SciELO - Scientific Electronic Library Online

 
vol.23 issue12A fragment-based approach for the in silico prediction of blood-brain barrier permeationThe influence of asphaltenes subfractions on the stability of crude oil model emulsions author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Journal of the Brazilian Chemical Society

Print version ISSN 0103-5053

J. Braz. Chem. Soc. vol.23 no.12 São Paulo Dec. 2012  Epub Jan 28, 2013

http://dx.doi.org/10.1590/S0103-50532013005000005 

A novel approach for the synthesis of 5-substituted-1H-tetrazoles

 

 

Batool Akhlaghinia*; Soodabeh Rezazadeh

Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran

 

 


ABSTRACT

A series of 5-substituted-1H-tetrazoles (RCN4H) have been synthesized by cycloaddition reaction of different aryl and alkyl nitriles with sodium azide in DMSO using CuSO4•5H2O as catalyst. A wide variety of aryl nitriles underwent [3+2] cycloaddition to afford tetrazoles under mild reaction conditions in good to excellent yields. The catalyst used is readily available and environmentally friendly. Short reaction times, good to excellent yields, safe process and simple workup make this method an attractive and useful contribution to present organic synthesis of 5-substituted-1H-tetrazoles.

Keywords: 5-substituted-1H-tetrazole, arylnitriles, sodium azide, CuSO4•5H2O, cycloaddition reaction


RESUMO

Uma série de 1H-tetrazóis-5-substituídos (RCN4H) foi sintetizada pela reação de cicloadição de diferentes aril e alquil nitrilas com azida de sódio em DMSO, usando CuSO4•5H2O como catalisador. Uma grande variedade de aril nitrilas sofreu cicloadição [3+2], obtendo-se os correspondentes tetrazóis sob condições reacionais brandas. O catalisador utilizado é obtido facilmente e ambientalmente correto. Tempos de reação curtos, bons a excelentes rendimentos, processo seguro e simples tornam este método uma contribuição atrativa e útil à presente síntese orgânica de 1H-tetrazóis-5-substituídos.


 

 

Introduction

The chemistry of heterocyclic compounds has been an interesting field of study for a long time. Tetrazoles as a group of heterocyclic compounds are reported to possess a broad spectrum of biological activities such as antibacterial,1 antifungal,2 antiviral,3-5 analgesic,6,7 anti-inflammatory,8-10 antiulcer11 and antihypertensive12 activities. Also, 5-substituted-1H-tetrazoles can function as lipophilic spacers and carboxylic acid surrogates,13 specialty explosives14,15 and information recording systems in materials16 ligands, and precursors of a variety of nitrogen containing heterocycles in coordination chemistry.17,18 Since 1901,19 conventional synthesis of 5-substituted-1H-tetrazoles has been reported to proceed via [3 + 2] cycloaddition of azide with nitriles. This procedure suffers from numerous drawbacks including use of expensive and toxic metal organic azide,20 highly moisture-sensitive reaction conditions, strong Lewis acid,21 and hydrazoic acid.22 The "click" chemistry approach utilizing zinc catalysis in aqueous solution is a magnificent improvement over latter methods,23,24 but occasionally still requires the tedious and time-consuming removal of zinc salts from the acidic products. Stoichiometric amounts of inorganic salts and metal complexes25 as catalysts, use of TMSN3 and TBAF26 instead of metal salts under solvent-free conditions in micellar media and ionic liquids, and use of various catalysts27-31 such as BF3.OEt2,21 Pd(OAc)2/ZnBr2,27 Yb(OTf)3,28 Zn(OTf)3,29 AlCl3,30 and Pd (PPh3)4 31 were also employed for the same purpose. However, a drawback of these homogeneous catalytic processes lies in the tedious separation and recovery of the catalysts. Recently, several heterogeneous catalytic systems 32-40 using nanocrystalline ZnO, Zn/Al HT,32 Zn hydroxyapatite,33 Cu2O,34,35 Sb2O3, FeCl3/SiO2,36 CdCl2,37 BaWO4, γ-Fe2O3,38 ZnS,39 and natural natrolite zeolite40 were reported. Metal-modified montmorillonites and zeolite were reported widely, and many metals, such as Cu, Zn, Mn, Fe, Cu, V, Mo, Al and Co 41-48 were commonly used to improve the catalytic abilities of montmorillonites. These methods require a large excess of sodium azide, longer reaction time, and expensive metals. Moreover, the cycloaddition is too slow to be synthetically useful except when strong electron-withdrawing groups activate the nitrile compounds.

