Acessibilidade / Reportar erro

Iron-catalyzed coupling reactions of vinylic chalcogenides with Grignard reagents

Abstracts

A general new method for the cross-coupling reaction between vinylic selenides and tellurides and Grignard reagents catalyzed by Fe(acac)3 at room temperature is described. This reaction proceeded with retention of configuration, providing the respective alkenes in good to excellent yields. This method is also efficient for the coupling reaction of divinyl chalcogenides with Grignard reagents.

iron-catalyzed; vinylic chalcogenides; cross-coupling; Grignard reagents


Este trabalho descreve um novo método para a reação de acoplamento entre selenetos e teluretos vinílicos e reagentes de Grignard, catalisada por Fe(acac)3 e à temperatura ambiente. A reação ocorre com retenção da configuração, fornecendo os respectivos alquenos em bons a excelentes rendimentos. Este método também é eficiente para a reação de acoplamento de calcogenetos bis-vinílicos com reagentes de Grignard.


ARTICLE

Iron-catalyzed coupling reactions of vinylic chalcogenides with Grignard reagents

Claudio C. Silveira* * e-mail: silveira@quimica.ufsm.br ; Samuel R. Mendes; Lucas Wolf

Departamento de Química, Universidade Federal de Santa Maria, CP 5001, 97105-970 Santa Maria-RS, Brazil

ABSTRACT

A general new method for the cross-coupling reaction between vinylic selenides and tellurides and Grignard reagents catalyzed by Fe(acac)3 at room temperature is described. This reaction proceeded with retention of configuration, providing the respective alkenes in good to excellent yields. This method is also efficient for the coupling reaction of divinyl chalcogenides with Grignard reagents.

Keywords: iron-catalyzed, vinylic chalcogenides, cross-coupling, Grignard reagents

RESUMO

Este trabalho descreve um novo método para a reação de acoplamento entre selenetos e teluretos vinílicos e reagentes de Grignard, catalisada por Fe(acac)3 e à temperatura ambiente. A reação ocorre com retenção da configuração, fornecendo os respectivos alquenos em bons a excelentes rendimentos. Este método também é eficiente para a reação de acoplamento de calcogenetos bis-vinílicos com reagentes de Grignard.

Introduction

Organochalcogenium compounds became the key component of a variety of versatile and useful reagents for organic synthesis. The multiple applications of organochalcogenium chemistry have been well described in a number of review articles1-6 and books.7-11 Functionalized alkynyl12-18 and alkenyl19-23 chalcogenides have a great potential in organic synthesis, since they are valuable intermediates for the selective preparation of several organic compounds.

Among the many applications of vinylic selenides, divinylic selenides and vinylic sulfides, the cross-coupling reaction with Grignard reagents catalyzed by Ni18,24-27 and Pd28,29 to give the corresponding cross-coupled products, has been described. On the other hand, Pd19,30 and Ni24,31-33 catalyzed cross coupling reactions and tellurium/metal exchange reactions34-42 are demonstrative of the usefulness of vinylic tellurides.

Transition-metal-catalyzed C-C bond coupling reactions are very important in many areas of science.43,44 Most current methods require expensive transition-metal catalysts and ligands. However, in the last years Fe-catalyzed C-C bond cross coupling reactions of vinylic substrates and Grignard reagents became a subject of intense interest.45-51 The vinylic counterpart is quite broad in scope, since vinylic halides, triflates, sulfonates, tosylates and enol phosphates can be used.45-51 In continuation to our interest on the synthesis and synthetic applications of vinylic chalcogenides52-58 we decided to study the feasibility of their use in cross coupling reaction with Grignard species catalyzed by iron. To the best of our knowledge, iron catalysts have never been used for the coupling of vinylic selenides and tellurides as electrophiles. The possible use of iron catalysts would represent a great improvement over the high cost of palladium precursors and from the concerns about the toxicity of nickel salts. In light of the above comments it is of interest to design a simple, efficient, and versatile method for the stereoselective coupling of vinylic selenides and tellurides with Grignard reagents catalyzed by iron, aiming to the construction of olefins with defined stereochemistry.

