Acessibilidade / Reportar erro

Synthesis and Antioxidant and Antimicrobial Properties of β-Hydroxy Sulfides, Sulfoxides, and Sulfones Derived from Cardanol and Glycerol Derivatives

Abstract

Natural and synthetic sulfur-bearing organic compounds have many applications in medicinal chemistry. This article reports the preparation of amphiphilic β-hydroxy sulfides, sulfoxides, and sulfones derived from cardanol and glycerol. Thiolysis of cardanol epoxide 3 with various thiols (4a-4j) in ethanol or water yielded the corresponding β-hydroxy sulfides 5a-5j (61-95%). Treatment with 30% H2O2 in acetic acid at ambient temperature completely converted these products into β-hydroxy sulfoxides 6a-6j and sulfones 7a, 7c-7f, 7h-7j. The synthesized compounds were characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, high-resolution mass spectroscopy (HRMS) and performed the in vitro evaluation antimicrobial activities against standard strains of Staphylococcus aureus and Escherichia coli. Compounds 5a, 5d-5f, and 5h-5j proved moderately active against S. aureus. None of the compounds were active against E. coli. β-Hydroxy-sulfides 5a-5j were also evaluated for antioxidant properties but failed to exhibit significant activity.

Keywords:
CNSL; cardanol; hydroxy sulfides; epoxide ring opening; antibacterial activity


Introduction

Sulfur-bearing organic compounds are ubiquitous in nature. Because sulfur is, after chlorine, the most abundant element in sea water, organosulfur compounds are typically isolated from marine organisms.11 Kornprobst, J.-M.; Sallenave, C.; Barnathan, G.; Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 1998, 119, 1.,22 Marakalala, M. B.; Mmutlane, E. M.; Kinfe, H. H.; Beilstein J. Org. Chem. 2018, 14, 1668. In the molecular architecture of these natural compounds, sulfur can be a component of various functional groups, exhibiting differing states of oxidation, as in thiols, sulfides (acyclic or heterocyclic), disulfides, sulfoxides, and sulfonates.22 Marakalala, M. B.; Mmutlane, E. M.; Kinfe, H. H.; Beilstein J. Org. Chem. 2018, 14, 1668.,33 Prinsep, M. R. In Studies in Natural Products Chemistry, vol. 28; Rahman, A.-U., ed.; Elsevier: Amsterdam, The Netherlands, 2003, p. 617-751. Antioxidant, antimicrobial, anti-inflammatory, antitumor, anti-HIV, and calcium-channel-antagonist activities make natural and synthetic organic compounds containing sulfur useful for numerous applications in medicinal chemistry.44 Tehri, P.; Aegurula, B.; Peddinti, R. K.; Tetrahedron Lett. 2017, 58, 2062. β-Hydroxy sulfides are constituents of several biologically relevant synthetic materials.22 Marakalala, M. B.; Mmutlane, E. M.; Kinfe, H. H.; Beilstein J. Org. Chem. 2018, 14, 1668. Figure 1 shows examples of natural and synthetic compounds of clinical value that incorporate β-hydroxy sulfides. Leukotriene E4 (LTE4), isolated from mast cells and extensively investigated for allergy and asthma, is a member of a family of leukocyte-generated eicosanoids containing β-hydroxy sulfides.55 Foster, H. R.; Fuerst, E.; Branchett, W.; Lee, T. H.; Cousins, D. J.; Woszczek, C.; Sci. Rep. 2016, 6, 20461. Pteriatoxin A, isolated from a Japanese mollusk, has proven an extremely potent neurotoxin to mice.66 Takada, N.; Umemura, N.; Suenaga, K.; Uemura, D.; Tetrahedron Lett. 2001, 42, 3495. Cyclothiocurvularin is a fungal product isolated from Penicillium sp.77 de Castro, M. V.; Ióca, L. P.; Williams, D. E.; Costa, B. Z.; Mizuno, C. M.; Santos, M. F. C.; de Jesus, K.; Ferreira, É. L. F.; Seleghim, M. H. R.; Sette, L. D.; Pereira Filho, E. R.; Ferreira, A. G.; Gonçalves, N. S.; Santos, R. A.; Patrick, B. O.; Andersen, R. J.; Berlinck, R. G. S. J.; Nat. Prod. 2016, 79, 1668. Diltiazem and naltiazem are synthetic β-hydroxy sulfides used as calcium channel blockers in the treatment of hypertension, angina pectoris, and some types of cardiac arrhythmia.88 O’Connor, S. E.; Grosset, A.; Janiak, P.; Fundam. Clin. Pharmacol. 1999, 13, 145.

Figure 1
Examples of β-hydroxy sulfides found in natural (leukotriene E4, pteriatoxin A, cyclothiocurvularin) and synthesized products (diltiazem and naltiazem).

In line with our interest to explore the Brazilian biomass for substances of special structural and chemical interest, our research group has been investigating the potential of cardanol (1) and glycerol (2) to yield hybrid compounds for biological and technological applications. Cardanol is the main phenolic component in technical-grade cashew nutshell liquid (CNSL). Anacardic acid, abundant in these shells, undergoes decarboxylation when the nuts are roasted for human consumption, yielding cardanols with a range of unsaturated alkyl chains99 Mazzeto, S. E.; Lomonaco, D.; Mele, G.; Quim. Nova 2009, 32, 732. (Scheme 1).

Scheme 1
Decarboxylation of anacardic acid.

The scientific community and the industrial sector hold a consensus that glycerol availability is critical for large-scale biodiesel production, hence the growing interest in alternative sources of glycerol, whether as crude material or as high-added-value derivatives.1010 Beatriz, A.; Araújo, Y. J. K.; de Lima, D. P.; Quim. Nova 2011, 34, 306; Mota, C. J. A.; da Silva, C. X. A.; Gonçalves, V. L. C.; Quim. Nova 2009, 32, 639.

We prepared cardanol epoxide 3 (Figure 2) from saturated cardanol (n = 0) and racemic epichlorohydrin (a glycerol derivative). The cardanol epoxide molecule is suitable for achieving oxirane ring opening upon attack by a range of nucleophiles, including amines, halogens, alcohols, and hydroxide ions. We recently reported the preparation of fluorescent lipophilic compounds for use as fuel markers (4-6),1111 Braga, F. C.; Avvari, N. P.; Gomes, R. S.; Nascimento, V. A.; Oliveira, S. L.; Caires, A. R. L.; de Lima, D. P.; Beatriz, A.; Dyes Pigm. 2017, 141, 235. lipophilic antimicrobials (7),1212 Manda, B. R.; Avvari, N. P.; Thatikonda, N. R.; Lacerda Jr., V.; Barbosa, L. R.; Santos, H.; Romão, W.; Pavan, F. R.; Ribeiro, C. M.; dos Santos, E. A.; Marques, M. R.; de Lima, D. P.; Micheletti, A. C.; Beatriz, A.; J. Braz. Chem. Soc. 2018, 29, 639. and potent larvicides (10) against Aedes aegypti larvae1313 Paiva, D. R.; de Lima, D. P.; Avvari, N. P.; Arruda, E. J.; Cabrini, I.; Marques, M. R.; Santos, E. A.; Biaggio, F. C.; Sangi, D. P.; Beatriz, A.; An. Acad. Bras. Cienc. 2017, 89, 373. (Figure 2).

Figure 2
Examples of cardanol and glycerol derivatives.

The great versatility of cardanol epoxide has boosted our interest in obtaining amphiphilic β-hydroxy sulfides through ring opening with thiols and subsequent oxidation of sulfides to sulfoxides and corresponding sulfones.

β-Hydroxy sulfides can be generated by thiolyzing epoxides using catalysts such as rongalite in the presence of potassium carbonate in dimethylformamide (DMF)1414 Ganesh, V.; Chandrasekaran, S.; Synthesis 2009, 19, 3267. or amberlyst-15 in toluene.1515 Lanke, S. R.; Bhanage, B. M.; Catal. Commun. 2013, 41, 29. Other methods have been developed1616 Ahmad, S.; Zahoor, A. F.; Naqvi, S. A. R.; Akash, M.; Mol. Diversity 2018, 22, 191. using Lewis or Brønsted acids, such as B(C6F5)3,1717 Chandrasekhar, S.; Reddy, C. R.; Babu, B. N.; Chandrashekar, G.; Tetrahedron Lett. 2002, 43, 3801. InCl3,1818 Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L.; Tetrahedron Lett. 2003, 44, 6785. ZnCl2,1919 Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L.; J. Org. Chem. 2003, 68, 8248. Ga(OTf)3,2020 Su, W.; Chen, J. X.; Wu, H. Y.; Jin, C.; J. Org. Chem. 2007, 72, 4524. and HBF4-SiO2.2121 Bandgar, B. P.; Patil, A. V.; Chavan, O. S.; Kamble, V. T.; Catal. Commun. 2007, 8, 1065. Attempting to minimize the use of noxious organic solvents, some investigators2222 Zhu, J.; Li, R.; Ge, Z.; Cheng, T.; Li, R. ; Chin. J. Chem. 2009, 27, 791.,2323 Mukherjee, C.; Maiti, G. H.; Misra, A. K.; ARKIVOC 2008, xi, 46. have achieved epoxide thiolysis in water in the presence or absence of a base. Searching for an environmentally friendly process,2424 Sato, K.; Aoki, M.; Noyori, R.; Science 1998, 281, 1646. we chose to perform thiolysis in aqueous or ethanol media, with subsequent sulfide oxidation using 30% H2O2 in glacial acetic acid (Scheme 2).

