Acessibilidade / Reportar erro

Elemental Chalcogen (Se, S) in PEG-400 to the Synthesis of Seleno- and Thioflavones from 2-Chlorophenyl Ethynyl Ketone and Nucleophilic Species of Chalcogen

Abstract

An alternative green method was developed for the synthesis of thio-and selenoflavones by the ring closure of 2-chlorophenyl ethynyl ketone with NaHY (Y = S, Se). These nucleophilic chalcogen species were generated in situ using NaBH4 to reduce the elemental chalcogen in the presence of polyethylene glycol-400 (PEG-400). The efficiency of this reaction is strongly dependent on the PEG-400 solvent, acting like a crown ether, complexing with the sodium atom of NaHY species, making the chalcogen nucleophile more active. The synthetic protocol proceeded efficiently at 100 °C under argon, using a range of 2-chlorophenyl ethynyl ketone containing alkyl, aryl, or vinyl groups and the sulfur and selenium chalcogen. By this efficient and simple approach, 18 chalcogenoflavones were obtained in good to excellent yields after 2 h.

Keywords:
chromone; green chemistry; polyethyelene glycol-400; selenium; sulfur


Introduction

Interest in organochalcogen compounds has been continuously increasing due to their reputable synthetic and biologic applications.11 Santi, C.; Organoselenium Chemistry: Between Synthesis and Biochemistry; Santi, C., ed.; Bentham Science: Sharjah U. A. E., 2014; Lenardão, E. J.; Santi, C.; Sancineto, L.; New Frontiers in Organoselenium Compound; Springer: Cham, Switzerland, 2018; Jain, V. K.; Priyadarsini, K. I.; Organoselenium Compounds in Biology and Medicine Synthesis, Biological and Therapeutic Treatments; Royal Society of Chemistry: London, UK, 2017. In this feld, the modifcation of heterocyclic compounds with sulfur, selenium, and tellurium atom is a good strategy to obtain more active species and increase the biological applicability.22 Barth, A.; Vogt, A. G.; Reis, A. S.; Pinz, M. P.; Krüger, R.; Domingues, W. B.; Alves, D.; Campos, V. F.; Pinton, S.; Paroul, N.; Wilhelm, E. A.; Luchese, C.; Mol. Neurobiol. 2019, 56, 6398; Mołchowski, J.; Kloc, K.; Lisiak, R.; Potaczek, P.; Wójtowicz, H.; Arkivoc 2007, vi, 14; Vogt, A. G.; Voss, G. T.; Oliveira, R. L.; Paltian, J. J.; Duarte, L. F. B.; Alves, D.; Jesse, C. R.; Roman, S. S.; Roehrs, J. A.; Wilhelm, E. A.; Luchese, C.; Chem.-Biol. Interact. 2018, 282, 7; Lopes, E. F.; Penteado, F.; Thurow, S.; Pinz, M.; Reis, A. S.; Wilhelm, E. A.; Luchese, C.; Barcellos, T.; Dalberto, B.; Alves, D.; Silva, M. S.; Lenardão, E. J.; J. Org. Chem. 2019, 84, 12452; Soares, A. T. G.; Junior, L. B. L. R.; Salgueiro, W. G.; dal Forno, A. H. C.; Rodrigues, C. F.; Sacramento, M.; Franco, J.; Alves, D.; Oliveira, R. P.; Pinton, S.; Ávila, D. S.; J. Trace Elem. Med. Biol. 2019, 53, 34; Couto, S. F.; Araujo, S. M.; Bortolotto, V. C.; Poetini, M. R.; Pinheiro, F. C.; Musachio, E. A. S.; Meichtry, L. B.; Sacramento, M.; Alves, D.; Novo, D. L. R.; Mesko, M. F.; Prigol, M.; J. Trace Elem. Med. Biol. 2019, 54, 232. Among the several heterocyclic cores, flavones and chromone derivatives constitute part of a large family of natural products with pharmaceutical applications. The favone system (2-phenyl-4H-chromen-4-one, shown in Figure 1) is a key structural which play important roles in numerous biological processes.33 Khadem, S.; Marles, R. J.; Molecules 2012, 17, 191; Sharma, S. K.; Kumar, S.; Chand, K.; Kathuria, A.; Gupta, A.; Jain, R.; Curr. Med. Chem. 2012, 18, 3825; Gaspar, A.; Matos, M. J.; Garrido, J.; Uriarte, E.; Borges, F.; Chem. Rev. 2014, 114, 4960; Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G.; Eur. J. Med. Chem. 2014, 78, 340. Replacement of the oxygen atom in the pyran ring with selenium and sulfur results in selenofavone and thiofavone, respectively (Figure 1). The chalcogenofavones have received intensive attention from medicinal chemists due to their unique structure-activity relationship showing antioxidant, anti-infammatory, anti-cancer, antimicrobial, and antifungal activities, among others.44 Horvath, A.; Nussbaumer, P.; Wolff, B.; Billich, A.; J. Med. Chem. 2004, 47, 4268; Gotoda, S.; Takahashi, N.; Nakagawa, H.; Murakami, M.; Takechi, T.; Komura, T.; Uchida, T.; Takagi, Y.; Pestic. Sci. 1998, 52, 309; Zhang, D.; Ji, X.; Gao, R.; Wang, H.; Meng, S.; Zhong, Z.; Li, Y.; Jiang, J.; Li, Z.; Acta Pharm. Sin. B 2012, 2, 575; Kataoka, T.; Watanabe, S.-i.; Mori, E.; Kadomoto, R.; Tanimura, S.; Kohno, M.; Bioorg. Med. Chem. 2004, 12, 2397; Dong, J.; Zhang, Q.; Meng, Q.; Wang, Z.; Li, S.; Cui, J.; Mini-Rev. Med. Chem. 2018, 18, 1714; Choi, E. J.; Lee, J. I.; Kim, G.-H.; Int. J. Mol. Med. 2012, 29, 252; Choi, Y.-S.; Kim, D.-M.; Kim, Y.-J.; Yang, S.; Lee, K.-T.; Ryu, J. H.; Jeong, J.-H.; Int. J. Mol. Sci. 2015, 16, 29574; Holshouser, M. H.; Loeffler, L. J.; Hall, I. H.; J. Med. Chem. 1981, 24, 853; Nussbaumer, P.; Lehr, P.; Billich, A.; J. Med. Chem. 2002, 45, 4310.