Results and Discussion

Here we describe our results on the reaction of vinylic selenides and tellurides with Grignard reagents under the catalysis of iron species. The first reactions were performed using [Fe(acac)3], (acac: acetylacetonate), since it is a very stable, cheap and easy to prepare catalyst.59 The initial studies were focused on the development of an optimum set of reaction conditions for the coupling reactions of vinylic chalcogenides with Grignard reagents. We chose (E)-phenyl(styryl)tellane (1d) and a THF solution of n-octyl magnesium bromide as starting materials, searching for the best solvent and the amount of Fe(acac)3, performing the reactions at room temperature (Tables 1 and 2).

At first, we found that by using 10 mol% of Fe(acac)3, in benzene, the (E)-dec-1-enylbenzene (3e) was obtained in 12% yield after stirring for 3 h (Table 1, entry 1). We also evaluated other solvents, such as THF and NMP (Table 1, entries 2 and 3). The best yield was obtained when a mixture of THF/NMP (3:1) was used as solvent, and the product 3e was obtained in 82% yield, after stirring for 2 h at room temperature (Table 1, entry 4). We observed a beneficial effect of the addition of triethylamine as a ligand, in accordance with our own previous observations on the coupling reactions of vinylic chalcogenides catalyzed by nickel.27,33 Also, the addition of amine ligands with improved activity on iron cross-coupling have also been observed.60

Then, the effect of the amount of the catalyst was evaluated. When the reaction was carried out without catalyst no product was obtained (Table 2, entry 1). The use of 5 mol% of Fe(acac)3 produced 3e in 48% yield (Table 2, entry 2). The use of larger amounts of catalyst had no effect on the yield of reaction and the required time to completion of reaction was the same (Table 2, entry 4). Thus, the best conditions for the coupling reaction were the use of Fe(acac)3 (10 mol%), THF/NMP (3:1, 4 mL), Et3N (0.5 mL), vinylic chalcogenide (0.2 mmol) and Grignard reagents (1 mmol), Scheme 1.


With these optimized conditions in hand, we next extended to some other examples to find out the scope and limitations of the present method. As can be seen in Tables 3 and 4, these conditions showed to be quite general, and a series of vinylic selenides and tellurides gave the desired products in good yields. Interestingly, the reaction proved to be also efficient for the coupling reaction between divinylic chalcogenides and Grignard reagents. The use of divinylic selenides and tellurides in cross-coupling reactions is particularly interesting since both organyls linked to selenium and tellurium atoms could eventually be transferred.27,33 The iron catalyzed cross-coupling reaction between divinylic chalcogenides and Grignard reagents were carried out at room temperature under standard established conditions and the alkenes 3 were obtained in moderate to good yields after stirring for 1.5-3 h (Table 3). The only difference in this case was the need to increase the amount of the iron catalyst to 20 mol% in order to have good yields.

As can be seen in Table 4, the yields from the vinylic chalcogenides were higher than from divinylic chalchogenides. The highest yield was 89% of the coupling product 3g using n-butyl magnesium bromide and (E)-(4-methylstyryl)(phenyl)telluride (Table 4, entry 16). For all the studied examples, the alkenes 3 were obtained in good to excellent yields (73-89%) after stirring at room temperature for 1 to 3 h. The use of aromatic Grignard reagents afforded the corresponding alkenes in lower yields than aliphatic Grignard reagents, and the formation of biphenyl was a competitive reaction. In all cases, no mixture of isomers were observed, the stereochemistry of products was the same as the starting material due to a complete retention of configuration in this type of reaction.

The starting vinylic and divinylic selenides and tellurides have been prepared by procedures previously described or by methods under study in our laboratory.38,61-64

Analysis of the 1H NMR and 13C NMR spectra showed that all alkene compounds presented data in full agreement with their assigned structures. The stereochemistry of the obtained alkenes was easily established. As an example, the 1H NMR spectrum of compound 3d showed a double triplet at 6.21 ppm with coupling constants of 16.0 and 6.6 Hz, typical of trans relationship between hydrogens. The other vinylic hydrogen resonates at 6.37 ppm as a doublet, with a coupling constant of 16.0 Hz. The other signs are in the region between 7.5-7.0 ppm (aromatic hydrogens) and 2.5-0.5 ppm (aliphatic hydrogens).

