SciELO - Scientific Electronic Library Online

 
vol.13 número1Toxicity of Dimorphandra mollis to Workers of Apis melliferaThe Stereochemistry of the Addition of Chlorotitanium Enolates of N-Acyl Oxazolidin-2-ones to 5- and 6- Membered N-Acyliminium Ions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

Compartir


Journal of the Brazilian Chemical Society

versión impresa ISSN 0103-5053

J. Braz. Chem. Soc. v.13 n.1 São Paulo ene./feb. 2002

http://dx.doi.org/10.1590/S0103-50532002000100020 

Short Report

 

New Biflavonoid and Other Constituents from Luxemburgia nobilis (EICHL)

 

Márcia C. C. de Oliveiraa, Mário G. de Carvalho a*, Cleber J. da Silvaa and Alceni A. Werleb

aDepartamento de Química ¾ ICE, Universidade Federal Rural do Rio de Janeiro, 23851-970, Seropédica - RJ, Brazil

bDepartamento de Química ¾ ICEB, Universidade Federal de Ouro Preto, 35400-000, Ouro Preto - MG, Brazil

 

 

O fracionamento cromatográfico dos extratos orgânicos das folhas e galhos de Luxemburgia nobilis (Ochnaceae) forneceu o sitosterol, sitosterol-3-O-bD-glicopiranosil, friedelina, friedelinol, a mistura dos triterpenos lupeol, a-amirina e b-amirina, rutina, epicatequina, uma mistura de duas chalconas, isoliquiritigenina e 3'-hidróxiisoliquiritigenina, duas biflavonas conhecidas, amentoflavona e robustaflavona além de uma biflavona nova, 5,7,4'-triidróxiflavona-(3'-O-4"')-5",7" -diidróxiflavanona. As estruturas foram definidas através dos dados espectrométricos incluindo experimentos bidimensionais de RMN das substâncias naturais e dos derivados metilados e acetilados da biflavona nova.

 

Chromatographic fractionation of the organic extracts from the leaves and branches of Luxemburgia nobilis (Ochnaceae) afforded sitosterol, sitosterol-3-O-bD-glucopyranoside, friedelin, friedelinol, a mixture of triterpenes lupeol, a-amyrin and b-amyrin, rutin, epicatechin, a mixture of two chalcones, 2,4,3',4'-tetrahydroxychalcone and 2,4,4'-trihydroxychalcone, two known biflavones, amentoflavone and robustaflavone along with a new biflavonoid, 5,7,4'-trihydroxyflavone-(3'-O-4'")-5",7"-dihydroxyflavanone. The structures were established from spectral data, including 2D-NMR experiments of the natural substances and of the acetyl and methyl ether derivatives of the new biflavone.

Keywords: Luxemburgia nobilis, Ochnaceae, flavonoids, steroids, triterpenes

 

 

Introduction

The Ochnaceae family has been characterized as a major source of biflavonoids and up to now it has been best represented by Ouratea,1-5 Ochna6-9 and Lophira10-12 genera. In a previous report, we described the inhibition of murine tumor growth, antiproliferative effects and activation of apoptosis on Erlich tumor cells by flavones isolated from Ouratea hexasperma13 and from Ouratea semisserrata.14 There is only one record of a phytochemical work on a Luxemburgia genus where we described the isolation and identification of steroids, fatty acids, betulinic acid, the diterpene epimanoyl oxid, atranorin and two new triglycerides.15

In this paper, we report the structure determination of a new biflavonoid, 2",3"-dihydroochnaflavone, two known biflavones, amentoflavone and robustaflavone, the flavonoids rutin, epicatechin, and two chalcones, along with fatty acids, sitosterol, 3-O-b-D-glucopyranosylsitosterol and five pentacyclic triterpenes isolated from the branches and leaves of L. nobilis.