Figure 1
The favone structure and its derivatives.

Regarding the synthesis of these bioactive compounds, they can be prepared by two main procedures: intramolecular cyclization of 2-alkylchalcogenolated alkynones;55 Alcaide, B.; Almendros, P.; Lázaro-Milla, C.; Delgado-Martínez, P.; Chem.-Eur. J. 2018, 24, 8186; Kobayashi, K.; Kobayashi, A.; Ezaki, K. A.; Heterocycles 2012, 85, 1997; Luxen, A. J.; Christiaens, L. E. E.; Renson, M. J.; J. Organomet. Chem. 1985, 287, 81; Xu, J.; Zhang, F.; Zhang, S.; Zhang, L.; Yu, X.; Yan, J.; Song, Q.; Org. Lett. 2019, 21, 1112. and ring closure of 2-halophenyl ethynyl ketones with –SeH or –SH moiety.66 Fuchs, F. C.; Eller, G. A.; Holzer, W.; Molecules 2009, 14, 3814; Sangeetha, S.; Sekar, G.; Org. Lett. 2019, 21, 75; Yang, W.-R.; Choi, Y.-S.; Jeong, J.-H.; Org. Biomol. Chem. 2017, 15, 3074; Sashida, H.; Synthesis 1998, 745; Pistoia, R. P.; Back, D. F.; Zeni, G.; Eur. J. Org. Chem. 2019, 3794. Also, the thiofavone was prepared using non-conventional methodologies, such as multicomponent reactions,77 Shen, C.; Spannenberg, A.; Wu, X.-F.; Angew. Chem., Int. Ed. 2016, 55, 5067; Willy, B.; Frank, W.; Müller, T. J. J.; Org. Biomol. Chem. 2010, 8, 90; Zhang, F.-L.; Chen, Z.-B.; Liu, K.; Yuan, Q.; Jiang, Q.; Zhu, Y.-M.; Synlett 2018, 29, 621; Willy, B.; Müller, T. J. J.; Synlett 2009, 1255. intramolecular cyclization88 Lee, J. I.; Bull. Korean Chem. Soc. 2009, 30, 710. and rearrangement,99 Lee, J. I.; Kim, M. J.; Bull. Korean Chem. Soc. 2011, 32, 1383. decarbonylative cycloaddition,1010 Inami, T.; Kurahashi, T.; Matsubara, S.; Org. Lett. 2014, 16, 5660. condensation,1111 Vijay, T. A. J.; Nandeesh, K. N.; Raghavendra, G. M.; Rangappa, K. S.; Mantelingu, K.; Tetrahedron Lett. 2013, 54, 6533. among others.1212 Yang, X.; Li, S.; Liu, H.; Jiang, Y.; Fu, H.; RSC Adv. 2012, 2, 6549; Nakazumi, H.; Ueyama, T.; Kitao, T.; J. Heterocycl. Chem. 1984, 21, 193; Huang, C.-N.; Chuang, R.-R.; Kuo, P.-Y.; Yang, D.-Y.; Synlett 2008, 1825; Gu, Z.-Y.; Cao, J.-J.; Wang, S.-Y.; Ji, S.-J.; Chem. Sci. 2016, 7, 4067; Wang, D.; Sun, P.; Jia, P.; Peng, J.; Yue, Y.; Chen, C.; Synthesis 2017, 49, 4309. However, greener synthetic methods for the synthesis of both selenofavones and thiofavones are still limited.

In the context of green chemistry, several synthetic approaches have been progressed, producing a wide variety of compounds without or less environmental hazard.1313 Anastas, P.; Eghbali, N.; Chem. Soc. Rev. 2010, 39, 301; Marco, B. A.; Rechelo, B. S.; Tótoli, E. G.; Kogawa, A. C.; Salgado, H. R. N.; Saudi Pharm. J. 2019, 27, 1; Mulimani, P.; Br. Dent. J. 2017, 222, 954; Bryan, M. C.; Dunn, P. J.; Entwistle, D.; Gallou, F.; Koenig, S. G.; Hayler, J. D.; Hickey, M. R.; Hughes, S.; Kopach, M. E.; Moine, G.; Richardson, P.; Roschangar, F.; Stevenh, A.; Weiberth, F. J.; Green Chem. 2018, 20, 5082; Erythropel, H. C.; Zimmerman, J. B.; Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q.; Pincus, L. N.; Falinski, M. M.; Shi, W.; Coish, P.; Plata, D. L.; Anastas, P. T.; Green Chem. 2018, 20, 1929. A pivotal parameter to improve the sustainability of a reaction is the use of a suitable medium for environmentally friendly and safe chemical reactions.1414 Kerton, F. M.; Marriott, R.; Alternative Solvents for Green Chemistry, 2nd ed.; RSC Publishing: Cambridge, UK, 2013; Reichardt C.; Welton, T.; Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, 2011. Thus, polyethylene glycol-400 (PEG-400) might be a solvent with higher preference because of its versatile blessings as a green reaction media. PEG solvent is perceived to be cheap, easily accessible, non-volatile, biodegradable, biocompatible, with low fammability, recyclable, and thermally stable.1414 Kerton, F. M.; Marriott, R.; Alternative Solvents for Green Chemistry, 2nd ed.; RSC Publishing: Cambridge, UK, 2013; Reichardt C.; Welton, T.; Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, 2011.,1515 Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D.; Green Chem. 2005, 7, 64.