Conclusions

In summary, we have been able to demonstrate that Fe(acac)3 is an effective catalyst for the cross-coupling reaction between vinylic selenides and tellurides with Grignard reagents at room temperature. Our method is simple, general and also proved to be efficient for the coupling reaction of divinylic selenides and tellurides with Grignard reagents, with complete retention of configuration. All coupling products were obtained in good to excellent yields.

Experimental

General

All 1H and 13C NMR spectra were recorded at 200 MHz and 50 MHz, respectively, on a Bruker DPX 200 instrument, using CDCl3 as solvent. Chemical shifts (d) are expressed in ppm downfield from tetramethylsilane or CHCl3 as internal standard, and J values are given in Hz. Merck's silica gel (230-400 mesh) was used for flash chromatography. All reactions were performed in flame-dried glassware under a positive pressure of argon. Air and moisture sensitive reagents and solvents were transferred via syringe, and were introduced into reaction vessels through a rubber septum. All chemicals were of reagents grade and, if necessary, were purified in the usual manner prior use.

General procedure for the coupling reaction of vinylic selenides and tellurides 1a-j

In a 25 mL round-bottom flask under argon was added the solvent (THF/NMP 3:1, 4 mL), the vinylic chalcogenide (0.2 mmol), Et3N (0.5 mL) and Fe(acac)3 (7 mg, 10 mol%). The mixture was stirred and after 5 min the Grignard reagent (1 mmol) was added dropwise. The reaction was followed by TLC and stirred at room temperature for the time indicated on Table 4. After completion of the reaction, aqueous NH4Cl(sat) (15 mL) was added and the reaction mixture was extracted with ethyl acetate (3 × 15 mL), the organic layer was washed with water and dried over MgSO4. After filtration, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (ethyl acetate-hexanes, 1:99).

General procedure for the coupling reaction of divinyl chalcogenides 4a-d and compound 1k

In a 25 mL round-bottom flask under argon was added the solvent (THF/NMP 3:1, 4 mL), the divinylic chalcogenide (0.2 mmol), Et3N (0.5 mL) and Fe(acac)3 (14 mg, 20 mol %). The mixture was stirred and after 5 min the Grignard reagent (2 mmol) was added dropwise. The reaction was followed by TLC and stirred at room temperature for the time indicated in Table 3 or Table 4. After completion of the reaction, aqueous NH4Cl(sat) (15 mL) was added and the reaction mixture was extracted with ethyl acetate (3 × 15 mL), the organic layer was washed with water and dried over MgSO4. After filtration, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (ethyl acetate-hexanes, 1:99).

(Z)-Hex-1-enylbenzene (3a)65

1H NMR (200 MHz, CDCl3): δ 7.36-7.16 (m, 5H), 6.40 (d, J 11.6 Hz, 1H), 5.66 (dt, J 11.6 and 7.20 Hz, 1H), 2.38-2.27 (m, 2H), 1.46-1.25 (m, 4H), 0.89 (t, J 6.6 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 137.86, 133.12, 128.72, 128.05, 126.35, 125.95, 32.14, 28.31, 22.38, 13.89.

(Z)-Dec-1-enylbenzene (3b)66

1H NMR (200 MHz, CDCl3): δ 7.36-7.19 (m, 5H), 6.40 (d, J 11.8 Hz, 1H), 5.66 (dt, J 11.8 and 7.2 Hz, 1H), 2.32 (q, J 7.2 Hz, 2H), 1.45-1.26 (m, 12H), 0.87 (t, J 6.6 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 137.88, 133.22, 128.74, 128.06, 126.37, 125.91, 31.87, 29.98, 29.47, 29.35, 29.26, 28.63, 22.65, 14.05.

(Z)-1,2-Diphenylethene (3c)67

1H NMR (200 MHz, CDCl3): δ 7.58-7.17 (m, 10H), 6.57 (s, 2H); 13C NMR (50 MHz, CDCl3): δ 137.32, 130.23, 128.85, 128.17, 127.11.

