Acessibilidade / Reportar erro

Synthesis and Photophysical Characterization of Novel ESIPT Triazinyl-Benzazole Derivatives

Abstract

In this work, the synthesis, characterization and photophysical study of new derivatives of triazinyl-benzazoles with fluorescence by excited-state intramolecular proton transfer (ESIPT) are presented. It regards the synthesis of cyanuric chloride with different 2-(2’-hydroxyphenyl) benzazoles, two quite attractive groups from the synthetic and technological point of view. These new compounds have several potential applications such as biological markers and new photoluminescent materials. The derivatives were characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), high-resolution mass spectrometry (HRMS), UV-Vis absorption and fluorescence emission. The dyes are fluorescent by an excited-state ESIPT in the blue-orange region, with a large Stokes’ shift.

Keywords:
benzazole; cyanuric chloride; ESIPT; reactive dye; large Stokes’ shift; fluorescence


Introduction

2,4,6-Trichloro-1,3,5-triazine, also known as cyanuric chloride (TCT) has been widely studied due to its synthetic versatility because it is a very reactive molecule that presents an easily controlled reaction behavior with nucleophiles (Scheme 1).11 Thurston, J. T.; Dudley, J. R.; Kaiser, D. W.; Hechenbleikner, I.; Schafer, F. C.; Holm-Hansen, D.; J. Am. Chem. Soc.1951, 73, 298.

2 Hoog, P.; Gamez, P.; Driessen, W. L.; Reedijk, J.; Tetrahedron Lett. 2002, 43, 6783.

3 Blotny, G.; Tetrahedron2006, 62, 9507.

4 Gamez, P.; Hoog, P.; Lutz, M.; Spek, A. L.; Reedijk, J.; Inorg. Chim. Acta2003, 351, 319.

5 Gajjar, D.; Patel, R.; Patel, H.; Patel, P. M.; Chem. Sci. Trans.2014, 3, 897.

6 Lee, J.; Um, S.; Kang, Y.; Baek, D.; Dyes Pigm.2005, 64, 25.
-77 Hussan, M.; Khan, K. M.; Ali, S. I.; Parveen, R.; Shin, W. S.; Fibers Polym. 2009, 10, 407.

Scheme 1
Differential reactivity of TCT towards nucleophiles.22 Hoog, P.; Gamez, P.; Driessen, W. L.; Reedijk, J.; Tetrahedron Lett. 2002, 43, 6783.

3 Blotny, G.; Tetrahedron2006, 62, 9507.
-44 Gamez, P.; Hoog, P.; Lutz, M.; Spek, A. L.; Reedijk, J.; Inorg. Chim. Acta2003, 351, 319.

Because of this behavior, TCT presents several applications, such as: producing new polymeric materials,88 Patel, K. C.; Patel, S. K.; Shal, R. R.; Patel, R. M.; Iran. J. Polym. Sci. Technol.2005, 4, 232.

9 Jan, J. Z.; Huang, B. H.; Lin, J. J.; Polym.2003, 44, 1003.

10 Son, Y.; Hong, J.; Lim, H.; Kim, T.; Dyes Pigm.2005, 44, 231.

11 Wu, H.; Saikia, D.; Chao, H.; Fang, J.; Tsai, L.; Kao, H.; Electrochim. Acta2014, 138, 30.
-1212 Dodangeh, M.; Yousefi, N.; Mohammadian, M.; Dyes Pigm.2015, 116, 20. as a chiral stationary phase in high-performance liquid chromatography (HPLC),1313 Liebes, L.; Conaway, C. C.; Hochster, H.; Mendoza, S.; Hecht, S. S.; Crowell, J.; Chung, F. L.; Anal. Biochem.2001, 291, 279. obtaining fluorescent oligomers,1212 Dodangeh, M.; Yousefi, N.; Mohammadian, M.; Dyes Pigm.2015, 116, 20.,1414 Murase, T.; Fujita, M.; J. Org. Chem.2005, 70, 9369.,1515 Dodangeh, M.; Gharanjig, K.; Arami, M.; Atashrouz, S.; Dyes Pigm. 2014, 111, 30. as a precursor of herbicides for the agrochemical industry,1616 Tan, J. Q.; Chang, J. H.; Deng, M. Z.; Chin. J. Chem. 2004, 22, 941.

17 Chen, K. Y.; Huang, C. T.; Int. J. Appl. Sci. Eng. 2004, 2, 3.

18 Ji, Y.; Dong, C.; Kong, D.; Lu, J.; Zhou, Q.; Chem. Eng. J.2015, 263, 45.
-1919 Bellini, M. I.; Pinelli, L.; dos Santos, M. E.; Scavino, A. F.; Int. Biodeterior. Biodegrad.2014, 90, 131. anti-bactericides,2020 Srinivas, K.; Srinivas, U.; Rao, V. J.; Bhanuprakash, K; Kishore, K. H.; Murty, U. S. N.; Bioorg. Med. Chem. Lett.2005, 15, 1121.

21 Farouk, R.; Gaffer, H. E.; Carbohydr. Polym. 2013, 97, 138.
-2222 Roman, G.; Eur. J. Med. Chem. 2015, 89, 743. and antimicrobials.2323 Jiang, Z.; Ma, K.; Du, J.; Li, R.; Rena, X.; Huang, T. S.; Appl. Surf. Sci.2014, 288, 518.,2424 Rizk, H. F.; Ibrahim, S. A.; El-Borai, M. A.; Dyes Pigm.2015, 112, 86. Another important application for TCT and its derivatives is in the dye industry. These dyes have a reactive triazinic group that is able to form a covalent bond with the fibers of several fabrics, mainly cotton.2525 Gorensek, M.; Dyes Pigm.1999, 40, 225.

26 Saeed, A.; Shabir, G.; Arabian J. Chem.2014, in press, DOI: 10.1016/j.arabjc.2014.11.010.
https://doi.org/10.1016/j.arabjc.2014.11...

27 Kuplich, M. D.; Grasel, F. S.; Campo, L. F.; Rodembusch, F. S.; Stefani, V.; J. Braz. Chem. Soc.2012, 23, 25.
-2828 Patel, D. R.; Patel, B. M.; Patel, N. B.; Patel, K. C.; J. Saudi Chem. Soc. 2014, 18, 245. The hydroxyl, thiol or amino groups present in cellulose (cotton),2525 Gorensek, M.; Dyes Pigm.1999, 40, 225.

26 Saeed, A.; Shabir, G.; Arabian J. Chem.2014, in press, DOI: 10.1016/j.arabjc.2014.11.010.
https://doi.org/10.1016/j.arabjc.2014.11...