Noticeable organic transformations involving PEG as a green reaction media were reported.1616 Vafaeezadeh, M.; Hashemi, M. M.; J. Mol. Liq. 2015, 207, 73; Chandrasekhar, S.; Narsihmulu, C.; Sultana, S. S.; Reddy, N. R.; Org. Lett. 2002, 25, 4399; Harraza, F. A.; El-Hout, S. E.; Killa, H. M.; Ibrahim, I. A.; J. Catal. 2012, 286, 184; Kadam, N. D.; Jayaram, R. V.; Curr. Catal. 2018, 7, 52; Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S.; Tetrahedron Lett. 2008, 49, 6974. Specifcally, this solvent has been described as the reaction medium for procedures involving organochalcogen compounds.1717 Perin, G.; Alves, D.; Jacob, R. G.; Barcellos, A. M.; Soares, L. K.; Lenardão, E. L.; ChemistrySelect 2016, 2, 205; Perin, G.; Silveira, M. B.; Barcellos, A. M.; Jacob, R. G.; Alves, D.; Org. Chem. Front. 2015, 2, 1531; Stach, G.; Peglow, T. J.; Roehrs, J. A.; Penteado, F.; Barcellos, T.; Jacob, R. G.; Lenardão, E. J.; Perin, G.; Synthesis 2019, 51, 578; Borges, E. L.; Peglow, T. J.; Silva, M. S.; Jacoby, C. G.; Schneider, P. H.; Lenardão, E. J.; Jacob, R. G.; Perin, G.; New J. Chem. 2016, 40, 2321. Our research group has recently described the in situ generation of chalcogenolate anions using the system RYYR/NaBH4/PEG-400 (Y = S, Se, and Te) and their use in selective reactions.1818 Perin, G.; Borges, E. L.; Alves, D.; Tetrahedron Lett. 2012, 53, 2066; Perin, G.; Borges, E. L.; Rosa, P. C.; Carvalho, P. N.; Lenardão, E. J.; Tetrahedron Lett. 2013, 54, 1718; Perin, G.; Borges, E. L.; Peglow, T. J.; Lenardão, E. J.; Tetrahedron Lett. 2014, 55, 5652; Silva, P. C.; Borges, E. L.; Lima, D. B.; Jacob, R. G.; Lenardão, E. J.; Perin, G.; Silva, M. S.; Arkivoc 2016, v, 376; Perin, G.; Goulart, H. A.; Soares, L. K.; Peglow, T. J.; Schumacher, R. F.; Pinz, M. P.; Reis, A. S.; Luchese, C.; Appl. Biochem. Biotechnol. 2018, 184, 1398. So far, only two procedures were described using NaBH4/PEG-400 system to reduce elemental chalcogen and their application to prepare bis(2-pyridyl) diselenide derivatives and divinyl selenides/tellurides.1919 Perin, G.; Barcellos, A. M.; Luz, E. Q.; Borges, E. L.; Jacob, R. G.; Lenardão, E. J.; Sancineto, L.; Santi, C.; Molecules 2017, 22, 327; Peglow, T. J.; Schumacher, R. F.; Cargnelutti, R.; Reis, A. S.; Luchese, C.; Wilhelm, E. A.; Perin, G.; Tetrahedron Lett. 2017, 58, 3734. We hypothesized that the nucleophilic chalcogen species generated in situ could be applied in other transformations. To test this conjecture and develop our continued interest in green chemistry, we herein disclose our latest work on the synthesis of selenofavones 3 (Y = Se) and thiofavones 4 (Y = S) by ring closure of 2-chlorophenyl ethynyl ketone 2 under mild conditions (Scheme 1).

Scheme 1
PEG-400 mediate synthesis of the chalcogenofavones.

Experimental

General information

All reagents and solvents used were purchased from commercial sources (Sigma-Aldrich®, São Paulo, Brazil). The reactions were monitored by thin-layer chromatography (TLC) carried out on Merk silica gel (60 F254) by using UV light as visualization agent and the mixture between 5% of vanillin in 10% of H2SO4 under heating conditions as developing agents. Merck silica gel (particle size 0.040-0.063 mm) was used to fash chromatography. Hydrogen nuclear magnetic resonance spectra (1H NMR) were obtained on Bruker Avance III HD 400 MHz (Uster, Switzerland) employing a direct broadband probe at 400 MHz. The spectra were recorded in CDCl3 solutions. The chemical shifts are reported in ppm, referenced to tetramethylsilane (TMS) as the internal reference. Coupling constants (J) are reported in hertz. Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), dd (doublet of doublet), dt (doublet of triplet), t (triplet), q (quartet), quint (quintet) and m (multiplet). Carbon-13 nuclear magnetic resonance spectra (13C NMR) were obtained on Bruker Avance III HD 400 MHz (Uster, Switzerland) employing a direct broadband probe at 100 MHz. The chemical shifts are reported in ppm, referenced to the solvent peak of CDCl3 (d 77.0 ppm). Selenium-77 nuclear magnetic resonance spectra (77Se NMR) were obtained on Bruker Avance III HD 400 MHz (Uster, Switzerland) employing a direct broadband probe at 76 MHz, measured without 1H decoupling. The chemical shifts are reported in ppm, using as solvent the CDCl3 and as an internal standard the diphenyl diselenide (d 463.0 ppm). The high-resolution mass spectrometry (HRMS) quadrupole time-of-flight (QTOF) analyses were performed on a Bruker (Billerica, MA, USA) Daltonics micrOTOF-Q II instrument in positive mode. The samples were solubilized in high performance liquid chromatography (HPLC)-grade acetonitrile and injected into the atmospheric pressure chemical ionization (APCI) source by means of a syringe pump at a fow rate of 5.0 µL min-1. The follow instrument parameters were applied: capillary and cone voltages were set to +3500 and −500 V, respectively, with a desolvation temperature of 180 ºC. For data acquisition and processing, Compass 1.3 for micrOTOF-Q II software (Bruker Daltonics, USA) was used. The data were collected in the m/z range of 50-1200 at the speed of two scans per s. Low-resolution mass spectra were obtained with a Shimadzu (Kyoto, Japan) GC-MS-QP2010P mass spectrometer. Melting point (mp) values were measured in a Marte (São Paulo, Brazil) PFD III instrument with a 0.1 ºC precision.