(E)-Hex-1-enylbenzene (3d)68

1H NMR (200 MHz, CDCl3): δ 7.35-7.16 (m, 5H), 6.37 (d, J 16.0 Hz, 1H), 6.21 (dt, J 16.0 and 6.6 Hz, 1H), 2.20 (q, J 6.6 Hz, 2H), 1.48-1.30 (m, 4H), 0.92 (t, J 7.2 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 137.93, 131.17, 129.66, 128.43, 126.71, 125.87, 32.71, 31.51, 22.26, 13.95.

(E)-Dec-1-enylbenzene (3e)27

1H NMR (200 MHz, CDCl3): δ 7.30 (d, J 7.2, 2H), 7.24 (t, J 7.2, 2H), 7.14 (t, J 7.2, 1H), 6.35 (d, J 15.6 Hz, 1H), 6,19 (dt, J 15.6 and 6.8 Hz, 1H), 2.19 (q, J 6.8 Hz, 2H), 1.46-1.24 (m, 12H), 0.88 (t, J 6.8 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 137.96, 131.09, 129.76, 128.40, 126.68, 125.89, 33.07, 31.92, 29.53, 29.43, 29.33, 29.28, 22.70, 14.08.

(E)-1,2-Diphenylethene (3f)

mp 121-123 ºC (lit.27 122-124 ºC); 1H NMR (200 MHz, CDCl3): δ 7.50 (d, J 7.0 Hz, 4H), 7.38-7.21 (m, 6H), 7.10 (s, 2H); 13C NMR (50 MHz, CDCl3): δ 137.36, 128.73, 128.65, 127.60, 126.51.

(E)-1-(Hex-1-enyl)-4-methylbenzene (3g)69

1H NMR (200 MHz, CDCl3): δ 7.23 (d, J 8.0 Hz, 2H), 7.08 (d, J 8.0 Hz, 2H), 6.34 (d, J 16.0 Hz, 1H), 6.15 (dt, J 16.0 and 6.8 Hz, 1H), 2.31 (s, 3H), 2.19 (q, J 6.8 Hz, 2H), 1.49-1.25 (m, 4H), 0.92 (t, J 7.0 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 136.39, 135.17, 130.16, 129.49, 129.14, 125.77, 32.69, 31.59, 22.25, 21.10, 13.95.

(E)-1-(Dec-1-enyl)-4-methylbenzene (3h)27

1H NMR (200 MHz, CDCl3): δ 7.23 (d, J 8.0 Hz, 2H), 7.09 (d, J 8.0 Hz, 2H), 6.34 (d, J 16.0 Hz, 1H), 6.08 (dt, J 16.0 and 6.6 Hz, 1H), 2.33 (s, 3H), 2.18 (q, J 6.6 Hz, 2H), 1.50-1.24 (m, 12H), 0.88 (t, J 6.6 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 136.38, 135.14, 130.22, 129.42, 129.13, 125.75, 33.04, 31.89, 29.70, 29.50, 29.44, 29.29, 22.68, 21.11, 14.12.

(E)-1-Methyl-4-styrylbenzene (3i)

mp 116-118 ºC (lit.27 117-119 ºC); 1H NMR (200 MHz, CDCl3): δ 7.49-7.20 (m,7H), 7.14 (d, J 7.8 Hz, 2H), 7.05 (s, 2H), 2.33 (s, 3H); 13C NMR (50 MHz, CDCl3): δ 137.48, 134.50, 132.95, 129.37, 128.62, 127.65, 127.37, 127.13, 126.39,126.37, 21.23.

(E)-1-(Hex-1-enyl)-4-methoxybenzene (3j)69

1H NMR (200 MHz, CDCl3): δ 7.27 (d, J 8.8 Hz, 2H), 6.83 (d, J 8.8 Hz, 2H), 6.32 (d, J 15.7 Hz, 1H), 6.07 (dt, J 15.7 and 6.6 Hz, 1H), 3.79 (s, 3H), 2.18 (q, J 6.6 Hz, 2H), 1.46-1.25 (m, 4H), 0.91 (t, J 6.7 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 158.59, 130.83, 129.05, 129.01, 126.94, 113.90, 55.27, 32.68, 31.67, 22.26, 13.95.