27 Kuplich, M. D.; Grasel, F. S.; Campo, L. F.; Rodembusch, F. S.; Stefani, V.; J. Braz. Chem. Soc.2012, 23, 25.

28 Patel, D. R.; Patel, B. M.; Patel, N. B.; Patel, K. C.; J. Saudi Chem. Soc. 2014, 18, 245.
-2929 Rizk, H. F.; Ibrahim, S. A.; El-Borai, M. A.; Dyes Pigm.2015, 112, 86. polyamides, or proteins,2525 Gorensek, M.; Dyes Pigm.1999, 40, 225.,3030 Yrjölä, S.; Sarparanta, M.; Airaksinen, A. J.; Hytti, M.; Kauppinen, A.; Pasonen-Seppänen, S.; Adinolfi, B.; Nieri, P.; Manera, C.; Keinänen, O.; Poso, A.; Nevalainen, T. J.; Parkkari, T.; Eur. J. Pharm. Sci.2015, 67, 85. respectively, can substitute the chlorine atoms of TCT. TCT has also been employed to obtain optical whiteners.3131 Lee, J. K.; Um, S. I; Kang, Y.; Baek, D. J.; Dyes Pigm.2005, 64, 25.

Polymers, natural fibers and paper tend to darken or yellow after some time due to the weak absorption of light in the zone of 400 nm by certain groups: peptides in wool or silk, flavonoids in cellulose, and products of decomposition in polymers.3131 Lee, J. K.; Um, S. I; Kang, Y.; Baek, D. J.; Dyes Pigm.2005, 64, 25.,3232 Um, S. I.; Lee, J. K.; Kang, Y.; Baek, D. J.; Dyes Pigm.2006, 70, 84. One of the solutions used to reduce or even eliminate this effect is to add optical whiteners. They increase the whiteness of the material by a process of light absorption in the ultraviolet region (330-380 nm) and posterior emission of light in the visible region (400-450 nm). These optical whiteners are obtained from the reaction of the TCT with chromophore groups and are used in papers, woven fabric, detergents, soaps and polymers.1212 Dodangeh, M.; Yousefi, N.; Mohammadian, M.; Dyes Pigm.2015, 116, 20.,1414 Murase, T.; Fujita, M.; J. Org. Chem.2005, 70, 9369.,2525 Gorensek, M.; Dyes Pigm.1999, 40, 225.,2626 Saeed, A.; Shabir, G.; Arabian J. Chem.2014, in press, DOI: 10.1016/j.arabjc.2014.11.010.
https://doi.org/10.1016/j.arabjc.2014.11...
,3030 Yrjölä, S.; Sarparanta, M.; Airaksinen, A. J.; Hytti, M.; Kauppinen, A.; Pasonen-Seppänen, S.; Adinolfi, B.; Nieri, P.; Manera, C.; Keinänen, O.; Poso, A.; Nevalainen, T. J.; Parkkari, T.; Eur. J. Pharm. Sci.2015, 67, 85.

Benzazole dyes are a class of chromophores extensively studied because of their very interesting photophysical properties.3333 Roohi, H.; Mohtamedifar, N.; Hejazi, F.; Chem. Phys.2014, 444, 66.

34 Coelho, F. L.; Rodembusch, F. S.; Campo, L. F.; Dyes Pigm.2014, 110, 134.

35 Dick, P. F.; Coelho, F. L.; Rodembusch, F. S.; Campo, L. F.; Tetrahedron Lett. 2014, 55, 3024.

36 Patil, V. S.; Padalkar, V. S.; Tathe, A. B.; Sekar, N.; Dyes Pigm.2013, 98, 507.

37 Alves, R. M.; Rodembusch, F. S.; Habis, C.; Moreira, E. C.; Mater. Chem. Phys. 2014, 148, 833.

38 Grasel, F. S.; de Oliveira, T. E.; Netz, P. A.; J. Braz. Chem. Soc.2015, 26, 420.
-3939 Holler, M. G.; Campo, L. F.; Brandelli, A.; Stefani, V.; J. Photochem. Photobiol. A2002, 149, 217. This class of molecules presents a large Stokes’ shift due to the intramolecular proton transfer (ESIPT) mechanism (Scheme 2).3333 Roohi, H.; Mohtamedifar, N.; Hejazi, F.; Chem. Phys.2014, 444, 66.

34 Coelho, F. L.; Rodembusch, F. S.; Campo, L. F.; Dyes Pigm.2014, 110, 134.

35 Dick, P. F.; Coelho, F. L.; Rodembusch, F. S.; Campo, L. F.; Tetrahedron Lett. 2014, 55, 3024.

36 Patil, V. S.; Padalkar, V. S.; Tathe, A. B.; Sekar, N.; Dyes Pigm.2013, 98, 507.

37 Alves, R. M.; Rodembusch, F. S.; Habis, C.; Moreira, E. C.; Mater. Chem. Phys. 2014, 148, 833.

38 Grasel, F. S.; de Oliveira, T. E.; Netz, P. A.; J. Braz. Chem. Soc.2015, 26, 420.
-3939 Holler, M. G.; Campo, L. F.; Brandelli, A.; Stefani, V.; J. Photochem. Photobiol. A2002, 149, 217.

Scheme 2
Photophysical pathways from ESIPT-exhibiting dyes: enol (or normal) emission (left) and ESIPT (or tautomer) emission (right).

The mechanism of ESIPT provides physical and chemical properties to this class of molecules that make them highly attractive from the synthetic, technological and biological point of view.3434 Coelho, F. L.; Rodembusch, F. S.; Campo, L. F.; Dyes Pigm.2014, 110, 134.

35 Dick, P. F.; Coelho, F. L.; Rodembusch, F. S.; Campo, L. F.; Tetrahedron Lett. 2014, 55, 3024.

36 Patil, V. S.; Padalkar, V. S.; Tathe, A. B.; Sekar, N.; Dyes Pigm.2013, 98, 507.

37 Alves, R. M.; Rodembusch, F. S.; Habis, C.; Moreira, E. C.; Mater. Chem. Phys. 2014, 148, 833.

38 Grasel, F. S.; de Oliveira, T. E.; Netz, P. A.; J. Braz. Chem. Soc.2015, 26, 420.

39 Holler, M. G.; Campo, L. F.; Brandelli, A.; Stefani, V.; J. Photochem. Photobiol. A2002, 149, 217.

40 Rzeska, A.; Malicka, J.; Guzow, K.; Szabelski, M.; Wiczk, W.; J. Photochem. Photobiol. A2001, 146, 9.

41 Matson, W. T.; Fluorescent and Luminescent Probes for Biological Activity: a Practical Guide to Technology for Quantitative Real-time Analysis; Academic Press: London, 1999.

42 Demmer, C. S.; Bunch, L.; Eur. J. Med. Chem.2014, in press, DOI: 10.1016/j.ejmech.2014.11.064.
https://doi.org/10.1016/j.ejmech.2014.11...

