Acessibilidade / Reportar erro

N,N-dichloro-4-methylbenzenesulphonimide as a novel and efficient catalyst for acetylation of alcohols under mild conditions

Abstracts

Structurally diverse alcohols were acetylated in a clean and efficient reaction with acetic anhydride based on the use of a catalytic amount of N,N-dichloro-4-methylbenzenesulphonimide in dichloromethane. All reactions were performed at room temperature in good to excellent yields.

N,N-dichloro-4-methylbenzenesulphonimide; alcohol; acetylation; acetic anhydride


Álcoois de estruturas diversas foram acetilados com anidrido acético, através de reações limpas e eficientes, usando-se quantidade catalítica de N,N-dicloro-4-metilbenzenossulfonamida em diclorometano. Todas as reações ocorreram a temperatura ambiente, com rendimentos de bons a excelentes.


SHORT REPORT

N,N-dichloro-4-methylbenzenesulphonimide as a novel and efficient catalyst for acetylation of alcohols under mild conditions

Ardeshir Khazaei* * e-mail: Khazaei_1326@hotmail.com ; Amin Rostami; Zahra Tanbakochian; Zahra Zinati

Department of Chemistry, Faculty of Science, Bu-Ali Sina University, Hamedan, 6517838683, Iran

ABSTRACT

Structurally diverse alcohols were acetylated in a clean and efficient reaction with acetic anhydride based on the use of a catalytic amount of N,N-dichloro-4-methylbenzenesulphonimide in dichloromethane. All reactions were performed at room temperature in good to excellent yields.

Keywords:N,N-dichloro-4-methylbenzenesulphonimide, alcohol, acetylation, acetic anhydride

RESUMO

Álcoois de estruturas diversas foram acetilados com anidrido acético, através de reações limpas e eficientes, usando-se quantidade catalítica de N,N-dicloro-4-metilbenzenossulfonamida em diclorometano. Todas as reações ocorreram a temperatura ambiente, com rendimentos de bons a excelentes.

Introduction

Protection of alcohols is an unavoidable exercise in organic synthesis and is frequently achieved through acetylation with anhydrides1 due to the ease of deprotection.1,2 The various catalysts developed for the activation of anhydrides include nucleophilic,3,4 and electrophilic5-23 reagents. However, these acetylation methodologies suffer from one or more disadvantages such as stringent conditions, use of hazardous materials (e.g. DMAP is highly toxic, Bu3P is flammable and air sensitive), use of costly catalysts (e.g. the triflates), load and reusability of the catalyst or in terms of yields, cumbersome methodologies. Thus, the development of a new acetylation method is in high demand.

Results and Discussion

During the course of our systematic study on application of N-halo compounds24 in organic chemistry, we report, herein, our results on acetylation of a variety of alcohols with Ac2O using a catalytic amount of N,N-dichloro-4-methylbenzenesulphonimide (1),25 under mild reaction conditions at room temperature (Scheme 1).


The results of the reactions of a diverse range of alcohols are collected in Table 1. The data reported in Table 1 show that , N,N-dichloro-4-methylbenzenesulphonimide (1) is able to promote complete acetylation of primary, secondary and tertiary alcohols in excellent yields. Primary benzylic alcohols with electron releasing and electron-withdrawing groups were acetylated in the presence of 0.05-0.2 mmol of reagent and the corresponding acetate compounds were obtained in good to excellent yields (Table 1, entries 1-4). Benzhydrol and indanol as two model compounds for secondary benzylic alcohols were satisfactorily subjected to acetylation as well (Table 1, entries 5, 6). Acetylation of linear and cyclic saturated primary and secondary alcohols was achieved in the presence of reagent (0.05 - 0.1 mmol) at room temperature (Table 1, entries 7-10). Interestingly, adamantanol was also converted to the corresponding acetate at room temperature as a model for acetylation of the hindered tertiary alcohols (Table 1, entry 11).