General procedure for the synthesis of 2-chloroaryl ethynyl ketone 2

Procedure adapted from the literature.2020 Pierce, B. M.; Simpson, B. F.; Ferguson, K. H.; Whittaker, R. E.; Org. Biomol. Chem. 2018, 16, 6659; Vyas, V. K.; Knighton, R. C.; Bhanage, B. M.; Wills, M.; Org. Lett. 2018, 20, 975. To a solution of corresponding acetylene (5.0 mmol, 1.0 equiv) in dry tetrahydrofuran (THF) (25 mL) was added nBuLi (2.5 mol L-1 in nhexane, 2.2 mL, 5.5 mmol, 1.1 equiv) dropwise at −78 ºC under nitrogen atmosphere. After the reaction mixture had been stirred at −78 °C for 1 h, 2-chlorobenzaldehyde (5.0 mmol, 1.0 equiv) was added dropwise at −78 °C. Upon stirring at same temperature for 1 h, the reaction solution was quenched with saturated solution of NH4Cl and extracted with ethyl acetate (3 × 20 mL). The combined organic layer was dried over anhydrous MgSO4, fltered, and concentrated under reduced pressure to give the crude alcohol product. After, dichloromethane (15 mL) and MnO2 (10 equiv) were added and the solution was stirred at room temperature till alcohol disappeared by TLC analysis. The reaction solution was fltered over celite, solvents were removed, and the crude product was purifed by column chromatography on silica gel with hexane/EtOAc and concentrated to afford the corresponding 2-chlorophenyl ethynyl ketone 2.

General procedure for synthesis of chalcogenoflavones 3and 4

In a 10.0 mL reaction vial containing Se or S (0.3 mmol) in PEG-400 (2.0 mL) under argon atmosphere was added NaBH4 (0.7 mmol), and the mixture was slowly heated to 50 °C being stirred for 30 min. Then, compound 2 (0.25 mmol) was added, and the temperature was raised to 100 °C. The reaction mixture remained under magnetic stirring for 2 h. Then, water was added (25.0 mL) and the reaction was extracted with ethyl acetate (3 × 10.0 mL). The organic phase was separated, dried over MgSO4, and the solvent was evaporated under reduced pressure. The product 3 or 4 was isolated by column chromatography using hexane/ethyl acetate (95/5) as eluent.

2-Phenyl-4H-selenochromen-4-one (3a)66 Fuchs, F. C.; Eller, G. A.; Holzer, W.; Molecules 2009, 14, 3814; Sangeetha, S.; Sekar, G.; Org. Lett. 2019, 21, 75; Yang, W.-R.; Choi, Y.-S.; Jeong, J.-H.; Org. Biomol. Chem. 2017, 15, 3074; Sashida, H.; Synthesis 1998, 745; Pistoia, R. P.; Back, D. F.; Zeni, G.; Eur. J. Org. Chem. 2019, 3794.

Yield: 0.070 g (98%); yellowish solid; mp 123-125 °C; 1H NMR (400 MHz, CDCl3) δ 7.28 (s, 1H, Ar-H), 7.35-7.46 (m, 5H, Ar-H), 7.50-7.54 (m, 2H, Ar-H), 7.57-7.59 (m, 1H, Ar-H), 8.50-8.53 (m, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 125.5, 126.8, 127.8, 128.3, 129.2, 130.0, 130.6, 131.5, 131.6, 136.8, 138.0, 154.1, 182.7; distortionless enhancement by polarization transfer (DEPT)-135 NMR (100 MHz, CDCl3) δ 125.5 (CH), 126.8 (2× CH), 127.8 (CH), 128.3 (CH), 129.2 (2× CH), 130.0 (CH), 130.6 (CH), 131.5 (CH); 77Se NMR (76 MHz, CDCl3) δ 391.4 (d, J 10.3 Hz); MS (relative intensity / %) m/z, 102 (20.3), 156 (56.7), 184 (100.0), 258 (29.9), 286 (85.8); HRMS (APCI-QTOF) m/z, calcd. for C15H11OSe [M + H]+: 286.9975, found: 286.9978.