Today's stringent environmental and legislative concerns demand for the green methods that reduce the use of toxic and corrosive reagents and stop the formation of inorganic wastes.49 However, it has been also observed that the catalysts employed are not always eco-friendly and because of this, serious environmental pollution often results. Therefore, in the area of green synthesis, the development of environmentally friendly alternatives is desirable for the synthesis of tetrazoles.50

Recently, we have studied the application of cupric sulfate pentahydrate in the trimethylsilylation of alcohols and phenols,51 and perceived that cupric sulfate pentahydrate as a mild Lewis acid, which is readily available, might be a useful catalyst for the synthesis of 5-substituted-1H-tetrazoles. In this paper we report a new process for the synthesis of 5-substituted 1-H-tetrazoles using cupric sulfate pentahydrate as a safe, environmentally benign, and inexpensive catalyst.

 

Experimental

The products were purified by column chromatography. The purity determinations of the products were accomplished by TLC on silica gel polygram STL G/UV 254 plates. The melting points of products were determined with an Electrothermal Type 9100 melting point apparatus. The FT-IR spectra were recorded on an Avatar 370 FT-IR Thermo Nicolet spectrometer. The NMR spectra were provided on a Bruker Avance 100 and 400 MHz instrument. All of the products were known compounds and characterized by the IR, 1H NMR and 13C NMR spectra and comparison of their melting points with known compounds. Elemental analyses were performed using a Elementar, Vario EL III and Thermofinnigan Flash EA 1112 Series instrument. Mass spectra were recorded with Agilent Technologies (HP) 5973 Network Mass Selective Detector and Shimadzu GC-MS-QP5050 instruments at 70 eV.

Typical procedure for the preparation of 5-phenyl-1H-tetrazole (1)

Sodium azide (0.0650 g, 1 mmol) and cupric sulfate pentahydrate (0.0050 g, 2 mol%) were added to a solution of benzonitrile (0.1031 g, 1 mmol) in DMSO (2 mL) with stirring at room temperature. The reaction temperature was raised up to 140 ºC for 1 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was cooled and treated with 10 mL HCl (4 mol L-1) and then with 10 mL EtOAc. The resultant organic layer was separated, washed with 2×10 mL distilled water, dried over anhydrous sodium sulfate, and concentrated to give the crude solid 5-phenyl-1H-tetrazole (1). The crude product was recrystallized from n-hexane:ethylacetate (1:1) obtaining 0.1430 g of colourless crystals (98% yield).The other products( 2-17) were also, recrystallized from n-hexane:ethyl acetate (1:1) .

Characterization data for representative compounds

5-Phenyl-1H-tetrazole (1)

mp 214-216 ºC (Lit. 214-216 ºC);52 FT-IR (KBr) νmax/cm-1: 3125, 3043, 2982, 2913, 2835, 2765, 2692, 2606, 2557, 2488, 1613, 1563, 1485, 1465, 1409, 1163, 1056, 726, 703, 687; 1H NMR (400 MHz, DMSO-d6) δ 7.61 (s, 3H, Ph), 8.05 (s, 2H, Ph); 13C NMR (100 MHz, DMSO-d6) δ 124.6, 127.4, 129.9, 131.7, 155.7; CHN (C7H6N4) calc. (%): C (57.5), H (4.1), N (38.3); found (%): C (56.4), H (4.1), N (37.6).

5-(4-Bromophenyl)-1H-tetrazole (2)

mp 264-265 ºC (Lit. 265 ºC);53 FT-IR (KBr) νmax/cm-1: 3089, 3063, 2996, 2900, 2844, 2761, 2729, 2633, 1652, 1604, 1560, 1482, 1431, 1405, 1157, 1076, 1054, 1018, 829, 744, 502; 1H NMR (100 MHz, DMSO-d6) δ 7.80 (d, 2H, J 9.5 Hz, Ph), 7.95 (d, 2H, J 9.5 Hz, Ph); CHN (C7H5BrN4) calc. (%): C (37.3), H (2.2), N (24.9); found (%): C (37.2), H (2.1), N (24.6); MS (EI): m/z (%) 226 [M++2], 224 [M+], 198 [(M++2)-N2], 196 (100) [M+-N2], 185 [(M++2)-N3], 183 [M+-N3].

