SciELO - Scientific Electronic Library Online

 
vol.53 issue4Estudo Sobre a Decomposição dos Determinantes da Variação da Pobreza nos Estados Brasileiros no Período 2001 a 2012O Programa Brasileiro de Biodiesel e o Risco Associado ao Preço da Mamona em Irecê, Bahia author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista de Economia e Sociologia Rural

Print version ISSN 0103-2003On-line version ISSN 1806-9479

Rev. Econ. Sociol. Rural vol.53 no.4 Brasília Oct./Dec. 2015

http://dx.doi.org/10.1590/1234-56781806-9479005304005 

Artigo

O Comportamento do Preço da Terra Agrícola: um modelo de painel de dados espaciais

Regina Lúcia Sanches Malassise1 

José Luiz Parré2 

Gilberto Joaquim Fraga3 

1Universidade Norte do Paraná (Unopar). Londrina, Paraná, Brasil. E-mail: remalassise@sercomtel.com.br

2Universidade Estadual de Maringá (UEM). Maringá, Paraná, Brasil E-mail: jlparre@uem.br

3Universidade Estadual de Maringá (UEM). Maringá, Paraná, Brasil. E-mail: gjfraga@uem.br

Resumo:

O presente artigo analisou o comportamento do preço da terra agrícola nos municípios do Paraná no período de 1999-2011. Partindo da revisão bibliográfica dos principais estudos nacionais sobre o tema, foi possível identificar os determinantes do preço da terra e os métodos utilizados. Neste sentido, optou­-se por estimar um modelo para o preço da terra via painel de dados espaciais. As estimativas indicaram que o valor bruto da produção agropecuária, a valorização patrimonial, o financiamento total à agropecuária, a relação investimento-receita municipal, o percentual da área plantada do município com soja e a incorporação da dependência espacial do preço da terra são variáveis que explicam o preço da terra no estado do Paraná. Estas explicariam 84% dos preços e indicaram que há maior ajuste intrapainel, sendo os efeitos espaciais mais intensos no próprio município e em relação ao todo. Em especial, o modelo proposto avançou em termos estruturais, com a incorporação de variáveis coletadas para todos os 399 municípios do Paraná, e em termos metodológicos, ao estimar via painéis de dados a influência dos efeitos de espacialidade sobre o preço da terra agrícola, destacando a importância da localização e da vizinhança na determinação de tal preço.

Palavras-chaves: Estado do Paraná; Preço da terra; Econometria espacial; Painel de dados

Abstract:

This study analyzes the behavior of the agricultural land price in the municipalities of Paraná State over the period 1999-2011. After literature review of the main studies of this field, the determinants of land price and methodology to be used were identified. For this purpose, we estimate the empirical model for price of agricultural land through spatial data panel. The results show that main statistically significant variables to explain the price of agricultural land in Paraná State are the gross value of agricultural production, asset valuation, total financing in agriculture, ratio municipal investment-income, percentage of planted soybeans in the municipality and the incorporation of spatial dependence on land prices. These variables can explain around 84% of the prices and indicate that the data presented great intrapanel fit, and the spatial effects would be more intense in the municipality itself and in relation to the whole. The proposed model, specially, advanced in structural terms, by incorporating data from all 399 municipalities in Paraná. Empirically, the study advanced by estimating through panel data and considering the influence of spatial effects on the agricultural land price, highlighting the importance of the location and neighborhood in the price determination.

Key-words: Paraná State; Land prices; Spatial econometrics; Panel data

1. Introdução

O preço da terra é um tema importante para a Ciência Econômica, desde o desenvolvimento da Teoria da Renda da Terra, de David Ricardo, devido à possibilidade que a terra tem para ampliar a riqueza e a renda das nações. Até os anos 1950, prevalecia na literatura econômica o consenso de que a renda da terra capitalizada determinava seu preço. Após esse período, verificou-se que o preço da terra se elevava acima da renda, o que se denominou paradoxo do preço da terra.

No Brasil, até os anos 1990, a elevação de preços foi comumente associada ao descontrole inflacionário que elevava os preços dos produtos agrícolas, valorizando artificialmente as potenciais receitas geradas pelo uso da terra, elevando seu preço mesmo quando não era utilizada para fins produtivos. Neste sentido, a inflação era considerada uma variável-chave para entender o comportamento do preço da terra agrícola, pois a terra assume características de ativo produtivo e de reserva de valor.

No estado do Paraná, após a implantação do Plano Real, os preços da terra declinaram até 1999, refletindo a acomodação destes à queda da inflação. Deste período até 2002, verifica-se que os preços se estabilizaram. Então, considera-se que os efeitos da inflação sobre o preço da terra tenham sido sensivelmente reduzidos, não sendo este o motivo para novos aumentos de preços que se iniciam em 2002. Esta nova alta de preços atinge um pico em 2004, período após o qual inicia-se nova queda que prossegue até 2008, porém, mesmo em queda, estes mantêm-se acima do registrado em 1999. Em 2009, inicia-se nova alta com preços atingindo pico em 2010 e estabilizando em 2011, finalizando um ciclo no qual os preços da terra ficam acima daqueles registrados em 2004. Desta forma, o período do estudo registra um ciclo de preços importante para análise dos determinantes do preço da terra agrícola no Paraná. Este ciclo de preços médios da terra agrícola no Paraná foi acompanhado de grandes diferenças de preços entre os municípios, dependendo de sua localização.

Neste sentido, num cenário de inflação controlada, com a oscilação cíclica dos preços médios reais da terra agrícola, e considerando as diferenças de preços entre os municípios, faz-se o seguinte questionamento: Quais os determinantes do preço da terra agrícola nos municípios do Paraná? Acredita-se que exista dependência (autocorrelação) espacial do preço da terra e de seus determinantes. Entende-se que, na presença de dependência espacial, identificando-se transbordamentos espaciais e formação de clusters , um modelo espacial deve ser aplicado num estudo sobre o preço da terra agrícola.

Em especial para entender como a espacialidade afeta o preço da terra agrícola e seus determinantes em cada município do Paraná, deve-se estudar em diferentes períodos a dependência espacial do preço da terra, incorporando-a como variável explicativa. Também devem ser incorporadas outras variáveis que consigam captar as quase rendas, custos de manutenção, valorização patrimonial e liquidez para explicar o preço.

Tal análise, quando aplicada ao preço da terra agrícola nos municípios do estado do Paraná, considera que este é um território com tradição agrícola consolidada e pode representar situações semelhantes a outras regiões do Brasil. Neste sentido, a presente pesquisa se justifica pelo destaque que tem o Paraná no cenário agrícola brasileiro, sendo o maior produtor de grãos do País e por estar entre os maiores produtores de cana-de-açúcar e carne. É, ainda, um estado com invejável nível de modernização tecnológica. A relevância do estudo sobre o preço da terra agrícola, nesse contexto, permite conhecer melhor seu comportamento e seus determinantes, fornecendo subsídios para futuras pesquisas em mercados locais, bem como oferecendo bases para as políticas públicas para o setor agropecuário do Paraná.

Considerando este cenário, o presente artigo tem por objetivo principal analisar os determinantes do preço da terra agrícola nos municípios do Paraná no período entre 1999 e 2011, bem como verificar os efeitos da espacialidade sobre o comportamento do preço da terra no estado. Especificamente, busca-se:

  • propor uma nova forma de analisar e compreender o preço da terra agrícola a partir da elaboração de um modelo analítico de formação do preço da terra considerando os efeitos espaciais;

  • determinar a influência da quase renda, da valorização patrimonial e do custo de manutenção na determinação do preço da terra;

  • propor uma maneira de destacar a influência da liquidez na determinação do preço da terra; sendo essa representada por um conjunto de variáveis;

  • verificar a existência de convergência espacial nos preços da terra agrícola.

O artigo está estruturado em cinco itens: o primeiro é composto pela introdução que discute o problema de pesquisa, sua justificativa e os objetivos. O segundo item se refere à fundamentação teórica, que apresenta uma revisão bibliográfica dos estudos para o preço da terra agrícola no Brasil, partindo de artigos que exploram o tema desde os anos 1960, e estende-se a estudos mais recentes, da década de 2000. São evidenciadas as principais abordagens, metodologias e variáveis explicativas elencadas nos estudos. O terceiro item visa descrever a metodologia e propor um modelo empírico para o preço da terra agrícola do Paraná no período 1999-2011. Explora a Econometria Espacial, detalhando seu foco, suas técnicas e o modelo de Painel de Dados Espaciais, e finaliza com a apresentação do modelo econométrico. O quarto item apresenta os resultados do estudo e, por fim, tecem-se as considerações finais.

2. Fundamentação teórica

Uma primeira aproximação de questões importantes ligada ao mercado de terras deve ser buscada em autores que inicialmente apresentaram alguns de seus fundamentos. Um dos autores mais citados é David Ricardo; tal fato se deve ao desenvolvimento dado por ele na obra Essay on the influence of a low price of corn on the profits of stock , publicada em 1815, na qual expôs pela primeira vez sua versão para a teoria da renda da terra, que justificou por muitos anos o motivo pelo qual haveria uma demanda pela terra1.

O argumento principal dessa demanda reside no fato de que a remuneração auferida por seu proprietário em forma de renda tornaria a terra um ativo no qual se poderia investir o capital. Neste mercado, o preço da terra, em especial a agrícola, estaria associado a sua capacidade produtiva, isto é, ao uso da terra para produzir.