Scheme 2
Synthesis of β-hydroxy sulfides, sulfoxides, and sulfones derived from cardanol and glycerol.

The fact that the lipophilic nature of some antibiotics has a significant effect on antibacterial activity1212 Manda, B. R.; Avvari, N. P.; Thatikonda, N. R.; Lacerda Jr., V.; Barbosa, L. R.; Santos, H.; Romão, W.; Pavan, F. R.; Ribeiro, C. M.; dos Santos, E. A.; Marques, M. R.; de Lima, D. P.; Micheletti, A. C.; Beatriz, A.; J. Braz. Chem. Soc. 2018, 29, 639. furthered our group’s interest in developing novel antimicrobials, prompting us to design novel, potentially bioactive molecules. The generated organosulfur compounds were evaluated for antimicrobial and antioxidant properties.

Experimental

General methods

All reagents and solvents used were commercially obtained (Merck, São Paulo, Brazil and/or Labsynth, São Paulo, Brazil) and used as purchased. The technical cashew (Anacardium occidentale L.) nutshell liquid (tCNSL) was donated by Kardol Ind. Química (Campo Grande, Brazil). Cardanol, the major constituent of tCNSL, was isolated according to the method described in patent BR 102014030002-3 A2.2525 Beatriz, A.; Lima, D. P.; Arruda, E. J.; Paiva, D. R.; Cossa, T. M.; BR pat. 102014030002-3 A2 2016. Catalytic hydrogenation was carried out in a Parr hydrogenation apparatus, applying our previously reported method.1111 Braga, F. C.; Avvari, N. P.; Gomes, R. S.; Nascimento, V. A.; Oliveira, S. L.; Caires, A. R. L.; de Lima, D. P.; Beatriz, A.; Dyes Pigm. 2017, 141, 235. Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 F254 (Merck, São Paulo, Brazil). The plates were visualized using UV radiation (254 nm), iodine, or both. Column chromatography was performed on Merck silica gel (60 × 120 mesh) in a glass column. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance DPX-300 apparatus using tetramethylsilane (TMS) as the internal standard. Chemical shifts (δ) were recorded in ppm with respect to TMS, with coupling constants (J) given in hertz. Multiplicity: br = broad, s = singlet, d = doublet, t = triplet, m = multiplet. High-resolution mass spectroscopy (HRMS) was performed on a UFLC Shimadzu LC-20AD device equipped with a Bruker Daltonics IES-Q-QTOF-microTOF III detector operating in chemical-ionization positive-ion mode (m/z120-1200).

Experimental procedure

Synthesis of β-hydroxy sulfides 5a-5j

A 2 mL volume of 0.03 M sodium hydroxide in ethanol was added to an ethanol solution (2 mL) of 1 mmol cardanol epoxide 31111 Braga, F. C.; Avvari, N. P.; Gomes, R. S.; Nascimento, V. A.; Oliveira, S. L.; Caires, A. R. L.; de Lima, D. P.; Beatriz, A.; Dyes Pigm. 2017, 141, 235. and 1.0 mmol thiol at ambient temperature and the mixture stirred at 30 °C for 2 h. The reaction was monitored by TLC, the resulting mixture allowed to cool to room temperature, and ethanol finally removed under vacuum. The remaining mixture was partitioned between water (20 mL) and ethyl acetate (25 mL), the organic layer separated, and the aqueous layer extracted with ethyl acetate (2 × 20 mL) and dried over MgSO4. The solvent was removed under vacuum and the crude compound was purified by column chromatography using 20-50% EtOAc in hexane as the eluent to yield the desired β-hydroxy sulfides (5a-5j).

1H NMR, 13C NMR, and MS data of isolated compounds

1-(3-Pentadecylphenoxy)-3-(phenylthio)propan-2-ol (5a)

Yield: 80%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.0 Hz, CH3), 1.18 (m, 24H, 12CH2), 1.51 (m, 2H, CH2), 2.31 (br, 1H, OH), 2.47 (t, 2H, J7.7 Hz, CH2), 3.03-3.20 (m, 2H, CH2), 3.90-3.95 (m, 2H, CH2), 4.00-4.04 (m, 1H, CH), 6.59-6.62 (m, 2H, Ar-H), 6.69-6.72 (d, 1H, J7.5 Hz, Ar-H), 7.06-7.13 (m, 2H, Ar-H), 7.16-7.22 (m, 2H, Ar-H), 7.31-7.34 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 36.0, 68.6, 70.0, 111.5, 114.7, 121.4, 126.5, 129.1, 129.2, 129.8, 135.1, 144.7, 158.3; HRMS (electrospray ionization (ESI)) m/z, calcd. for C30H47O2S+ [M + H]+: 471.3291, found: 471.3237.

1-(3-Pentadecylphenoxy)-3-(p-tolylthio)propan-2-ol (5b)

Yield: 62%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.85 (t, 3H, J6.9 Hz, CH3), 1.24-1.29 (m, 24H, 12CH2), 1.55-1.62 (m, 2H, CH2), 2.30 (br, 3H, CH3), 2.51-2.57 (t, 2H, J7.6 Hz, CH2), 2.69-2.74 (br, 1H, OH), 3.05-3.22 (m, 2H, CH2), 3.95-4.08 (m, 3H, CH2 and CH), 6.65-6.68 (m, 2H, Ar-H), 6.77 (d, 1H, J7.4 Hz, Ar-H), 7.08 (d, 2H, J7.9 Hz, Ar-H), 7.15 (t, 1H, J7.6 Hz, Ar-H), 7.29 (d, 2H, J7.9 Hz, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 21.0, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 38.3, 68.5, 69.9, 111.5, 114.7, 121.4, 129.1, 129.9, 130.7, 136.9, 144.7, 158.4; HRMS (ESI) m/z, calcd. for C31H49O2S+ [M + H]+: 485.3448, found: 485.3468.

1-((4-Fluorophenyl)thio)-3-(3-pentadecylphenoxy)propan-2-ol (5c)

Yield: 80%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.79 (t, 3H, J6.4 Hz, CH3), 1.17-1.22 (m, 24H, 12CH2), 1.45-1.55 (m, 2H, CH2), 2.49 (t, 2H, J7.7 Hz, CH2), 2.55 (br, 1H, OH), 2.96-3.12 (m, 2H, CH2), 3.87-3.99 (m, 3H, CH2 and CH), 6.57-6.60 (m, 2H, Ar-H), 6.69 (1d, 1H, J7.5 Hz, Ar-H), 6.87 (t, 2H, J8.7 Hz, Ar-H), 7.05 (t, 1H, J7.7 Hz, Ar-H), 7.30 (dd, 2H, J8.8, 5.2 Hz, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.3, 31.9, 35.9, 38.7, 68.6, 69.9, 111.4, 114.7, 116.0, 116.3, 121.4, 129.1, 130.0, 130.1, 132.7, 132.8, 144.7, 158.2, 160.4, 163.6; HRMS (ESI) m/z, calcd. for C30H46FO2S+ [M + H]+: 489.3197, found: 489.3189.

1-((2-Chlorophenyl)thio)-3-(3-pentadecylphenoxy)propan-2-ol (5d)

Yield: 90%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.77 (t, 3H, J6.4 Hz, CH3), 1.12-1.22 (m, 24H, 12CH2), 1.51-1.55 (m, 2H, CH2), 2.50 (t, 2H, J7.7 Hz, CH2), 3.04-3.23 (m, 2H, CH2), 3.93-3.98 (m, 2H, CH2), 4.00-4.08 (m, 1H, CH), 6.59-6.64 (m, 2H, Ar-H), 6.70 (d, 1H, J7.5 Hz, Ar-H), 7.00-7.15 (m, 3H, Ar-H), 7.26-7.33 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.2, 22.7, 29.4, 29.5, 29.6, 29.7, 31.4, 31.9, 36.0, 36.5, 68.6, 70.0, 111.5, 114.8, 121.5, 127.2, 127.3, 129.3, 129.6, 129.9, 134.3, 134.6, 144.8, 158.3; HRMS (ESI) m/z, calcd. for C30H46ClO2S+ [M + H]+: 505.2902, found: 505.2901.

