Acessibilidade / Reportar erro

Drimane-Type Sesquiterpenoids as Chemosystematic Markers of Canellaceae

Abstracts

Polygodial, isopolygodial, mukaadial and polygonone were isolated for the first time from Capsicodendron dinisii. Thus, with respect to drimane-type sesquiterpenoids of the Canellaceae, the close affinity of the South American genus Capsicodendron with the African genus Warburgia rather than the Madagascarian genus Cinnamosma is established.

dinisii; Capsicodendron; Warburgia; Cinnamosma; drimane sesquiterpenoids


Poligodial, isopoligodial, mukaadial, e poligonona foram isoladas pela primeira vez de Capsicodendron dinisii. O isolamento dessas substâncias pertencentes ao grupo de sesquiterpenos do tipo eudesmano, presentes em Canellaceae, permitiu estabelecer maior afinidade do gênero Sul-americano Capsicodendron com o gênero Africano Warburgia do que com o gênero Cinnamosma de Madagascar.


Article

Drimane-Type Sesquiterpenoids as Chemosystematic Markers of Canellaceae* * Paper XXXVI in the series "Plant chemosystematics and phylogeny". For Part XXXV see Ref. 20. Taken in part from the M. Sc. thesis presented by J.K.B. to Universidade de São Paulo, 1987.

Jairo Kenupp Bastosa, Maria Axuliadora Coelho Kaplanb, and Otto Richard Gottliebc

a

Departamento de Ciências Farmacêuticas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto – SP, Brazil

b Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 29941 Rio de Janeiro – RJ, Brazil

c Laboratório de Produtos Naturais,Fundação Oswaldo Cruz, Rua Zizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro – RJ, Brazil

Poligodial, isopoligodial, mukaadial, e poligonona foram isoladas pela primeira vez de Capsicodendron dinisii. O isolamento dessas substâncias pertencentes ao grupo de sesquiterpenos do tipo eudesmano, presentes em Canellaceae, permitiu estabelecer maior afinidade do gênero Sul-americano Capsicodendron com o gênero Africano Warburgia do que com o gênero Cinnamosma de Madagascar.

Polygodial, isopolygodial, mukaadial and polygonone were isolated for the first time from Capsicodendron dinisii. Thus, with respect to drimane-type sesquiterpenoids of the Canellaceae, the close affinity of the South American genus Capsicodendron with the African genus Warburgia rather than the Madagascarian genus Cinnamosma is established.

Keywords: dinisii, Capsicodendron, Warburgia, Cinnamosma, drimane sesquiterpenoids

Introduction

Stem bark of the South American arboreal species Capsicodendron dinisii (Schwacke) was reported to contain two cytotoxic compounds, cinnamodial (1d) and capsicodendrin (1e), besides three inactive compounds 6b-acetoxyisodrimenin (3a), ugandensolide (3b) and futronolide (3c). The leaf-twig extract of the same species yielded another cytotoxic compound, cinnamosmolide (4c)1.

Experimental

Isolation of the constituents

Capsicodendron dinisii was collected near Curitiba and identified by Dr. Gerdt Hatschbach (Herb. Museu Botânico Municipal, Curitiba). Dried, milled stem bark (2.5 kg) was extracted successively with C6H14 and EtOH. The solutions were filtered and evaporated to dryness, leading respectively to 61 and 250 g of extract. The C6H14-extract was partitioned between C6H14 and MeOH-H2O 19:1. Both solutions were evaporated to dryness, leading respectively to 18 and 38 g of residue. The latter partition fraction of the crude hexane extract was submitted to column chromatography (Si gel, 60 g). The following fractions were eluted with the indicated solvents: A (15 g, C6H14), B (11 g, CH2Cl2), C (7 g, AcOEt), D (4g, EtOH). Subsequent fractionation on column chromatography, preparative TLC (Si gel) and recrystallization led from A to 8 (23 mg), 2 (54 mg) and 1d (14 mg); and from C to 1d (800 mg), 1e (tetramer of 1d, 55 mg) and 1c (26 mg), in this order. 1d (1 g) was obtainde from B by cryst. from C6H14-Me2CO. The mother liquor was evaporated to dryness. The residue (10 g), submitted to column chromatography and preparative TLC (Si gel) gave 1a (83 mg).

Poligonone (8), yellow crystals, mp 123-135° (C6H14). UV lmax MeOH nm: 237 (e 7000).