2-(4-Tolyl)-4H-selenochromen-4-one (3b)6

Yield: 0.068 g (90%); yellowish solid; mp 136-138 °C; 1H NMR (400 MHz, CDCl3) δ 2.39 (s, 3H, Ar-CH3), 7.25 (d, J 7.8 Hz, 2H, Ar-H), 7.34 (s, 1H, Ar-H), 7.46-7.53 (m, 4H, Ar-H), 7.62-7.67 (m, 1H, Ar-H), 8.57-8.61 (m, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 21.2, 124.9, 126.6, 127.6, 128.2, 129.9, 131.4, 131.7, 135.1, 136.8, 141.1, 154.0, 182.7; DEPT-135 NMR (100 MHz, CDCl3) δ 21.2 (CH3), 124.9 (CH), 126.6 (2× CH), 127.6 (CH), 128.2 (CH), 129.9 (3× CH), 131.4 (CH); 77Se NMR (76 MHz, CDCl3) δ 388.3 (d, J 10.8 Hz); MS (relative intensity / %) m/z, 115 (54.9), 156 (48.1), 184 (100.0), 272 (13.5), 300 (58.8); HRMS (APCI-QTOF) m/z, calcd. for C16H13OSe [M + H]+: 301.0132, found: 301.0127.

2-(2-Tolyl)-4H-selenochromen-4-one (3c)

Yield: 0.074 g (98%); yellow oil; 1H NMR (400 MHz, CDCl3) δ 2.38 (s, 3H, Ar-CH3), 7.05 (s, 1H, Ar-H), 7.24-7.35 (m, 4H, Ar-H), 7.49-7.56 (m, 2H, Ar-H), 7.64-7.66 (m, 1H, Ar-H), 8.62-8.67 (m, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 19.9, 125.9, 127.7, 128.1, 128.3, 128.5, 129.5, 130.1, 130.8, 131.5, 131.7, 135.0, 137.5, 137.7, 154.5, 182.3; DEPT-135 NMR (100 MHz, CDCl3) δ 19.9 (CH3), 125.9 (CH), 127.7 (CH), 128.1 (CH), 128.3 (CH), 128.5 (CH), 129.5 (CH), 130.1 (CH), 130.8 (CH), 131.5 (CH); 77Se NMR (76 MHz, CDCl3) δ 414.5 (d, J 9.8 Hz); MS (relative intensity / %) m/z, 115 (41.9), 156 (47.3), 184 (100.0), 219 (73.3), 271 (7.6), 300 (90.8); HRMS (APCI-QTOF) m/z, calcd. for C16H13OSe [M + H]+: 301.0132, found: 301.0131.

2-(4-Chlorophenyl)-4H-selenochromen-4-one (3d)6

Yield: 0.049 g (61%); yellowish solid; mp 135-137 °C; 1H NMR (400 MHz, CDCl3) δ 7.31 (s, 1H, Ar-H), 7.45 (d, J 8.6 Hz, 2H, Ar-H), 7.49-7.56 (m, 4H, Ar-H), 7.66-7.68 (m, 1H, Ar-H), 8.58-8.61 (m, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 125.8, 127.9, 128.1, 128.2, 129.5, 130.1, 131.6, 131.7, 136.47, 136.49, 136.9, 152.3, 182.6; DEPT-135 NMR (100 MHz, CDCl3) δ 125.8 (CH), 127.9 (CH), 128.1 (2× CH), 128.2 (CH), 129.5 (2× CH), 130.1 (CH), 131.7 (CH); 77Se NMR (76 MHz, CDCl3) δ 389.6 (d, J 11.2 Hz); MS (relative intensity / %) m/z, 136 (6.9), 156 (42.3), 184 (100.0), 292 (21.1), 320 (76.4); HRMS (APCI-QTOF) m/z, calcd. for C15H10ClOSe [M + H]+: 320.9585, found: 320.9579.

2-(2-Chlorophenyl)-4H-selenochromen-4-one (3e)

Yield: 0.061 g (76%); orange solid; mp 118-119 °C; 1H NMR (400 MHz, CDCl3) δ 7.15 (s, 1H, Ar-H), 7.31-7.43 (m, 3H, Ar-H), 7.48-7.58 (m, 3H, Ar-H), 7.63-7.69 (m, 1H, Ar-H), 8.62-8.65 (m, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 127.0, 127.8, 128.1, 129.3, 130.1, 130.3, 130.4, 130.8, 131.57, 131.6, 132.0, 136.6, 137.5, 151.0, 182.3; DEPT-135 NMR (100 MHz, CDCl3) δ 127.0 (CH), 127.8 (CH), 128.1 (CH), 129.3 (CH), 130.1 (CH), 130.3 (CH), 130.4 (CH), 130.8 (CH), 131.6 (CH); 77Se NMR (76 MHz, CDCl3) δ 419.2 (d, J 10.2 Hz); MS (relative intensity / %) m/z, 136 (5.2), 156 (41.3), 184 (100.0), 292 (15.3), 320 (76.9); HRMS (APCI-QTOF) m/z, calcd. for C15H10ClOSe [M + H]+: 320.9585, found: 320.9583.

2-(Naphthalen-2-yl)-4H-selenochromen-4-one (3f)

Yield: 0.082 g (98%); yellowish solid; mp 132-133 °C; 1H NMR (400 MHz, CDCl3) δ 7.29 (s, 1H, Ar-H), 7.46-7.54 (m, 6H, Ar-H), 7.60-7.65 (m, 1H, Ar-H), 7.87-7.91 (m, 2H, Ar-H), 8.08-8.10 (m, 1H, Ar-H), 8.67-8.71 (m, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 124.9, 125.0, 126.49, 126.5, 127.0, 127.8, 128.0, 128.4, 129.4, 130.05, 130.08, 130.1, 131.5, 131.8, 133.6, 135.4, 137.9, 153.1, 182.2; DEPT-135 NMR (100 MHz, CDCl3) δ 124.9 (CH), 125.0 (CH), 126.49 (CH), 126.5 (CH), 127.0 (CH), 127.8 (CH), 128.0 (CH), 128.4 (CH), 129.4 (CH), 130.08 (CH), 130.11 (CH), 131.5 (CH); 77Se NMR (76 MHz, CDCl3) δ 427.3 (d, J 9.2 Hz); MS (relative intensity / %) m/z, 152 (96.0), 156 (30.7), 184 (34.8), 319 (100.0), 336 (35.5); HRMS (APCI-QTOF) m/z, calcd. for C19H13OSe [M + H]+: 337.0132, found: 337.0125.