As shown in Table 1, the amount of the acetylating agent and catalyst depend on the nature of the alcohol used as substrate. Therefore we use this procedure for the selective acetylation of 4-methylbenzyl alcohol (as a model for primary alcohol) in presence of adamantanol (as a model for tertiary alcohol). The only observed product was 4-methylbenzyl acetate in 100% conversion (Scheme 2).


Finally, a mixture of acetic anhydride and benzoic anhydride in the presence of N,N-dichloro-4-methylbenzenesulphonimide (1) was next subjected to acylation of benzyl alcohol. The acetylation of benzyl alcohol took place (100% conversion) without any benzoylation (Scheme 3).


Experimental

Preparation of N,N-dichloro-4-methylbenzenesulphonimide (1)

4-Methylbenzenesulphonimide (5 g) was dissolved in of saturated solution of Ca(ClO)2 (150 mL) in a 250 mL flask at room temperature. After stirring for 2 h, acetic acid (50 mL) was added. The resulting precipitate of N,N-dichloro-4-methylbenzenesulphonimide was filtered and washed with cold water. Recrystallization with petroleum ether afforded pure reagent in 89 %. mp 80 ºC; IR (KBr) nmax /cm-1: 2950 (s), 1591(m), 1302(m), 1190(m), 1174(s), 1083(m), 815(m), 761(m), 661(s), 570(s) [w:weak, m:medium, s:strong]; 1H NMR (CDCl3), d (ppm): 2.456 (3H, S), 7.437(2H, d), 7.868(2H, D).

General procedure for acetylation of alcohols using Ac2O and reagent 1

To a solution of alcohol (1 mmol) and Ac2O (1.5-10 mmol) in CH2Cl2 (7 mL), catalyst 1 (0.05-0.3 mmol) was added at room temperature and the mixture was stirred until complete disappearance of the starting material (alcohol). The reaction was monitored by TLC. After completion, the reaction mixture was quenched with water (15 mL), and extracted with CH2Cl2 (30 mL). The solvent was evaporated, and then n-hexane (20 mL) was added to the residual solid mixture. Insoluble 4-methyl benzene sulphonimide was removed by filtration. Removal of the solvent under reduced pressure gave the product in good yield.

Conclusions

In conclusion, in this study we have demonstrated the efficiency of reagent (1), towards the acetylation of a wide variety of alcohols. The notable special features of this methodology are the simple reaction procedure, selectivity, excellent yields of products, low cost reagent, easy preparation and easy work up.

Acknowledgments

We are thankful to the Bu-Ali Sina University Research Councils for partial support of this work.

References

1. Greene, T. W.; Wuts, P. G. M.; Protective Groups in Organic Synthesis, 3rd ed., John Wiley: New York, 1999; Hanson, J. R.; Protective Groups in Organic Synthesis; Blackwell Science Inc: Malden, MA, 1999.

2. Chakraborti, A. K.; Nayak, M. K.; Sharma, L.; J. Org. Chem. 2002, 67, 1776; Chakraborti, A. K.; Nayak, M. K.; Sharma, L.; J. Org. Chem. 2002, 67, 2541; Chakraborti, A. K.; Sharma, L.; Sharma, U.; Tetrahedron 2001, 57, 9343; Chakraborti, A. K.; Nayak, M. K.; Sharma, L.; J. Org. Chem. 1999, 64, 8027.

3. Steglich, W.; Hofle, G.; Angew. Chem., Int. Ed. 1969, 8, 981.

4. Vedejs, E.; Diver, S. T.; J. Am. Chem. Soc. 1993, 115, 3358; Vedejs, E.; Bennet, N. S.; Conn, L. M.; Diver, S. T.; Gingras, M.; Lin, S.; Oliver, P. A.; Peterson, M. J.; J. Org. Chem. 1993, 58, 7286.

5. Iqbal, J.; Srivastava, R.; J. Org. Chem. 1992, 57, 2001; Ahmed, S.; Iqbal, J.; Tetrahedron Lett. 1986, 27, 3791.

6. Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.; J. Am. Chem. Soc. 1995, 117, 4413; Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.; J. Org. Chem. 1996, 61, 4560.