43 Contreras, R.; Flores-Parra, A.; Mijangos, E.; Téllez, F.; López-Sandoval, H.; Barba-Behrens, N.; Coord. Chem. Rev. 2009, 253, 1979.
-4444 Li, H.; Guo, Y.; Lei, Y.; Gao, W.; Liu, M.; Chen, J.; Hu, Y.; Huang, X.; Wu, H.; Dyes Pigm.2015, 112, 105. Several applications of this type of molecule are described in the literature, such as stabilization of polymers against UV radiation,4545 Song, B.; Zhuang, Q.; Ying, L.; Liu, X.; Han, Z.; Polym. Degrad. Stab.2012, 97, 1569. fluorescent sensors,4343 Contreras, R.; Flores-Parra, A.; Mijangos, E.; Téllez, F.; López-Sandoval, H.; Barba-Behrens, N.; Coord. Chem. Rev. 2009, 253, 1979. photoactive materials for organic light emitting diodes,4646 Kim, S. H.; Park, S.; Kwon, J. E.; Park, S. Y.; Adv. Funct. Mater. 2011, 21, 644.,4747 Shono, H.; Ohkawa, T.; Tomoda, H.; Mutai, T.; Araki, K.; ACS Appl. Mater. Interfaces2011, 3, 654. molecular switches controlled by light,4848 Liang, Z.; Liu, Z.; Jiang, L.; Gao, Y.; Tetrahedron Lett.2007, 48, 1629. and optical materials.4949 Hoffmann, H. S.; Stefani, V.; Benvenutti, E. V.; Costa, T. M. H.; Gallas, M. R.; Mater. Chem. Phys.2011, 126, 97. This paper presents the synthesis, characterization, and photophysical study of new fluorescent triazinyl-benzazole derivatives which present excited-state ESIPT.

Experimental

Materials and methods

The 2,4,6-trichloro-1,3,5-triazine was supplied by ACROS Organics. Spectroscopic grade solvents (Merck) were used for fluorescence and UV-Vis measurements. All the chemicals were analytical grade and were used as received. The reactions were monitored by thin layer chromatography (TLC) on ALUGRAM® SIL Macherey-Nagel silicagel plates. Dichloromethane was used as eluent and the plates were visualized under UV light (254-365 nm). The dyes were purified by column chromatography using silica gel 60 (70-230 mesh ASTM) and dichloromethane. Infrared (IR) spectra were recorded on a Shimadzu FTIR8300 in nujol. The 1H and 13C nuclear magnetic resonance (NMR) spectra were performed at room temperature on an INOVA YH300 using tetramethylsilane (TMS) as the internal standard and DMSO-d6 as the solvent. The chemical shifts (δ) are reported in parts per million (ppm) relative to TMS. The coupling constants Jare reported in Hz. The following abbreviations are used for the multiplicities: s (singlet), d (doublet), dd (double of doublets), t (triplet), q (quartet), m (multiplet) and br s (broad singlet). UV-Vis absorption spectra were performed on a Shimadzu UV-1601PC spectrophotometer. Steady state fluorescence spectra were measured with a Hitachi spectrofluorometer model F-4500. Spectrum correction was performed to enable measuring a true spectrum by eliminating instrumental responses such as wavelength characteristics of the monochromator or detector using rhodamine B as a standard (quantum counter). For the photophysical measurements in the solid state, the samples were measured using a solid sample holder. In this device, the light beam irradiated the sample at an angle of approximately 30º and the emitted light from the sample was detected at an angle of approximately 60º. All experiments were performed at room temperature in a concentration of 10-6 mol L-1. The high-resolution mass spectrometry (HRMS) spectra analyses were performed on a Bruker Reflex III spectrometer or an Agilent 1100 series liquid chromatograph coupled to an API 5000 triple quadrupole mass spectrometer equipped with an electrospray ionization interface (ESI). Melting points (mp) were measured with a Gehaka PF 1000 apparatus and are uncorrected.

Synthesis of triazinyl-benzazole derivatives

The dyes 2a-d were prepared using a methodology previously described in the literature.5050 Campo, L. F.; Corrêa, D. S.; Araújo, M. A.; Stefani, V.; Macromol. Rapid Commun. 2000, 21, 832. The synthesis of the monosubstituted triazinyl-derivatives (3a-d) was also performed as described in recent literature.2626 Saeed, A.; Shabir, G.; Arabian J. Chem.2014, in press, DOI: 10.1016/j.arabjc.2014.11.010.
https://doi.org/10.1016/j.arabjc.2014.11...
The reaction consisted of the addition of benzazole-precursors (2a-d) in a TCT solution in acetone (1:1) containing sodium carbonate (Na2CO3). The reactions were stirred for 1 hour at 0-5 ºC. The synthesis of the disubstituted triazinyl-derivatives (4a-d) comprised adding the benzazole-precursors (2a-d) in a TCT solution in acetone (2:1), also at 0-5 ºC, containing Na2CO3. The reactions were stirred for 12 hours at room temperature. The synthesis of the trisubstituted triazinyl-derivatives (5a-d) comprised adding the benzazole-precursors (2a-d) in a TCT solution in acetone (3:1), also at 0-5 ºC, containing Na2CO3. The reactions were refluxed for 24 hours. The Na2CO3 (10%, m/v) was added stoichiometrically in relation to the hydrochloric acid (HCl) formed in the reaction. Distilled water was added to complete precipitation of the product in the end. The products were filtered, washed with distilled water, dried and purified on silica gel columns with dichloromethane as eluent. The final yields were from 70 to 95%. Scheme 3 presents the synthesis of the triazinyl-benzazole derivatives: mono (3a-d), di (4a-d) and trisubstituted (5a-d).

Scheme 3
Synthesis of mono (3a-d), di (4a-d) and trisubstituted (5a-d) triazinyl-benzazole derivatives.

2-[4’-(N-4,6-Dichloro-1,3,5-triazin-2-yl)-2’-hydroxyphenyl]benzoxazole (3a)

Yield 70%; white solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3433 n(OH), 3298 n(NH), 1612 ν(C=N), 1533, 1492 and 1452 narom(C=C), 1232 ν(Ar-O), 1184 ν(C−N); 1H NMR (300 MHz, DMSO-d6), δ 11.21 (s, 1H, OH), 10.96 (s, 1H, NH), 7.98 (d, 1H, J8.7 Hz, phenolic-H), 7.78-7.88 (m, 2H, Ar-H), 7.66 (d, 1H, J2.1 Hz, phenolic-H), 7.42-7.48 (m, 2H, Ar-H), 7.21 (dd, 1H, J8.7, 2.1 Hz, phenolic-H); 13C NMR (75.4 MHz, DMSO-d6) δ 162.2 (C2), 158.4 (C4’a), 153.9 (C4’b and C4’c), 152.8 (C2’), 148.8 (C8), 142.2 (C4’), 138.8 (C9), 128.2 (C5), 125.8 (C6 or C6’), 125.3 (C6’ or C6), 119.0 (C4), 112.0 (C3’ or C7), 111.0 (C7 or C3’), 107.8 (C5’), 105.8 (C1’); HRMS (MALDI) m/z, calcd. for C16H9Cl2N5O2 [M + H]+: 373.0113; found: 373.0125.