É necessário fazer um adendo para explicar que a construção do conceito de renda da terra se deve a Adam Smith, Thomas Robert Malthus e David Ricardo que foi seu mais notório expoente na escola clássica. No entanto, a contribuição de Karl Marx foi a mais expressiva para a consolidação do conceito. Enquanto Smith admitiu apenas a existência de uma forma de renda, Ricardo foi o grande responsável pela introdução do conceito no sistema da Economia Política, e Marx irá ampliar o conceito ricardiano de renda diferencial em duas partes, o que irá comprovar a existência de rendas do monopólio e renda absoluta (LENZ, 2007).

Marx expôs que na reprodução social capitalista as formas pré-capitalistas ou feudais ainda existiam nos campos europeus e conviviam com as formas capitalistas, e que a relação entre a terra e o capital se tratava de uma relação social. Neste sentido, a renda da terra é a forma econômica das relações de classes do sistema de produção capitalista estendida à terra (MARX, 2008). De maneira resumida, e não subestimando a complexidade da análise marxiana, a renda da terra surge porque a mesma relação de classes que subordina proletários a capitalistas se estabelece no campo nas pessoas do agricultor (ou daquele que trabalha a terra em seu uso produtivo) e do rentista de terras (aquele que é dono da terra mas que a loca a um terceiro). Logo, a renda da terra passa a ser uma propriedade das relações sociais.

Neste contexto, Marx, na obra O Capital 3º Livro, irá separar a renda da terra em quatro partes: Renda Absoluta, Renda de Monopólio e as Rendas Diferenciais I e II. A Renda Absoluta era obtida pelo próprio solo, ou seja, as características físicas (relevo, área etc.). A Renda de Monopólio era determinada pela condição única do solo em relação ao mercado (Valor). Em ambos os casos o proprietário obtinha a renda. A Renda Diferencial I é determinada pelas características naturais do solo que era explorada pelo capitalista. Os elementos em destaque eram a fertilidade e a localização, pois permitiam menores gastos para produzir por m2 a mesma quantidade de produtos que seria produzida no pior terreno. A Renda Diferencial II é determinada pela quantidade de capital investido no solo através de equipamentos de irrigação e drenagem etc, acarretando maior volume de produção por m2 (LENZ, 2007).

Considerando que as discussões sobre a renda da terra em Marx "ao trabalhar com estabelecimento de leis gerais não são suficientes para o tratamento da dinâmica dos mercados, quer na sua forma global, quer em diferentes estruturas" (REYDON, 1992. p. 61), esta visão não será alvo de maior investigação por parte deste artigo.

Segundo Reydon (1992), tanto as escolas clássicas quanto as marxistas propunham abordagens que reforçavam a teoria de renda da terra, fenômeno que era confirmado pelas pesquisas e que prevaleceu até meados dos anos 1950, quando se verificou a elevação do preço da terra acima de seus ganhos produtivos. Esse fato ficou conhecido como paradoxo do preço da terra e exigiu que se buscasse em outras variáveis, além do uso da terra, uma explicação para a súbita elevação nos preços.

Neste novo contexto, a renda da terra funcionava como um estímulo à demanda por terras, mas ela por si não era a única a explicar o preço da terra. Com o crescimento populacional e o desenvolvimento dos mercados financeiros, verificou-se a necessidade de incorporar novas variáveis explicativas para o preço da terra. Dentre estas novas vertentes, surge a que considera a terra como um ativo; assim sendo, seu preço estaria sujeito à interferência de demais variáveis que influenciam o preço do ativo, como os juros, por exemplo.

O estudo que contempla o preço dos ativos remonta a Keynes, o qual em sua obra Teoria Geral do Emprego, do Juro e da Moeda , de 1936, apresenta as bases de uma economia movida pela demanda. Keynes analisa uma economia monetária de produção, em que se espera que os investimentos sejam motivados por seu retorno. Todos os bens devem oferecer um retorno esperado em termos de si mesmo2. O retorno da moeda em termos de si mesma é chamado de juros. Ocorre que, numa economia empresarial, na qual o objetivo é aplicar dinheiro para obter mais dinheiro ao final de um período, o investimento em diferentes tipos de ativos está sujeito ao comparativo de retorno de cada um deles.

Keynes expõe os três atributos dos bens necessários para medir o retorno que eles proporcionam. O primeiro é que todos os bens têm um rendimento ou produção q medido em termos de si mesmo. O segundo é que eles têm um custo de manutenção c , também medido em termos de si mesmo, que se refere ao desgaste, despesa ou simplesmente ao correr do tempo da posse do ativo, sendo ele utilizado ou não para produzir rendimento. O terceiro é que existe um prêmio de liquidez l , que é definido como "montante que as pessoas estão dispostas a pagar pela conveniência ou segurança potencial proporcionada pelo poder de dispor dele (excluindo o rendimento e ou os custos de manutenção que lhe são próprios)" (KEYNES, 1985, p. 159). A equação para o retorno do investimento apresenta-se como: r = q - c + l; em que r é a retribuição total que se espera da propriedade de um bem durante um período; q é o rendimento do bem; c o custo de manutenção; e l é o prêmio de liquidez. "Por outras palavras, q - c + l é a taxa de juros específica de qualquer bem" (KEYNES, 1985, p. 159).

Para entender o desenvolvimento e formação do preço do ativo terra agrícola, é necessário explicar a ligação entre o preço de um ativo e o mercado de terras. É no trabalho de Reydon (1992) e suas publicações posteriores que se busca tal ligação. O autor destaca que essa ligação passa pelo estabelecimento de alguns pressupostos sobre a análise dos ativos em geral.

O primeiro é que se opera numa economia empresarial. Nela todas as transações são expressas em moeda, e o motivo principal das transações é aumentar a quantidade de dinheiro que se tinha inicialmente. Numa economia como essa, deve-se esperar que exista um mercado de terras consolidado que "é aquele no qual há títulos de propriedade, aceito pelo conjunto de agentes econômicos, em troca de dinheiro" (REYDON, 1992, p. 63).

O segundo é que essa economia é instável de tal forma que "os portadores de riqueza, no afã de ampliá-la ou mantê-la, precisam encontrar formas para isto, apesar da incerteza frente aos acontecimentos futuros" (REYDON, 1992, p. 65). Para enfrentar essa incerteza, os agentes aplicam em ativos com graus diferentes de liquidez; nesse caso, a moeda é um ativo que mantém a liquidez e, portanto, a riqueza ao longo do tempo.

Os agentes tomam suas decisões seguindo suas expectativas, sempre procurando se defender do futuro incerto. A racionalidade por trás desta tomada de decisão é pautada por uma convenção. Para Keynes (1985), "a essência desta convenção [...] reside em supor que a situação existente nos negócios continuará por tempo indefinido, a não ser que tenham razões concretas para esperar uma mudança". Essa convenção pode ser influenciada, em especial, através da criação e fortalecimento das instituições e da atuação do Estado.

O terceiro pressuposto decorre da forma como a convenção é formada, impondo a necessidade de observar algum aspecto da realidade. "Trabalha-se aqui com o pressuposto de que os agentes têm expectativas condicionadas pelo passado, podendo assumir a forma convencional" (REYDON, 1992. p. 67). Observam o conjunto da economia, os sinais de mercado e suas próprias expectativas.

O capitalista estabelece sua carteira de ativos em função da expectativa de obter um retorno por detê-los. As decisões são tomadas em diferentes períodos e, a longo prazo, busca-se maximizar o rendimento líquido esperado; porém, a curto prazo, deve-se decidir pelo seu uso estabelecendo produção, preços e rearranjos dos ativos líquidos.

Admite-se que a terra se constitui num ativo líquido e que suas características especiais devem ser consideradas numa análise do retorno que ela pode proporcionar. Utilizando uma equação de retorno dos ativos, Reydon (1992) fez uma reapresentação de seus atributos, agora voltados para as especificidades do ativo terra: Pt = q - c + l + a ; por esta equação, Pt é o preço da terra, q são as quase rendas, c o custo de manutenção, l o prêmio de liquidez3 e a , a valorização patrimonial do ativo.

As quase rendas (q ) são constituídas por "todos os ganhos produtivos que os agentes esperam obter com sua aquisição. Portanto, uma terra naturalmente mais fértil ou de fácil fertilização, ou mais próxima ao mercado, obterá fluxos de rendimento q mais elevados" (REYDON, 1992, p. 98). Eles também são afetados pelo que se produz e pelas inovações tecnológicas que podem aumentar a produtividade e o rendimento. Além dos benefícios advindos das políticas agrícolas, como crédito rural e incentivos fiscais, e das possibilidades de ganho com arrendamento.

Neste sentido, pode-se dizer que Reydon sistematizou as características da terra que permitiram determinar seu preço como ativo. Esse preço considera os atributos do ativo e destaca as características específicas do ativo terra e seu mercado. Partindo das análises de Reydon, Plata (2010) pontuou que "o preço da terra é determinado pelas expectativas de rendas produtivas e especulativas que resultam da propriedade da terra" (p. 71). Essas expectativas influenciam tanto a renda quanto o preço da terra, sendo que a própria renda é um dos determinantes do preço da terra.