7. Ishihara, K.; Kubota, M.; Yamamoto, H.; Synlett 1996, 265.

8. Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A.; J. Org. Chem. 1998, 63, 2342; Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A.; Chem. Commun. 1996, 2625.

9. Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J.; Angew. Chem., Int. Ed. 2000, 39, 2877; Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J.; J. Org. Chem. 2001, 66, 8926; Carrigan, M. D.; Freiberg, D. A.; Smith, R. C.; Zerth, H. M.; Mohan, R. S.; Synthesis 2001, 2091.

10. Saravanan, P.; Singh, V. K.; Tetrahedron Lett. 1999, 40, 2611; Chandra, K. L.; Saravanan, P.; Singh, R. K.; Singh, V. K.; Tetrahedron 2002, 58, 1369.

11. Chandrasekhar, S.; Ramachander, T.; Takhi, M.; Tetrahedron Lett. 1998, 39, 3263.

12. Ballini, R.; Bosica, G.; Carloni, S.; Ciaralli, L.; Maggi, R.; Sartori, G.; Tetrahedron Lett. 1998, 39, 6049.

13. Bhaskar, P. M.; Loganathan, D.; Tetrahedron Lett. 1998, 39, 2215; Li, A.-X.; Li, T.-S.; Ding, T. H.; Chem. Commun. 1997, 1389.

14. Kumareswaran, R.; Pachamuthu, K.; Vankar, Y. D.; Synlett 2000, 1652.

15. Kumar, P.; Pandey, R. K.; Bodas, M. S.; Dongare, M. K.; Synlett 2001, 206.

16. Nakae, Y.; Kusaki, I.; Sato, T.; Synlett 2001, 1584.

17. Shirini, F.; Zolfigol, M. A.; Abedini, M.; Monatsh. Chem. 2004, 135, 279; Shirini, F.; Zolfigol, M.A.; Abedini, M.; Salehi P.; Bull. Korean Chem. Soc. 2003, 24, 1683; Shirini, F.; Zolfigol, M. A.; Mallakpour, B.; Int. J. Chem. Sci. 2003, 1, 53; Shirini, F.; Zolfigol, M. A.; Mohammadi, K.; Bull. Korean Chem. Soc. 2004, 25, 325; Shirini, F.; Zolfigol, M. A.; Russ. J. Org. Chem. 2005, 41, 625.

18. Karimi, B.; Seradj, H.; Synlett 2001, 519.

19. Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi, M.; Sambri, L.; Eur. J. Org. Chem. 2003, 4611; Bartoli, G.; Bosco, M.; Dalpozzo, R.; Massaccesi, M.; Sambri, L.; Synlett 2003, 39; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Procopio, A.; Nardi, M.; Bartoli, G.; Romeo, R.; Tetrahedron Lett. 2003, 44, 5621.

20. Salavati-Niasari, M.; Hydarzadeh, S.; Amiri, A.; Salavati, S.; J. Mol. Catal. A: Chem. 2005, 231, 191.

21. Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y.; J. Org. Chem. 2005, 70, 1188.

22. Chakraborti, A. K.; Gulhane, R.; Synlett 2004, 627; Chakraborti, A. K.; Gulhane, R.; Shivani; Synlett 2003, 1805; Chakraborti, A. K.; Gulhane, R.; Shivani; Synthesis 2004, 111; Chakraborti, A. K.; Gulhane, R.; Tetrahedron Lett. 2003, 44, 3521; Chakraborti, A. K.; Gulhane, R.; Tetrahedron Lett. 2003, 44, 6749; Chakraborti, A. K.; Gulhane, R.; Sharma, L.; Shivani; Tetrahedron 2003, 59, 7661; Chakraborti, A. K.; Gulhane, R.; J. Chem. Soc., Chem. Commun. 2003, 1896.