(E)-1-(Dec-1-enyl)-4-methoxybenzene (3k)27

1H NMR (200 MHz, CDCl3): δ 7.25 (d, J 8.6 Hz, 2H), 6.84 (d, J 8.6 Hz, 2H), 6.33 (d, J 15.7 Hz, 1H), 6.08 (dt, J 15.7 and 6.7 Hz, 1H), 3.79 (s, 3H), 2.17 (q, J 6.7 Hz, 2H), 1.35-1.22 (m, 12H), 0.88 (t, J 6.7 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 158.58, 130.83, 129.10, 128.98, 126.94, 113.88, 55.25, 33.02, 31.89, 29.53, 29.29, 29.27, 29.25, 22.67, 14.09.

(E)-1-Methoxy-4-styrylbenzene (3l)

mp 133-135 ºC (lit.27 133-135 ºC); 1H NMR (200 MHz, CDCl3): δ 7.72 (d, J 6.8 Hz, 2H), 7.38 (d, J 16.4 Hz, 1H), 7.33-7.18 (m, 5H), 7.12 (d, J 16.4 Hz, 1H), 6.85 (d, J 8.7, 2H), 3.80 (s, 3H); 13C NMR (50 MHz, CDCl3): δ 159.31, 137.66, 130.16, 128.63, 128.21, 127.71, 127.20, 126.63, 126.24, 114.14, 55.32.

(E)-1-Chloro-4-(hex-1-enyl)benzene (3m)69

1H NMR (200 MHz, CDCl3): δ 7.26-7.20 (m, 4H), 6.32 (d, J 15.7 Hz, 1H), 6,18 (dt, J 15.7 and 6.7 Hz, 1H), 2.12 (q, J 6.7 Hz, 2H), 1.40-1.20 (m, 4H), 0.88 (t, J 6.8 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 136.42, 132.22, 131.92, 129.99, 128.54, 127.07, 32.68, 31.40, 22.26, 13.93.

(E)-1-Chloro-4-(dec-1-enyl)benzene (3n)70

1H NMR (200 MHz, CDCl3): δ 7.28-7.20 (m, 4H), 6.32 (d, J 15.9 Hz, 1H), 6.18 (dt, J 15.9, 6.4 Hz, 1H), 2.18 (q, J 6.4 Hz, 2H), 1.36-1.20 (m, 12H), 0.87 (t, J 6.7 Hz, 3H); 13C NMR (50 MHz, CDCl3): δ 136.45, 132.24, 131.99, 128.55, 128.51, 127.08, 33.02, 31.88, 29.48, 29.29, 29.28, 29.24, 22.67, 14.09.

(E)-1-Chloro-4-styrylbenzene (3o)

mp 129-130 ºC (lit.71 129-131 ºC); 1H NMR (200 MHz, CDCl3): δ 7.79 (d, J 7.4 Hz, 2H), 7.63 (d, J 8.5 Hz, 2H), 7.43-7.29 (m, 5H), 7.19 (s, 2H); 13C NMR (50 MHz, CDCl3): δ 140.01, 137.91, 135.52, 131,31, 129.90, 129.55, 128.24, 127.55, 127.03, 125.50.

4,4'-Di((E)-but-1-enyl)biphenyl (3p)

mp 114-117 ºC; 1H NMR (200 MHz, CDCl3): δ 7.53 (d, J 8.4, 4H), 7.39 (d, J 8.4, 4H), 6.41 (d, J 15.8 Hz, 2H), 6.30 (dt, J 15.8 and 6.4 Hz, 2H), 2.29-2.21(m, 4H), 1.11 (t, J 7.2 Hz, 6H); 13C NMR (50 MHz, CDCl3): δ 139.16, 136.92, 132.75, 128.40, 126.87, 126.30, 26.10, 13.64. MS (70 eV), m/z (Rel. Int. %): M+ 262 (100), 247 (13), 205 (49), 191 (23), 165 (12), 116 (10), 103 (14), 55 (20).