5-(4-Chlorophenyl)-1H-tetrazole (3)

mp 261-262 ºC (Lit. 261-263 ºC);48 FT-IR (KBr) νmax/cm-1: 3092, 3060, 3007, 2978, 2907, 2851, 2725, 2622, 2537, 2471, 1609, 1564, 1486, 1435, 1160, 1096, 1053, 1020, 990, 833, 745, 508; 1H NMR (400 MHz, DMSO-d6) δ 7.68 (d, 2H, J 8.4 Hz, Ph), 8.05 (d, 2H, J 8.8 Hz, Ph). 13C NMR (100 MHz, DMSO-d6) δ 123.5, 129.2, 130.0, 136.4, 155.3; CHN (C7H5ClN4) calc. (%): C (46.6), H (2.7), N (31.0); found (%): C (46.5), H (2.7), N (31.0).

4-(1H-Tetrazol-5-yl)benzonitrile (4)

mp 190-191 ºC (Lit. 192 ºC);54 FT-IR (KBr) νmax/cm-1: 3150, 3092, 3013, 2928, 2861, 2758, 2610, 2231, 1585, 1560, 1494, 1433, 1279, 1153, 1014, 976, 944, 850, 749, 554; 1H NMR (100 MHz, CD3CN) δ 7.90 (d, 2H, J 7.5 Hz, Ph), 8.20 (d, 2H, J 7.5 Hz, Ph).

5-(4-Nitrophenyl)-1H-tetrazole (5)

mp 218-219 ºC (Lit. 219-220 ºC);55 FT-IR (KBr) νmax/cm-1: 3448, 3334, 3235, 3109, 3080, 2974, 2900, 2819, 2659, 1562, 1532, 1488, 1357, 1340, 1315, 1143, 1106, 995, 867, 853, 730, 710; 1H NMR (400 MHz, DMSO-d6) δ 8.31 (d, 2H, J 8.4 Hz, Ph), 8.46 (d, 2H, J 8.8 Hz, Ph); 13C NMR (100 MHz, DMSO-d6) δ 125.1, 128.6, 131.0, 149.2, 155.9.

4-Nitro-2-(1H-tetrazol-5-yl)benzenamine (6)

mp 268-270 ºC (Lit. 270-271 ºC);56 FT-IR (KBr) νmax/cm-1: 3411, 3321, 3199, 3084, 2937, 1645, 1616, 1572, 1477, 1325, 1278, 1141, 1041, 910, 831, 751, 722; 1H NMR (400 MHz, DMSO-d6) δ 7.00 (d, 1H, J 9.2 Hz, Ph), 7.94 (br s, NH), 8.10 (dd, 1H, J 9.2, J 2.4 Hz, Ph), 8.81 (d, 1H, J 2.4 Hz, Ph). 13C NMR (100 MHz, DMSO-d6) δ 104.4, 116.3, 126.1, 127.6, 136.3, 153.0, 154.4; CHN (C7H6N6O2) calc. (%): C (40.7), H (2.9), N (40.7); found (%): C (39.7), H (3.3), N (38.1).

5-(4-Ethoxyphenyl)-1H-tetrazole (7)

mp 234-235 ºC; FT-IR (KBr) νmax/cm-1: 3145, 3101, 3060, 2986, 2921, 2868, 2737, 2647, 1613, 1505, 1470, 1394, 1293, 1262, 1189, 1056, 1041, 923, 827, 751, 653, 522; 1H NMR (100 MHz, acetone-d6) δ 1.40 (t, 3H, J 5 Hz, –OEt), 4.20 (q, 2H, –OEt), 7.15 (d, 2H, J 9.5 Hz, Ph), 8.07 (d, 2H, J 9.5 Hz, Ph); CHN (C9H10N4O) calc. (%): C (56.8), H (5.2), N (29.5); found (%): C (57.0), H (4.9), N (30.3).