2-[5’-(N-4,6-Dichloro-1,3,5-triazin-2-yl)-2’-hydroxyphenyl]benzoxazole (3b)

Yield 85%; white solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3453 n(OH), 3296 n(NH), 1581 ν(C=N), 1502 and 1456 νarom(C=C), 1297 ν(Ar-O), 1241 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.18 (s, 1H, OH), 10.76 (s, 1H, NH), 8.23 (d, 1H, J2.7 Hz, phenolic-H), 7.89-7.84 (m, 2H, Ar-H), 7.66 (dd, 1H, J8.7, 2.7 Hz, phenolic-H), 7.50-7.46 (m, 2H, Ar-H), 7.15 (d, 1H, J8.7 Hz, phenolic-H); 13C NMR (75.4 MHz, DMSO-d6) δ 169.8 (C2), 163.8 (C4’a), 162.0 (C4’b and C4’c), 154.8 (C2’), 149.0 (C8), 139.8 (C9), 128.8 (C4’), 126.6 (C5 or C6), 125.2 (C5 or C6), 120.8 (C4), 119.4 (C6’ or C3’), 118.0 (C3’ or C6’), 111.1 (C7), 110.2 (C1’); HRMS (MALDI) m/z, calcd. for C16H9Cl2N5O2 [M + H]+: 373.0113; found: 373.0127.

2-[4’-(N-4,6-Dichloro-1,3,5-triazin-2-yl)-2’-hydroxyphenyl]benzothiazole (3c)

Yield 80%; light green solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3451 n(OH), 3328 n(NH), 1610 ν(C=N), 1548 and 1461 narom(C=C), 1235 ν(Ar-O), 1180 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.19 (s, 1H, OH), 10.85 (s, 1H, NH), 8.24 (d, 1H, J2.7 Hz, phenolic-H), 7.89-7.85 (m, 2H, Ar-H), 7.72 (dd, 1H, J9.0 Hz, phenolic-H), 7.51-7.47 (m, 2H, Ar-H), 7.19 (d, 1H, J9.0 Hz, phenolic-H); 13C NMR (75.4 MHz, DMSO-d6) δ 169.9 (C2), 164.0 (C4’a), 162.0 (C4’b and C4’c), 155.0 (C2’), 148.8 (C9), 139.8 (C4’), 129.0 (C8), 128.1 (C4), 126.0 (C5 or C6), 125.3 (C5 or C6), 120.7 (C6’), 119.4 (C7 or C3’), 118.0 (C3’ or C7), 111.4 (C5’), 110.2 (C1’); HRMS (MALDI) m/z, calcd. for C16H9Cl2N5O2 [M + H]+: 388.9903; found: 388.9905.

2-[5’-(N-4,6-Dichloro-1,3,5-triazin-2-yl)-2’-hydroxyphenyl]benzothiazole (3d)

Yield 80%; yellow solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3454 n(OH), 3293 n(NH), 1595 n(C=N), 1549, 1502 and 1456 narom(C=C), 1241 ν(Ar-O), 1194 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.09 (s, 1H, OH), 10.90 (s, 1H, NH), 8.41 (d, 1H, J2.7 Hz, phenolic-H), 7.62-7.58 (m, 2H, Ar-H), 7.60 (dd, 1H, J9.0, 2.7 Hz, phenolic-H), 7.57-7.52 (m, 2H, Ar-H), 7.13 (d, 1H, J9.0 Hz, phenolic-H); 13C NMR (75.4 MHz, DMSO-d6) δ 169.9 (C2), 168.9 (C5’a), 163.9 (C5’b or C5’c), 153.8 (C2’), 151.3 (C9), 134.8 (C5’), 129.0 (C8), 127.4 (C5 or C6), 126.7 (C5 or C6), 124.8 (C4), 122.2 (C7 or C4’), 122.0 (C4’ or C7), 119.8 (C6’), 118.2 (C1’), 117.3 (C3’); HRMS (MALDI) m/z, calcd. for C16H9Cl2N5O2 [M + H]+: 388.9903; found: 388.9897.

2,4-Di[2-(4’-aminyl-2’-hydroxphenyl)benzoxazole]-6-chloro-1,3,5-triazine (4a)

Yield 80%; white solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3454 n(OH), 3295 n(NH), 1619 n(C=N), 1535, 1498 and 1451 narom(C=C), 1236 ν(Ar-O), 1180 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.46 (s, 2H, 2OH), 10.94 (s, 2H, 2NH), 8.08 (d, 2H, J8.4 Hz, 2phenolic-H), 7.75 (d, 2H, J1.8 Hz, 2phenolic-H), 7.72-7.60 (m, 4H, 2Ar-H), 7.44-7.37 (m, 4H, 2Ar-H), 7.14 (dd, 2H, J8.4, 1.8 Hz, 2phenolic-H); HRMS (ESI) m/z, calcd. for C29H18ClN7O4 [M + H]+: 564.1187; found: 564.1191; HRMS (ESI) m/z, calcd. for C29H18ClN7O4 [M – H]- : 562.1030; found: 562.1020.

2,4-Di[2-(5’-aminyl-2’-hydroxphenyl)benzoxazole]-6-chloro-1,3,5-triazine (4b)

Yield 80%; white solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3418 n(OH), 3330 n(NH), 1616 n(C=N), 1568, 1524 and 1498 narom(C=C), 1235 ν(Ar-O), 1173 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 10.59 (s, 2H, 2OH), 10.40 (s, 2H, 2NH), 8.62 (s, 2H, 2phenolic-H), 7.54-7.47 (m, 4H, 2Ar-H), 7.36 (d, 2H, J8.1 Hz, 2phenolic-H), 7.16-7.28 (m, 4H, 2Ar-H), 7.04 (d, 2H, J8.1 Hz, 2phenolic-H); HRMS (ESI) m/z, calcd. for C29H18ClN7O4 [M + H]+: 564.1187; found: 564.1207; HRMS (ESI) m/z, calcd. for C29H18ClN7O4 [M – H]- : 562.1030; found: 562.1041.