4,4'-Di((E)-hex-1-enyl)biphenyl (3q)

mp 125-128 ºC; 1H NMR (200 MHz, CDCl3): δ 7.52 (d, J 8.2, 4H), 7.39 (d, J 8.2, 4H), 6.41 (d, J 16.0 Hz, 2H), 6.25 (dt, J 16.0 and 6.3 Hz, 2H), 2.22 (q, J 6.3 Hz, 4H), 1.50-1.26 (m, 8H), 0.93 (t, J 6.9 Hz, 6H); 13C NMR (50 MHz, CDCl3): δ 139.10, 136.86, 131.30, 129.24, 126.84, 126.27, 32.78, 31.52, 22.27, 13.96.

4,4'-Di((E)-dec-1-enyl)biphenyl (3r)

mp 128-130 ºC; 1H NMR (200 MHz, CDCl3): δ 7.53 (d, J 8.4, 4H), 7.40 (d, J 8.4, 4H), 6.42 (d, J 15.8 Hz, 2H), 6.26 (dt, J 15.8 and 6.2 Hz, 2H), 2.22 (q, J 6.2 Hz, 4H), 1.56-1.27 (m, 24H), 0.88 (t, J 6.7 Hz, 6H); 13C NMR (50 MHz, CDCl3): δ 139.15, 136.93, 131.41, 129.26, 126.88, 126.30, 33.14, 31.90, 29.51, 29.41, 29.30, 29.26, 22.68, 14.11. MS (70 eV), m/z (Rel. Int. %): M+ 428 (4), 425 (100), 327 (9), 301 (15), 202 (36), 188 (12), 43 (13).

Acknowledgments

This project is funded by MCT/CNPq, CAPES and FAPERGS.