 

Results and Discussion

The chromatographic fractionation of the methanol extract from the branches and also of the hexane, ethyl acetate and methanol extracts from the leaves of L. nobilis afforded hexadecanoic, eicosanoic and tetraeicosanoic acids, a new biflavonoid, 2",3"-dihydroochnaflavone (1); two known biflavones, amentoflavone (2) and robustaflavone (3); epicatechin (4); two chalcones, isoliquiritigenin (5) and 3'-hydroxyisoliquiritigenin (6); rutin (7); sitosterol (8); sitosterol 3-O-b-D-glucopyranoside (9); friedelin (10); friedelinol (11) and a mixture of lupeol (12), a-amyrin (13) and b-amyrin (14).

The 13C NMR spectrum of compound 1 shows 28 signals including two signals at dCH 128.80 and 116.30, each representing two carbon atoms, eight sp2 CH, two sp3 carbons (dCH 78.57 and dCH2 42.38), fourteen sp2 quaternary carbons (4xC and 10xC-O) and two carbonyl groups (dC 182.22 and 196.48). The 1H NMR spectrum shows two signals at d 11.99 and 12.71 indicating the presence of two chelated hydroxyls, which were confirmed by the IR spectrum which exhibits a broad OH absorption band at 3495 cm-1 and also a chelated carbonyl absorption at 1646 cm-1. The NMR spectrum shows ten aromatic hydrogen signals including two sets of meta-coupled doublets (1H,1H-COSY) at d 6.11 and 6.37 (2.0 Hz) and d 5.81 and 5.82 (2.1 Hz) which belong to the H-6 and H-8 atoms of two flavonoid moieties. These data are in agreement with a flavonoid dimeric structure. The molecular formula C30H20O10, which was obtained by HREIMS m/z [M+, 30] 540.10565 (calc. 540.10050 for C30H20O10) confirms the latter observation. The presence of a singlet at d 6.62 (one hydrogen) and three double doublets at d 5.39 (16.6, and 12.7 Hz), 3.11 (16.6, 12.7 Hz) and 2.66 (16.6, 6.0 Hz) led us to propose a flavone and flavanone unit for the dimer. The data above imply that carbons 6 and 8 of each unit are not involved in the interflavonoid linkage. Ring B of the flavone unit was identified by three hydrogen signals at d 7.06 (d, 8.7 Hz), 7.62 (d, 2.0 Hz) and 7.80 (dd, 8.7 and 2,0 Hz) corresponding to H-5', H-2'and H-6'of this moiety. Furthermore, the 1H NMR spectrum also shows a set of AA'BB' doublets (J 7.8 Hz, 2H each) at d 7.36 and 6.83 which were assigned to H-2"',6"' and H-3"',5"' of the flavanone moiety, respectively. The cross peaks observed in the 13C,1H-COSY-nJ CH (n = 2 and 3, HMBC) spectra of 1 show heteronuclear long-range couplings of C-1'with H-5' and of C-1"' with H-3"',5"' which confirm rings B of both flavone and flavanone, respectively. These observations and comparison of the UV absorption maxima (288 and 332 nm) and NMR data with those of the biflavonoid 2,3-dihydroochnaflavone, isolated from Ochna obtusata,6 revealed these to be identical compounds. The differences between the chemical shift of the AA'BB' hydrogen in 1 [d 7.36 and 6.83 (d, 7.8 Hz, 2H each)] and the values for the same set for the 2,3-dihydroochnaflavone reported in the literature6 [d 8.03 and 7.08 (d, 9.0 Hz, 2H)] led to propose the 2",3"-dihydroochnaflavone structure for 1. The treatment of 1 with diazomethane yielded 1a with three methoxy groups and two chelated hydroxyls. The results obtained from NOEDIFF-NMR experiments on this derivative, performed with irradiation at the methoxy groups did not reveal any signal enhancements at the doublet at d 7.62 (d, 2.0 Hz, H-2') and at 7.36 (d, 7.80 Hz, H-3"',5"') but did show nOe at the doublets at d 7.06 (H-5'), 6.11 (H-6), 6.37 (H-8) 5.81(H-6") and 5.82 (H-8"). These observations further confirm the C-3'-O-C-4'" connection between the flavone and flavanone moieties. The comparison of the 13C NMR spectral data of 1 with those of 2,3-dihydroochnaflavone6 along with the analysis of the 13C,1H-COSY, nJCH (n = 1, HMQC, Table 1; n = 2 and 3, HMBC) allowed to define the structure of 1 as the new biflavonoid 4',5,7-trihydroxyflavone-(3'-O-4"')-5",7"-dihydroxyflavanone or 2",3"-dihydroochnaflavone. The 1H and 13C-NMR data of 1b were used to confirm the proposed structure.