2,4-Di[2-(4’-aminyl-2’-hydroxphenyl)benzothiazole]-6-chloro-1,3,5-triazine (4c)

Yield 75%; light green solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3454 n(OH), 3333 n(NH), 1609 n(C=N), 1544 and 1460 narom(C=C), 1236 ν(Ar-O), 1180 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.05 (s, 2H, 2OH), 10.73 (s, 2H, 2NH), 8.26 (d, 2H, J8.4, 2phenolic-H), 8.19-7.97 (m, 4H, 2Ar-H), 7.72 (d, 2H, J1.8 Hz, 2phenolic-H), 7.57-6.93 (m, 4H, 2Ar-H), 7.09 (dd, 2H, J8.4, 1.8 Hz, 2phenolic-H); HRMS (ESI) m/z, calcd. for C29H18ClN7O2S2 [M + H]+: 596.0730; found: 596.0755; HRMS (ESI) m/z, calcd. for C29H18ClN7O2S2 [M – H]- : 594.0573; found: 594.0546.

2,4-Di[2-(5’-aminyl-2’-hydroxphenyl)benzothiazole]-6-chloro-1,3,5-triazine (4d)

Yield 70%; beige solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3442 n(OH), 3334 n(NH), 1605 v(C=N), 1577 and 1502 narom(C=C), 1260 ν(Ar-O), 1185 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 8.16 (d, 2H, J1.8 Hz, 2phenolic-H); 8.01-7.85 (m, 4H, 2Ar-H); 7.58 (br, 2H, 2phenolic-H); 7.43-7.26 (m, 4H, 2Ar-H); 6.68 (br, 2H, 2phenolic-H); HRMS (ESI) m/z, calcd. for C29H18ClN7O2S2 [M + H]+: 596.0730; found: 596.0732; HRMS (ESI) m/z, calcd. for C29H18ClN7O2S2 [M – H]- : 594.0573; found: 594.0572.

2,4,6-Tri[2-(4’-aminyl-2’-hydroxphenyl)benzoxazole]-1,3,5-triazine (5a)

Yield 75%; white solid; mp: decomposed before melting; IR (nujol) νmax/ cm-1: 3494 n(OH), 3379 n(NH), 1641 n(C=N), 1467 and 1388 narom(C=C), 1246 ν(Ar-O), 1188 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.63 (s, 3H, 3OH), 7.68 (m, 6H, 3Ar-H and 3H, 3phenolic-H), 7.34 (m, 6H, 3Ar-H), 6.28 (dd, 3H, J8.8, 2.3 Hz, 3phenolic-H), 6.18 (d, 3H, J2.3, 3phenolic-H), 6.10 (s, 3H, 3NH); HRMS (ESI) m/z, calcd. for C16H9Cl2N5O2 [M + H]+: 754.2163; found: 754.2197; HRMS (ESI) m/z, calcd. for C16H9Cl2N5O2 [M – H]- : 752.2006; found: 752.2026.

2,4,6-Tri[2-(5’-aminyl-2’-hydroxphenyl)benzoxazole]-1,3,5-triazine (5b)

Yield 80%; white solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3457 n(OH), 3291 n(NH), 1616 n(C=N), 1568, 1533 and 1498 narom(C=C), 1226 ν(Ar-O), 1173 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.18 (s, 3H, 3OH), 10.43 (s, 3H, 3NH), 8.62 (d, 3H, J2.1 Hz, 3phenolic-H), 7.55 (dd, 3H, J8.7, 2.1 Hz, 3phenolic-H), 7.48 (m, 6H, 3Ar-H), 7.37-7.23 (m, 6H, 3Ar-H), 7.05 (d, 3H, J8.7 Hz, 3phenolic-H); HRMS (ESI) m/z, calcd. for C42H27N9O6 [M + H]+: 754.2163; found: 754.2174; HRMS (ESI) m/z, calcd. for C42H27N9O6 [M – H]- : 752.2006; found: 752.2028.

2,4,6-Tri[2-(4’-aminyl-2’-hydroxphenyl)benzothiazole]-1,3,5-triazine (5c)

Yield 80%; beige solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3464 v(OH), 3370 n(NH), 1619 n(C=N), 1465 and 1371 narom(C=C), 1193 ν(Ar-O), 1141 n(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.19 (s, 3H, 3OH), 8.03-7.86 (m, 6H, 3Ar-H), 7.62 (d, 3H, J8.8 Hz, 3phenolic-H), 7.48-7.30 (m, 6H, 3Ar-H), 6.25-6.22 (dd, 1H, J8.8, 2.3 Hz, 3phenolic-H), 6.15 (d, 3H, J2.3 Hz, 3phenolic-H), 5.95 (s, 3H, 3NH); HRMS (ESI) m/z, calcd. for C42H27N9O3S3 [M+H]+: 802.1477; found: 802.1527; HRMS (ESI) m/z, calcd. for C42H27N9O3S3 [M – H]- : 800.1321; found: 800.1339.

2,4,6-Tri[2-(5’-aminyl-2’-hydroxphenyl)benzothiazole]-1,3,5-triazine (5d)

Yield 75%; beige solid; mp: decomposed before melting; IR (nujol) νmax / cm-1: 3431 n(OH), 3300 v(NH), 1603 n(C=N), 1461 and 1382 narom(C=C), 1241 ν(Ar-O), 1189 ν(C−N); 1H NMR (300 MHz, DMSO-d6) δ 11.74 (s, 3H, 3OH), 10.06 (s, 3H, 3NH), 8.28 (s, 3H, 3phenolic-H), 8.05-7.98 (m, 6H, 3Ar-H), 7.67 (s, 3H, 3phenolic-H), 7.54-7.40 (m, 6H, 3Ar-H), 6.93 (d, 3H, J8.1 Hz, 3phenolic-H); HRMS (ESI) m/z, calcd. for C42H27N9O3S3 [M+H]+: 802.1477; found: 802.1510; HRMS (ESI) m/z, calcd. for C42H27N9O3S3 [M – H]- : 800.1321; found: 800.1333.

Results and Discussion

Photophysical characterization

Figures 1 to 4 present the normalized UV-Vis absorption spectra and fluorescence emission of the derivatives 3a-d in solution. The spectra in the solid state are also presented for comparison. The relevant spectroscopic data from these dyes are summarized in Table 1.

Figure 1
Normalized UV-Vis absorbance and fluorescence emission espectra of 3a.
Figure 2
Normalized UV-Vis absorbance and fluorescence emission espectra of 3b.
Figure 3
Normalized UV-Vis absorbance and fluorescence emission espectra of 3c.
Figure 4
Normalized UV-Vis absorbance and fluorescence emission espectra of 3d.
Table 1
Data from UV-Vis absorption and fluorescence emission for derivatives 3a-d

The derivatives 3a-d presented an absorption maximum (λ) in solution in the range of 337 to 355 nm, while in the solid state the range was from 350 to 398 nm. The location of the absorption showed a slight dependence (2-4 nm) on the solvent. This behavior is usually related to the conformational equilibrium in solution in the ground state.5151 Woolfe, G. J.; Melzig, M.; Schneider, S.; Dorr, F.; Chem. Phys. 1983, 77, 127.