(E)-2-Styryl-4H-selenochromen-4-one (3g)

Yield: 0.058 g (74%); yellowish solid; mp 133-135 °C; 1H NMR (400 MHz, CDCl3) δ 7.08 (d, J 16.1 Hz, 1H, CH), 7.14-7.18 (m, 2H, Ar-H), 7.34-7.42 (m, 3H, Ar-H), 7.45-7.54 (m, 4H, Ar-H), 7.63-7.65 (m, 1H, Ar-H), 8.54 (dd, J 7.9 and 1.4 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 127.0, 127.4, 127.6, 127.7, 128.3, 129.0, 129.6, 129.9, 131.7, 132.2, 135.1, 136.1, 149.6, 183.0; DEPT-135 NMR (100 MHz, CDCl3) δ 127.0 (CH), 127.4 (2× CH), 127.6 (CH), 127.7 (CH), 128.3 (CH), 129.0 (2× CH), 129.6 (CH), 129.9 (CH), 131.7 (CH), 136.1 (CH); 77Se NMR (76 MHz, CDCl3) δ 360.2 (t, J 9.8 Hz); MS (relative intensity / %) m/z, 128 (60.6), 156 (39.5), 184 (100.0), 295 (9.3), 312 (37.0); HRMS (APCI-QTOF) m/z, calcd. for C17H13OSe [M + H]+: 313.0132, found: 313.0122.

2-Pentyl-4H-selenochromen-4-one (3h)6

Yield: 0.068 g (97%); yellowish solid; mp 38-39 °C; 1H NMR (400 MHz, CDCl3) δ 0.90 (t, J 7.4 Hz, 3H, CH3), 1.31-1.41 (m, 4H, CH2), 1.72 (quint, J 7.4 Hz, 2H, CH2), 2.73 (t, J 7.4 Hz, 2H, CH2), 7.01 (s, 1H, Ar-H), 7.44-7.51 (m, 2H, Ar-H), 7.58-7.63 (m, 1H, Ar-H), 8.55-8.57 (m, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 13.8, 22.2, 29.7, 30.9, 38.9, 126.0, 127.4, 128.3, 129.9, 131.2, 131.8, 136.5, 158.2, 182.5; DEPT-135 NMR (100 MHz, CDCl3) δ 13.8 (CH3), 22.2 (CH2), 29.7 (CH2), 30.9 (CH2), 38.9 (CH2), 126.0 (CH), 127.4 (CH), 128.3 (CH), 129.9 (CH), 131.2 (CH); 77Se NMR (76 MHz, CDCl3) δ 400.5-401.0 (m); MS (relative intensity / %) m/z, 95 (5.0), 115 (43.9), 156 (35.2), 184 (100.0), 224 (79.0), 280 (34.0); HRMS (APCI-QTOF) m/z, calcd. for C14H17OSe [M + H]+: 281.0445, found: 281.0438.

7-Chloro-2-phenyl-4H-selenochromen-4-one (3i)

Yield: 0.058 g (72%); yellowish solid; mp 148-149 °C; 1H NMR (400 MHz, CDCl3) δ 7.33 (s, 1H, Ar-H), 7.44-7.51 (m, 4H, Ar-H), 7.59-7.61 (m, 2H, Ar-H), 7.67 (d, J 2.0 Hz, 1H, Ar-H), 8.51 (d, J 8.7 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 125.6, 126.8, 127.6, 128.4, 129.3, 130.0, 130.9, 131.4, 137.7, 137.9, 138.3, 153.7, 181.8; DEPT-135 NMR (100 MHz, CDCl3) δ 125.6 (CH), 126.8 (2× CH), 127.6 (CH), 128.4 (CH), 129.3 (2× CH), 130.9 (CH), 131.4 (CH); 77Se NMR (76 MHz, CDCl3) δ 396.5 (d, J 8.5 Hz); MS (relative intensity / %) m/z, 102 (14.4), 190 (32.6), 218 (100.0), 292 (29.1), 320 (84.5); HRMS (APCI-QTOF) m/z, calcd. for C15H10ClOSe [M + H]+: 320.9585, found: 320.9578.

2-Phenyl-4H-thiochromen-4-one (4a)6

Yield: 0.059 g (99%); yellowish solid; mp 95-96 °C; 1H NMR (400 MHz, CDCl3) δ 7.24 (s, 1H, Ar-H), 7.47-7.56 (m, 4H, Ar-H), 7.59-7.70 (m, 4H, Ar-H), 8.54 (d, J 7.8 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 123.4, 126.4, 126.9, 127.7, 128.5, 129.2, 130.76, 130.8, 131.5, 136.5, 137.6, 153.0, 180.8; DEPT-135 NMR (100 MHz, CDCl3) δ 123.4 (CH), 126.4 (CH), 126.9 (2× CH), 127.7 (CH), 128.5 (CH), 129.2 (2× CH), 130.76 (CH), 131.5 (CH); MS (relative intensity / %) m/z, 102 (6.4), 108 (53.9), 136 (57.5), 210 (94.5), 238 (100.0); HRMS (APCI-QTOF) m/z, calcd. for C15H11OS [M + H]+: 239.0531, found: 239.0523.