1-((3-Chlorophenyl)thio)-3-(3-pentadecylphenoxy)propan-2-ol (5e)

Yield: 65%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.4 Hz, CH3), 1.18-1.23 (m, 24H, 12CH2), 1.49-1.54 (m, 2H, CH2), 2.49 (t, 2H, J7.7 Hz, CH2), 3.05-3.22 (m, 2H, CH2), 3.92-3.97 (m, 2H, CH2), 4.01-4.08 (m, 1H, CH), 6.60-6.64 (m, 2H, Ar-H), 6.72 (d, 1H, J7.4 Hz, Ar-H), 7.09-7.14 (m, 3H, Ar-H), 7.17-7.18 (m, 1H, Ar-H), 7.30-7.31 (br, 1H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.4, 29.5, 29.6, 29.7, 31.4, 31.9, 36.0, 37.1, 68.6, 69.8, 111.4, 114.7, 121.5, 126.5, 127.3, 128.8, 129.2, 130.0, 134.8, 137.5, 144.8, 158.2; HRMS (ESI) m/z, calcd. for C30H46ClO2S+ [M + H]+: 505.2902, found: 505.2901.

1-((4-Chlorophenyl)thio)-3-(3-pentadecylphenoxy)propan-2-ol (5f)

Yield: 88%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.4 Hz, CH3), 1.18-1.23 (m, 24H, 12CH2), 1.49-1.54 (m, 2H, CH2), 2.49 (t, 2H, J7.6 Hz, CH2), 3.02-3.29 (m, 2H, CH2), 3.90-4.03 (m, 3H, CH2 and CH), 6.59-6.62 (m, 2H, Ar-H), 6.71 (d, 1H, J7.4 Hz, Ar-H), 7.10 (t, 1H, J7.6 Hz, Ar-H), 7.16 (d, 2H, J8.4 Hz, Ar-H), 7.26 (d, 2H, J8.5 Hz, Ar-H); (13)C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 37.7, 68.6, 69.9, 111.4, 114.7, 121.5, 129.1, 131.0, 132.6, 133.7, 144.8, 158.2; HRMS (ESI) m/z, calcd. for C30H46BrO2S+ [M + H]+: 549.2396, found: 549.2394.

1-((2-Bromophenyl)thio)-3-(3-pentadecylphenoxy)propan-2-ol (5g)

Yield: 73%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.8 Hz, CH3), 1.17-1.26 (m, 22H, 11CH2), 1.48-1.59 (m, 2H, CH2), 2.43 (br, 1H, OH), 2.48 (t, 2H, J7.7 Hz, CH2), 3.05-3.23 (m, 2H, CH2), 3.97-3.99 (m, 2H, CH2), 4.02-4.10 (m, 1H, CH), 6.60-6.65 (m, 2H, Ar-H), 6.71 (d, 1H, J7.5 Hz, Ar-H), 6.92-6.98 (m, 1H, Ar-H), 7.06-7.18 (m, 2H, Ar-H), 7.29-7.32 (m, 1H, Ar-H), 7.45-7.48 (m, 1H, Ar-H); (13)C NMR (75 MHz, CDCl3) δ 14.1, 22.6, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 34.8, 35.9, 36.8, 68.5, 69.9, 111.5, 114.7, 121.5, 124.4, 127.3, 127.9, 129.2, 133.1, 136.6, 144.7, 158.2; HRMS (ESI) m/z, calcd. for C30H46BrO2S+ [M + H]+: 549.2396, found: 549.2224.

1-((4-Bromophenyl)thio)-3-(3-pentadecylphenoxy)propan-2-ol (5h)

Yield: 67%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.4 Hz, CH3), 1.18-1.23 (m, 24H, 12CH2), 1.49-1.54 (m, 2H, CH2), 2.22 (br, 1H, OH), 2.49 (t, 2H, J7.7 Hz, CH2), 3.02-3.19 (m, 2H, CH2), 3.93-3.96 (m, 2H, CH2), 3.98-4.03 (m, 1H, CH), 6.59-6.62 (m, 2H, Ar-H), 6.72 (d, 1H, J7.5 Hz, Ar-H), 7.08 (t, 1H, J7.7 Hz, Ar-H), 7.17-7.19 (m, 2H, Ar-H), 7.29-7.33 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 37.5, 68.6, 69.9, 111.4, 114.7, 120.4, 121.5, 129.2, 131.2, 132.1, 134.5, 144.8, 158.2; HRMS (ESI) m/z, calcd. for C30H46BrO2S+ [M + H]+: 549.2396, found: 549.2224.

1-((4-Aminophenyl)thio)-3-(3-pentadecylphenoxy)propan-2-ol (5i)

Yield: 61%; light yellow oil; 1H NMR (300 MHz, CDCl3) δ 0.81 (t, 3H, J6.5 Hz, CH3), 1.18-1.22 (m, 24H, 12CH2), 1.49-1.54 (m, 2H, CH2), 2.48 (t, 2H, J7.7 Hz, CH2), 2.86-3.06 (m, 2H, CH2), 3.22-3.32 (m, 3H, NH2 and OH), 3.89-3.98 (m, 3H, CH2 and CH), 6.57-6.64 (m, 4H, Ar-H), 6.67 (d, 1H, J7.6 Hz, Ar-H), 7.09 (t, 1H, J7.7 Hz, Ar-H), 7.18-7.22 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.4, 29.5, 29.6, 29.7, 31.4, 31.9, 36.0, 40.0, 68.4, 70.2, 111.5, 114.8, 116.3, 121.3, 129.1, 134.0, 144.7, 158.5; HRMS (ESI) m/z, calcd. for C30H48NO2S+ [M + H]+: 486.3400, found: 486.3404.

1-(Ethylthio)-3-(3-pentadecylphenoxy)propan-2-ol (5j)

Yield: 95%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.3 Hz, CH3), 1.18-1.23 (m, 27H, 12CH2 and CH3), 1.49-1.54 (m, 2H, CH2), 2.46-2.51 (m, 5H), 2.67-2.82 (m, 2H, CH2), 3.93-4.04 (m, 3H, CH2 and CH), 6.63-6.72 (m, 3H, Ar-H), 7.10 (t, 1H, J7.7 Hz, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 14.8, 22.7, 26.4, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.4, 35.9, 68.7, 70.3, 111.5, 114.8, 121.2, 129.2, 144.7, 158.4; HRMS (ESI) m/z, calcd. for C26H47O2S+ [M + H]+: 423.3291, found 423.3297.

1-Ethoxy-3-(3-pentadecylphenoxy)propan-2-ol (5k)

Yield: 40%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.8 Hz, CH3), 1.12-1.26 (m, 27H, 12CH2 and CH3), 1.52-1.57 (m, 2H, CH2), 2.34 (br, 1H, OH), 2.49 (t, 2H, J7.6 Hz, CH2), 3.45-3.58 (m, 4H, CH2), 3.93-3.95 (m, 2H, CH2), 4.05-4.12 (m, 1H, CH), 6.64-6.72 (m, 3H, Ar-H), 7.10 (t, 1H, J7.6 Hz, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 15.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 36.0, 66.9, 68.9, 69.1, 71.3, 111.4, 114.8, 121.3, 129.2, 144.7, 158.6.

Synthesis of β-hydroxy sulfoxides 6a-6j and sulfones 7a, 7c-7f, 7h-7j

Aqueous H2O2 solution (4 H2O2 equivalents) was added to a reaction tube containing 1 mmol of β-hydroxy sulfide (5a-5j) dissolved in acetic acid solution (1 mL) and the resulting reaction mixture was vigorously stirred at room temperature until completion of the reaction as judged by TLC. The solution was neutralized with NaOH and the product extracted with CH2Cl2. The organic phase was dried with anhydrous Na2SO4 and the material concentrated under reduced pressure. The crude mixture was fractionated in a chromatographic column with hexane:ethyl acetate (5:2) elution, resulting in compounds 6a-6j and 7a, 7c-7f, 7h-7j.