52 Verdasco, G.; Martín, M. A.; del Castillo, B.; López Alvarado, P.; Menéndez, P. C.; Anal. Chim. Acta1995, 303, 73.

53 Santra, S.; Krishnamoorthy, G.; Dogra, S. K.; Chem. Phys. Lett.1999, 311, 55.

54 Krishnamoorthy, G.; Dogra, S. K.; J. Lumin.2000, 92, 103.
-5555 Krishnamoorthy, G.; Dogra, S. K.; J. Lumin.2000, 92, 91. The molar absorptivity (ε) according to transitions of type π→π* and fluorescence quantum yields (φ) showed results in the range from 1.00 to 5.06 1044 Gamez, P.; Hoog, P.; Lutz, M.; Spek, A. L.; Reedijk, J.; Inorg. Chim. Acta2003, 351, 319.L mol-1 cm-1 and 0.003 to 0.061, respectively (Table 1).

The wavelength of maximum emission in solution for molecules 3a-d was in the range of 373 to 440 nm for the enol tautomer and 463 to 549 nm for the keto tautomer. The first Stokes’ shift in solution was between 25 and 88 nm (emission of the enol tautomer) and the second one was between 110 and 196 nm (emission of the keto tautomer). Depending on the polarity of the solvent, dual fluorescence emission was observed for all monosubstituted-triazine derivatives (3a-d). This behavior is related to the conformational equilibrium in solution in the ground state. The benzothiazole-derivatives (3c-d) were more sensitive to the effect of the solvent. The ESIPT mechanism was hardly observed in methanol, with most of the emission being due to the enol tautomer (Scheme 1).

Figures 5 to 8 present normalized UV-Vis absorption spectra and fluorescence emissions of derivatives 4a-d in solution. The spectra in the solid state are also presented for comparison. The relevant spectroscopic data from these dyes are summarized in Table 2.

Figure 5
Normalized UV-Vis absorbance and fluorescence emission espectra of 4a.
Figure 6
Normalized UV-Vis absorbance and fluorescence emission espectra of 4b.
Figure 7
Normalized UV-Vis absorbance and fluorescence emission espectra of 4c.
Figure 8
Normalized UV-Vis absorbance and fluorescence emission espectra of 4d.
Table 2
Data from UV-Vis absorption and fluorescence emission for derivatives 4a-d

The derivatives 4a-d presented an absorption maximum (λ) in solution in the range of 312 to 361 nm, while in the solid state the range was from 378 to 396 nm. The location of the absorption showed a slight dependence (4-10 nm) on the solvent. This behavior is usually related to the conformational equilibrium in solution in the ground state.5252 Verdasco, G.; Martín, M. A.; del Castillo, B.; López Alvarado, P.; Menéndez, P. C.; Anal. Chim. Acta1995, 303, 73.

53 Santra, S.; Krishnamoorthy, G.; Dogra, S. K.; Chem. Phys. Lett.1999, 311, 55.

54 Krishnamoorthy, G.; Dogra, S. K.; J. Lumin.2000, 92, 103.

55 Krishnamoorthy, G.; Dogra, S. K.; J. Lumin.2000, 92, 91.
-5656 Rodembusch, F. S.; Campo, L. F.; Leusin, F. P.; Stefani, V.; J. Lumin.2007, 126, 728.The molar absorptivity (ε), according to transitions of the type π→π* and fluorescence quantum yields (φ) showed results from 0.55 to 2.51 1044 Gamez, P.; Hoog, P.; Lutz, M.; Spek, A. L.; Reedijk, J.; Inorg. Chim. Acta2003, 351, 319.L mol-1 cm-1 and 0.006 to 0.226, respectively (Table 2).

The wavelength of maximum emission in solution for molecules 4a-d was in the range of 373 to 425 nm for the enol tautomer and 461 to 571 nm for the keto tautomer. The first Stokes’ shift was between 23 and 73 nm (emission of the enol tautomer) and the second one was between 110 and 210 nm (emission of the keto tautomer). Dual fluorescence emission was observed for disubstituted-triazine derivatives 4a, 4c and 4d depending on the polarity of the solvent. The derivative 4b did not show any influence of the solvent on the fluorescence emission. In the analysis of the monosubstituted-triazine derivatives (3a-d), the benzothiazole-derivatives were more sensitive to the solvent effect. This effect was not observed for the disubstituted-derivatives (4a-d). For the disubstituted group (4a-d), the 4’-derivative (4a and 4c) showed greater sensitivity to the solvent than the 5’-derivative (4b and 4d).

It is known that having the amino group located in the meta-position relative to the phenolic hydroxyl group (4’-position) weakens the intramolecular hydrogen bond when compared to substituted analogs with the same group in the para-position (5’-position). This behavior is observed for disubstituted-derivatives (4a-d).5656 Rodembusch, F. S.; Campo, L. F.; Leusin, F. P.; Stefani, V.; J. Lumin.2007, 126, 728. However, this behavior was not observed in the monosubstituted-derivatives (3a-d) because TCT (1), which possesses two chlorine atoms (electron-withdrawing group by inductive effect), is bonded in this amino group. The electron density of the amino group is shifted more to the triazinic ring than to the phenolic ring due to the electron deficiency of the cyanuric chloride.

Figures 9 to 12 present the normalized UV-Vis absorption spectra and fluorescence emission of derivatives 5a-d in solution. The spectra in the solid state are also presented for comparison. The relevant spectroscopic data from these dyes are summarized in Table 3.

Figure 9
Normalized UV-Vis absorbance and fluorescence emission espectra of 5a.
Figure 10
Normalized UV-Vis absorbance and fluorescence emission espectra of 5b.
Figure 11
Normalized UV-Vis absorbance and fluorescence emission espectra of 5c.
Figure 12
Normalized UV-Vis absorbance and fluorescence emission espectra of 5d.
Table 3
Data from UV-Vis absorption and fluorescence emission for derivatives 5a-d

The derivatives 5a-d presented an absorption maximum (λ) in solution in the range of 334 to 361 nm, while in the solid state the range was from 374 to 409 nm. The location of the absorption showed a slight dependence (4-11 nm) on the solvent. This behavior is usually related to the conformational equilibrium in solution in the ground state.5151 Woolfe, G. J.; Melzig, M.; Schneider, S.; Dorr, F.; Chem. Phys. 1983, 77, 127.