2-(4-Tolyl)-4H-thiochromen-4-one (4b)6

Yield: 0.047 g (75%); gray solid; mp 109-110 °C; 1H NMR (400 MHz, CDCl3) δ 2.42 (s, 3H, Ar-CH3), 7.23 (s, 1H, Ar-H), 7.30 (d, J 8.0 Hz, 2H, Ar-H), 7.52-7.66 (m, 5H, Ar-H), 8.54 (d, J 7.9 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 21.3, 122.8, 126.4, 126.8, 127.6, 128.5, 129.9, 130.9, 131.5, 133.7, 137.7, 141.3, 153.1, 180.9; DEPT-135 NMR (100 MHz, CDCl3) δ 21.3 (CH3), 122.8 (CH), 126.4 (CH), 126.8 (2× CH), 127.6 (CH), 128.5 (CH), 129.9 (2× CH), 131.5 (CH); MS (relative intensity / %) m/z, 108 (51.7), 115 (30.8), 136 (65.5), 224 (91.8), 252 (100.0); HRMS (APCI-QTOF) m/z, calcd. for C16H13OS [M + H]+: 253.0687, found: 253.0677.

2-(2-Tolyl)-4H-thiochromen-4-one (4c)6

Yield: 0.051 g (81%); yellow oil; 1H NMR (400 MHz, CDCl3) δ 2.38 (s, 3H, Ar-CH3), 6.92 (s, 1H, Ar-H), 7.25-7.38 (m, 4H, Ar-H), 7.53-7.57 (m, 1H, Ar-H), 7.59-7.64 (m, 2H, Ar-H), 8.58 (dt, J 8.0 and 1.0 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 19.8, 126.0, 126.1, 126.2, 127.7, 128.6, 128.9, 129.7, 130.8, 130.84, 131.5, 135.6, 136.0, 138.3, 153.5, 180.4; DEPT-135 NMR (100 MHz, CDCl3) δ 19.8 (CH3), 126.0 (CH), 126.1 (CH), 126.2 (CH), 127.7 (CH), 128.6 (CH), 128.9 (CH), 129.7 (CH), 130.8 (CH), 131.5 (CH); MS (relative intensity / %) m/z, 108 (34.7), 115 (29.5), 136 (45.9), 223 (38.4), 252 (100.0); HRMS (APCI-QTOF) m/z, calcd. for C16H13OS [M + H]+: 253.0687, found: 253.0685.

2-(4-Chlorophenyl)-4H-thiochromen-4-one (4d)6

Yield: 0.042 g (62%); yellowish solid; mp 159-160 °C; 1H NMR (400 MHz, CDCl3) δ 7.18 (s, 1H, Ar-H), 7.46 (d, J 8.5 Hz, 2H, Ar-H), 7.52-7.56 (m, 1H, Ar-H), 7.60-7.65 (m, 4H, Ar-H), 8.52 (d, J 7.7 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 123.4, 126.4, 127.9, 128.1, 128.5, 129.5, 130.7, 131.7, 134.9, 137.0, 137.3, 151.5, 180.6; DEPT-135 NMR (100 MHz, CDCl3) δ 123.4 (CH), 126.4 (CH), 127.9 (CH), 128.1 (2× CH), 128.5 (CH), 129.5 (2× CH), 131.7 (CH); MS (relative intensity / %) m/z, 108 (46.3), 136 (80.3), 244 (90.3), 272 (100.0); HRMS (APCI-QTOF) m/z, calcd. for C15H10ClOS [M + H]+: 273.0141, found: 273.0150.

2-(2-Chlorophenyl)-4H-thiochromen-4-one (4e)6

Yield: 0.057 g (83%); white solid; mp 126-127 °C; 1H NMR (400 MHz, CDCl3) δ 7.02 (s, 1H, Ar-H), 7.36-7.46 (m, 3H, Ar-H), 7.51-7.59 (m, 2H, Ar-H), 7.62-7.67 (m, 2H, Ar-H), 8.58 (d, J 8.0 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 126.3, 127.1, 127.2, 127.8, 128.7, 130.5, 130.7, 130.9, 131.1, 131.7, 132.6, 135.2, 138.1, 150.4, 180.4; DEPT-135 NMR (100 MHz, CDCl3) δ 126.3 (CH), 127.1 (CH), 127.2 (CH), 127.8 (CH), 128.7 (CH), 130.5 (CH), 130.7 (CH), 131.1 (CH), 131.7 (CH); MS (relative intensity / %) m/z, 108 (41.9), 136 (73.0), 244 (71.4), 272 (100.0); HRMS (APCI-QTOF) m/z, calcd. for C15H10ClOS [M + H]+: 273.0141, found: 273.0133.

2-(Naphthalen-2-yl)-4H-thiochromen-4-one (4f)2121 French, K. L.; Angel, A. J.; Williams, A. R.; Hurst, D. R.; Beam, C. F.; J. Heterocyclic. Chem. 1998, 35, 45.

Yield: 0.068 g (94%); yellowish solid; mp 135-136 °C; 1H NMR (400 MHz, CDCl3) δ 7.15 (s, 1H, Ar-H), 7.47-7.63 (m, 7H, Ar-H), 7.88-7.95 (m, 2H, Ar-H), 8.04-8.06 (m, 1H, Ar-H), 8.62 (d, J 7.7 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 124.8, 124.9, 126.1, 126.5, 127.06, 127.12, 127.2, 127.7, 128.4, 128.6, 130.3, 130.4, 131.0, 131.5, 133.6, 133.9, 138.5, 152.2, 180.2; DEPT-135 NMR (100 MHz, CDCl3) δ 124.8 (CH), 124.9 (CH), 126.1 (CH), 126.5 (CH), 127.06 (CH), 127.12 (CH), 127.2 (CH), 127.7 (CH), 128.4 (CH), 128.6 (CH), 130.3 (CH), 131.5 (CH); MS (relative intensity / %) m/z, 108 (9.5), 136 (6.3), 152 (21.1), 271 (100.0), 288 (23.3); HRMS (APCI-QTOF) m/z, calcd. for C19H13OS [M + H]+: 289.0687, found: 289.0680.