Os estudos sobre o preço da terra ganharam destaque no Brasil a partir dos anos 1970, quando são disponibilizados alguns preços (principalmente pela FGV), momento em que foi possível constatar a diferença entre os preços de venda e de arrendamento das mesmas. Este fato havia sido verificado nos anos 1950 na economia americana o qual Scofield (1957) denominou 'paradoxo do preço da terra'.

Neste sentido, as oscilações no preço da terra acima da renda capitalizada despertaram interesse dos pesquisadores. Os estudos teóricos buscam em variáveis ligadas especificamente à posse da terra e em variáveis macroeconômicas os determinantes do preço da terra. Através de uma breve revisão de literatura, pode-se dizer que:

  • O preço de venda da terra supera o preço real relativo que seria dado pelo preço de arrendamento capitalizado. No Brasil, o momento em que se verifica o paradoxo do preço da terra é entre 1976/77, conforme destacam os estudos de Pinheiro e Reydon (1981), Castro (1981), Rezende (1982) e Brandão (1988);

  • O preço da terra é determinado pela demanda, pois os ofertantes têm o poder de monopólio e de controlar os estoques, mas não de influir sobre o preço que os demandantes estão dispostos a pagar por elas. Logo, a terra tem como característica baixa elasticidade de oferta e substituição (SAYAD, 1977a; SAYAD, 1977b; PINHEIRO e REYDON, 1981; EGLER, 1985);

  • A terra adquire status de ativo líquido quando se constitui um mercado secundário organizado, o que lhe garante o atributo de reserva de valor (SAYAD, 1977a);

  • A escassez de terra eleva seu preço. A escassez deriva tanto da menor oferta de terras em geral quanto da oferta de terras com maior produtividade, sendo que a falta da segunda pressiona o preço da primeira, conforme destaca Camargo e Ferreira (1989). Em especial no caso dos estados da região Sul estes dois fatores pressionam o preço da terra;

  • Há um predomínio de variáveis ligadas ao setor agrícola sobre variáveis especulativas ou elementos do ambiente econômico na definição dos preços da terra, conforme destaca Bacha (1989);

  • A terra é um ativo de capital e ativo líquido, pois pode ser utilizada com investimento produtivo ou como reserva de valor, conforme destacam Reydon (1992) e Plata (2001);

  • As políticas agrícolas na medida em que criam mecanismos que afetam a rentabilidade do setor afetam as decisões dos agentes, o que leva a oscilações no preço da terra. Desta forma, a intervenção do governo via concessão de crédito rural subsidiado fazia com que os detentores de terra pudessem especular, conforme Sayad (1977a). Estes tomavam recurso a juros mais baixos e aplicavam num mercado que lhe dessem mais retorno ao capital investido, e uma das consequências era a concentração de renda e de riqueza, conforme Sayad (1982). Os estudos deram pouco enfoque à política de preços mínimos e seus impactos sobre o preço da terra, conforme destaca Rezende (1981);

  • A inflação por si só não pode ser um fator que explique a elevação do preço da terra, pois os estudos constataram que, quando somente a inflação se destacava, os preços da terra se mantiveram estáveis em termos reais, conforme destacam Castro (1981) e Sayad (1982). Em geral, a comparação da rentabilidade entre a terra e os demais ativos tem sido bem explorada para exemplificar os efeitos da política macroeconômica sobre o preço da terra, segundo Pinheiro e Reydon (1981). E conforme já destacado anteriormente por Egler (1985), o elo de ligação entre os demais mercados e o mercado de terras é a taxa de juros;

  • Em relação aos ciclos econômicos, não há uma opinião mais formalizada sobre a influência deste sobre o preço da terra, ficando em aberto se os preços da terra são pró-cíclico (PINHEIRO, 1980) ou contracíclico (RANGEL, 1979). Os estudos não são conclusivos quanto a esta questão;

  • Em especial para o Brasil, a estabilização econômica pós-Plano Real trouxe à mesa de discussões o impacto desta sobre os preços. Neste sentido, os estudos têm dado maior destaque aos preços das commodities agrícolas, recolocando a importância da terra como ativo produtivo e alertado para a instabilidade financeira que reforça as características da terra como reserva de valor, conforme destacam Rezende (1992), Helfand e Rezende (2001), Gasques, Bastos e Valdes (2008);

  • A evolução da questão ambiental tem representado uma pressão para o aproveitamento produtivo do solo e a produção de biocombustíveis e bioenergia, o que também poderá exercer pressões altistas sobre o preço da terra, conforme destacam Telles e Reydon (2012);

  • O avanço da globalização sobre o mercado de terras, que vem promovendo a estrangeirização do solo, é mais um fator que contribui para elevar os preços da terra rural, conforme Sauer e Leite (2012).

Com tantas variáveis a influenciar o mercado de terras agrícolas, devido aos impactos diretos e indiretos que têm sobre os atributos que determinam seu preço, é de se esperar que muitos estudos tenham abordado esse tema. Sendo assim, para entender melhor a evolução destes estudos empíricos no Brasil, foi elaborado o Quadro 1 que apresenta os estudos que analisaram o preço de venda da terra no Brasil para o período de 1960 a 2011 e que tiveram como base algum instrumental econométrico de mensuração.

Quadro 1. Evolução dos estudos empíricos sobre o preço da terra no Brasil 

Ainda como complemento ao Quadro 1, de maneira resumida, pode-se dizer que:

  • Estudos com séries temporais destacam que: i) o preço da terra apresenta relação positiva com a rentabilidade do setor, medida pela relação entre o preço recebido e o preço pago pelo produtor; ii) a infraestrutura é relevante somente quando é insuficiente ou pequena para atender uma região, iii) a inovação tecnológica explica os diferenciais de preço entre as regiões, segundo Oliveira e Costa (1976); iv) entre os ativos financeiros, o Ibovespa apresenta relação inversa ao preço da terra, v) caso o modelo incorpore a razão entre a defasagem t-1 e t-2, quanto mais os preços da terra se elevarem em t-1, maior o preço da terra em t (Bueno, 2005);

  • Em modelos cross-section log-log destaca-se que: i) alta nos preços da terra não coincidem com alta no preço de arrendamento, conforme Pinheiro (1980), Brandão e Rezende (1989); ii) crédito rural permite ao proprietário da terra especular Pinheiro (1980) e é mais significativo para terras de lavoura, de acordo com Brandão (1986); iii) o arrendamento explica o preço da terra apenas para as regiões para as quais tenha sido significante, segundo Pinheiro (1980); iv) o crédito rural apresenta baixa elasticidade quando no modelo aparece o preço pago pelo produtor, conforme Dias, Vieira e Amaral (2001); v) a inflação eleva o preço da terra e as variáveis ligadas ao uso produtivo da terra são mais significativas que as demais para explicar o preço, de acordo com Rahal (2003); vi) no período 1998-2009, o incentivo à produção de biocombustíveis elevou a elasticidade de uso da terra no estado de São Paulo, grande produtor de cana-de açúcar, segundo Barros (2010);

  • Os modelos que utilização a substituição intertemporal entre renda e preço da terra mostram que: a renda torna-se significante independente da região e espelha o comportamento do agente ajustando sua carteira de portfólio em termos de aversão ao risco Brandão (1986);

  • Em modelos de equações simultâneas, destaca-se que: i) as variáveis vinculadas à terra como ativo produtivo são mais significativas, seguidas pelas variáveis especulativas e do ambiente econômico4, conforme Bacha (1989); ii) para 2002-2009, o preço da soja e a incorporação de áreas para reforma agrária pelo Incra mostraram-se significantes e positivas para explicar o preço da terra, de acordo com Plata et al. (2011);

  • Em modelos de equilíbrio geral destaca-se que: i) o preço da terra de longo prazo se distancia do equilíbrio de curto prazo por interferência de fatores conjunturais, ganhos produtivos elevam o preço da terra, e após 1994, a estabilização da moeda, reforma agrária e o ITR têm impactos negativos sobre o preço da terra, conforme Plata (2001);

  • Em modelos log linear destaca-se que: a taxa de câmbio, o preço de arrendamento e o índice de preço pago ao produtor são positivos e a taxa Selic é negativa e significativa conforme destaca Oliveira e Ferreira (2010).

Após a realização da revisão sobre os principais trabalhos empíricos sobre o mercado de terras rurais no Brasil, foi possível identificar diferentes modelos e possibilidades de estudo, destacando que estes foram de encontro ao que já havia sido apresentado pelos estudos teóricos. Pode-se perceber a complementação entre eles e destacar a importância de algumas variáveis como a relação preço/recebido preço pago, o crédito rural, a infraestrutura, o ITR e os preços da soja como variáveis importantes na determinação do preço da terra. Também deve-se considerar o avanço da questão dos biocombustíveis e a inclusão de estudos sobre os preços desta commodity para explicar a elevação do preço da terra e a inclusão da produtividade total dos fatores como uma possibilidade de explicação para as quedas no preço da terra. Os estudos mais recentes que abordam o impacto da estrangeirização sobre os preços da terra.

Percebe-se que há necessidade de aprofundar as pesquisas incrementando as análises com inclusão de variáveis e modelos alternativos. Pode-se incluir a localização física do espaço produtivo, bem como o tipo de solo, a infraestrutura, o grau de urbanização, a proximidade de mercado consumidor, clima e cultura propícia, incluindo também variáveis de cunho político econômico como crédito, juros, políticas de apoio à produção e/ou áreas de produção de produtos específicos, além de indicadores ambientais. Em especial pode-se avançar metodologicamente com estudos que contemplem a espacialidade e as questões de convergência entre as regiões, introduzindo-se uma análise cross-section ou com painel de dados com dependência espacial. Isto é possível graças aos avanços da Econometria Espacial.