Compounds 2, 3 and 4 were characterized as amentoflavone, epicatechin and robustaflavone, respectively, with the help of 1D and 2D 1H and 13C NMR analysis of the natural substances and comparison with literature data.16-20

Scheme

The molecular formulas of 5 and 6 were determined to be C15H12O4 and C15H12O5 from the low-resolution mass spectrum, which showed peaks at m/z 256 (5) and 272 (6), in combination with the 1H and 13C-NMR spectra (HBBD and DEPT). The 1D and 2D 1H (1H,1H-COSY and NOESY) and 13C-NMR (HMQC and HMBC) spectra of the mixture of 5 and 6 were analyzed and compared with those of isoliquiritigenin (5) reported in the literature21. The remaining hydrogen and carbon-13 signals observed in the 1D and 2D NMR spectra along with the peak with m/z 172 in the mass spectrum were used to assign the additional structure in the mixture as the chalcone 2,4,3',4'-tetrahydroxychalcone (6) registered in the literature.22

Compound 7 was characterized as rutin by 1D and 2D 1H and 13C NMR spectral analysis of the natural substances and comparison with literature data.20 The treatment of 7 with diazomethane followed by treatment with Ac2O and pyridine yielded 7a, with three methoxyl and seven acethyl groups. The results obtained from NOEDIFF-NMR experiments on this derivative performed with irradiation at the methoxyl groups did not reveal signal enhancements of hydrogens bound to anomeric carbons but showed nOe at the doublets at d 6.19 (H-6), 6.39 (H-8), 7.52-7.55 (H-2') and 6.84 (H-5'). These observations further confirm the C-3-O-glycosyl moiety in the flavone and allowed to identify 7 as rutin.22,23

The known natural steroid 8, its glycoside 9 and the terpenoids 10-14 were identified by analysis of their spectral data including the acetyl derivative 9a and comparison with literature values, mainly 13C NMR chemical shifts described for sitosterol (8),24,25 sitosterol-3O-b-D-glycopiranoside (9)26 and the mixture of lupeol, a-amyrin and b-amyrin (12-14), friedelin (10) and friedelinol (11) .27,28

 

Experimental

General procedure

Mp's are uncorrected. NMR spectra in CD3OD (1, 2 ,3) or CDCl3 (1a) were recorded on Bruker spectrometers (200 and 500 MHz for 1H and 50.3 and 125 MHz for 13C, respectively) and on a Varian Unity 400 (400 MHz for 1H and 100 MHz for 13C) spectrometer using TMS as internal standard. eims: direct inlet at 70 eV on a VG auto Spec-300 spectrometer; CC: silica gel (Merck and Aldrich 0.05-0.20 mm); TLC: silica gel H or G (Merck and Aldrich) was used to analyse the fractions collected from CC with visualization by UV (254 and 366) and exposure to iodine vapor; UV: recorded in MeOH with a DMS 80 Varian spectrophotometer; IR spectra were recorded on KBr disks on a Perkin-Elmer 1420 spectrophotometer.

Plant material

Luxemburgia nobilis (Ochnaceae) was collected in morro de São Sebastião, Ouro Preto, Minas Gerais, Brazil and authenticated by botanist Jorge L. Silva. A voucher specimen (No 6737) is deposited at the Herbário José Badini of the Instituto de Ciências Exatas e Biológicas of the Universidade Federal de Ouro Preto, Minas Gerais state, Brazil.