5-(3,5-Dimethoxyphenyl)-1H-tetrazole (8)

mp 204-205 ºC (Lit. 204-206 ºC);57 FT-IR (KBr) νmax/cm-1: 3129, 3064, 3011, 2975, 2941, 2843, 2757, 2712, 2634, 1605, 1562, 1480, 1430, 1287, 1208, 1162, 1167, 1054, 827, 747; 1H NMR (400 MHz, DMSO-d6) δ 3.84 (s, 6H, –OMe), 6.73 (t, 1H, J 2 Hz, Ph), 7.21 (d, 2H, J 2 Hz, Ph), 16.91(br s, NH); 13C NMR (100 MHz, DMSO-d6) δ 56.0, 103.4, 105.3, 125.7, 156.3, 161.5; MS (EI): m/z (%) 207 [M+H], 149 (100) [M+-2N2].

5-m-Tolyl-1H-tetrazole (9)

mp 149.5-150 ºC (Lit. 151-152 ºC);27 FT-IR (KBr) νmax/cm-1: 3120, 3061, 2979, 2917, 2871, 2746, 2611, 2490, 1728, 1605, 1565, 1486, 1463, 1150, 1060, 1038, 802, 741, 705, 687; 1H NMR (100 MHz, CD3CN) δ 2.43 (s, 3H, CH3), 7.40-7.90 (m, 4H, Ph); CHN (C8H8N4): calc. (%) C (59.9), H (5.0), N (34.9); found (%): C (60.0), H (5.0), N (34.7).

4-(1H-Tetrazol-5-yl)phenol (10)

mp 233-234 ºC ( Lit. 234-235 ºC);55 FT-IR (KBr) νmax/cm-1: 3252, 3101, 3066, 3019, 3000-2200, 1615, 1599, 1511, 1466, 1413, 1282, 832, 752, 514; 1H NMR (400 MHz, DMSO-d6) δ 6.97 (d, 2H, J 8.4 Hz, Ph), 7.87 (d, 2H, J 8.8 Hz, Ph), 10.20 (br s, OH); 13C NMR (100 MHz, DMSO-d6) δ 115.0, 116.6, 129.2, 155.2, 160.5.

5-(Phenanthren-9-yl)-1H-tetrazole (11)

mp 241-242 ºC (Lit. 243-244 ºC);58 FT-IR (KBr) νmax/cm-1: 3105, 3076, 3016, 2978, 2878, 2830, 2724, 2686, 2622, 2590, 2520, 2478, 1612, 1565, 1450, 1399, 1246, 1112, 1053, 1038, 992, 934, 771, 737, 721, 424; 1H NMR (100 MHz, DMSO-d6) δ 7.79-7.82 (m, 4H, Ph), 8.08-8.20 (m, 1H, Ph), 8.40-8.52 (m, 2H, Ph), 8.92-9.10 (m, 2H, Ph); CHN (C15H10N4) calc. (%): C (73.1), H (4.0), N (22.7); found (%): C (73.1), H (3.9), N (22.3); MS (EI): m/z (%) 246 [M+], 218 (100) [M+-N2], 190 [M++2N2].

5-(Thiophen-2-yl)-1H-tetrazole (12)

mp 205-207 ºC (Lit. 205-207 ºC);59 FT-IR (KBr) νmax/cm-1: 3109, 3074, 2974, 2891, 2780, 2722, 2628, 2569, 2500, 2456, 1830, 1595, 1503, 1411, 1233, 1139, 1046, 962, 853, 740, 719; 1H NMR (100 MHz, CD3CN) δ 7.20-7.30 (m, 1H, tiophen), 7.67-7.80 (m, 2H, tiophen); CHN (C5H4N4S) calc.(%): C (39.4), H (2.6), N (36.8), S (21.1); found (%): C (39.1), H (2.6), N (37.0), S (21.4); MS (EI) m/z (%) 152 [M+], 124 (100) [M+-N2], 97 [M+-2N2].

4-(1H-Tetrazol-5-yl)pyridine (13)

mp 255-258 ºC (Lit. 255-258 ºC);52 FT-IR (KBr) νmax/cm-1: 3485, 3264, 3099, 3035, 2966, 1624, 1529, 1435, 1388, 1123, 1096, 1042, 1022, 845, 730, 674, 593, 465.