52 Verdasco, G.; Martín, M. A.; del Castillo, B.; López Alvarado, P.; Menéndez, P. C.; Anal. Chim. Acta1995, 303, 73.

53 Santra, S.; Krishnamoorthy, G.; Dogra, S. K.; Chem. Phys. Lett.1999, 311, 55.

54 Krishnamoorthy, G.; Dogra, S. K.; J. Lumin.2000, 92, 103.
-5555 Krishnamoorthy, G.; Dogra, S. K.; J. Lumin.2000, 92, 91.The molar absorptivity (ε), according to transitions of the type π→π*, and fluorescence quantum yields (φ) showed results from 1.84 to 13.40 1044 Gamez, P.; Hoog, P.; Lutz, M.; Spek, A. L.; Reedijk, J.; Inorg. Chim. Acta2003, 351, 319.L mol-1 cm-1 and 0.003 to 0.048, respectively (Table 3).

The trisubstituted-derivatives (5a-d) showed higher molar absorptivity (ε) than their mono (3a-d), and disubstituted (4a-d) analogs. The difference in ε was more pronounced in the derivatives substituted in the 4’-position (5a and 5c) than in those substituted in the 5’-position (5b and 5d). The wavelength of maximum emission in solution for molecules 5a-d was in the range of 372 to 423 nm for the enol tautomer and 460 to 558 nm for the keto tautomer. The first Stokes’ shift was between 27 and 65 nm (emission of the enol tautomer) and the second was between 115 and 201 nm (emission of the keto tautomer), both in solutions. The behavior presented by the trisubstituted-derivatives (5a-d) was the same presented by the disubstituted-derivatives (4a-d). The 4’-derivatives (5a and 5c) were more sensitive to the solvent effect than the 5’-derivatives (5b and 5d). The derivatives 3a, 4a, 5a, 3c, 4c and 5c, which have the amino group in the 4’-position, showed a higher fluorescence quantum yield than their respective analogues 3b, 4b, 5b, 3d, 4d and 5d, which have the amino group in the 5’-position. The derivatives with the amino group in the 5’-position (3b, 4b, 5b, 3d, 4d and 5d) also have a larger Stokes’ shift than their analogues with the amino group in the 4’-position (3a, 4a, 5a, 3c, 4c and 5c). The difference in emissions of the keto tautomers were greater when the molecules were benzothiazole-derivatives rather than benzoxazole ones.

Conclusions

Novel fluorescent triazinyl-benzazoles prepared by the ESIPT mechanism were synthesized, purified and characterized by IR spectroscopy, nuclear magnetic resonance (1313 Liebes, L.; Conaway, C. C.; Hochster, H.; Mendoza, S.; Hecht, S. S.; Crowell, J.; Chung, F. L.; Anal. Biochem.2001, 291, 279.C and 11 Thurston, J. T.; Dudley, J. R.; Kaiser, D. W.; Hechenbleikner, I.; Schafer, F. C.; Holm-Hansen, D.; J. Am. Chem. Soc.1951, 73, 298.H NMR), HRMS, UV-Vis and steady-state fluorescence spectroscopies (in solution and in the solid state). The properties of derivatives with the amino group in the 5’-position were less affected by the solvent than their analogues with the amino group in the 4’-position. The derivatives with the amino group in the 4’-position presented higher fluorescence quantum yields than their analogues with the amino group in the 5’-position. The trisubstituted-derivatives showed the highest molar absorptivity (ε) among the derivatives studied. The derivatives with an amino group in the 5’-position exhibited larger Stokes’ shift than their analogues with an amino group in the 4’-position of the phenolic ring. This difference was larger in the benzothiazoles than in the benzoxazoles.

Monosubstituted benzothiazole-derivatives showed more intense dual fluorescence than monosubstituted benzoxazole-derivatives. For di and trisubstituted-derivatives, dual fluorescence emission was more intense in the derivatives with the amino group in the 4’-position than their analogues with the amino group in the 5’-position. The derivative 2,4-di[2-(5’-aminyl-2’-hydroxphenyl)benzoxazole]-6-chloro-1,3,5-triazine (4b) was the only one where the fluorescence emission of the keto tautomer was not affected by the solvent. The novel ESIPT triazinyl-benzazole derivatives showed very interesting photophysical properties and are promising molecules that could be used to obtain new materials, such as fluorescent sensors and photoluminescent polymers.

  • Supplementary Information
    Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file.
  • FAPERGS/CAPES has sponsored the publication of this article.

Acknowledgments

The authors thank the Programa de Pós-Graduação em Química of the Universidade Federal do Rio Grande do Sul, for the support during the period of this research.