Extraction and isolation

Dried and powdered leaves and branches were successively extracted by maceration using organic solvents at room temperature. The solvents were removed under vacuum to yield residues from hexane (LNLH, 2.0 g), ethyl acetate (LNLA, 17.7 g) and methanol (LNLM, 20 g) from the leaves and hexane (LNBH, 3.85 g) and methanol (LNBM, 20.0 g) from the branches of L. nobilis. The LNLH residue was fractionated on a silica gel column (A) using hexane, CH2Cl2 and methanol increasing the polarity to 100% methanol. The A-1/4, A-6/9 and A-31/35 fractions were crystallized and yielded hexadecanoic acid (mp 68 °C, 200.0 mg, acetone), a mixture of tetraeicosanoic and eicosanoic acids (130.0 mg, acetone) and sitosterol (8, 97.0 mg, hexane). The LNLA residue was chromatographed on a silica gel column (B) using CH2Cl2/MeOH increasing the polarity to 100% MeOH. The B-1/48 fractions were fractionated on a flash column of silica gel using CHCl3 and yielded friedelin (10, mp 300 oC, 107.0 mg). fractions B-49/54 and B-55/64 were filtered on silica gel and sephadex columns using CHCl3/MeOH (9:1) and afforded biflavone 2 (88.80 mg) and biflavone 1 (130.0 mg), respectively. The LNLM residue was fractionated on a silica gel column (C) using ethyl acetate increasing the polarity to 100% methanol. Fractions C-10/15 were filtered on a sephadex column and purified by preparative TLC using CHCl3/MeOH and yielded triterpenes friedelinol (11, mp 301 oC, 45 mg) and friedelin (10, 53 mg); fractions C-26/30 were dissolved in methanol and after addition of CHCl3 afforded a precipitate corresponding to the biflavone 3 (gum, 50.0 mg). fractions C-32-39 yielded 1 (mp 220 oC, 295.0 mg) after precipitation from acetone. The work up of residue LNBH has been previously described.15 Finally, LNBM residue was subjected to column chromatography (D) on silica gel using ethyl acetate/methanol increasing the polarity to 100% methanol. Fraction D-2 was purified with a silica gel column and preparative TLC using CHCl3/MeOH (9:1) to yield a mixture of triterpenes lupeol (12), b-amyrin (13) and a-amyrin (14) (80.0 mg) besides epicatechin (4, oil, 30.0 mg). fractions D-8/12 were filtered on a silica gel column using CH2Cl2/MeOH (7:3) affording epicatechin (4, 200 mg). fractions D-18/20 yielded a residue identified as 3O-bD-glucopyranosylsitosterol (9, mp 300 oC, 35.0 mg). Filtration on sephadex column of fractions D-33/35 yielded two fractions which were recrystallized from EtOAc:MeOH (9:1) and further purified by preparative TLC affording the same glycoside 9 (85.00 mg) and a mixture of chalcones 5 and 6. Compound 7 (1.00 g), known as rutin, was obtained from filtration of D-36/63 with sephadex using MeOH as solvent.

4',5,7-trihydroxyflavone-(3'-O-4"')-5",7"-dihydroxy flavanone (1): mp 220 ºC (EtOAc). UV: lmaxMeOH /nm (log e): 288 (3,29), 332 (3,42) nm. [a]D: +7.0 (Me2CO, c 0.6), IR nmax /cm-1: 3433, 3096, 1773, 1693, 1646, 1617, 1507, 1473, 1428, 1371, 1337, 1266, 1193, 1130, 1077, 1030, 902, 841(KBr). 1H NMR (500 MHz, methanol-d4) and 13C NMR (125 MHz, methanol-d4), Table-1; EI-MS (70 ev), m/z (%) [M+., 540 (13)], 389 (6), 314 (5), 286 (5), 272 (11), 212 (7), 179 (5), 166 (11), 152 (29), 137 (16), 126 (100), 110 (26), 97 (20), 81 (23), 69 (47), 57 (34); HREIMS m/z [M+.] 540.10565 (calcd 540.10050 for C30H20O10).