2-(1H-Tetrazol-5-yl)pyridine (14)

mp 211-213 ºC (Lit. 210-213 ºC);48 FT-IR (KBr) νmax/cm-1: 3088, 3060, 2959, 2929, 2864, 2737, 2692, 2622, 2582, 1728, 1602, 1557, 1483, 1449, 1405, 1284, 1158, 1068, 1024, 955, 795, 743, 726, 703, 637, 496; 1H NMR (400 MHz, DMSO-d6) δ 7.65 (s, 1H, Py), 8.10 (s, 1H, Py), 8.24 (d, 1H, J 6.4 Hz, Py), 8.81 (s, 1H, Py); 13C NMR (100 MHz, DMSO-d6) δ 123.1, 126.7, 138.7, 144.0, 150.6, 155.3.

5-Isobutyl-1H-tetrazole (15)

mp 52-54 ºC (Lit. 53.5-54 ºC);60 FT-IR (KBr) νmax/cm-1: 3089, 3063, 2971, 2901, 2845, 2765, 2729, 2633, 1605, 1482, 1454, 1430, 1156, 1075, 1053, 1017, 990, 829, 772, 743, 502.

5-Isopentyl-1H-tetrazole (16)

mp 94 ºC (Lit. 95-96 ºC);60 FT-IR (KBr) νmax/cm-1: 2962, 2931, 2874, 2709, 2618, 2482, 1867, 1583, 1553, 1469, 1404, 1110, 1048, 772; 1H NMR (100 MHz, CDCl3) δ 1.00 (d, 6H, J 5 Hz, 2 CH3), 1.40-2.05 (m, 3H, -CH-, -CH2-), 3.10 (t, 2H, J 6 Hz, -CH2-).

5-Benzyl-1H-tetrazole (17)

mp 117-119 ºC (Lit. 118-120 ºC);61 FT-IR (KBr) νmax/cm-1: 3109, 3031, 2984, 2945, 2863, 2778, 2704, 2594, 1768, 1707, 1638, 1549, 1533, 1494, 1457, 1241, 1108, 1074, 772, 734, 695; 1H NMR (100 MHz, CD3CN) δ 4.30 (s, 2H, -CH2-), 7.31 (s, 5H, Ph); CHN (C8H8N4) calc. (%): C (60.0), H (5.0), N (34.9); found (%): C (60.6), H (4.9), N (34.6).

 

Results and Discussion

In a typical experiment, reaction of benzonitrile with sodium azide in the presence of CuSO45H2O was first studied under various reaction parameters. The general reaction is outlined in Scheme 1 and the results are summarized in Table 1.

 

 

Generally, with the catalysis of CuSO45H2O in DMF (Table 1, entries 2-4), the reaction gave good to excellent yields, whereas in the absence of catalyst 5-phenyl-1H-tetrazole (1) was obtained in 40% yield (Table 1, entry 1). On the basis of data in Table 1, the best amount of CuSO45H2O as catalyst is 2 mol% (Table 1, entries 2-4 and entry 12). In an effort to develop better reaction conditions, different solvents were tested for the preparation of 5-phenyl-1H-tetrazole(1) from the reaction of benzonitrile with sodium azide in the presence of 2 mol% of CuSO45H2O (Table 1, entries 5-9). No product was obtained when the reaction was performed in nitromethane, chlorobenzene and anisol (Table 1, entries 5-7). Other solvents, such as water gave the desired product in low yield but NMP gave slightly higher yield (Table 1, entries 8-9). In solvent free condition, 5-phenyl1H-tetrazole was produced in 50% yield after long period of time (Table 1, entry 10). As shown in Table 1 among the different solvents tested DMSO was found to be the solvent of choice because of its high dipole moment. The excellent yield was obtained in DMSO at 140 ºC by applying 2 mol% of CuSO45H2O and 1:1 molar ratio of benzonitrile:sodium azide (Table 1, entry 13).

To understand the scope and the generality of CuSO45H2O promoted (3 + 2) cycloaddition reaction, a variety of structurally divergent benzonitriles possessing a wide range of functional groups was chosen and the results are presented in Table 2.