Submitted: March 15, 2010

Published online: August 12, 2010

  • 1. Tang,Y.; Ye, S.; Sun, X. L.; Synlett 2005, 2720.
  • 2. Petragnani, N.; Stefani, H. A.; Tetrahedron 2005, 61, 1613.
  • 3. Ranganathan, S.; Muraleedharan, K. M.; Vaish, N. K.; Jayaraman, N.; Tetrahedron 2004, 60, 5273.
  • 4. Aggarwal, V. K.; Winn, C. L.; Acc. Chem. Res 2004, 37, 611.
  • 5. Comasseto, J. V.; Barrientos-Astigarraga, R. E.; Aldrichimica Acta 2000, 33, 66.
  • 6. Engman, L.; Acc. Chem. Res. 1985, 18, 274.
  • 7. Petragnani, N.; Stefani, H. A.; Tellurium in Organic Synthesis - Best Synthetic Methods, 2nd ed., Academic Press: London, 2007.
  • 8. Stang, P. J.; Zhdankin, V. V. In Comprehensive Organic Functional Group Transformations, Ley, S. V., ed., Elsevier: Cambridge, 2003; Vol. II, Chapter 2.
  • 9. Whitham, G. H. In Organosulfur Chemistry (Oxford Chemistry Primers, 33); Davies, S. G., ed., Oxford University Press: Oxford, 1995.
  • 10. Patai, S.; Rappoport, Z. eds.; The Chemistry of Organic Selenium and Tellurium Compounds, Wiley: Chichester, 1986, Vol. 1.
  • 11. Irgolic, K. Y. In Houben-Weyl Methods of Organic Chemistry; Klamann, D., ed.; 4th ed., vol. E12b; Georg Thieme: Stuttgart, 1990.
  • 12. Perez-Balado, C.; Markó, I. E.; Tetrahedron 2006, 62, 2331.
  • 13. Bieber, L. W.; da Silva, M. F.; Menezes, P. H.; Tetrahedron Lett. 2004, 45, 2735.
  • 14. Braga, A. L.; Martins, T L.; Silveira, C. C.; Rodrigues, O. E. D.; Tetrahedron 2001, 57, 3297.
  • 15. Su, H.; Yu, W.; Jin, Z.; Tetrahedron Lett 2001, 42, 3771.
  • 16. Braga, A. L.; Silveira, C. C.; Reckziegel, A.; Menezes, P. H.; Tetrahedron Lett. 1993, 34, 8041.
  • 17. Braga, A. L.; Reckziegel, A.; Menezes, P. H.; Stefani, H. A.; Tetrahedron Lett 1993, 34, 393.
  • 18. Tingoli, M.; Tiecco, M.; Testaferri, L.; Temperini, A.; Tetrahedron 1995, 51, 4691.
  • 19. Lüdtke, D. S.; Panatieri, R. B.; Braga, A. L.; Zeni, G.; Chem. Rev. 2006, 106, 1032.
  • 20. Araujo, M. A.; Raminelli, C.; Comasseto, J. V.; J. Braz. Chem. Soc. 2004, 15, 358.
  • 21. Silveira, C. C.; Perin, G.; Jacob, R. G.; Braga, A. L.; Phosphorus Sulfur, Silicon Relat. Elem. 2001, 172, 309.
  • 22. Comasseto, J. V.; Ling, L. W.; Petragnani, N.; Stefani, H. A.; Synthesis 1997, 373.
  • 23. Alves, D.; Pena, J. M.; Vieira, A. S.; Botteselle, G. V.; Guadagnin, R. C.; Stefani, H. A.; J. Braz. Chem. Soc. 2009, 20, 988.
  • 24. Gerard, J.; Hevesi, L.; Tetrahedron 2001, 57, 9109.
  • 25. Tingoli, M.; Tiecco, M.; Testaferri, L.; Chianelli, D.; Gazz. Chim. Ital. 1991, 121, 59.
  • 26. Okamura, H.; Miura, M.; Kosugi, K.; Takei, H.; Tetrahedron Lett. 1980, 21, 87.
  • 27. Silveira, C. C.; Santos, P. C. S.; Braga A. L.; Tetrahedron Lett 2002, 43, 7517.
  • 28. Mehta, V. P.; Sharma, A.; Van der Eycken, E.; Org. Lett 2008, 10, 1147.
  • 29. Hevesi, L.; Hermans, B.; Allard C.; Tetrahedron Lett. 1994, 36, 6729.
  • 30. Zeni, G.; Braga, A. L.; Stefani, H. A.; Acc. Chem. Res. 2003, 36, 731.
  • 31. Raminelli, C.; Gargalaka Jr, J.; Silveira, C. C.; Comasseto, J. V.; Tetrahedron 2007, 63, 8801.
  • 32. Raminelli, C.; Gargalaka Jr., J.; Silveira, C. C.; Comasseto, J. V.; Tetrahedron Lett. 2004, 45, 4927.
  • 33. Silveira, C. C.; Braga, A. L.; Vieira, A. S.; Zeni, G.; J. Org. Chem. 2003, 68, 662.
  • 34. Bassora, B. K.; Da Costa, C. E.; Gariani, R. A.; Comasseto, J. V.; Dos Santos, A. A.; Tetrahedron Lett 2007, 48, 1485, and references therein.
  • 35. Seebach, D.; Beck, A. K.; Chem. Ber. 1975, 108, 314.