1H NMR, 13C NMR, and MS data of isolated compounds

1-(3-Pentadecylphenoxy)-3-(phenylsulfinyl)propan-2-ol (6a)

Yield: 60%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.8 Hz, CH3), 1.17-1.21 (m, 24H, 12CH2), 1.45-1.52 (m, 2H, CH2), 2.42-2.49 (m, 2H, CH2), 2.88-3.13 (m, 2H, CH2), 3.44 (br, 1H, OH), 3.86-4.07 (m, 2H, CH2), 4.47-4.56 (m, 2H, CH2), 6.55-6.71 (m, 3H, Ar-H), 7.03-7.10 (m, 1H, Ar-H), 7.43-7.48 (m, 3H, Ar-H), 7.57-7.62 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.6, 29.3, 29.4, 29.5, 29.6, 31.3, 31.8, 35.9, 60.0, 65.1, 67.1, 70.3, 70.7, 111.4, 114.6, 114.7, 121.4, 121.5, 123.9, 124.0, 129.1, 129.2, 129.3, 129.4, 131.1, 131.4, 142.9, 143.4, 144.6, 144.7, 158.1, 158.2; HRMS (ESI) m/z, calcd. for C30H47O3S+ [M + H]+: 487.3240, found: 487.3224.

1-(3-Pentadecylphenoxy)-3-(p-tolylsulfinyl)propan-2-ol (6b)

Yield: 75%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.86 (t, 3H, J6.9 Hz, CH3), 1.23-1.28 (m, 24H, 12CH2), 1.51-1.58 (m, 2H, CH2), 2.41 (s, 3H, CH3), 2.49-2.56 (m, 2H, CH2), 2.85-2.91 (m, 1H), 3.09 (m, 2H, CH2), 3.90-3.97 (m, 1H, CH2), 4.08-4.13 (m, 1H, CH2), 4.50-4.62 (m, 1H, CH), 6.61-6.70 (m, 2H, Ar-H), 6.74-6.78 (m, 1H, Ar-H), 7.10-7.17 (m, 1H, Ar-H), 7.32-7.34 (m, 2H, Ar-H), 7.52-7.57 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 21.4, 22.7, 29.4, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 58.7, 59.7, 65.7, 67.5, 70.6, 111.4, 114.8, 121.5, 121.6, 124.0, 129.1, 129.2, 130.1, 130.2, 139.4, 141.8, 144.8, 158.2; HRMS (ESI) m/z, calcd. for C31H49O3S+ [M + H]+: 501.3397, found: 501.3389.

1-((4-Fluorophenyl)sulfinyl)-3-(3-pentadecylphenoxy)propan-2-ol (6c)

Yield: 55%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.4 Hz, CH3), 1.18-1.25 (m, 24H, 12CH2), 1.45-1.48 (m, 2H, CH2), 2.44-2.50 (m, 2H, CH2), 2.84-3.14 (m, 2H, CH2), 3.38 (br, 1H, OH), 3.87-4.08 (m, 2H, CH2), 4.48-4.52 (m, 1H, CH), 6.56-6.64 (m, 2H, Ar-H), 6.69-6.73 (m, 1H, Ar-H), 7.07 (t, 1H, J6.9 Hz, Ar-H), 7.14-7.17 (m, 2H, Ar-H), 7.57-7.65 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 59.9, 60.1, 65.3, 67.1, 70.3, 70.6, 111.4, 114.6, 114.7, 116.6, 116.7, 116.9, 117.0, 121.5, 121.6, 126.2, 126.3, 126.4, 129.1, 129.2, 144.7, 144.8, 158.1, 162.9, 166.0; HRMS (ESI) m/z, calcd. for C30H46FO3S+ [M + H]+: 505.3146, found: 505.3186.

1-((2-Chlorophenyl)sulfinyl)-3-(3-pentadecylphenoxy)propan-2-ol (6d)

Yield: 67%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.9 Hz, CH3), 1.17-1.22 (m, 23H, 11CH2), 1.51 (m, 2H, CH2), 2.43-2.50 (m, 2H, CH2), 2.91-2.98 (m, 1H, CH2), 3.38-3.51 (m, 1H, CH2), 3.90-4.10 (m, 2H, CH2), 4.47-4.68 (m, 1H, CH), 6.55-6.72 (m, 3H, Ar-H), 7.02-7.12 (m, 1H, Ar-H), 7.31-7.49 (m, 3H, Ar-H), 7.86-7.92 (m, 1H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.6, 28.5, 29.3, 29.4, 29.5, 29.6, 31.3, 31.7, 31.9, 35.9, 55.7, 56.8, 65.6, 67.1, 70.4, 70.5, 111.3, 111.4, 114.7, 121.4, 121.5, 125.7, 126.3, 127.9, 128.1, 129.1, 129.2, 129.8, 129.9, 130.0, 132.2, 140.6, 141.6, 144.6, 144.7, 158.1, 158.2; HRMS (ESI) m/z, calcd. for C30H46ClO3S+ [M + H]+: 521.2851, found: 521.2871.

1-((3-Chlorophenyl)sulfinyl)-3-(3-pentadecylphenoxy)propan-2-ol (6e)

Yield: 54%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.5 Hz, CH3), 1.18-1.22 (m, 24H, 12CH2), 1.48-1.52 (m, 2H, CH2), 2.44-2.51 (m, 2H, CH2), 2.86-2.91 (br, 1H, OH), 3.06-3.17 (m, 2H, CH2), 3.87-4.09 (m, 2H, CH2), 4.47-4.53 (m, 1H, CH), 6.57-6.65 (m, 2H, Ar-H), 6.69-6.74 (m, 1H, Ar-H), 7.05-7.13 (m, 2H, Ar-H), 7.39-7.49 (m, 3H, Ar-H), 7.61-7.63 (m, 1H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 59.8, 59.9, 65.4, 67.1, 70.3, 70.5, 111.4, 114.6, 114.7, 121.6, 121.6, 122.0, 124.0, 124.1, 129.2, 129.3, 130.6, 130.7, 131.3, 131.6, 135.8, 144.8, 144.8, 145.0, 145.3, 158.1; HRMS (ESI) m/z, calcd. for C30H46ClO3S+ [M + H]+: 521.2851, found: 521.2873.

1-((4-Chlorophenyl)sulfinyl)-3-(3-pentadecylphenoxy)propan-2-ol (6f)

Yield: 57%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.6 Hz, CH3), 1.18-1.22 (m, 24H, 12CH2), 1.46-1.53 (m, 2H, CH2), 2.44-2.50 (m, 2H, CH2), 2.83-3.15 (m, 2H, CH2), 3.24-3.39 (br, 1H, OH), 3.86-4.07 (m, 2H, CH2), 4.44-4.52 (m, 1H, CH), 6.55-6.64 (m, 2H, Ar-H), 6.69-6.73 (m, 1H, Ar-H), 7.05-7.12 (m, 1H, Ar-H), 7.43-7.46 (m, 2H, Ar-H), 7.51-7.57 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 59.7, 59.9, 65.3, 67.1, 70.3, 70.5, 111.4, 114.7, 114.7, 121.6, 121.6, 125.4, 125.4, 129.2, 129.3, 129.7, 129.8, 137.5, 137.7, 141.5, 142.0, 144.7, 144.8, 158.1; HRMS (ESI) m/z, calcd. for C30H46ClO3S+ [M + H]+: 521.2851, found: 521.2873.

1-((2-Bromophenyl)sulfinyl)-3-(3-pentadecylphenoxy)propan-2-ol (6g)

Yield: 60%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.81 (t, 3H, J6.4 Hz, CH3), 1.18-1.23 (m, 24H, 12CH2), 1.48-1.54 (m, 2H, CH2), 2.49 (t, 2H, J7.4 Hz, CH2), 2.88-2.98 (m, 1H, CH2), 3.43-3.57 (m, 1H, CH2), 3.91-4.11 (m, 2H, CH2), 4.45-4.68 (m, 1H, CH), 6.56-6.73 (m, 3H, Ar-H), 7.13 (t, 1H, J7.9 Hz, Ar-H), 7.30-7.36 (m, 1H, Ar-H), 7.49-7.56 (m, 2H, Ar-H), 7.87-7.92 (m, 1H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 56.9, 65.9, 67.3, 70.4, 70.5, 111.5, 114.8, 118.4, 121.6, 126.2, 126.8, 128.6, 128.8, 129.2, 132.5, 133.0, 133.2, 143.5, 144.8, 158.1; HRMS (ESI) m/z, calcd. for C30H46BrO3S+ [M + H]+: 565.2346, found: 565.2348.

1-((4-Bromophenyl)sulfinyl)-3-(3-pentadecylphenoxy)propan-2-ol (6h)

Yield: 59%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.81 (t, 3H, J6.5 Hz, CH3), 1.18-1.22 (m, 24H, 12CH2), 1.47-1.53 (m, 2H, CH2), 2.44-2.51 (m, 2H, CH2), 2.83-3.15 (m, 3H, CH2), 3.86-4.08 (m, 2H, CH2), 4.45-4.53 (m, 1H, CH), 6.56-6.64 (m, 2H, Ar-H), 6.72 (d, 1H, J7.2 Hz, Ar-H), 7.08 (t, 2H, J7.1 Hz, Ar-H), 7.46 (t, 2H, J8.6 Hz, Ar-H), 7.59-7.62 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 59.5, 59.8, 65.4, 67.1, 70.3, 70.5, 111.4, 114.7, 114.7, 121.6, 121.6, 125.6, 125.7, 125.9, 129.2, 129.3, 132.6, 132.7, 144.8, 158.1; HRMS (ESI) m/z, calcd. for C30H46BrO3S+ [M + H]+: 565.2346, found: 565.2368.