Among the various nitriles tested, the aromatic nitriles with electron withdrawing substituent gave excellent yields in a very short time (Table 2, entries 2-5). Several nitriles containing electron-donating groups, were successfully converted into their corresponding tetrazoles with a prolonged reaction time (Table 2, entries 6-10). Likewise, aliphatic nitriles react similarly and provide good yields of the corresponding tetrazoles (Table 2, entries 15-17). Heteroaromatic nitriles such as thiophene-2-carbonitrile, 4-pyridinecarbonitrile and 2-pyridinecarbonitrile gave the corresponding tetrazoles in shorter reaction times with excellent yields (Table 2, entries 12-14). It is noteworthy that 1,4-dicyanobenzene only gave mono adduct even by using 1:2 molar ratio of 1,4-dicyanobenzene:sodium azide and 4 mol% of catalyst (Table 2, entry 4).

The activity of nitrile compound towards azide ion plays an important role in this cycloaddition reaction. In comparison the cycloaddition reaction of aromatic nitriles with electron withdrawing substituents such as –Cl, –Br, –CN, –NO2 and heteroaromatic nitriles compound such as thiophene-2-carbonitrile, 4-pyridinecarbonitrile and 2-pyridinecarbonitrile is faster than the reaction of aromatic nitrile compound with electron donating substituent such as –NH2 ,–OCH3, ,–OCH2CH3 and –OH. From Table 2, it is clear that, excellent to good results were obtained with alkyl, aryl and heteroaryl nitriles, despite the different activities of the nitrile derivatives. It seems likely that the high polarity of solvent and efficient catalytic activity of CuSO45H2O have leveled off the activity of nitrile group.

The structures of all synthesized compounds were confirmed by spectral and analytical data. The IR spectra of all products show absorption bands at 1293-1233 due to (N-N=N-), 1041-1106 and 1189-1110 due to (tetrazole ring). A 13C NMR signal at 161-154 ppm is assigned to the quaternary carbon of NH-C=N.

A plausible mechanism is shown in Scheme 2. Initially, coordination of nitrogen atoms of nitrile compounds with CuII forms complex I which accelerates the cyclization step. This idea is supported by performing the reaction in the absence of CuSO45H2O.Without any catalyst, cycloaddition reaction is not completed even after long period of time (Table1, entry 1). The [3+2] cycloaddition between the CN bond of nitrile compound and azide ion takes place readily to form the intermediate II. Acidic work-up, affords III and IV. The equilibrium leads to formation of the more stable tautomer IV (5-substituted 1H-tetrazole).

 

 

Conclusions

We have reported an efficient synthetic method for 5-substituted-1H-tetrazoles by a successive [3+2] cycloaddition of various nitriles with sodium azide in the presence of catalytic amount of CuSO45H2O. This method is applicable to a range of nitriles including aliphatic, aromatic, and heterocyclic nitriles. It has also been shown that, the yields are high and reaction completion time is within 0.5-5 h. The catalyst used is readily available and is environmentally friendly. Short reaction time, good to excellent yields, safe process and simple workup make this method an attractive and useful contribution to the present organic synthesis for the preparation of 5-substituted 1H-tetrazoles.

 

Supplementary Information

Supplementary information (spectra of synthesized compounds) is available free of charge at http://jbcs.sbq.org.br as PDF file.

 

Acknowledgments

The authors gratefully acknowledge the partial support of this study by Ferdowsi University of Mashhad Research Council.

 

References

1. Okabayashi, T.; Kano, H.; Makisumi, Y.; Chem. Pharm. Bull. 1960, 8, 157.         [ Links ]

2. Sangal, S. K.; Ashok Kumar, A.; J. Indian Chem. Soc. 1986, 63, 351.         [ Links ]

3. Witkowski, J. K.; Robins, R. K.; Sidwell, R.W.; Simon, L. N.; J. Med. Chem. 1972, 15, 1150.         [ Links ]

4. Tsov, K. C.; Su, H. C. F.; J. Med. Chem. 1963, 6, 693.         [ Links ]

5. Bary, V. C.; Conalty, M. C.; O'Sllivan, J. P.; Twomey, D.; Chemotherapy 1977, 8, 103.         [ Links ]

6. Maxwell, J. R.; Wasdahl, D. A.; Wolfson, A. C.; Stenberg,V. I.; J. Med. Chem. 1984, 27, 1565.         [ Links ]

7. Stewart, K. D.; Bioorg. Med. Chem. Lett. 1998, 529.         [ Links ]

8. Shukla, J. S.; Ahmed, J.; Saxena, S.; J. Indian Chem. Soc. 1979, 41, 70.         [ Links ]

9. Shishoo, C. J.; Devani, M. B.; Karvekar, M. D.; Vilas,G. V.; Anantham, S.; Bhaati, V. S.; Indian J. Chem., Sect B 1982, 21, 666.         [ Links ]