Neste contexto, evidenciam-se as principais variáveis explicativas e conclusões elencadas nos estudos. Constata-se que as discussões sobre o preço da terra rural estão bem avançadas; porém, ainda carentes de análises empíricas. O atributo localização, em especial, pode ser trabalhado com técnicas mais sofisticadas, que não foram implementadas nos estudos sobre o tema.

3. Metodologia

Neste artigo, dado o objetivo de se analisar municípios em diferentes períodos, optou-se por realizar um estudo via painel de dados. Um painel tem a característica de captar o movimento no tempo dos valores observados para cada município de maneira transversal. Nesse sentido, com dados em painel, têm-se observações repetidas para os mesmos municípios ao longo do tempo e os problemas característicos das estimações de cross-section e de séries de tempo podem ser superados; ao mesmo tempo em que o número de graus de liberdade aumenta consideravelmente (PINDYCK e RUBINFELD, 2004).

O trabalho com dados em painéis apresenta vantagens em relação a dados temporais, como: eleva os graus de liberdade e a eficiência do estimador, considera mais as variações e reduz a colinearidade entre os dados, reduz o erro causado por omissão de variáveis relevantes específicas da região que são invariantes no tempo.

Na análise econométrica tradicional, um painel de dados compõe-se de informações de corte transversal, com informações por período de tempo no qual os municípios são independentes entre si. A econometria espacial considera que as unidades observadas (municípios) são espaciais e estão sujeitas à dependência espacial; isto exige que se faça uma adaptação no modelo para poder captar a provável presença desta dependência.

3.1. Modelos de painel de dados com dependência espacial

A análise espacial em painéis de dados visa tratar a dependência e a heterogeneidade espacial que, no estudo em questão, surge porque a variância observada nos municípios muda de acordo com localização. Neste sentido,

Um painel de dados espaciais consiste de uma amostra de regiões observadas em diversos momentos do tempo. O painel espacial é uma forma de acomodar a heterogeneidade espacial não observável que se manifesta nos parâmetros da regressão, sobretudo nos interceptos. Isso ocorre porque variáveis não observadas omitidas podem exercer influência sobre os interceptos, fazendo-os variar conforme a região. A heterogeneidade espacial não observável pode ainda se manifestar no componente erro (ALMEIDA, 2012, p. 408).

O modelo de painel de dados espaciais utilizado nesse estudo toma por base o pressuposto de que as relações são lineares nos coeficientes, que a variável dependente é contínua, os painéis são balanceados e que a matriz de pesos espaciais permanece a mesma ao longo do tempo. Os modelos de dados em painéis podem ser de efeito fixo ou aleatório.

3.2 Modelos de efeitos fixos com dependência espacial

Ao explorar inicialmente um modelo de efeitos fixos argumenta-se que este considera que as diferenças nos valores observados para as variáveis entre municípios são captadas nos diferentes interceptos acomodando a existência da heterogeneidade não observável. Isto é feito por meio da incorporação dos efeitos não observados como sendo um parâmetro a ser estimado, o que permite eliminar o viés de variáveis omitidas e ainda contemplar a dependência espacial dos dados.

A construção do modelo inicia-se após a realização de uma estimativa via painel tradicional, e só prossegue caso seja verificada a autocorrelação espacial dos resíduos do modelo. Esta verificação é feita aplicando-se os testes de autocorrelação espacial, tais como o teste de I de Moran para os resíduos das unidades de corte transversal de cada período ou testes de multiplicador de Lagrange da defasagem espacial e do erro espacial. "Constatada a presença de erros autocorrelacionados, há a necessidade de tratar essa dependência, incorporando alguma defasagem espacial no modelo" (ALMEIDA, 2012, p. 413).

Desta forma, a construção do modelo geral de efeitos fixos com dependência espacial inclui várias defasagens espaciais5 para controlar a autocorrelação espacial6 de diversos tipos. O modelo geral utilizando dados empilhados é descrito como:

sendo W1yt a defasagem espacial da variável dependente, W3Xt as variáveis explicativas defasadas espacialmente e W2 ξt são os erros defasados espacialmente. As matrizes de pesos espaciais7 (W1 , W 2 e W3 ) devem ser definidas em momento anterior quando da realização da Análise Exploratória de Dados Espaciais (AEDE). E, por fim, ρ e λ são os parâmetros espaciais, e τ é um vetor de coeficientes espaciais. Nesse caso, no modelo geral, ocorre um problema devido ao fato de a defasagem da variável dependente estar correlacionada com o termo erro aleatório, logo E(W1yt εt ) ¹ 0, devido à endogeneidade espacial. "A correta identificação da relação causal expressa pelo modelo dependerá do tratamento dessa endogeneidade espacial. Impondo restrições aos parâmetros espaciais, é possível extrair vários modelos de efeitos fixos com dependência espacial" (ALMEIDA, 2012, p. 414).

A forma de tratar tal endogeneidade é impor restrições aos parâmetros espaciais presentes nos modelos de efeito fixo com dependência espacial; dessa forma, os modelos podem ser denominados autorregressivo espacial (SAR), regressivo cruzado espacial (SLX), Durbin espacial (SDM), Durbin espacial do erro (SDEM) e erro regressivo espacial (SEM). O Quadro 2, a seguir, apresenta alguns modelos espaciais.

Quadro 2. Alguns tipos de modelos espaciais 

3.3. Apresentação do modelo

3.3.1 Descrição das variáveis

O presente estudo tem como área de abrangência o estado do Paraná, que é um dos três estados da região Sul do País. Segundo o Instituto Brasileiro de Geografia e Estatística (IBGE), o estado conta com quatro regiões metropolitanas (Curitiba, Londrina, Maringá e Umuarama), está dividido em 10 mesorregiões e 39 microrregiões. Para fins deste estudo, na análise de resultados, aborda-se a distribuição municipal contemplando 399 municípios e um total de 3.990 observações para cada ano. A análise será feita tomando por base os anos de 1999, 2002, 2006, 2010 e 2011. Todas as variáveis8 que compõem o modelo são apresentadas no Quadro 3, e a escolha das variáveis foi guiada pela revisão de literatura e precedida pela AEDE9.

Quadro 3. Apresentação das variáveis do estudo 

O modelo empírico

Na apresentação do modelo, destaca-se que a análise aqui empreendida segue as considerações teóricas destacadas no Item 2. Neste sentido, a abordagem do preço da terra busca contemplar a equação descrita por:

Para esta equação, PT é o preço da terra, que é a variável dependente, e as variáveis independentes são expressas por q , quesão as quase rendas, c , o custo de manutenção, l , o prêmio de liquidez e a , a valorização patrimonial do ativo. Para algumas variáveis desta equação, faz-se necessário encontrar proxies , pois elas não se encontram disponibilizadas. A variável q deve ser representada por um indicador de captar todos os ganhos expressos pelo uso da terra; neste caso, a proxy que a representa é o Valor Bruto da Produção. O custo de manutenção (c ) deve ser representado por variáveis que incluam os custos extraoperacionais, tais como depreciação e custos de transação; nesta análise, ele é representado pelo ITR que é um custo com significado importante para desestimular o uso especulativo da terra por onerar a parte da propriedade tida como improdutiva. E a é representado pelo preço da terra defasado (VP), isto porque assume-se que os agentes racionais tomem por base o preço num período imediatamente anterior como referência para tomada de decisão.

Um adendo à parte é feito às varáveis que representam a liquidez estrutural (l), que são apresentadas no Quadro 2. Desta forma, espera-se que o volume de financiamento (FINT), de esforço de investimento acima da receita municipal (INV), de acesso à eletrificação rural (ELET), que a produtividade da soja (S_P), o percentual da área do município plantada com soja (Soja) e tipo de solo (Solo), contribuam para consolidar o mercado de terras de uma região. Elas consolidariam a liquidez estrutural da terra por ser uma espécie de seguro contra a possível perda de dinheiro caso haja necessidade de vender a terra, transformado-a em liquidez por excelência (moeda). Incorporando estas variáveis na equação genérica (3), propõe-se o modelo empírico da equação (4) que será estimado através do procedimento de dados em painéis espaciais.

A variável dependente do modelo é o preço da terra agrícola por hectare, representada pela sigla PT. As variáveis explicativas do modelo são o VBP , ITR , VP , FINT , INV , ELET, S_P , Solo , Soja . O subscrito i representa os 339 municípios do Paraná. O subscrito t corresponde ao ano observado, sendo que neste estudo são os anos de 1999, 2002, 2006, 2010 e 2011; u é o termo de erros aleatórios.

4. Análise de resultados

Existe um procedimento padrão para promover as análises empíricas centradas no uso de dados em painel, necessárias para identificar qual painel, dentre o de efeito aleatório e efeito fixo, é o mais adequado para o estudo em questão. Nesta etapa prévia identificou-se que o painel de dados de efeito fixo seria mais adequado. Neste item, tendo por objetivo apresentar os principais resultados obtidos na pesquisa, apresenta-se a Tabela 1 que condensa os resultados obtidos para painel de dados efeitos fixos tradicionais; a seguir, são apresentados os resultados do modelo de painel de dados espaciais condensados na Tabela 2 e, por fim, são apresentados os resultados da análise de convergência dos preços.