  • 36. Kauffman, T.; Angew. Chem., Int. Ed. 1982, 21, 4110.
  • 37. Barros S. M.; Comasseto, J. V.; Berriel, J.; Tetrahedron Lett. 1989, 30, 7353.
  • 38. Tucci, F. C.; Chieffi, A.; Comasseto, J. V.; Marino, J. P.; J. Org. Chem. 1996, 61, 4975.
  • 39. Terao, J.; Kambe, N.; Sonoda, N.; Tetrahedron Lett. 1996, 37, 4741.
  • 40. Huang, Y. Z.; Mo, X. S.; Synlett 1998, 93.
  • 41. Mo, X. S.; Huang, Y. Z.; Tetrahedron Lett 1995, 36, 3539.
  • 42. Jang, W. B.; Oh, D. Y.; Lee, C. W.; Tetrahedron Lett. 2000, 41, 5103.
  • 43. Negishi, E. I.; Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley and Sons: New York, 2002.
  • 44. Singh, R.; Sharma, M.; Mamgain, R.; Rawat, D. S.; J. Braz. Chem. Soc 2008, 19, 357.
  • 45. Bolm, C.; Legros, J.; Le Paith, J.; Zani, L.; Chem. Rev 2004, 104, 6217, and references therein.
  • 46. Cahiez, G.; Gager, O. ; Habiak, V.; Synthesis 2008, 2636.
  • 47. Cahiez, G.; Duplais, C.; Moyeux, A.; Org. Lett. 2007, 9, 3253.
  • 48. Volla, C. M. R.; Vogel, P.; Angew. Chem., Int. Ed 2008, 47, 1305.
  • 49. Gogsig, T. M.; Lindhardt, A. T.; Skrydstrup, T.; Org. Lett 2009, 11, 4886.
  • 50. Scheiper, B.; Bonnekessel, M.; krause, H.; Furstner, A.; J. Org. Chem. 2004, 69, 3943.
  • 51. Le Marquand, P.; Tsui, G. C.; Whitney, J. C. C.; Tam, W.; J. Org. Chem. 2008, 73, 7829.
  • 52. Silveira, C. C.; Rinaldi, F.; Guadagnin, R. C.; Braga, A. L.; Synthesis 2009, 469.
  • 53. Silveira, C. C.; Caliari, V.; Vieira, A. S.; Mendes, S. R.; J. Braz. Chem. Soc 2007, 18, 1481.
  • 54. Silveira, C. C.; Cella, R.; Vieira, A. S.; J. Organomet. Chem 2006, 691, 5861.
  • 55. Silveira, C. C.; Braga, A. L.; Guadagnin, R. C.; Tetrahedron Lett 2003, 44, 5703.
  • 56. Silveira, C. C.; Braga, A. L.; Guerra, R. B.; Tetrahedron Lett 2002, 43, 3395.
  • 57. Silveira, C. C.; Nunes, M. R. S.; Wendling, E.; Braga, A. L.; J. Organomet. Chem 2001, 623, 131.
  • 58. Silveira, C. C.; Perin, G.; Braga, A. L.; Petragnani, N.; Synlett 1995, 58.
  • 59. Chaudhuri, M. K.; Ghosh, S. K.; J. Chem. Dalton. Trans. 1983, 839.
  • 60. Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Hird, M.; Chem. Commun 2005, 4161.
  • 61. Barros, S. M.; Dabdoub, M. J.; Dabdoub, V. B.; Comasseto, J. V.; Organometallics 1989, 8, 1661.
  • 62. Silveira, C. C. ; Rinaldi, F.; Guadagnin, R. C.; Eur. J. Org. Chem. 2007, 4935.
  • 63. Lee, Chi-Wan; Koh, Y. J.; Oh, D. Y.; J. Chem. Soc. Perkin Trans. 1 1994, 717.
  • 64. Silveira, C. C.; Santos, P. C. S.; Mendes, S. R.; Braga, A. L.; J. Organomet. Chem. 2008, 693, 3787.
  • 65. Cai, M.; Xia, J.; Chen, G.; J. Organomet. Chem. 2004, 689, 2531.
  • 66. Periasamy, M.; Prasad, A. S. B.; Suseela, Y.; Tetrahedron 1995, 51, 2743.
  • 67. Mori, A.; Takahisa, E.; Yamamura, Y.; Kato, T.; Mudalige, A. P.; Kajiro, H.; Hirabayashi, K.; Nishihara, Y.; Hiyama, T.; Organometallics 2004, 23, 1755.
  • 68. Herve, A.; Rodriguez, A. L.; Fouquet, E.; J. Org. Chem. 2005, 70, 1953.
  • 69. Negishi, E.; Takahashi, T.; Baba, S.; Horn, D. E. V.; Okukado, N.; J. Am. Chem. Soc. 1987, 109, 2393.
  • 70. Seo, H.; Hirsch-Weil, D.; Abboud, K. A.; Hong, S.; J. Org. Chem. 2008, 73, 1983.
  • 71. Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M.; Adv. Synth. Catal. 2004, 346, 1765.
  • *
    e-mail:
  • Publication Dates

    • Publication in this collection
      15 Dec 2010
    • Date of issue
      2010

    History

    • Accepted
      12 Aug 2010
    • Received
      15 Mar 2010
    Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
    E-mail: office@jbcs.sbq.org.br