10. Ray, S. M.; Lahiri, S. C.; J. Indian Chem. Soc.1990, 67, 324.         [ Links ]

11. Hayao, S.; Havera, H. J.; Strycker, W. G.; Leipzig, T. J.; Rodriguez, R.; J. Med. Chem. 1965, 10, 400.         [ Links ]

12. Fig dor, S. K.; Von Wittenau, M. S.; J. Med. Chem. 1967, 10, 1158.         [ Links ]

13. Singh, H.; Chala, A. S.; Kapoor, V. K.; Paul, D.; Malhotra, R. K.; Prog. Med. Chem. 1980, 17, 151.         [ Links ]

14. Ostrovskii, V. A.; Pevzner, M. S.; Kofmna, T. P.; Shcherbinin, M. B.; Tselinskii, I.V.; Targets Heterocyclic Syst. 1999, 3, 467.         [ Links ]

15. Hiskey, M.; Chavez, D. E.; Naud, D. L.; Son, S. F.; Berghout, H. L.; Bome, C.A.; Proceedings of the International Pyrotechnics Seminars, 27th seminar, Grand Junction, CO, USA, 2000, p. 3.         [ Links ]

16. Koldobskii, G. I.; Ostrovskii, V. A.; Usp. Khim. 1994, 63, 847.         [ Links ]

17. Huisgen, R.; Sauer, J.; Sturn, H. J.; Markgraf, J. H.; Chem. Ber. 1960, 93, 2106.         [ Links ]

18. Moderhack, D.; J. Prakt. Chem. 1988, 340, 687.         [ Links ]

19. Hantzsch, A.; Vagt, A.; Justus Liebigs Ann.Chem. 1901, 314, 339.         [ Links ]

20. Curran, D. P.; Hadida, S.; Kim, S.-Y.; Tetrahedron 1999, 55, 8997.         [ Links ]

21. Kumar, A.; Narayanan, R.; Shechter, H.; J. Org. Chem. 1996, 61, 4462.         [ Links ]

22. Koguro, K.; Oga, T.; Mitsui, S.; Orita, R.; Synthesis 1998, 910.         [ Links ]

23. Demko, P. Z.; Sharpless, K. B.; J. Org. Chem. 2001, 66, 7945.         [ Links ]

24. Himo, F.; Demko, P. Z.; Noodleman, L.; Sharpless, K. B.; J. Am. Chem. Soc 2002, 124, 12210.         [ Links ]

25. Bonnamour, J.; Bolm, C.; Chem. Eur. J. 2009, 15, 4543.         [ Links ]

26. Amantini, D.; Beleggia, R.; Fringuelli, F.; Pizzo, F.; Vaccoro, L.; J. Org. Chem. 2004, 69, 2896.         [ Links ]

27. Yizhong, Z.; Yiming, R.; Chun, C.; Helv. Chim. Acta 2009, 92, 171.         [ Links ]

28. Su, W. K.; Hong, Z.; Shan, W. G.; Zhang, X. X.; Eur. J. Org. Chem. 2006, 2723.         [ Links ]

29. Hajra, S.; Sinha, D.; Bhowmick, M.; J. Org. Chem. 2007, 72, 1852.         [ Links ]

30. Matthews, D. P.; Green, J. E.; Shuker, A. J.; J. Comb. Chem. 2000, 2, 19.         [ Links ]

31. Gyoung, Y. S.; Shim, J.-G.; Yamamoto, Y.; Tetrahedron Lett. 2000, 41, 4193.         [ Links ]

32. Kantam, M. L.; Shiva Kumar, K. B.; Raja, K. P.; J. Mol. Catal. A: Chem. 2006, 247, 186.         [ Links ]

33. Kantam, M. L.; Balasubrahmanyam, V.; Shiva Kumar, K. B.; Synth. Commun. 2006, 36, 1809.         [ Links ]

34. Jin, T.; Kitahara, F.; Kamijo, S.; Yamamoto, Y.; Tetrahedron Lett. 2008, 49, 2824.         [ Links ]

35. Jin, T.; Kitahara, F.; Kamijo, S.; Yamamoto, Y.; Chem. Asian J. 2008, 3, 1575.         [ Links ]

36. Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S.; Tetrahedron Lett. 2009, 50, 4435.         [ Links ]