4',7-dimethoxy-5-hydroxyflavone-(3'-O-4"')-7" -methoxy-5"-hydroxyflavanone (1a), trimethyl ether of 1: Prepared by treating a methanol solution of 1 (20 mg) with ethereal diazomethane. After evaporation of the solvent, the residue was dissolved in acetone and purified by CC on silica gel. A fraction eluted with acetone yielded 1a (20 mg): mp 186 °C (AcOEt). UV: lmaxMeOH/ nm (log e): 210 (3.60), 270 (3.20), 380 (3.2), 330 (3.06). IR nmax /cm-1: 3443, 3076, 2935, 2840, 1643, 1612, 15606, 1440, 1378, 1266, 1115, 1160 893 (KBr); 1H (400 MHz, D3CCOCD3); 13C (50.3 MHz, CDCl3) NMR, Table-1. 1H-NMR-NOEDIFF in CDCl3.

Peracetyl derivative of 1 (1b): The peracetate of 1 (1b), was prepared with Ac2O, pyridine and DMAP at room temperature for 24 h and was isolated as colorless needles from acetone: mp 230 °C; IR nmax /cm¾1 1772, 1694, 1646 (KBr); ¹H NMR (200 MHz, CDCl3): d 7,64 (dd, 1H, J 8.5, 2.0 Hz, H-6'), 7.45 (d, 1H, J 2.0 Hz, H-2'), 7.44 (d, 2H, J 8.8 Hz, H-2'", 6'"), 7.30 (d, 1H, J 8.5, H-5'), 7.27 (d, 1H, J 2.2 Hz, H-8), 7.05 (d, 2H, J 8.8 Hz, H-3'", 5'"), 6.82 (d, 1H, J 2.2 Hz, H-6), 6.78 (d, 1H, J 2.2 Hz, H-8"), 6.52 ( d, 1H, J 2.2 Hz, H-6"), 6.51 (s, 1H, H-3), 5.48 (dd, J 13.08, 2.8 Hz, H-2"), 3.05 (dd, 1H, J 16.7, 13.08, H-3" ax), 2.78 (dd, 1H, J 16.7, 2.8, H-3" eq), 2.20, 2.32, 2.38, 2.39 and 2.40 (s, 3H each, OAc-5,7,4',5",7"); ¹³C NMR (50 MHz, CDCl3): d 167.90 (C-2), 108.87 (C-3), 176.17 (C-4), 155.87 (C-5), 113.85 (C-6), 160.97 (C-7), 109.11 (C-8), 153.96 (C-9), 111.50 (C-10), 133.56 (C-1'), 118.17 (C-2'), 148.80 (C-3'), 144.56 (C-4'), 124.66 (C-5'), 122.29 (C-6'), 78.97 (C-2"), 44.96 (C-3"), 188.99 (C-4"), 156.84 (C-5"), 110.55 (C-6"), 163.11 (C-7"), 109.05 (C-8"), 150.11 (C-9"), 114.50 (C-10"), 130.07 (C-1"'), 128.06 (C-2'", 6"'), 118.54 (C-3"', 5"'), 151.16 (C-4"'), 168-169,5 (O-COCH3), 20,7-21,8 (O-COCH3).

 

Acknowledgements

The authors are grateful to Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships and financial support. We thank Dr. E. R. Silveira, Universidade Federal do CE, Fortaleza, Ceará, Brazil, for [a]D readings and NMR spectra (500 MHz for 1H and 125 MHz for 13C).

 

References

1. Velandia, J. R.; Ph.D. Thesis, Universidade Federal Rural do Rio de janeiro, Brasil, 1997).         [ Links ]

2. Felicio, J. D.; Gonçalvez, E.; Braggio, M. M.; Costantino, L.; Albasini, A.; Lins, A. P.; Planta Med 1995, 61, 217.         [ Links ]

3. Moreira, I.C.; Sobrinho, D.C.; Carvalho, M.G. de; Braz-Filho, R.; Phytochemistry 1994, 35, 1567.         [ Links ]

4. Oliveira, M. M. de; Sampaio, M. P.; Simon, F.; Gilbert, B.; Mors, W. B.; An. Acad. Brasil. Ciênc. 1972, 44, 42.         [ Links ]

