nascimento, F.R.F., 2008. Efficacy of the intralesional treatment with Chenopodium ambrosioides in the murine infection by Leishmania amazonensis J. Ethnopharmacol. 115, 313-319.
  • Rautio, P., Markkola, A., Martel, J., Tuomi, J., Härmä, E., Kuíkka, K., Siitonen, A., Riesco, I.L., Roitto, M., 2002. Developmental plasticity in birch leaves: defoliation causes a shift from glandular to nonglandular trichomes. Oikos 98, 437-446.
  • Sá, R.D., 2013. Estudo farmacognóstico de Chenopodium ambrosioides L. (Chenopodiaceae). Recife, 104f. Dissertação de Mestrado, Programa de Pós-graduação em Ciências Farmacêuticas. Universidade Federal de Pernambuco.
  • Sá, R.D., Galvão, M.A.M., Ferreira, M.R.A., Soares, L.A.L., Randau, K.P., 2014. Chemical composition of the essential oil from leaves of Chenopodium ambrosioides L. grown in Recife-PE, Brazil. Rev. Bras. Farm. 95, 855-866.
  • Sá, R.D., Soares, L.A.L., Randau, K.P., 2015. Óleo essencial de Chenopodium ambrosioides L.: estado da arte. Rev. Ciênc. Farm. Básica Apl. 36, 267-276.
  • Santayana, M.P., Blanco, E., Morales, R., 2005. Plants known as in Spain: an ethno-pharmaco-botanical review. J. Ethnopharmacol. 98, 1-19.
  • Sass, J.E., 1951. Botanical Microtechnique, 2nd ed. Iowa State College Press, Ames.
  • Senna, L., 2016. Dysphania in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB139867 (accessed January 2016).
    » http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB139867
  • Silva Filho, F.A., Oliveira, P.L., Mariath, J.E.A., 1992. Tricomas de Chenopodium retusum Juss. ex Moq. Insula 21, 43-58.
  • Silva, L.M., Alquini, Y., Cavllet, V.J., 2005. Inter-relações entre a anatomia vegetal e a produção vegetal. Acta Bot. Bras. 19, 183-194.
  • Silveira, M., 1989. Preparação de amostras biológicas para microscopia eletrônica de varredura. In: Manual sobre técnicas básicas em microscopia eletrônica. USP, São Paulo, pp. 71–79.
  • Sousa, M.P., Matos, M.E.O., Matos, F.J.A., Machado, M.I.L., Craveiro, A.A., 2004. Constituintes químicos ativos e propriedades biológicas de plantas medicinais brasileiras. Editora UFC, Fortaleza.
  • Taylor, L., 2005. The Healing Power of Rainforest Herbs: A Guide to Understanding and Using Herbal Medicinals. Square One Publishers, Garden City Park, NY.
  • Trivellato Grassi, L., Malheiros, A., Meyre-Silva, C., Buss, Z.S., Monguilhott, E.D., Fröde, T.S., Silva, K.A.B.S., Souza, M.M., 2013. From popular use to pharmacological validation: a study of the anti-inflammatory, anti-nociceptive and healing effects of Chenopodium ambrosioides extract. J. Ethnopharmacol. 145, 127-138.
  • Wilson, C.L., 1924. Medullary bundlein reletion to primary vascular system in Chenopodiaceae e Amaranthaceae. Bot. Gaz. 78, 175-200.

Publication Dates

  • Publication in this collection
    Sep-Oct 2016

History

  • Received
    23 Nov 2015
  • Accepted
    27 May 2016
Sociedade Brasileira de Farmacognosia Universidade Federal do Paraná, Laboratório de Farmacognosia, Rua Pref. Lothario Meissner, 632 - Jd. Botânico, 80210-170, Curitiba, PR, Brasil, Tel/FAX (41) 3360-4062 - Curitiba - PR - Brazil
E-mail: revista@sbfgnosia.org.br