Tabela 1 Resultado da estimação com dados em painel tradicional 

Legendas: *P > (t) = 0,001; ** P > (t) = 0,010 134. Teste de Breusch e Pagan χ2 = 305.74 Prob > Chi2 = 0,0000 135. Teste de Hausmann χ2= 169,56 Prob > Chi2 = 0,0000 136. Fonte: Resultados da pesquisa.

4.1. Resultados das estimações de modelos com dados em painel

O modelo básico inicial é o Pooled , que assume a simples forma de uma estimativa com dados empilhados, sendo considerado uma forma rústica que, devido à forma como é operacionalizado, não se considera uma análise de dados em painel propriamente dita. Mas os principais resultados a que esta estimativa conduziu estão expressos na Tabela 1, coluna 2.

Observando os resultados, conforme alguns estudos citados anteriormente indicaram, as variáveis que expressam o valor da produção (VBP ), valorização patrimonial (VP ), crédito agrícola (FINT ), produtividade (S_P ) e uso do solo (Soja ) são importantes para explicar o preço da terra agrícola. O mesmo não ocorreu com a variável ITR que, embora significativa, apresentou-se com sinal contrário ao modelo; a literatura já indicava pouco poder explicativo do ITR, questionando sua eficiência para exercer um papel de forçar o uso produtivo do solo, tornando-se um desestímulo à especulação. A variável INV não apresentou uma relação direta com o preço da terra, o que já era esperado porque muitos municípios procuram investir de acordo com suas receitas. A variável Solo , embora seja importante para explicar o uso da terra, apresenta classificação repetida entre os municípios, levando ao problema de colinearidade, o que torna seu uso mais complexo. Embora a análise pooled não seja a mais indicada para análise em painéis, destaca-se que boa parte das variáveis são significativas e apresentam-se de acordo com o modelo proposto, sendo um indicativo de que se deve prosseguir, a fim de identificar com maior clareza as relações entre as variáveis do modelo.

Dentre os problemas apresentados pela regressão pooled , um deles refere-se ao fato de este supor que o valor do intercepto do município é o mesmo para todos os 399 municípios, desconsiderando diferenças importantes existentes entre os municípios como: o preço da terra, o nível de investimento, o tipo de solo, enfim, os valores diferentes das variáveis para cada município.

Para contornar este problema estimou-se o modelo de variáveis binárias10 (dummy ) por meio do MQO. O efeito das variáveis independentes é mediado pela diferença entre os municípios. Através das variáveis dummies para cada município, estima-se o efeito puro das variáveis independentes. Cada dummy está absorvendo os efeitos particulares de cada município11. De acordo com os resultados da Tabela 1, coluna 3, constata-se que os coeficientes das variáveis independentes são significativos. Por outro lado, verifica-se que neste modelo as variáveis INV e solo continuam, como no modelo MQO pooled , negativas, contrariando o esperado pelo modelo. O R2, assim como o R2 ajustado, aumenta, passando a 0,8259 e 0,7813, respectivamente, indicando que as variações nas variáveis independentes contribuem de maneira significativa para explicar as variações no preço da terra agrícola. Um problema identificado decorre do fato de a análise de probabilidade dos diferenciais de intercepto entre o município referência e os demais poder não ser estatisticamente significativo. Ela apontou que em 111 municípios tais interceptos não são estatisticamente significativos. Para os demais municípios, os valores dos interceptos são estatisticamente diferentes de zero. Acrescenta-se que as diferenças nos interceptos se devem às características próprias de cada município, tais como: grau de desenvolvimento, localização etc.

A fim de explorar as demais possibilidades de melhora das estimativas trabalhando com dados em painel, procedeu-se dois testes. O primeiro, o teste F de Chow , tem como hipótese nula a igualdade entre o intercepto e inclinação para todos os municípios. Isto é, testa a validade do modelo pool12 em detrimento do modelo efeito fixo, cujo resultado foi 4,78, quando deveria ser 0,00; portanto, rejeita a hipótese nula de que o modelo de pools seria mais adequado que o modelo de efeito fixo. Na sequência, procedeu-se também o teste de Hausman13 para verificar qual modelo, efeito fixo ou aleatório, seria o mais adequado. O resultado está no rodapé da Tabela 1 e leva à rejeição da hipótese nula de que não existe diferenças sistemáticas entre os estimadores de efeito fixo e aleatório ao nível de significância de 1%. Seguindo a sugestão de Almeida (2012), caso ainda exista alguma dúvida sobre qual modelo utilizar, deve-se optar pelo modelo de efeitos fixos, pois dessa forma os estimadores serão eficientes e consistentes.

Neste sentido, partiu-se para o modelo de efeitos fixos, pois este realiza a regressão sobre a média dos municípios. As estimativas em modelo de efeito fixo apresentam resultados whithin , between e overall . Os resultados são apresentados na Tabela 1, coluna 4. Percebe-se que todas as variáveis foram significantes, sendo que os coeficientes maiores foram o ITR e ELET . Porém, a variável INV continua com sinal contrário ao previsto pelo modelo econométrico. A variável solo que é excluída do modelo de efeito fixo, por ser categórica cujos valores se repetem implicando em alta colinearidade, não aparece neste comparativo, mas seu valor e significado podem ser tomados pelo modelo com dummy , uma vez que o valor das demais variáveis não se altera entre um modelo e outro.

Um reforço adicional à análise dos painéis da verificação dependência pode ser aferida pelo teste BP/LM14; neste verifica-se se os resíduos entre as unidades (i) não são correlacionados, que é a hipótese nula do teste. O cálculo da estatística para o modelo indica que existe dependência entre os painéis (municípios). Nesse caso, pressupõe-se que essa dependência possa estar relacionada ao aspecto locacional de vizinhança entre os municípios, e é esta possibilidade que se busca explorar no próximo item.

Considerando que ainda temos problemas de ajuste do modelo e que a análise exploratória de dados espacial (AEDE), a partir de uma matriz de peso na configuração rainha15, indicou haver efeitos espaciais, impactando sobre as variáveis do modelo, sendo mais fortes os traços de dependência espacial da variável preço, a incorporação destes efeitos seria importante para a correção do problema. Dando prosseguimento à investigação, incorpora-se a análise os efeitos espaciais.

4.2. Resultados da estimação de modelos com painel de dados espacial

Considerando que as análises precedentes indicaram que o melhor modelo de painel para estimar a regressão é o de efeito fixo, que na AEDE identificou-se uma grande dependência espacial da variável preço da terra e que os testes indicaram que o modelo espacial lag espacial (SAR) é o mais indicado16, prosseguem-se as estimativas visando obter um método consistente de estimação para o preço da terra agrícola dos municípios do Paraná. Nesse sentido, o modelo passa a ter a seguinte expressão:

em que i = 1, 2, 3,..., 399 (municípios); t = 5 anos (1999, 2002, 2006, 2010 e 2011)

Na equação (5), incorporou-se o lag espacial (W_PTit ) do preço da terra, optando-se por um modelo SAR de painel de dados efeitos fixos e mantendo-se as demais variáveis explicativas com as denominações anteriores. Numa primeira etapa, estimou-se o modelo de variáveis binárias (dummy ) através do MQO. Nesse caso, a variável dummy é importante, pois permitiu estimar o parâmetro da variável solo e esta, por se repetir em vários municípios, acaba sendo excluída das demais estimativas, nas quais não se considera um intercepto de dummy para cada município.

De acordo com os resultados da Tabela 2, coluna 1, constata-se que os coeficientes das variáveis independentes são significativos, com exceção das variáveis ITR , ELET , solo e a constante. Por outro lado, as variáveis INV E S_P são significativas, mas apresentam-se negativas, contrariando o esperado pelo modelo. Observa-se, também, que os valores dos coeficientes VBP , VP , FINT , embora significativos, apresentam coeficientes com valores pequenos. O R2, assim como o R2 ajustado, aumenta, passando a 0,9684 e 0,9606, respectivamente, indicando que o modelo em painel com acomodação para dependência espacial aumentou o poder de explicação das variáveis do modelo, contribuindo para explicar o preço da terra agrícola.

Tabela 2 Resultado da estimação com dados em painel espacial 

Legendas: * P > (t) = 0,001; ** P > (t) = 0,010. 157. Diagnóstico Spatial Dependence LM* ρ > LM* λ ≥ 68,6698 > 5,1801. 158. Fonte: Resultados da pesquisa.

Nas análises em painel espacial com efeito fixo, conforme Tabela 2, coluna (2), os resultados das estimativas dos parâmetros confirmam a análise com dummies com uma exceção: nessa estimativa a variável solo é excluída.

Os valores dos coeficientes de determinação estão acima de 84%, destacando-se o valor within (95%), seguido pelo overall (92%) e between (84%), indicando que o efeito intrapainel é mais forte. A informação corr (u_i, xb) que apresenta a correlação entre o erro e as variáveis independentes é pequena (0,0324). O teste F de 3.844,45 é elevado e estatisticamente significativo, indicando que todos os coeficientes no modelo são diferentes de zero. Os testes t para os coeficientes das variáveis independentes continuam significativos, com exceção de ITR , ELET . Quanto aos sigmas, o sigma_u fornece o desvio padrão dos efeitos individuais de "ai ", que foi calculado em 1.278; o sigma_e refere-se ao desvio padrão apenas dos erros idiossincráticos εit, que foi calculado em 1.216, e o termo rho , que se refere à variância não explicada pela diferença de uma entidade para outra, reduziu-se para 52,49%.