1

H NMR (60 MHz, CDCl

3) d: 0.90, 0.93, 1.30 ( s, 3Me), 1.3- 2.1 (m, 7H), 2.3-2.6 (m, 2H-6), 6.30 (s, H-9), 9.60 (s, CHO).

13C-NMR (20 MHz, CDCl

3) d: 18.1 (C-2, C-15), 21.0 (C-14), 32.4 (C-13), 33.0 (C-4), 34.0 (C-6), 38.3 (C-1, C-10), 40.8 (C-3), 50.4 (C-5), 137.7 (C-8), 163.1 (C-9), 193.8 (C-12), 200.8 (C-7). MS

m/z (rel. int.): 220 [M]

+ (23), 205 [M-Me]

+ (6), 192 [M-CO]

+ (8), 191 [M-CHO]

+ (32), 177 [M-Me-CO]

+ (8), 163 (13), 149 (14), 138 (10), 135 (18), 124 (18), 123 (33), 121 (59), 109 (40), 107 (28), 105 (15), 41 (100).

Results and Discussion

During the present work a fresh sample of stem bark was collected from a tree in the vicinity of Curitiba, Paraná State. Fractionation of a hexane extract led to 1d and 1e, additionally to polygodial (1a), mukaadial (1c), isopolygodial (2) and polygonone (8). With the exception of 8 all other compounds have been found previously in other species of the family Canellaceae (Table 1). In each case the identification, achieved by analysis of UV, IR, 1H NMR, 13C NMR and mass spectra, was confirmed by comparison of mp, specific rotation and with published data.

The nor-sesquiterpene polygonone (8) was mentioned previously twice in the literature. First as the oxidation product of polygonal, an isolate of Polygonum hydropiper (Polygonaceae2, and subsequently as an authentic constituent of this species3. Nevertheless published data on this compound are restricted to the registry of two 1H-NMR (60 MHz, CDCl3) peaks (d: 1.07, s, 9H; 10.36, s, CHO) and of some MS peaks (m/z: 220, 215, 192, 124, 109)3. For this reason more data are given in the Experimental of the present communication.

In addition to Canellaceae and Polygonaceae, Porellaceae3 and Winteraceae4 have been found to accumulate drimane-type sesquiterpenoids. Canellaceae and Winteraceae both belong to the superorder Magnoliiflorae, albeit to different orders, respectively Annonales and Magnoliales5. However, Porellaceae belong to the class Hepaticae of the division Bryophyta and Polygonaceae, although angiosperms show morphologically and chemically (presence of gallotannins and ellagitannins) no close kinship with the magnolialean families (absence of such tannins)6.

Nevertheless within the Canellaceae drimanic compounds constitute a neat unifying theme. True only one of such sesquiterpenoids (1d) has so far been isolated from all three genera, Capsicodendron, Warburgia and Cinnamosma, but four drimanes (1a, 1c, 2, 3b) are common to the first two genera, two (4a, 5a) are common to the last two genera, one (4c) is common to the first and third genera and only one again (7) is common to Warburgia and a fourth genus, Canella. Hence, considering identity of chemical composition, Capsicodendron and Warburgia show the closest relationship, followed by the pair Warburgia and Cinnamosma, with Capsicodendron and Cinnamosma as well as Warburgia and Canella still less closely retaled. Analogous trends are observed counting differences of compound composition. Both pairs, Capsicodendron and Warburgia as well as Warburgia and Cinnamosma, show ten differences, while the more distantly related Capsicodendron and Cinnamosma show 11 differences in drimane-type sesquiterpenoidal composition. From the morphological point of view the South American genera of Canellaceae are considered to be the most archaic7. Superposition of the chemical data on this postulate suggests a spacial radiation of the lineage to have taken place from tropical South American Capsicodendron in two directions, one towards the Caribbean Canella and the other over the tropical African Warburgia to the Madagascarian Cinnamosma.

The occurrence of shikimate derivatives, including a quaternary aporphine8, as replacement characters of drimane-type sesquiterpenoids in C. madagascariensis is consistent with the general placement of the family Canellaceae in the Magnoliiflorae.

It is also important to point out that this is a particular class of sesquiterpene does not occur widely in nature. However, the majority of the publications in the literature in the last decade does not report the presence of this class of compounds in terrestrial plants, but in sponges21, 22, in the fern Nephrolepsis biserrata23, in Polyporus articularis24 and in the fungus Aspergillus ustus var. Pseudodeflectus 25.

Acknowledgements

The authours are grateful to CNPq, FAPESP and FINEP for financial support.