References

  • 1
    Thurston, J. T.; Dudley, J. R.; Kaiser, D. W.; Hechenbleikner, I.; Schafer, F. C.; Holm-Hansen, D.; J. Am. Chem. Soc.1951, 73, 298.
  • 2
    Hoog, P.; Gamez, P.; Driessen, W. L.; Reedijk, J.; Tetrahedron Lett 2002, 43, 6783.
  • 3
    Blotny, G.; Tetrahedron2006, 62, 9507.
  • 4
    Gamez, P.; Hoog, P.; Lutz, M.; Spek, A. L.; Reedijk, J.; Inorg. Chim. Acta2003, 351, 319.
  • 5
    Gajjar, D.; Patel, R.; Patel, H.; Patel, P. M.; Chem. Sci. Trans.2014, 3, 897.
  • 6
    Lee, J.; Um, S.; Kang, Y.; Baek, D.; Dyes Pigm.2005, 64, 25.
  • 7
    Hussan, M.; Khan, K. M.; Ali, S. I.; Parveen, R.; Shin, W. S.; Fibers Polym 2009, 10, 407.
  • 8
    Patel, K. C.; Patel, S. K.; Shal, R. R.; Patel, R. M.; Iran. J. Polym. Sci. Technol.2005, 4, 232.
  • 9
    Jan, J. Z.; Huang, B. H.; Lin, J. J.; Polym.2003, 44, 1003.
  • 10
    Son, Y.; Hong, J.; Lim, H.; Kim, T.; Dyes Pigm.2005, 44, 231.
  • 11
    Wu, H.; Saikia, D.; Chao, H.; Fang, J.; Tsai, L.; Kao, H.; Electrochim. Acta2014, 138, 30.
  • 12
    Dodangeh, M.; Yousefi, N.; Mohammadian, M.; Dyes Pigm.2015, 116, 20.
  • 13
    Liebes, L.; Conaway, C. C.; Hochster, H.; Mendoza, S.; Hecht, S. S.; Crowell, J.; Chung, F. L.; Anal. Biochem.2001, 291, 279.
  • 14
    Murase, T.; Fujita, M.; J. Org. Chem.2005, 70, 9369.
  • 15
    Dodangeh, M.; Gharanjig, K.; Arami, M.; Atashrouz, S.; Dyes Pigm 2014, 111, 30.
  • 16
    Tan, J. Q.; Chang, J. H.; Deng, M. Z.; Chin. J. Chem 2004, 22, 941.
  • 17
    Chen, K. Y.; Huang, C. T.; Int. J. Appl. Sci. Eng 2004, 2, 3.
  • 18
    Ji, Y.; Dong, C.; Kong, D.; Lu, J.; Zhou, Q.; Chem. Eng. J.2015, 263, 45.
  • 19
    Bellini, M. I.; Pinelli, L.; dos Santos, M. E.; Scavino, A. F.; Int. Biodeterior. Biodegrad.2014, 90, 131.
  • 20
    Srinivas, K.; Srinivas, U.; Rao, V. J.; Bhanuprakash, K; Kishore, K. H.; Murty, U. S. N.; Bioorg. Med. Chem. Lett.2005, 15, 1121.
  • 21
    Farouk, R.; Gaffer, H. E.; Carbohydr. Polym 2013, 97, 138.
  • 22
    Roman, G.; Eur. J. Med. Chem 2015, 89, 743.
  • 23
    Jiang, Z.; Ma, K.; Du, J.; Li, R.; Rena, X.; Huang, T. S.; Appl. Surf. Sci.2014, 288, 518.
  • 24
    Rizk, H. F.; Ibrahim, S. A.; El-Borai, M. A.; Dyes Pigm.2015, 112, 86.
  • 25
    Gorensek, M.; Dyes Pigm.1999, 40, 225.
  • 26
    Saeed, A.; Shabir, G.; Arabian J. Chem.2014, in press, DOI: 10.1016/j.arabjc.2014.11.010.
    » https://doi.org/10.1016/j.arabjc.2014.11.010
  • 27
    Kuplich, M. D.; Grasel, F. S.; Campo, L. F.; Rodembusch, F. S.; Stefani, V.; J. Braz. Chem. Soc.2012, 23, 25.
  • 28
    Patel, D. R.; Patel, B. M.; Patel, N. B.; Patel, K. C.; J. Saudi Chem. Soc 2014, 18, 245.
  • 29
    Rizk, H. F.; Ibrahim, S. A.; El-Borai, M. A.; Dyes Pigm.2015, 112, 86.
  • 30
    Yrjölä, S.; Sarparanta, M.; Airaksinen, A. J.; Hytti, M.; Kauppinen, A.; Pasonen-Seppänen, S.; Adinolfi, B.; Nieri, P.; Manera, C.; Keinänen, O.; Poso, A.; Nevalainen, T. J.; Parkkari, T.; Eur. J. Pharm. Sci.2015, 67, 85.
  • 31
    Lee, J. K.; Um, S. I; Kang, Y.; Baek, D. J.; Dyes Pigm.2005, 64, 25.
  • 32
    Um, S. I.; Lee, J. K.; Kang, Y.; Baek, D. J.; Dyes Pigm.2006, 70, 84.
  • 33
    Roohi, H.; Mohtamedifar, N.; Hejazi, F.; Chem. Phys.2014, 444, 66.
  • 34
    Coelho, F. L.; Rodembusch, F. S.; Campo, L. F.; Dyes Pigm.2014, 110, 134.
  • 35
    Dick, P. F.; Coelho, F. L.; Rodembusch, F. S.; Campo, L. F.; Tetrahedron Lett 2014, 55, 3024.
  • 36
    Patil, V. S.; Padalkar, V. S.; Tathe, A. B.; Sekar, N.; Dyes Pigm.2013, 98, 507.
  • 37
    Alves, R. M.; Rodembusch, F. S.; Habis, C.; Moreira, E. C.; Mater. Chem. Phys 2014, 148, 833.
  • 38
    Grasel, F. S.; de Oliveira, T. E.; Netz, P. A.; J. Braz. Chem. Soc.2015, 26, 420.
  • 39
    Holler, M. G.; Campo, L. F.; Brandelli, A.; Stefani, V.; J. Photochem. Photobiol. A2002, 149, 217.
  • 40
    Rzeska, A.; Malicka, J.; Guzow, K.; Szabelski, M.; Wiczk, W.; J. Photochem. Photobiol. A2001, 146, 9.
  • 41
    Matson, W. T.; Fluorescent and Luminescent Probes for Biological Activity: a Practical Guide to Technology for Quantitative Real-time Analysis; Academic Press: London, 1999.
  • 42
    Demmer, C. S.; Bunch, L.; Eur. J. Med. Chem.2014, in press, DOI: 10.1016/j.ejmech.2014.11.064.
    » https://doi.org/10.1016/j.ejmech.2014.11.064
  • 43
    Contreras, R.; Flores-Parra, A.; Mijangos, E.; Téllez, F.; López-Sandoval, H.; Barba-Behrens, N.; Coord. Chem. Rev 2009, 253, 1979.
  • 44
    Li, H.; Guo, Y.; Lei, Y.; Gao, W.; Liu, M.; Chen, J.; Hu, Y.; Huang, X.; Wu, H.; Dyes Pigm.2015, 112, 105.
  • 45
    Song, B.; Zhuang, Q.; Ying, L.; Liu, X.; Han, Z.; Polym. Degrad. Stab.2012, 97, 1569.
  • 46
    Kim, S. H.; Park, S.; Kwon, J. E.; Park, S. Y.; Adv. Funct. Mater 2011, 21, 644.
  • 47
    Shono, H.; Ohkawa, T.; Tomoda, H.; Mutai, T.; Araki, K.; ACS Appl. Mater. Interfaces2011, 3, 654.
  • 48
    Liang, Z.; Liu, Z.; Jiang, L.; Gao, Y.; Tetrahedron Lett.2007, 48, 1629.
  • 49
    Hoffmann, H. S.; Stefani, V.; Benvenutti, E. V.; Costa, T. M. H.; Gallas, M. R.; Mater. Chem. Phys.2011, 126, 97.
  • 50
    Campo, L. F.; Corrêa, D. S.; Araújo, M. A.; Stefani, V.; Macromol. Rapid Commun 2000, 21, 832.
  • 51
    Woolfe, G. J.; Melzig, M.; Schneider, S.; Dorr, F.; Chem. Phys 1983, 77, 127.
  • 52
    Verdasco, G.; Martín, M. A.; del Castillo, B.; López Alvarado, P.; Menéndez, P. C.; Anal. Chim Acta1995, 303, 73.
  • 53
    Santra, S.; Krishnamoorthy, G.; Dogra, S. K.; Chem. Phys. Lett.1999, 311, 55.
  • 54
    Krishnamoorthy, G.; Dogra, S. K.; J. Lumin.2000, 92, 103.
  • 55
    Krishnamoorthy, G.; Dogra, S. K.; J. Lumin.2000, 92, 91.
  • 56
    Rodembusch, F. S.; Campo, L. F.; Leusin, F. P.; Stefani, V.; J. Lumin.2007, 126, 728.

Data availability

Publication Dates

  • Publication in this collection
    Dec 2015

History

  • Received
    18 Mar 2015
  • Accepted
    09 June 2015
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br