Do exposto nesta etapa, pode-se concluir que, das diversas estimativas, a que apresentou melhores ajustes foi o painel de dados espaciais fixo com maior R2, sendo que as variáveis estatisticamente significativas para explicar o preço da terra agrícola no Paraná são o valor bruto da produção agropecuária (VBP), a valorização patrimonial (VP), o financiamento total à agropecuária (FINT ), a relação investimento-receita municipal (INV ), o percentual da área plantada do município com soja (soja ) e a incorporação da dependência espacial do preço da terra (W_PT ).

A variável ITR foi insignificante no modelo, sendo necessário encontrar ou agregar outras variáveis de custo de manutenção para a terra agrícola ou ainda incorporar outras formas de intensificação das variáveis além da que foi apresentada aqui. Por outro lado, conforme já explicado antes, ainda é contraditório o efeito do ITR sobre os negócios com terras e sobre seus preços.

Em especial, a contribuição oferecida por este modelo reside no fato de ele ter captado as similaridades entre as regiões, pelo grande número de variáveis significativas e, ao mesmo tempo, contemplar os efeitos de espacialidade, presentes na incorporação ao modelo da estimativa do PT em termos de considerar os municípios vizinhos, sendo que, após incorporação deste efeito, os resultados da regressão melhoraram. Nesse sentido, pode-se dizer que o modelo proposto avançou em termos estruturais, tendo em vista a incorporação de variáveis coletadas para todos os municípios do estado, de forma a encontrar dados adequados ao modelo proposto e, por outro lado, avançou em termos metodológicos, ao estimar via painéis de dados a influência dos efeitos de espacialidade sobre o preço da terra agrícola para os 399 municípios do estado do Paraná, destacando a importância da localização e da vizinhança na determinação de tal preço. Falta ainda identificar se há ou não convergência espacial nos preços da terra, o que será feito a seguir.

4.3. Análise de Convergência

A análise de convergência é um instrumental que vem encontrando larga escala de aplicações; a base teórica sobre a qual se assentam os estudos de convergência é desenvolvida por Baumol (1986) e tem continuidade nos trabalhos de Barro e Sala-i-Martin (1991). Estes, ao estudar as taxas de crescimento da renda per capita , concluíram que as economias atrasadas tendem a crescer a taxas mais elevadas do que as economias ricas e que, portanto, em algum momento do tempo, as economias pobres acabariam alcançando o nível de renda per capita das economias ricas. A este caminho trilhado pelas taxas de crescimento os autores denominaram convergência absoluta. Essa noção de convergência requer que se suponha que tanto as economias ricas como as pobres possuem idênticas tecnologias (ou têm livre acesso às mesmas), idênticas preferências, idênticas instituições políticas e outras características econômicas.

Desde então, a existência de convergência é diagnosticada através do cálculo do valor do β convergência; isso consiste em regredir a taxa de crescimento da renda ou produto per capita em relação ao logaritmo da renda ou produto per capita regional inicial. Por convenção, a forma de interpretar a existência de convergência tem sido interpretar uma estimativa negativa para β como apoio à hipótese de convergência. Esta estimativa negativa sugere que as taxas de crescimento de renda per capita ao longo de alguns anos fossem negativamente correlacionadas com as rendas iniciais; adicionalmente, pode-se inferir que uma variável com valores distintos entre regiões teria suas diferenças diminuídas com o decorrer do tempo. A função nos moldes de Baumol (1986) que expressa tal relação é dada por:

em que ln(Y/N) é o logaritmo natural da renda per capita ; u é o termo de erro; i representa as unidades espaciais, e β o parâmetro cuja função é indicar a presença ou não de convergência.

Como proposta adicional para fins desta pesquisa, buscou-se verificar a existência de convergência espacial nos preços da terra agrícola dos municípios do Paraná. Nesse sentido, a adaptação da teoria de convergência levou a verificar se entre 1999 e 2011 haveria algum indicativo de convergência dos preços, o que é expresso pela seguinte função:

em que Ln(Pt2011/Pt1999) é o logaritmo natural da razão entre os preços da terra agrícola nos municípios do Paraná para os anos de 1999 e 2011. Por sua vez, ln (Pt1999 ) + ui é o logaritmo natural do preço da terra no ano-base (1999). Finalmente, u é o termo de erro aleatório, e i é o indexador para os diversos municípios.

A formalização de uma equação de convergência absoluta à la Baumol para o preço da terra agrícola na terra busca verificar se as regiões com menor preço da terra estão convergindo para as regiões com maior preço; de certa forma, serve para informar se estes preços tendem a ficar mais homogêneos.

A forma tradicional de indicar a existência de convergência absoluta é estimando a regressão por MQO e, em especial, para identificar a existência de convergência espacial absoluta, seguem-se os passos 1 e 2 do procedimento indicado por Florax et al. (2003), conforme já exposto.

Realizaram-se as estimativas da regressão por MQO e, conforme verifica-se na Tabela 3, pelo valor do coeficiente de LN_PT_1999 (-0,3140186) que tem-se o indicativo de convergência dos preços. O R2 tem valor de 13,29%, e os coeficientes apurados foram significativos. Por outro lado, verificou-se a presença de dependência espacial dada pelo valor I de Moran, que é 0,646185.

No mesmo teste, é possível identificar qual seria a forma mais apropriada para incorporar a dependência espacial. Nesse sentido, a análise dos testes aponta que a melhor forma de tratamento da dependência é através da incorporação destas via lag_espacial ; isso é comprovado pelo valor de MLρ, que é de 438,1, sendo maior que o MLλ, cujo valor é 324,22. Isso permite concluir que o modelo de lag espacial é mais apropriado às estimativas de convergência. A operacionalização da lag espacial é feita incorporando-se a matriz de pesos espaciais multiplicada pelo Ln_Pt_1999 defasado, criando a variável explicativa W_Pt .

Tabela 3 Estimativa da regressão de convergência. 

Fonte: Elaboração própria dos autores.

Após estimativas utilizando-se o modelo de lag espacial , conforme verifica-se na Tabela 3, coluna 2, o valor do β reduz-se para -0,15 e o R2 eleva-se para 64,24%, sendo que todas as variáveis foram significativas. Conclui-se que existe convergência espacial no preço da terra. Nesse sentido, a estimativa apresentada visa apenas deixar um indicativo das amplas possibilidades que a pesquisa sobre convergência do preço da terra permite alcançar, acredita-se que seria possível explorá-la incorporando-a, em um modelo de determinação do preço da terra agrícola, em cada um dos municípios do Paraná, como mais uma variável explicativa. Espera-se que esta seja uma grande contribuição para pesquisas futuras.

5. Considerações finais

Neste artigo, buscou-se identificar e analisar os determinantes do preço da terra agrícola nos municípios do Paraná no período de 1999-2011. Utilizou-se uma abordagem em que a terra é um ativo de capital com preço dominado pela demanda, dado que a oferta de terras é fixa. Assume as características de bem econômico, é escassa, imóvel, é negociada no mercado flex price , considerando as expectativas dos compradores formadas em um ambiente de incerteza. Devido ao seu duplo papel de ativo e suas características, a terra tanto pode ser utilizada para fins produtivos quanto pode ser utilizada como reserva de valor.

Através dos resultados, foi possível verificar que o painel de dados espaciais melhora os resultados dos estimadores. Neste modelo, as variáveis estatisticamente significativas para explicar o preço da terra agrícola no estado do Paraná são o valor bruto da produção agropecuária (vbp ) representando as quase rendas (q); a valorização patrimonial (vp ) representando (a) e as variáveis representativas da liquidez (l), quais sejam: o financiamento total à agropecuária (fint ), a relação investimento-receita municipal (inv ), o percentual da área plantada do município com soja (soja ) além da incorporação da dependência espacial do preço da terra (lag_pt ).

A pesquisa foi de grande contribuição, em especial por captar os efeitos da quase renda, da valorização patrimonial e a importância de itens que forneçam a terra liquidez estrutural. Adicionalmente, os dos custos de manutenção ainda necessitam de mais informações, pois o ITR não apresentou contribuição neste sentido. Abre-se aqui um leque de possibilidades e abordagens e constitui-se numa linha de pesquisa de longo prazo. Em especial, a contribuição oferecida por este modelo reside no fato de ele ter captado as similaridades entre as regiões, pelo grande número de variáveis significativas e, ao mesmo tempo, contemplar os efeitos de espacialidade presentes na incorporação do modelo SAR, sendo que, após incorporação desse efeito, os resultados da regressão melhoraram indicando que a dependência espacial do preço da terra em um município em relação a seus vizinhos explica parte significativa de seus preços.

Por fim, buscou-se verificar a existência de convergência espacial nos preços da terra nos municípios do Paraná nos anos de 1999 e 2011. As estimativas indicaram haver convergência espacial nos preços da terra, fato que necessita de maior investigação em pesquisas futuras.

Ainda como forma de contribuição, os resultados apresentados podem indicar caminhos em termos de formulação de políticas agrícolas, pois a evidência de efeitos de espacialidade permite que se proponham políticas seletivas no sentido de entender as necessidades de cada município e se beneficiar dos efeitos de transbordamentos que tais políticas possam proporcionar. Por exemplo, pode-se pensar em políticas para agricultura familiar para municípios menores nos quais a vocação agrícola do município não contemple a produção de commodities e o preço da terra esteja desvalorizado.