Received: March 20, 1998

FAPESP helped in meeting the publication costs of this article

  • 1.Mahmoud, I.I.; Kinghorn, A.D.; Cordell, G.A.; Farnsworth, N.R. J. Nat. Prod. 1980, 43, 365.
  • 2.Fukuyama,Y.; Sato, T.; Asakawa, Y.; Takemoto, T. Phytochemistry 1982, 21, 2895.
  • 3.Fukuyama, Y.; Sato, T.; Miura, I.; Asakawa, Y. Phytochemistry 1985, 24, 1521.
  • 4.Corbett, R.E.; Chee, T.L. J. Chem. Soc. Perkin Trans. 1976, I, 850.
  • 5.Kubo, I.; Miura, I.; Pettei, M.J.; Lee, Y.W.; Pilkiewicz, F.; Nakanishi, K. Tetrahedron Lett. 1977, 4553.
  • 6.Gottlieb, O.R. Micromolecular Evolution, Systematics and Ecology, Springer-Verlag; Berlin, 1982.
  • 7.Cronquist, A. An Integrated System of Classification of Flowering Plants, Columbia University Press; New York, 1981.
  • 8.Vechietti, V.; Ferrari, G.; Orsini, F.; Pelizzoni, F. Phytochemistry 1979, 18, 1847.
  • 9.Kubo, I.; Lee, Y.W.; Pettei, M.J.; Pilkiewicz, F.; Nakanishi, K. J. Chem. Soc. Chem. Commun. 1976, 1013.
  • 10.Taniguchi, M.; Adachi, T.; Oi, S.; Kimura, A.; Katsumura, S.; Isoe, S.; Kubo, I. Agric. Biol. Chem. 1984, 48, 73.
  • 11.Kubo, I.; Matsumoto, T.; Kakooko, A.B.; Mubiru, N.K. Chem. Lett. 1983, p. 979.
  • 12.Brooks, C.J.W.; Draffan, G.H. Tetrahedron 1969, 25, 2887.
  • 13.Canonica, L.; Corbella, A.; Gariboldi, P.; Jommi, G.; Krepinsky, J.; Ferrari, G.; Casagrande, C. Tetrahedron 1969, 25, 3985.
  • 14.Kubo, I.; Ganjian, I. Experientia 1981, 37, 1063.
  • 15.Canonica, L.; Corbella, A.; Gariboldi, P.; Jommi, G.; Krepinsky, J.; Ferrari, G.; Casagrande, C. Tetrahedron 1969, 25, 3903.
  • 16.Brooks, C.J.W.; Draffan, G.H. Tetrahedron 1969, 25, 2865.
  • 17.El-feraly, F.S.; Hoffstetter, M.D. J. Nat. Prod. 1980, 43, 407.
  • 18.Nakanishi, K.; Kubo, I. Isr. J. Chem. 1977, 16, 28.
  • 19.Schulte, K.E.; Rücker, G.; Lewe, W.A. Deutsche Apoth. Ztg. 1972, 112, 1578.
  • 20.Emerenciano, V.P.; Ferreira, Z.S.; Kaplan, M.A.C.; Gottlieb, O.R. Phytochemistry 1987, 26, 3103.
  • 21.Montagnar, A.; Martin, M.T.; Debites, C.; Pais, M. J. Nat. Prod 1996, 59, 866.
  • 22.Paul, V.J.; Youngwan, S.; Cho, K.Y.; Rho, J.R.; Shin, J.; Bergquist, P.R. J. Nat. Prod 1997, 60, 1115.
  • 23.Siems, K.; Weiggt, F.; Wollenweber, E. Phytochemistry 1996, 41, 1119.
  • 24.Fleck, W.F.; Schlegel, B.; Hoffmann, P.; Ritzao, M.; Meinze, S.; Grafe, U. J Nat. Prod 1996, 59, 780.
  • 25.Hayes, M.A.; Wrigley, S.K.; Chetland, I.; Reynolds, E.E.; Ainsworth, A.M.; Renno, D.V.; Latif, M.A.; Cheng, Xue-Ming; Hupe, D.J. J. Antibiot 1996, 49, 505.
  • *
    Paper XXXVI in the series "Plant chemosystematics and phylogeny". For Part XXXV see Ref. 20. Taken in part from the M. Sc. thesis presented by J.K.B. to Universidade de São Paulo, 1987.
  • Publication Dates

    • Publication in this collection
      23 Oct 2002
    • Date of issue
      1999

    History

    • Received
      20 Mar 1998
    Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
    E-mail: office@jbcs.sbq.org.br