1-((4-Aminophenyl)sulfinyl)-3-(3-pentadecylphenoxy)propan-2-ol (6i)

Yield: 45%; light yellow oil; 1H NMR (300 MHz, CDCl3) δ 0.86 (t, 3H, J6.2 Hz, CH3), 1.23 (m, 24H, 12CH2), 1.52-1.57 (m, 2H, CH2), 2.52 (t, 2H, J6.7 Hz, CH2), 2.88-3.18 (m, 2H, CH2), 3.88-4.11 (m, 3H, OH and CH2), 4.48-4.58 (m, 1H, CH), 6.62-6.77 (m, 5H, Ar-H), 7.10-7.16 (m, 1H, Ar-H), 7.41-7.47 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 58.9, 59.6, 65.6, 67.4, 70.4, 70.7, 111.4, 114.7, 114.8, 115.1, 115.2, 121.4, 126.1, 126.4, 129.2, 144.7, 149.7, 150.0, 158.2; HRMS (ESI) m/z, calcd. for C30H48NO3S+ [M + H]+: 502.3349, found: 502.3319.

1-(Ethylsulfinyl)-3-(3-pentadecylphenoxy)propan-2-ol (6j)

Yield: 65%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.81 (t, 3H, J6.6 Hz, CH3), 1.14-1.33 (m, 3H, CH2 and CH3), 1.50-1.55 (m, 2H, CH2), 1.69 (br, 1H, OH), 2.49 (t, 2H, J7.7 Hz, CH2), 2.72-3.01 (m, 4H, CH2), 3.86-4.10 (m, 3H, CH2), 4.54-4.62 (m, 1H, CH), 6.63-6.67 (m, 2H, Ar-H), 6.73 (d, 1H, J7.6 Hz, Ar-H), 7.12 (t, 1H, J7.7 Hz); 13C NMR (75 MHz, CDCl3) δ 6.9, 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 46.0, 52.9, 54.0, 65.3, 67.0, 111.4, 114.7, 121.6, 129.3, 144.8, 158.2; HRMS (ESI) m/z, calcd. for C26H47O3S+ [M + H]+: 439.3240, found: 439.3262.

1-(3-Pentadecylphenoxy)-3-(phenylsulfonyl)propan-2-ol (7a)

Yield: 30%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.80 (t, 3H, J6.6 Hz, CH3), 1.18-1.22 (m, 24H, 12CH2), 1.47-1.52 (m, 2H, CH2), 2.47 (t, 2H, J7.7 Hz, CH2), 3.33-3.45 (m, 2H, CH2), 3.88-3.97 (m, 2H, CH2), 4.41-4.49 (m, 1H, CH), 6.55-6.60 (m, 2H, Ar-H), 6.71 (d, 1H, J7.5 Hz, Ar-H), 7.08 (t, 1H, J7.5 Hz, Ar-H), 7.49-7.54 (m, 2H, Ar-H), 7.58-7.63 (m, 1H, Ar-H), 7.88-7.91 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.3, 29.5, 29.5, 29.6, 31.3, 31.9, 35.9, 59.4, 65.1, 69.9, 111.4, 114.7, 121.7, 128.0, 129.2, 129.4, 134.1, 139.1, 144.8, 157.9; HRMS (ESI) m/z, calcd. for C30H47O4S+ [M + H]+: 503.3190, found: 503.3188.

1-((4-Fluorophenyl)sulfonyl)-3-(3-pentadecylphenoxy)propan-2-ol (7c)

Yield: 45%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.81 (t, 3H, J6.6 Hz, CH3), 1.18-1.23 (m, 24H, 12CH2), 1.48-1.53 (m, 2H, CH2), 2.47 (t, 2H, J7.7 Hz, CH2), 3.32-3.43 (m, 2H, CH2), 3.89-3.98 (m, 2H, CH2), 4.42-4.49 (m, 1H, CH), 6.56-6.60 (m, 2H, Ar-H), 6.72 (d, 1H, J7.5 Hz, Ar-H), 7.09 (t, 1H, J7.5 Hz, Ar-H), 7.16-7.22 (m, 2H, Ar-H), 7.89-7.95 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 59.6, 65.2, 69.8, 111.4, 114.7, 116.6, 116.9, 121.8, 129.3, 130.9, 131.0, 144.9, 157.9; HRMS (ESI) m/z, calcd. for C30H46FO4S+ [M + H]+: 521.3095, found: 521.3087.

1-((2-Chlorophenyl)sulfonyl)-3-(3-pentadecylphenoxy)propan-2-ol (7d)

Yield: 23%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.81 (t, 3H, J6.8 Hz, CH3), 1.18 (m, 20H, 10CH2), 1.51 (m, 6H, 3CH2), 2.48 (t, 2H, J7.7 Hz, CH2), 3.63-3.82 (m, 2H, CH2), 3.89-3.99 (m, 2H, CH2), 4.43-4.45 (m, 1H, CH), 6.56-6.60 (m, 2H, Ar-H), 6.71 (d, 1H, J7.6 Hz, Ar-H), 7.09 (t, 1H, J7.6 Hz, Ar-H), 7.39-7.44 (m, 1H, Ar-H), 7.47-7.52 (m, 2H, Ar-H), 8.08-8.11 (m, 1H, Ar-H); HRMS (ESI) m/z, calcd. for C30H46ClO4S+ [M + H]+: 537.2800, found: 537.2798.

1-((3-Chlorophenyl)sulfonyl)-3-(3-pentadecylphenoxy)propan-2-ol (7e)

Yield: 36%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.81 (t, 3H, J6.5 Hz, CH3), 1.18-1.23 (m, 24H, 12CH2), 1.48-1.53 (m, 2H, CH2), 2.48 (t, 2H, J7.7 Hz, CH2), 3.35-3.46 (m, 2H, CH2), 3.90-3.99 (m, 2H, CH2), 4.44-4.51 (m, 1H, CH), 6.57-6.61 (m, 2H, Ar-H), 6.72 (d, 1H, J7.7 Hz, Ar-H), 7.09 (t, 1H, J7.7 Hz, Ar-H), 7.46 (t, 1H, J7.9 Hz, Ar-H), 7.57 (d, 1H, J8.8 Hz, Ar-H), 7.78 (d, 1H, J7.9 Hz, Ar-H), 7.90 (s, 1H, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.6, 29.7, 31.4, 31.9, 59.5, 65.2, 69.8, 111.4, 114.8, 116.6, 121.8, 126.1, 128.2, 129.3, 130.7, 134.2, 142.8, 156.4; HRMS (ESI) m/z, calcd. for C30H46ClO4S+ [M + H]+: 537.2800, found: 537.2808.

1-((4-Chlorophenyl)sulfonyl)-3-(3-pentadecylphenoxy)propan-2-ol (7f)

Yield: 38%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.81 (t, 3H, J6.6 Hz, CH3), 1.18-1.23 (m, 22H, 11CH2), 1.50-1.53 (m, 4H, 2CH2), 2.48 (t, 2H, J7.7 Hz, CH2), 3.14 (br, 1H, OH), 3.32-3.44 (m, 2H, CH2), 3.89-3.98 (m, 2H, CH2), 4.41-4.48 (m, 1H, CH), 6.56-6.60 (m, 2H, Ar-H), 6.72 (d, 1H, J7.6 Hz, Ar-H), 7.09 (t, 1H, J7.6 Hz, Ar-H), 7.49 (d, 2H, J8.7 Hz, Ar-H), 7.83 (d, 2H, J8.7 Hz, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 59.6, 65.2, 69.8, 111.4, 114.7, 121.8, 129.3, 129.5, 129.8, 137.7, 140.9, 144.9, 158.1; HRMS (ESI) m/z, calcd. for C30H46ClO4S+ [M + H]+: 537.2800, found: 537.2808.