5. Monache, F.; D'Albuquerque, I.L.; Ferrari, F.Q.; Bettolo, G.B.M.; Tetrahedron Lett. 1967, 43, 4211;         [ Links ]Ann. Chim. 1967, 57, 1364.         [ Links ]

6. Rao, K. V.; Sreeramulu, K.; Rao, C. V.; Gunasekar, D.; Martin, M. t.; Bodo, B.; J. Nat. Prod. 1997, 60, 632.         [ Links ]

7. Kamil, M.; Khan, N. A.; Alam, M.S.; Ilyas, M.; Phytochemistry 1987, 26, 1557         [ Links ]

8. Okigawa, M.; Kawano, N.; Aqil, M.; Rahman, W.; J. Chem. Soc. Perkin I, 1976, 580.         [ Links ]

9. Okigawa, M.; Kawano, N.; Aqil, M.; Rahman, W.; Tetrahedron Lett. 1973, 2003.         [ Links ]

10. Thin, R. G.; Sondegam, M. T.; Martin, M. T.; Bodo, B.; Phytochemistry 1989, 28, 1557.         [ Links ]

11. Thin, T. G.; Sondegam, M. T.; Martin, M. T.; Bodo, B.; Phytochemistry 1990, 29, 2289.         [ Links ]

12. Ghogomu, T.; Sondegam, B. L.; Phytochemistry 1989, 52, 284.         [ Links ]

13. Grynberg, N. F.; Mortorelli, R. A.; Carvalho, M. G. de; Braz-Filho, R.; Moreira, I. C.; Santos, A. C. S.; Echevarria, A.; Proceedings of the XVI International Cancer Congress 1994, p. 63.         [ Links ]

14. Grynberg, N. F.; Brioso, P. S. T.; Velandia, J. R.; Echevarria, A.; Carvalho, M. G. de; Braz-Filho, R.; Proceedings of the XVII International Cancer Congress, 1998, p. 317.         [ Links ]

15. Carvalho, M. G. de; Oliveira, M. C. C. de; Werle, A. A.; J. Braz. Chem. Soc. 2000, 11, 232.         [ Links ]

16. Dora, G.; Edwards, J. M.; J. Nat. Prod. 1991, 54, 796.         [ Links ]

17. Geiger, H. In The Flavonoids: Advances in Research since 1986; Harbone, J. B., ed.; Chapman & Hall: London, 1994, pp. 95-115.         [ Links ]

18. Markham, K.R.; Sheppard, C.; Geiger, H.; Phytochemistry 1987, 26, 3335.         [ Links ]

19. Chari, V. M.; Ilyas, M.; Wagner, H.; Neszmélyi, A.; Chen, F.; Chen, L.; Lin, Y.; Lin, Y.; Phytochemistry 1977, 16, 1273.         [ Links ]

20. Markham, K. R.; Tetrahedron 1976, 32, 2607.         [ Links ]

21. Achambach, H.; Stocher, M.; Constenia, M.; A. Phytochemistry 1988, 27, 1835.         [ Links ]

22. Linuma, M.; Mizuno, M.; Phytochemistry 1989, 28, 681.         [ Links ]

23. Agrawal, P. K.; Bansal, M. C. In Carbon-13 NMR of Flavonoids; Elsevier: Amsterdam, 1989, pp 283-354.         [ Links ]

24. Chaurasia, N.; Wichtl, M.; J. Nat. Prod. 1987, 50, 881.         [ Links ]

25. Kojima, H.; Sato, N.; Hatano, A.; Ogura, H.; Phytochemistry 1990, 29, 2351.         [ Links ]

26. Ahmad, V. U.; Aliya, R.; Perveen, S.; Shameel, M.; Phytochemistry 1993, 33, 1189.         [ Links ]

27. Mahato, S. B.; Kundu, A. P.; Phytochemistry 1994, 37, 1517.         [ Links ]

28. Olea, R. S. G.; Roque, N. F.; Quim. Nova 1990, 13, 278.         [ Links ]

 

Received: November 1, 2000
Published on the web: December 12, 2001

 

* e-mail: mgeraldo@ufrrj.br