23. Procopio, A.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Russo, B.; Sindona, G.; Adv. Synth. Catal. 2004, 346, 1465.

24. Khazaei, A.; Vaghei, R. G.; Tetrahedron Lett. 2002, 43, 30733; Khazaei, A.; Vaghei, R. G.; Tajbakhsh, M.; Tetrahedron Lett. 2001, 42, 59; Khazaei, A.; Shirdarreh, A.; Synth. Commun. 1999, 29, 4079; Khazaei, A.; Bridson, K.; Pitchard, R. G.; Cryst. Str. Comm. C5 2001, 970; Khazaei, A.; Aminimanesh, A.; Synthesis 2004, 1739; Khazaei, A.; Zolfigol, M. A.; Rostami, A.; Synthesis 2004, 2959; Khazaei, A.; Aminimanesh, A.; Rostami, A.; J. Chem. Research 2005, 391.

25. Akiyoshi, S.; Okuno, K.; J. Am. Chem. Soc. 1954, 76, 693.

Received: July 16, 2005

Published on the web: December 15, 2005

  • 1. Greene, T. W.; Wuts, P. G. M.; Protective Groups in Organic Synthesis, 3rd ed., John Wiley: New York, 1999;
  • Hanson, J. R.; Protective Groups in Organic Synthesis; Blackwell Science Inc: Malden, MA, 1999.
  • 2. Chakraborti, A. K.; Nayak, M. K.; Sharma, L.; J Org Chem 2002, 67, 1776;
  • Chakraborti, A. K.; Nayak, M. K.; Sharma, L.; J Org Chem 2002, 67, 2541;
  • Chakraborti, A. K.; Sharma, L.; Sharma, U.; Tetrahedron 2001, 57, 9343;
  • Chakraborti, A. K.; Nayak, M. K.; Sharma, L.; J Org Chem 1999, 64, 8027.
  • 3. Steglich, W.; Hofle, G.; Angew Chem, Int Ed 1969, 8, 981.
  • 4. Vedejs, E.; Diver, S. T.; J Am Chem Soc 1993, 115, 3358;
  • Vedejs, E.; Bennet, N. S.; Conn, L. M.; Diver, S. T.; Gingras, M.; Lin, S.; Oliver, P. A.; Peterson, M. J.; J Org. Chem. 1993, 58, 7286.
  • 5. Iqbal, J.; Srivastava, R.; J. Org. Chem 1992, 57, 2001;
  • Ahmed, S.; Iqbal, J.; Tetrahedron Lett 1986, 27, 3791.
  • 6. Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.; J Am Chem Soc 1995, 117, 4413;
  • Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.; J Org. Chem 1996, 61, 4560.
  • 7. Ishihara, K.; Kubota, M.; Yamamoto, H.; Synlett 1996, 265.
  • 8. Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A.; J Org Chem 1998, 63, 2342;
  • Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A.; Chem Commun 1996, 2625.
  • 9. Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J.; Angew Chem, Int Ed 2000, 39, 2877;
  • Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J.; J Org Chem 2001, 66, 8926;
  • Carrigan, M. D.; Freiberg, D. A.; Smith, R. C.; Zerth, H. M.; Mohan, R. S.; Synthesis 2001, 2091.
  • 10. Saravanan, P.; Singh, V. K.; Tetrahedron Lett 1999, 40, 2611;
  • Chandra, K. L.; Saravanan, P.; Singh, R. K.; Singh, V. K.; Tetrahedron 2002, 58, 1369.
  • 11. Chandrasekhar, S.; Ramachander, T.; Takhi, M.; Tetrahedron Lett 1998, 39, 3263.
  • 12. Ballini, R.; Bosica, G.; Carloni, S.; Ciaralli, L.; Maggi, R.; Sartori, G.; Tetrahedron Lett 1998, 39, 6049.
  • 13. Bhaskar, P. M.; Loganathan, D.; Tetrahedron Lett 1998, 39, 2215;