1-((4-Bromophenyl)sulfonyl)-3-(3-pentadecylphenoxy)propan-2-ol (7h)

Yield: 33%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.78 (t, 3H, J6.5 Hz, CH3), 1.18-1.22 (m, 24H, 12CH2), 1.47-1.53 (m, 2H, CH2), 2.47 (t, 2H, J7.7 Hz, CH2), 3.37-3.39 (m, 2H, CH2), 3.88-3.97 (m, 2H, CH2), 4.41-4.48 (m, 1H, CH), 6.55-6.60 (m, 2H, Ar-H), 6.71 (d, 1H, J7.5 Hz, Ar-H), 7.09 (t, 1H, J7.7 Hz, Ar-H), 7.65 (d, 2H, J8.6 Hz, Ar-H), 7.75 (d, 2H, J8.6 Hz, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 59.5, 65.2, 69.8, 111.4, 114.7, 121.8, 129.3, 129.5, 129.6, 132.7, 138.2, 144.9, 157.8; HRMS (ESI) m/z, calcd. for C30H46BrO4S+ [M + H]+: 581.2295, found: 581.2297.

1-((4-Aminophenyl)sulfonyl)-3-(3-pentadecylphenoxy)propan-2-ol (7i)

Yield: 30%; light yellow oil; 1H NMR (300 MHz, CDCl3) δ 0.85 (t, 3H, J6.8 Hz, CH3), 1.23-1.30 (m, 24H, 12CH2), 1.52-1.58 (m, 2H, CH2), 2.52 (t, 2H, J7.4 Hz, CH2), 2.95-3.50 (m, 2H, CH2), 3.92-4.02 (m, 2H, CH2), 4.42-4.56 (m, 1H, CH), 6.62-6.77 (m, 5H, Ar-H), 7.11-7.24 (m, 1H, Ar-H), 7.85 (d, 2H, J8.6 Hz, Ar-H); 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 29.4, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 59.7, 65.3, 70.0, 111.4, 114.2, 114.8, 121.6, 129.2, 130.2, 144.9, 151.8, 158.1; HRMS (ESI) m/z, calcd. for C30H48NO4S+ [M + H]+: 518.3299, found: 518.3287.

1-(Ethylsulfonyl)-3-(3-pentadecylphenoxy)propan-2-ol (7j)

Yield: 15%; white solid; 1H NMR (300 MHz, CDCl3) δ 0.86 (t, 3H, J6.5 Hz, CH3), 1.23-1.28 (m, 25H, 12CH2), 1.42 (t, 3H, J7.5 Hz, CH3), 1.55-1.60 (m, 2H, CH2), 2.55 (t, 2H, J7.7 Hz, CH2), 2.60-2.80 (br, 1H, OH), 3.12-3.35 (m, 4H, CH2), 3.97-4.05 (m, 2H, CH2), 4.58-4.65 (m, 1H, CH), 6.67-6.71 (m, 2H, Ar-H), 6.80 (d, 1H, J7.7Hz, Ar-H), 7.17 (t, 1H, J7.7 Hz, Ar-H); 13C NMR (75 MHz, CDCl3) δ 6.5, 14.1, 22.7, 29.3, 29.5, 29.6, 29.7, 31.4, 31.9, 35.9, 49.0, 55.1, 65.4, 70.1, 111.4, 114.7, 121.8, 129.3, 144.9, 157.9; HRMS (ESI) m/z, calcd. for C26H47O4S+ [M + H]+: 455.3190, found: 455.3182.

Antibacterial assays

Antimicrobial potential was evaluated as per Michelettiet al.2626 Micheletti, A. C.; Handa, N. K.; Carvalho, N. C. P.; de Lima, D. P.; Beatriz, A.; Orbital: Electron. J. Chem. 2015, 7, 301. Briefly, dimethyl sulfoxide (DMSO) solutions of samples were serially diluted in 96-well plates prepared with Mueller-Hinton broth (Sigma-Aldrich, São Paulo, Brazil) to reach final concentrations in the 1-1000 µg mL-1 range, with a final 100 µL volume in each well. For gentamicin, the positive control, final concentrations ranged from 64 to 0.5 µg mL-1. The inocula consisted of overnight cultures of Staphylococcus aureus (NEWP0023) and Escherichia coli (NEWP0022) in Mueller-Hinton agar suspended in sterile saline solution (0.45%) to a concentration of ca. 1×108colony forming unit (CFU) mL-1, then diluted 1:10 in saline solution (0.45%), after which 5 µL aliquots were added to each well containing the test samples. All experiments were performed in triplicate. The microdilution trays were incubated at 36 °C for 18 h and a 20 µL volume of an aqueous solution (0.5%) of triphenyl tetrazolium chloride (TTC) was added to each well, followed by tray incubation at 36 °C for another 2 h. In those wells exhibiting bacterial growth, TTC changed from colorless to red. Minimum inhibitory concentration (MIC, expressed in microgramsper milliliter) was defined as the lowest concentration of each substance at which no color change occurred.

In vitro antioxidant-activity assays

Antioxidant activity was preliminarily evaluated via a spectrophotometric radical-scavenging method based on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, as adapted from Uriarte-Pueyo and Calvo.2727 Uriarte-Pueyo, I.; Calvo, M. I.; Food Chem. 2010, 120, 679. A 100 µL volume of compound 5a-5j in the 500-1 µg mL-1 range was diluted in methanol and dispensed into a 96-well microplate in addition to 100 µL of a DPPH solution in methanol so as to obtain a final DPPH concentration of 40 µg mL-1 in each well. After 30 min incubation protected from light at ambient temperature, absorbance readings at 492 nm obtained on an EZ Read 400 ELISA microplate reader (Biochrom) were used to calculate radical-scavenging activities (percent decrease of DPPH, or Q), applying the equation Q=100AcA0/A0, where A0 is the blank absorbance (DPPH sample solution devoid of test compounds) and Ac the absorbance for a DPPH solution amended with the test compound at concentration c. Ascorbic acid, the positive control, was used at the same concentration range as the test compounds. The experiment was performed in triplicate.

Results and Discussion

Synthesis

The mixture of mono-, di-, and trienecardanols was obtained through reduced-pressure distillation of technical-grade CNSL (tCNSL), which, subsequently subjected to catalytic hydrogenation, yielded saturated cardanol (1). This compound was then treated with epichlorohydrin (obtained from glycerol) to yield cardanol epoxide 3, as per Braga et al.1111 Braga, F. C.; Avvari, N. P.; Gomes, R. S.; Nascimento, V. A.; Oliveira, S. L.; Caires, A. R. L.; de Lima, D. P.; Beatriz, A.; Dyes Pigm. 2017, 141, 235. The structure of 3 was confirmed by 1H and 13C NMR spectra and by comparison with published data.1111 Braga, F. C.; Avvari, N. P.; Gomes, R. S.; Nascimento, V. A.; Oliveira, S. L.; Caires, A. R. L.; de Lima, D. P.; Beatriz, A.; Dyes Pigm. 2017, 141, 235.,1212 Manda, B. R.; Avvari, N. P.; Thatikonda, N. R.; Lacerda Jr., V.; Barbosa, L. R.; Santos, H.; Romão, W.; Pavan, F. R.; Ribeiro, C. M.; dos Santos, E. A.; Marques, M. R.; de Lima, D. P.; Micheletti, A. C.; Beatriz, A.; J. Braz. Chem. Soc. 2018, 29, 639.

Initially, thiolysis was performed on cardanol epoxide3 using an equimolar amount of thiophenol (4a) as a model substrate in water, ethanol, or both at ambient temperature and at 30 and 70 °C (Table 1) in the presence and absence of a base. No reaction was observed when aqueous solution of a base was used at room temperature and 30 °C (Table 1, entries 1 and 2). After 24 h at 70 °C, however, the yield was 15% (entry 3). At this temperature, however, Mukherjeeet al.2323 Mukherjee, C.; Maiti, G. H.; Misra, A. K.; ARKIVOC 2008, xi, 46. thiolyzed epoxides in water using 2.5 thiophenol equivalents and obtained excellent yields in 5 h reaction. Our low yield can be partly explained by the use of only one thiol 4a equivalent, although the low solubility of cardanol epoxide 3 in water may also have played a role.

Table 1
Optimization of reaction conditions for thiolysis of cardanol epoxide 3 by thiophenol in water or ethanol

To generate a corresponding salt, thiophenol was treated with 2 mL of an aqueous NaOH solution (0.03 mol L−1) at 30 °C for 10 min, with subsequent addition of epoxide 3, followed by stirring for another 2 h, thus resulting in a 75% yield of the desired product (entry 4). Replacing water with ethanol increased the yield to 80% (entry 5).

The reaction was examined under optimized conditions (Table 1, entry 5). As seen in Table 2, yields ranged from good to excellent (61-95%). All products were easily purified by silica gel column chromatography and chemical structures confirmed by 1H NMR, 13C NMR and HRMS.

Table 2
Thiolysis of cardanol epoxide 3 by using various thiols under ethanolic basic conditions

Interestingly, formations of 5b (entry 2) and 5i (entry 9) was accompanied with generation of hydroxy ether 5k, owing to oxirane ring opening by ethanol. In both cases, 5k yield was around 40% (Figure 3).