Também pode-se pensar na logística e propor um caminho interligado por ferrovias, que tem um custo menor para o transporte de grãos, ligando os municípios com maior vocação agrícola para estas culturas, chamando as entidades representativas para um consórcio no qual eles, como grandes interessados, participem com recursos e também no gerenciamento deste processo. Pode-se propor que as políticas de financiamento à agropecuária exijam contrapartida dos produtores e também que uma cota importante seja direcionada aos municípios com terras menos valorizadas. Ainda, pode-se articular todo o complexo de agências de pesquisa agrícola do estado para dar mais suporte à melhoria dos solos e propagação de culturas genéticas mais adaptáveis à realidade de cada produtor e município. Enfim, abrem-se muitas portas para que se pratique a governança a partir do conhecimento sobre os determinantes agregados do preço da terra, abrindo espaço para uma nova agenda de política agrícola do estado.

6. Referências

ALMEIDA, E. S. Econometria espacial aplicada . Campinas: Alínea, 2012. [ Links ]

BACHA, C. J. C. A determinação do preço de venda e de aluguel da terra na agricultura. Estudos Econômicos , São Paulo, v. 19, n. 3, p. 443-456, 1989. [ Links ]

BARRO, R. J.; SALA-I-MARTIN, X. Convergence across states and regions. Brookings Papers on Economic Activity , Yale University. Economic Growrh Center, Yale Station New-Haven Connecticut, USA, v. 1, p. 107-182, 1991. [ Links ]

BARROS, F. R. T. Os impactos da agroenergia no mercado de terras : dinâmica de preço e elasticidade de uso. 2010.Dissertação (Mestrado em Agroenergia) - Fundação Getulio Vargas. São Paulo, 2010. [ Links ]

BAUMOL, W. J. Productivity growth, convergency, and welfare: what the long-run show. American Economic Review , v. 76, n. 5, p. 1072-1085, 1986. [ Links ]

BRANDÃO, A. S. P. O preço da terra no Brasil: verificação de algumas hipóteses. Ensaios Econômicos da EPGE , Rio de Janeiro: FGV, n. 79, p. 01-86, 1986. [ Links ]

BRANDÃO, A. S. P.Mercado da terra e estrutura fundiária. In: BRANDÃO, A. S. P. Os principais problemas da agricultura brasileira : análise e sugestões. Rio de Janeiro: IPEA, 1988. p. 139-179. [ Links ]

BRANDÃO, A. S. P.; REZENDE, G. C. The behavior of land prices and land rents in Brazil. In: AGRICULTURE AND GOVERNMENT IN AN INTERDEPENDENT WORLD, Buenos Aires 1989, , Anais... Buenos Aires: IAAE, 1989. p. 717-727. [ Links ]

BUENO, V. C. Evolução do mercado de terras no Brasil : movimento dos preços e volume de negócios. 2005. Dissertação (Mestrado em Economia) - Universidade Federal Fluminense. Niterói, 2005. [ Links ]

CAMARGO, A. M. M. P.; FERREIRA, C. R. R. P. T Evolução do preço da terra agrícola no Brasil 1966-1986. Agricultura em São Paulo , v. 36, n. 1, p. 45-71, 1989. [ Links ]

CASTRO, P. R. Organização fundiária e desenvolvimento : uma contribuição ao debate. Rio de Janeiro: Camara de Estudos e Debates Econômicos e Sociais CEDES, 1981. [ Links ]

CAVALLIERI, R. F. D. Avaliação dos efeitos edefoclimáticos em relação a produtividade de leite no estado do Paraná . 2010. Monografia (Especialização em Gestão empresarial e controle de qualidade do leite) - Programa de Pós-graduação de Zootecnia. Universidade Estadual de Maringá, 2010. [ Links ]

DIAS, G. L. S., VIEIRA, C. A.; AMARAL, C. M. Comportamento do mercado de terras no Brasil . Santiago de Chile: CEPAL, 2001. [ Links ]

EGLER, C. A. G. Preço da terra, taxa de juros e acumulação financeira no Brasil. Revista de Economia Política , São Paulo: Brasiliense, v. 5, n. 1, jan./mar. 1985. Disponível em: <Disponível em: http://www.rep.org.br/pdf/17-6.pdf >. Acesso em: 23 maio 2012. [ Links ]

FLORAX, R. J. G. M., FOLMER, H.; REY, S. J. Specification searches in spatial econometrics: the relevance of Hendry's methodology. Regional Science and Urban Economics , v. 33, n. 5, p. 557-579, 2003. [ Links ]

GASQUES, J. G. et al. Preços de terras no Brasil, financiamento e produtividade total dos fatores. In: 44° Encontro da Sociedade Brasileira de Economia, Administração e Sociologia Rural (SOBER), 2006, Fortaleza, Anais... Fortaleza: Sober, 2006 (CD-ROM). [ Links ]

GASQUES, J. G., BASTOS, E. T.; VALDES, C. Preço da terra no Brasil. In: 46° Encontro da Sociedade Brasileira de Economia, Administração e Sociologia Rural (SOBER), 2008, Rio Branco, Anais... Rio Branco: Sober, 2008 (CD-ROM). [ Links ]

HELFAND, S. M.; REZENDE, G. C. Agricultura brasileira nos anos 90: o impacto das reformas de políticas. In: GASQUES, J. G.; CONCEIÇÃO, J. C. P. R. Transformações da agricultura e políticas públicas . Brasília: IPEA, 2001. p. 248-301 [ Links ]

KEYNES, J. M. A teoria geral do emprego, do juro e da moeda : inflação e desemprego. Trad. Mario R. da Cruz. 2. ed. São Paulo: Nova Cultural, 1985 (Os Economistas). [ Links ]

LENZ, M. H. A evolução do conceito de renda da terra no pensamento econômico: Ricardo, Malthus, Adam Smith e Marx. In: VII Congresso Brasileiro de História Econômica. 2007, Aracaju, 2007 Anais... Disponível em: <Disponível em: http://www.economiaetecnologia.ufpr.br/XI_ANPEC-Sul/artigos_pdf/a1/ANPEC-Sul-A1-01-a_evolucao_do_conceito_d.pdf >. Acesso em: 4 mar. 2004. [ Links ]

LENZ, M. A categoria econômica renda da terra . Porto Alegre: Fundação de Economia e Estatística Siegfried Emanuel Hauser, 1992. Disponível em: <Disponível em: http://cdn.fee.tche.br/teses/digitalizacao/teses_1.pdf >. Acesso em: 14 abr. 2012. [ Links ]

MARX, K. O Capital : crítica da economia política. Tradução de Reginaldo Sant'Ana. Rio de Janeiro: Civilização Brasileira, 2008. Volume VI, livro terceiro: o processo global de produção capitalista. [ Links ]

MICHELLON, E. Políticas públicas, mercado de terras e meio ambiente : uma análise a partir do Paraná. Tese (Doutorado em Economia) - Instituto de Economia, UNICAMP, Campinas, 2002. Disponível em: <Disponível em: http://www.bibliotecadigital.unicamp.br/document/ ?code=vtls000276188 >. Acesso em: 14 abr. 2012. [ Links ]

OLIVEIRA, J. T.; COSTA, L. D. N. Evolução recente do preço da terra no Brasil: 1966-1974Revista de Economia e Sociologia Rural, v. 15, n. 3, p. 259-276, 1976. [ Links ]

OLIVEIRA, N. A. P.; FERREIRA, L. R. Determinantes do preço da terra rural no Brasil . In: 38º Encontro Nacional de Economia - ANPEC, 2010, Salvador, BA. Disponível em: <Disponível em: http://www.poseconomia.ufv.br/docs/ArtigoSeminario23-11-2010ProfLeo.pdf >. Acesso em: 20 fev. 2013.s.d [ Links ]

PARANÁ. SEAB (Secretaria de Estado da Agricultura e do Abastecimento). DERAL (Departamento de Economia Rural). Divisão de Estatísticas Básicas. Preço da terra agrícola no Paraná . Disponível em: <http://www.agricultura.pr.gov.br/arquivos/File/deral/terras_pdf_publicacao.pdf>. Acesso em: 21 ago. 2013a. [ Links ]

PINDYCK, R. S.; RUBINFELD, D. L. Econometria : Modelos & Previsões. São Paulo: Atlas, 2004. [ Links ]

PINHEIRO, F. A. A renda e o preço da terra : uma contribuição a análise da questão agrária brasileira. 1980. Tese (Livre-Docência) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. Piracicaba, 1980. [ Links ]

PINHEIRO, F. A.; REYDON, B. P. O preço da terra e a questão agrária: algumas evidências empíricas relevantes. Revista de Economia Rural , v. 19, n. 1, p. 5-15, jan./mar. 1981. [ Links ]

PLATA, L. E. A. Mercados de terras no Brasil : gênese, determinação de seus preços e políticas. Tese (Doutorado em Economia) - Instituto de Economia, UNICAMP. Campinas, 2001. Disponível em: <http://www.bibliotecadigital.unicamp.br/document/?code=vtls000220178&opt=4>. Acesso em: 14 abr. 2012.s.d [ Links ]