  • Li, A.-X.; Li, T.-S.; Ding, T. H.; Chem Commun 1997, 1389.
  • 14. Kumareswaran, R.; Pachamuthu, K.; Vankar, Y. D.; Synlett 2000, 1652.
  • 15. Kumar, P.; Pandey, R. K.; Bodas, M. S.; Dongare, M. K.; Synlett 2001, 206.
  • 16. Nakae, Y.; Kusaki, I.; Sato, T.; Synlett 2001, 1584.
  • 17. Shirini, F.; Zolfigol, M. A.; Abedini, M.; Monatsh. Chem. 2004, 135, 279;
  • Shirini, F.; Zolfigol, M.A.; Abedini, M.; Salehi P.; Bull. Korean Chem. Soc. 2003, 24, 1683;
  • Shirini, F.; Zolfigol, M. A.; Mallakpour, B.; Int. J. Chem. Sci. 2003, 1, 53;
  • Shirini, F.; Zolfigol, M. A.; Mohammadi, K.; Bull. Korean Chem. Soc 2004, 25, 325;
  • Shirini, F.; Zolfigol, M. A.; Russ. J. Org. Chem. 2005, 41, 625.
  • 18. Karimi, B.; Seradj, H.; Synlett 2001, 519.
  • 19. Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi, M.; Sambri, L.; Eur. J Org Chem 2003, 4611;
  • Bartoli, G.; Bosco, M.; Dalpozzo, R.; Massaccesi, M.; Sambri, L.; Synlett 2003, 39;
  • Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Procopio, A.; Nardi, M.; Bartoli, G.; Romeo, R.; Tetrahedron Lett 2003, 44, 5621.
  • 20. Salavati-Niasari, M.; Hydarzadeh, S.; Amiri, A.; Salavati, S.; J. Mol. Catal. A: Chem. 2005, 231, 191.
  • 21. Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y.; J. Org. Chem. 2005, 70, 1188.
  • 22. Chakraborti, A. K.; Gulhane, R.; Synlett 2004, 627;
  • Chakraborti, A. K.; Gulhane, R.; Shivani; Synlett 2003, 1805;
  • Chakraborti, A. K.; Gulhane, R.; Shivani; Synthesis 2004, 111;
  • Chakraborti, A. K.; Gulhane, R.; Tetrahedron Lett 2003, 44, 3521;
  • Chakraborti, A. K.; Gulhane, R.; Tetrahedron Lett 2003, 44, 6749;
  • Chakraborti, A. K.; Gulhane, R.; Sharma, L.; Shivani; Tetrahedron 2003, 59, 7661;
  • Chakraborti, A. K.; Gulhane, R.; J. Chem. Soc., Chem. Commun 2003, 1896.
  • 23. Procopio, A.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Russo, B.; Sindona, G.; Adv. Synth. Catal 2004, 346, 1465.
  • 24. Khazaei, A.; Vaghei, R. G.; Tetrahedron Lett. 2002, 43, 30733;
  • Khazaei, A.; Vaghei, R. G.; Tajbakhsh, M.; Tetrahedron Lett 2001, 42, 59;
  • Khazaei, A.; Shirdarreh, A.; Synth. Commun. 1999, 29, 4079;
  • Khazaei, A.; Bridson, K.; Pitchard, R. G.; Cryst. Str. Comm. C5 2001, 970;
  • Khazaei, A.; Aminimanesh, A.; Synthesis 2004, 1739;
  • Khazaei, A.; Zolfigol, M. A.; Rostami, A.; Synthesis 2004, 2959;
  • Khazaei, A.; Aminimanesh, A.; Rostami, A.; J. Chem. Research 2005, 391.
  • 25. Akiyoshi, S.; Okuno, K.; J. Am. Chem. Soc 1954, 76, 693.
  • *
    e-mail:
  • Publication Dates

    • Publication in this collection
      14 Mar 2006
    • Date of issue
      Feb 2006

    History

    • Accepted
      15 Dec 2005
    • Received
      16 July 2005
    Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
    E-mail: office@jbcs.sbq.org.br