Figure 3
Chemical structure of compound 5k.

The sulfoxides and corresponding sulfones for evaluation of antibacterial activity were obtained by oxidation of the previously synthesized β-hydroxy sulfides. In order to optimize the procedure, compound 5a was treated with 1 equivalent of peracetic acid, formed in situ by reacting 30% H2O2 with glacial acetic acid at ambient temperature, so as to yield the corresponding sulfoxide 6a, sulfone 7a, or both. In 24 h, only 60% substrate conversion was achieved, with 6a and 7a forming at a 9:1 ratio. Sulfone generation from sulfides generally involves two-step oxidation. Sulfide oxidation to sulfoxide is typically faster than the second step of sulfoxide-to-sulfone conversion, causing sulfoxide to be virtually the only product in most cases. However, as this was not the case in our experiments, we chose to investigate the synthesis of both compounds using an excess of the oxidizing agent, given that 6a and 7a would be easily separated by silica gel column chromatography. Treating5a with 2 equivalents of the oxidizing agent produced 6a and 7a at an 8.5:1.5 ratio, with only 75% conversion of the substrate in 24 h at ambient temperature (entry 2). On the other hand, using 4 equivalents of 30% H2O2 caused the substrate to be completely consumed in 12 h, with a 6a:7a ratio of 7:3 (Table 3, entry 3).

Table 3
Optimization of reaction conditions for oxidation of 1 mmol of compound 5a to sulfoxide 6a and sulfone 7a, at ambient temperature using 30% H2O2 and 1 mL of glacial acetic acid

The other β-hydroxy sulfoxides (6b-6j) and β-hydroxyl sulfones (7b-7j) were obtained in the same manner (Table 3, entry 3). Reaction time was in the range of 12-24 h, depending on substrate (Scheme 3). Easy to perform, the method proved useful for our purposes, facilitating separation of products.

Scheme 3
Oxidation of sulfides 5a-5j to sulfoxides 6a-6j and sulfones 7a-7j by use of H2O2 as oxidant.

Compounds 6a-6j and 7a-7j (except compounds 7b and 7g) were purified in a silica gel column and had their structures confirmed by 1H and 13C NMR analysis. As expected, sulfoxides 6a-6j have two stereogenic centers, comprising the carbinol carbon with R and S configurations, as well as the sulfoxide group sulfur atom, making possible the formation of four stereoisomers. These are shown in Figure 4, with I and II exhibiting a diastereoisomeric relationship, while enantiomerism is observed between Ia and Ib, as well as between IIa and IIb.

Figure 4
Possible stereoisomers of 6a.

Signals are superimposed in the 1H NMR spectra of sulfoxides, whereas 13C NMR signals are duplicated in all cases, confirming the presence of a mixture of diastereoisomers. Since classical chromatographic methods fail to separate stereoisomers, we chose to test sulfoxides 6a-6j for biological activity without prior separation of diastereoisomers.

Antibacterial assays

β-Hydroxy sulfides 5a-5j, β-hydroxy sulfoxides 6a-6j, and β-hydroxy sulfones 7a, 7c-7f, 7h-7j were tested for antibacterial activity against standard strains of S. aureus (ATCC 25923, Gram-positive) and E. coli (ATCC 25922, Gram-negative) using previously reported methods1212 Manda, B. R.; Avvari, N. P.; Thatikonda, N. R.; Lacerda Jr., V.; Barbosa, L. R.; Santos, H.; Romão, W.; Pavan, F. R.; Ribeiro, C. M.; dos Santos, E. A.; Marques, M. R.; de Lima, D. P.; Micheletti, A. C.; Beatriz, A.; J. Braz. Chem. Soc. 2018, 29, 639.,2626 Micheletti, A. C.; Handa, N. K.; Carvalho, N. C. P.; de Lima, D. P.; Beatriz, A.; Orbital: Electron. J. Chem. 2015, 7, 301. (Table 4).

Table 4
Minimum inhibitory concentration (MIC) and log P values for compounds tested against bacterial strains

5a, 5c-5e, and 5h-5j proved moderately active,2929 Pinacho, R.; Cavero, R. Y.; Astiasarán, I.; Ansorena, D.; Calvo, M. I.; J. Funct. Foods 2015, 19, 49. with MIC = 125 µg mL-1 against S. aureus, while 5b and 5f-5g and corresponding oxidized derivatives 6a-6j and 7a, 7c-7f, 7h-7j were inactive. β-Hydroxy sulfides had no effect on E. coli, a finding consistent with the fact that the outer membrane of Gram-negative bacteria can act as a barrier to lipophilic compounds.3030 Kuete, V.; Planta Med. 2010, 76, 1479.,3131 Rezende Jr., C. O.; Oliveira, L. A.; Oliveira, B. A.; Almeida, C. G.; Ferreira, B. S.; Le Hyaric, M.; Carvalho, G. S. L.; Lourenço, M. C. S.; Batista, M.; Marchini, F. K.; Silva, V. L.; Diniz, C. G.; Almeida, M. V.; Chem. Biol. Drug Des. 2015, 86, 344. The membrane also protects enteric bacterial cells from the action of detergents (amphiphilic compounds such as the derivatives investigated here and in a previous study1212 Manda, B. R.; Avvari, N. P.; Thatikonda, N. R.; Lacerda Jr., V.; Barbosa, L. R.; Santos, H.; Romão, W.; Pavan, F. R.; Ribeiro, C. M.; dos Santos, E. A.; Marques, M. R.; de Lima, D. P.; Micheletti, A. C.; Beatriz, A.; J. Braz. Chem. Soc. 2018, 29, 639. on b-amino lipophilic alcohols structurally similar to sulfur-containing derivatives). Compounds 5a, 5c, and 5e proved active, while their analogue b-amino alcohols1212 Manda, B. R.; Avvari, N. P.; Thatikonda, N. R.; Lacerda Jr., V.; Barbosa, L. R.; Santos, H.; Romão, W.; Pavan, F. R.; Ribeiro, C. M.; dos Santos, E. A.; Marques, M. R.; de Lima, D. P.; Micheletti, A. C.; Beatriz, A.; J. Braz. Chem. Soc. 2018, 29, 639. showed no activity against S. aureus or E. coli. Table 4 depicts the lipophilicity values (expressed as log P) of the β-hydroxy sulfides, sulfoxides, and sulfones investigated.

Antioxidant assay

Sulfur-bearing compounds (thiols, disulfides, sulfides) have antioxidant properties. Sulfides are among the antioxidants capable of inactivating hydroperoxides without generating radical species. Effectively reacting with peroxyl radicals, sulfur-containing antioxidants are widely used as antioxidant additives in oils and polymers.3232 Smolyaninov, I. V.; Pitikova, O. V.; Rychagova, E. S.; Korchagina, E. O.; Poddel’sky, A. I.; Smolyaninova, S. A.; Berberova, N. T.; Russ. Chem. Bull. 2016, 65, 2861. To evaluate the capacity of β-hydroxy sulfides 5a-5j to reduce free radicals, an antioxidant-activity test was performed based on DPPH, a stable radical that imparts purple coloration to solutions. DPPH reduction to a hydrazine is accompanied by a decrease in absorbance.3333 Blois, M. S.; Nature 1958, 181, 1199.

As shown in Figure 5, compounds 5a-5c failed to reduce DPPH at any of the concentrations tested (Q = 0%), while 5d-5h exhibited very low scavenging activity, of 3.3, 0.4, 0.9, 7.0, and 7.9%, respectively, at the highest concentration evaluated (1 mg mL-1). Compounds 5i and 5j proved moderately active: none of the concentrations investigated reduced DPPH by more than 50%, precluding satisfactory estimation of half-maximal inhibitory concentration (IC50) values. The standard ascorbic acid solution proved significantly more active than the compounds investigated.

Figure 5
DPPH-reducing activity displayed by β-hydroxy sulfides 5a-5j and standard ascorbic acid solution.

Structural analysis of 5i and 5j provides support to make inferences about DPPH reduction results. The aromatic ring of β-hydroxy sulfide 5i has an oxidable amine group para-positioned to the sulfur atom. Abstraction of a hydrogen radical from the amine group can produce, by resonance, a 5i stabilized radical, with one contributor taking the form of a stable quinone-type radical (Scheme 4). Of the compounds evaluated, this sulfide exhibited the highest reducing activity.

Scheme 4
Proposed reaction for DPPH reduction by β-hydroxy sulfide 5i.