PLATA, L. E. A. et al. A dinâmica do Mercado de terras rurais e a interferência do estado nos preços. In: 49º Encontro da Sociedade Brasileira de Economia, Administração e Sociologia Rural (SOBER), Belo Horizonte, 2011, Anais... Belo Horizonte: Sober, 2011. {CD-ROM}. [ Links ]

RAHAL, C. S. A evolução dos preços da terra no estado de São Paulo : Análise de seus determinantes. Dissertação (Mestrado em Economia) - Escola Superior de Agricultura "Luiz de Queiroz", ESALQ, Universidade de São Paulo, Piracicaba, 2003. [ Links ]

RANGEL, I. Questão agraria, industrialização e crise urbana no Brasil . Porto Alegre: Editora da Universidade Federal do Rio Grande do Sul, 1979(2. ed., 2004). [ Links ]

REYDON, B. P. A Política de crédito rural e a subordinação da agricultura ao capital, no Brasil, no período de 1970-1975 . 1984. Dissertação (Mestrado em Agronomia) - Escola Superior de Agricultura Luiz de Queiroz, ESALQ-USP, Piracicaba, 1984. [ Links ]

REYDON, B. P. Mercados de terras agrícolas e determinantes de seus preços no Brasil : um estudo de casos. Tese (Doutorado em Economia) - Instituto de Economia, UNICAMP, Campinas, 1992. Disponível em: <Disponível em: http://www.bibliotecadigital.unicamp.br/document/ ?code=000045371 >. Acesso em: 14 abr. 2012. [ Links ]

REYDON, B. P.; PLATA, L. E. A. (Coord.). Intervenção estatal no mercado de terras: a experiência recente no Brasil. Estudos NEAD , Brasília: NEAD, n. 3, 2000. [ Links ]

REZENDE, G. C. Credito rural subsidiado e o preço da terra no Brasil.Texto para discussão, Brasília: IPEA/INPES, n. 41, out. 1981. Disponível em: <Disponível em: http://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=2105&Itemid=1 >. Acesso em: 04 jan. 2013. [ Links ]

RICARDO, D. Princípios de economia política e tributação . Trad. Paulo Henrique Ribeiro Sandroni., São Paulo: Nova Cultural 1996. [ Links ]

SAUER, S.; LEITE, S. P. Expansão agrícola, preços e apropriação de terra por estrangeiros no Brasil. Revista de Economia e Sociologia Rural , Piracicaba, v. 50, n. 3, p. 503-524, jul./set. 2012. [ Links ]

SAYAD, J. Planejamento, crédito e distribuição de renda. Revista de Estudos Econômicos , v. 7, n. 1, p. 9-34, jan./abr. 1977a. [ Links ]

SAYAD, J. Preço da terra e mercados financeiros. Pesquisa e Planejamento Econômico , v. 7, n. 3, p. 623-662, dez. 1977b. [ Links ]

SAYAD, J. Especulação em terras rurais, efeitos sobre a produção agrícola e o novo ITR. Pesquisa e Planejamento Econômico , v. 12, n. 1, p. 87-108, abr. 1982. [ Links ]

TELLES, T. S.; REYDON, B. P. Evolução de preços no mercado brasileiro de terras (1994-2005): uma análise a luz da teoria pós-keynesiana. In: 50° Encontro da Sociedade Brasileira de Economia, Administração e Sociologia Rural (SOBER), 2012, Vitória, Anais... Disponível em: <Disponível em: http://www.icongresso.itarget.com.br/useradm/anais/?clt=ser.2 >. Acesso em: 02 fev. 2013. [ Links ]

1Essa teoria não foi criada apenas por Ricardo. Segundo Lenz (1992), ela foi alvo dos trabalhos de Tomas Malthus e West, publicados em 1815. Porém, neste mesmo ano, ela já é utilizada por Ricardo no panfleto "Essay on the influence of a low price of corn on the profits of stock " e, posteriormente, aprofundada nas três edições da obra Princípios de Economia e Tributação , publicada entre 1817 e 1821.

2Segundo Keynes (1985), "para cada bem durável temos uma taxa de juros calculada em termos do próprio bem - uma taxa de juros do trigo, uma taxa de juros do cobre, uma taxa de juros da habitação, uma taxa de juros de uma usina siderúrgica" (p. 157).

3O prêmio de liquidez (l ) para a terra deve considerar a liquidez que aqui passa a ser entendida como a capacidade de venda certa da terra, no menor prazo e sem perdas. Nesse sentido, a terra apresenta dupla liquidez, quais sejam, a liquidez estrutural e conjuntural. Por liquidez estrutural, entende-se que a terra, por conceder poder político e econômico e ainda gerar um fluxo contínuo de renda ao seu proprietário, tenha liquidez garantida. Por outro lado, em momentos de instabilidade da conjuntura econômica, aumenta a demanda por terras como ativo, ou seja, aumenta sua liquidez conjuntural. Esses dois aspectos da propriedade de liquidez do ativo terra contribuem para manter um prêmio de liquidez garantido para terra.

4As variáveis vinculadas ao setor produtivo consideradas foram: preço dos insumos modernos, relação preço pago/preço recebido e nível tecnológico; as variáveis especulativas foram: taxa de juros do crédito rural, juros reais das aplicações financeiras e inflação e, por fim, as variáveis do ambiente econômico foram: taxa de crescimento do PIB e o novo ITR.

5Enquanto a defasagem temporal é unidirecional e envolve a defasagem para um período anterior da variável observada, a defasagem espacial é multidirecional porque desloca a variável observada no espaço e em diferentes direções possíveis, conforme estabelecido na matriz de pesos espaciais, que reflete a média dos valores observados nas regiões vizinhas.

6Refere-se à associação linear entre as variáveis que surge devido à interação espacial, esta deve-se à movimentação de bens, pessoas e/ou informações através do espaço de tal forma que as circunstâncias de um lugar podem afetar as condições em outros lugares que interagem entre si.

7A matriz de pesos espaciais serve para captar os efeitos espaciais e pode ser binária, de vizinhos mais próximos ou utilizar alguma medida de distância entre os municípios vizinhos.

8Para o modelo proposto, haverá intensificação das variáveis para melhor captar os efeitos de espacialidade que se pretende estudar. Nesse sentido, após vários testes e ajustes realizados na fase de exploração de dados, optou-se por intensificar as variáveis por um valor constante no tempo e escolheu-se a área do município em km2 como fator de intensificação.

9AEDE (Análise Exploratória de Dados Espaciais) é uma etapa prévia e necessária aos estudos que utilizam o instrumental da Econometria Espacial, pois permite conhecer a distribuição espacial das variáveis, identificando a importância da incorporação de cada uma delas ao modelo. Dado o objetivo do artigo, a AEDE não é apresentada aqui; acrescentam-se apenas os comentários mais relevantes sobre as variáveis elencadas.

10Y = αiD + βX + εi em que D = dummy 1, dummy 2 ... dummy.

11Através do modelo dummy , é possível estimar o intercepto de cada município, adotando-se um município como base. Nessa estimativa, o município-base é Abatiá, que foi omitido no cálculo, mas o valor de seu coeficiente de intercepto é o valor constante calculado. Para encontrar o diferencial de intercepto entre cada município e o município-base, deve-se somar o intercepto do município em questão com o intercepto do município-base. Encontram-se, assim, os coeficientes diferenciais de intercepto para cada município, os quais mostram o quanto o valor do intercepto que recebe o valor 1 (dummy ) difere do coeficiente da categoria de base. Nesse caso, o intercepto de Abatiá tem valor de 8.667,41; para o segundo município, Adrianópolis, o intercepto é 12.023,63 (= 8.667,41+ 3.356,22).

12Dito de outra forma: verifica se os erros ui para modelos de efeitos fixos são randômicos com média zero. O teste de F de Chow indicou que a probabilidade de esses erros serem distribuídos em torno da média zero é zero.

13Este teste tem distribuição χ2 assintótica e consiste em avaliar se os coeficientes estimados usando o modelo de efeitos fixos ou aleatórios são idênticos. A hipótese nula do teste de Hausman é a de que as diferenças nos coeficientes não são sistemáticas, isto é, os estimadores do modelo de efeitos fixos e do modelo de efeitos aleatórios não apresentam diferenças substanciais. Se houver rejeição da hipótese nula, isso significa que o mais indicado é o modelo de efeitos fixos.

14Este teste é implementado no Stata pelo comando xttest2 e deve ser aplicado logo após a estimação do modelo de efeito fixo.

15A Matriz de ponderação espacial na configuração rainha foi utilizada por apresentar o maior valor para o I de Moran.

16Na identificação da melhor forma de tratamento da dependência, verifica-se que o MLρ é 261,35 e ML λ é 197,86, porém, como ambos são significativos, deve-se recorrer aos testes robustos. Verifica-se, nos testes robustos, que ML*ρ é 68,66 e ML* λ é 5,18, porém, este último não foi significante. Isso permite concluir que o modelo de lag espacial é mais apropriado às estimativas propostas. De outra forma, Almeida (2012) sugere que a escolha do melhor modelo seja também definida por aquele tiver o menor critério de informação dentre os modelos estimados; no caso, pode-se utilizar o critério de Akaike . O menor critério AIC é o do modelo de lag com o valor de 6.100,82, contra o valor AIC de 6.109,83 para o modelo de erro espacial.

Received: December 12, 2014; Accepted: November 11, 2015

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License