37. Venkateshwarlu, G.; Premalatha, A.; Rajanna, K. C.; Saiprakash, P. K.; Synth. Commun. 2009, 39, 4479.         [ Links ]

38. Qi, G.; Dai, Y.; Chin. Chem. Lett. 2010, 21, 1029.         [ Links ]

39. Lang, L.; Li, B.; Liu, W.; Jiang, L.; Xu, Z.; Yin, G.; Chem. Commun. 2010, 46, 448.         [ Links ]

40. Nasrollahzadeh, M.; Habibi, D.; Shahkarami, Z.; Bayat, Y.; Tetrahedron 2009, 65, 10715.         [ Links ]

41 Ben Achma, R.; Ghorbel, A.; Dafinov, A.; Medina, F.; Appl. Catal., A 2009, 349, 20.         [ Links ]

42. Varma, R. S.; Tetrahedron 2002, 58, 1235.         [ Links ]

43. Shinde, A. B.; Shrigadi, N. B.; Samant, S. D.; Appl. Catal., A 2004, 276, 5.         [ Links ]

44. Clark, P. D.; Mesher, S. T. E.; Primak, A.; Yao, H.; Catal. Lett. 1997, 43, 79.         [ Links ]

45. Yin, W.; Shi, M.; Tetrahedron 2005, 61, 10861.         [ Links ]

46. Gue'lou, E.; Barrault, J.; Fournier, J.; Tatibouet, J. M.; Appl. Catal., B 2003, 44, 1.         [ Links ]

47. Caudo, S.; Centi, G.; Genovese, C.; Perathoner, S.; Appl. Catal., B 2007, 70, 437.         [ Links ]

48. Rama,V.; Kanagaraj, K.; Pitchumani, K.; J. Org. Chem. 2011, 76, 9090.         [ Links ]

49. Sheldon, R. A.; J. Chem. Technol. Biotechnol. 1997, 68, 381.         [ Links ]

50. Nandre, K. P.; Salunke, J. K.; Nandre, J. P.; Patil, A. U.; Borse,V. S.; Bhosale, S. V.; Chin. Chem. Lett. 2012, 23, 161.         [ Links ]

51. Akhlaghinia, B.; Tavakoli, S.; Synthesis 2005, 1775.         [ Links ]

52. Aureggi, V.; Sedelmeier, G.; Angew. Chem., Int. Ed. 2007, 46, 8440.         [ Links ]

53. Lossen,S.; Ann. Chem. 1897, 298, 102.         [ Links ]

54. Köennecke, A.; Döme, R.; Kleinpeter, E.; Lippmann, E.; Tetrahedron 1997, 35, 1957.         [ Links ]

55. Tienan, J.; Fukuzou, K.; Shin, K.; Yoshinori, Y.; Tetrahedron Lett. 2008, 49, 2824.         [ Links ]

56. Ek, F.; Wistrand, L.-G.; Frejd, T.; J. Org. Chem. 2003, 68, 1911.         [ Links ]

57. Sreedhar, B.; Kumar, A. S.; Yada, D.; Tetrahedron Lett. 2011, 52, 3565.         [ Links ]

58. Satzinger, G.; Justus Liebigs Ann. Chem. 1960, 638, 159.         [ Links ]

59. Najafi Chermahini, A.; Teimouri, A.; Moaddeli, A.; Heteroat. Chem. 2011, 22, 168.         [ Links ]

60. Herbst, M.; J. Org. Chem. 1950, 15, 1082.         [ Links ]

61. Katritzky, A. R.; El-Gendy, B. E. M.; Draghici, B.; Hall, C. D.; Steel, P. J.; J. Org. Chem. 2010, 75, 6468.         [ Links ]

 

 

Submitted: August 30, 2012
Published online: January 9, 2013

 

 

* e-mail: akhlaghinia@um.ac.ir

 

 

Supplementary Information

The supplementary material is available in pdf: [Supplementary material]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License