In contrast to the other β-hydroxy sulfides investigated, 5j has an ethyl group, instead of an aromatic ring, attached to the sulfur atom. This structural feature may indicate, as proposed by Bridgewater and Sexton3434 Bridgewater, A. J.; Sexton, M. D.; J. Chem. Soc., Perkin Trans. 2 1978, 530. to explain the antioxidant potential of organic sulfides, the possibility of b-elimination of a hydrogen from the ethyl group by DPPH, leading to rupture of the C−S bond (Scheme 5). Also, the presence of a β-positioned hydroxyl may facilitate formation of a product of this mechanism if a second reaction with DPPH takes place. In view of this background, the milder antioxidant activity displayed by other β-hydroxy sulfides can be attributed to the simultaneous absence of a β-hydrogen on one side of the C-S bond and the presence of a hydroxyl on the opposite side of the sulfur atom.

Scheme 5
Proposed radical β-elimination for β-hydroxy sulfide 5j.

Conclusions

Twenty eight novel organosulfur compounds (β-hydroxy sulfides 5a-5j, β-hydroxy sulfoxides 6a-6j, and β-hydroxy sulfones 7a, 7c-7f, 7h-7j) were synthesized from a molecular combination of cardanol and glycerol, with excellent yields and employing more environmentally friendly processes. All the substances were evaluated for antibacterial activity against standard strains of S. aureus (Gram-positive) and E. coli (Gram-negative). MIC for S. aureus was highest for 5a, 5c-5e and 5h-5j. None of the tested substances proved active against E. coli. Compounds5a-5j were also evaluated as antioxidant agents using the DPPH method. Substances with lowest log P values (5i, 5j) exhibited highest radical-scavenging activities (44 and 28%, respectively), while the remaining compounds proved inactive or minimally active (0.4-7.9%). These findings are expected to play a crucial role in the development of novel antibacterial agents.

Acknowledgments

The authors are grateful to the Universidade Federal de Mato Grosso do Sul, the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (Fundect-MS, ProNEm grant 054/12), the Brazilian Council for Scientific and Technological Development (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES), and Kardol Indústria Química Ltda. for their support of our investigations in this field. S. C. also thanks Fundect-MS for the PhD grant awarded. This investigation was partly funded by CAPES (finance code 001).

Supplementary Information

Supplementary data (NMR spectra) are available free of charge at http://jbcs.sbq.org.br as a PDF file.

References

  • 1
    Kornprobst, J.-M.; Sallenave, C.; Barnathan, G.; Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 1998, 119, 1.
  • 2
    Marakalala, M. B.; Mmutlane, E. M.; Kinfe, H. H.; Beilstein J. Org. Chem. 2018, 14, 1668.
  • 3
    Prinsep, M. R. In Studies in Natural Products Chemistry, vol. 28; Rahman, A.-U., ed.; Elsevier: Amsterdam, The Netherlands, 2003, p. 617-751.
  • 4
    Tehri, P.; Aegurula, B.; Peddinti, R. K.; Tetrahedron Lett. 2017, 58, 2062.
  • 5
    Foster, H. R.; Fuerst, E.; Branchett, W.; Lee, T. H.; Cousins, D. J.; Woszczek, C.; Sci. Rep. 2016, 6, 20461.
  • 6
    Takada, N.; Umemura, N.; Suenaga, K.; Uemura, D.; Tetrahedron Lett. 2001, 42, 3495.
  • 7
    de Castro, M. V.; Ióca, L. P.; Williams, D. E.; Costa, B. Z.; Mizuno, C. M.; Santos, M. F. C.; de Jesus, K.; Ferreira, É. L. F.; Seleghim, M. H. R.; Sette, L. D.; Pereira Filho, E. R.; Ferreira, A. G.; Gonçalves, N. S.; Santos, R. A.; Patrick, B. O.; Andersen, R. J.; Berlinck, R. G. S. J.; Nat. Prod. 2016, 79, 1668.
  • 8
    O’Connor, S. E.; Grosset, A.; Janiak, P.; Fundam. Clin. Pharmacol. 1999, 13, 145.
  • 9
    Mazzeto, S. E.; Lomonaco, D.; Mele, G.; Quim. Nova 2009, 32, 732.
  • 10
    Beatriz, A.; Araújo, Y. J. K.; de Lima, D. P.; Quim. Nova 2011, 34, 306; Mota, C. J. A.; da Silva, C. X. A.; Gonçalves, V. L. C.; Quim. Nova 2009, 32, 639.
  • 11
    Braga, F. C.; Avvari, N. P.; Gomes, R. S.; Nascimento, V. A.; Oliveira, S. L.; Caires, A. R. L.; de Lima, D. P.; Beatriz, A.; Dyes Pigm. 2017, 141, 235.
  • 12
    Manda, B. R.; Avvari, N. P.; Thatikonda, N. R.; Lacerda Jr., V.; Barbosa, L. R.; Santos, H.; Romão, W.; Pavan, F. R.; Ribeiro, C. M.; dos Santos, E. A.; Marques, M. R.; de Lima, D. P.; Micheletti, A. C.; Beatriz, A.; J. Braz. Chem. Soc. 2018, 29, 639.
  • 13
    Paiva, D. R.; de Lima, D. P.; Avvari, N. P.; Arruda, E. J.; Cabrini, I.; Marques, M. R.; Santos, E. A.; Biaggio, F. C.; Sangi, D. P.; Beatriz, A.; An. Acad. Bras. Cienc. 2017, 89, 373.
  • 14
    Ganesh, V.; Chandrasekaran, S.; Synthesis 2009, 19, 3267.
  • 15
    Lanke, S. R.; Bhanage, B. M.; Catal. Commun. 2013, 41, 29.
  • 16
    Ahmad, S.; Zahoor, A. F.; Naqvi, S. A. R.; Akash, M.; Mol. Diversity 2018, 22, 191.
  • 17
    Chandrasekhar, S.; Reddy, C. R.; Babu, B. N.; Chandrashekar, G.; Tetrahedron Lett. 2002, 43, 3801.
  • 18
    Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L.; Tetrahedron Lett. 2003, 44, 6785.
  • 19
    Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L.; J. Org. Chem. 2003, 68, 8248.
  • 20
    Su, W.; Chen, J. X.; Wu, H. Y.; Jin, C.; J. Org. Chem. 2007, 72, 4524.
  • 21
    Bandgar, B. P.; Patil, A. V.; Chavan, O. S.; Kamble, V. T.; Catal. Commun. 2007, 8, 1065.
  • 22
    Zhu, J.; Li, R.; Ge, Z.; Cheng, T.; Li, R. ; Chin. J. Chem. 2009, 27, 791.
  • 23
    Mukherjee, C.; Maiti, G. H.; Misra, A. K.; ARKIVOC 2008, xi, 46.
  • 24
    Sato, K.; Aoki, M.; Noyori, R.; Science 1998, 281, 1646.
  • 25
    Beatriz, A.; Lima, D. P.; Arruda, E. J.; Paiva, D. R.; Cossa, T. M.; BR pat. 102014030002-3 A2 2016
  • 26
    Micheletti, A. C.; Handa, N. K.; Carvalho, N. C. P.; de Lima, D. P.; Beatriz, A.; Orbital: Electron. J. Chem. 2015, 7, 301.
  • 27
    Uriarte-Pueyo, I.; Calvo, M. I.; Food Chem. 2010, 120, 679.
  • 28
    http://www.molinspiration.com/cgi-bin/properties, accessed in June 2020.
    » http://www.molinspiration.com/cgi-bin/properties
  • 29
    Pinacho, R.; Cavero, R. Y.; Astiasarán, I.; Ansorena, D.; Calvo, M. I.; J. Funct. Foods 2015, 19, 49.
  • 30
    Kuete, V.; Planta Med. 2010, 76, 1479.
  • 31
    Rezende Jr., C. O.; Oliveira, L. A.; Oliveira, B. A.; Almeida, C. G.; Ferreira, B. S.; Le Hyaric, M.; Carvalho, G. S. L.; Lourenço, M. C. S.; Batista, M.; Marchini, F. K.; Silva, V. L.; Diniz, C. G.; Almeida, M. V.; Chem. Biol. Drug Des. 2015, 86, 344.
  • 32
    Smolyaninov, I. V.; Pitikova, O. V.; Rychagova, E. S.; Korchagina, E. O.; Poddel’sky, A. I.; Smolyaninova, S. A.; Berberova, N. T.; Russ. Chem. Bull. 2016, 65, 2861.
  • 33
    Blois, M. S.; Nature 1958, 181, 1199.
  • 34
    Bridgewater, A. J.; Sexton, M. D.; J. Chem. Soc., Perkin Trans. 2 1978, 530.

Publication Dates

  • Publication in this collection
    14 Dec 2020
  • Date of issue
    Dec 2020

History

  • Received
    05 May 2020
  • Accepted
    06 July 2020
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br