(E)-2-Styryl-4H-thiochromen-4-one (4g)66 Fuchs, F. C.; Eller, G. A.; Holzer, W.; Molecules 2009, 14, 3814; Sangeetha, S.; Sekar, G.; Org. Lett. 2019, 21, 75; Yang, W.-R.; Choi, Y.-S.; Jeong, J.-H.; Org. Biomol. Chem. 2017, 15, 3074; Sashida, H.; Synthesis 1998, 745; Pistoia, R. P.; Back, D. F.; Zeni, G.; Eur. J. Org. Chem. 2019, 3794.

Yield: 0.040 g (61%); yellowish solid; mp 119-120 °C; 1H NMR (400 MHz, CDCl3) δ 7.0 (s, 1H, Ar-H), 7.04 (d, J 16.2 Hz, 1H, CH), 7.31 (d, J 16.2 Hz, 1H, CH), 7.35-7.44 (m, 3H, Ar-H), 7.49-7.64 (m, 5H, Ar-H), 8.48-8.50 (m, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 124.6, 125.9, 126.4, 127.4, 127.5, 128.5, 129.0, 129.7, 131.3, 131.7, 135.1, 135.6, 136.6, 149.2, 181.1; DEPT-135 NMR (100 MHz, CDCl3) δ 124.6 (CH), 125.9 (CH), 126.4 (CH), 127.4 (2× CH), 127.5 (CH), 128.5 (CH), 129.0 (2× CH), 129.7 (CH), 131.7 (CH), 135.6 (CH); MS (relative intensity / %) m/z, 108 (52.8), 128 (40.6), 136 (39.8), 247 (59.9), 263 (100.0), 264 (72.1); HRMS (APCI-QTOF) m/z, calcd. for C17H13OS [M + H]+: 265.0687, found: 265.0683.

2-Pentyl-4H-thiochromen-4-one (4h)77 Shen, C.; Spannenberg, A.; Wu, X.-F.; Angew. Chem., Int. Ed. 2016, 55, 5067; Willy, B.; Frank, W.; Müller, T. J. J.; Org. Biomol. Chem. 2010, 8, 90; Zhang, F.-L.; Chen, Z.-B.; Liu, K.; Yuan, Q.; Jiang, Q.; Zhu, Y.-M.; Synlett 2018, 29, 621; Willy, B.; Müller, T. J. J.; Synlett 2009, 1255.

Yield: 0.053 g (91%); yellowish solid; mp 36-37 °C; 1H NMR (400 MHz, CDCl3) δ 0.91 (t, J 7.3 Hz, 3H, CH3), 1.35-1.39 (m, 4H, CH2), 1.73 (quint, J 7.3 Hz, 2H, CH2), 2.67 (t, J 7.3 Hz, 2H, CH2), 6.86 (s, 1H, Ar-H), 7.47-7.52 (m, 1H, Ar-H), 7.55-7.59 (m, 2H, Ar-H), 8.50 (d, J 8.0 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 13.8, 22.2, 29.4, 30.9, 37.3, 124.0, 126.1, 127.4, 128.4, 130.9, 131.2, 137.7, 156.5, 180.6; DEPT-135 NMR (100 MHz, CDCl3) δ 13.8 (CH3), 22.2 (CH2), 29.4 (CH2), 30.9 (CH2), 37.3 (CH2), 124.0 (CH), 126.1 (CH), 127.4 (CH), 128.4 (CH), 131.2 (CH); MS (relative intensity / %) m/z, 95 (1.8), 108 (21.3), 136 (67.2), 176 (100.0), 232 (28.0); HRMS (APCI-QTOF) m/z, calcd. for C14H17OS [M + H]+: 233.1000, found: 233.0996.

7-Chloro-2-phenyl-4H-thiochromen-4-one (4i)77 Shen, C.; Spannenberg, A.; Wu, X.-F.; Angew. Chem., Int. Ed. 2016, 55, 5067; Willy, B.; Frank, W.; Müller, T. J. J.; Org. Biomol. Chem. 2010, 8, 90; Zhang, F.-L.; Chen, Z.-B.; Liu, K.; Yuan, Q.; Jiang, Q.; Zhu, Y.-M.; Synlett 2018, 29, 621; Willy, B.; Müller, T. J. J.; Synlett 2009, 1255.

Yield: 0.056 g (83%); yellowish solid; mp 134-135 °C; 1H NMR (400 MHz, CDCl3) δ 7.18 (s, 1H, Ar-H), 7.44-7.53 (m, 4H, Ar-H), 7.60 (d, J 1.8 Hz, 1H, Ar-H), 7.64 (dd, J 7.6 and 1.8 Hz, 2H, Ar-H), 8.44 (d, J 8.7 Hz, 1H, Ar-H); 13C{1H} NMR (100 MHz, CDCl3) δ 123.4, 125.6, 126.8, 128.3, 129.2, 129.3, 130.1, 130.9, 136.0, 138.2, 138.9, 152.6, 179.8; DEPT-135 NMR (100 MHz, CDCl3) δ 123.4 (CH), 125.6 (CH), 126.8 (2× CH), 128.3 (CH), 129.2 (2× CH), 130.1 (CH), 130.9 (CH); MS (relative intensity / %) m/z, 102 (6.9), 142 (20.1), 170 (39.5), 244 (92.1), 272 (100.0); HRMS (APCI-QTOF) m/z, calcd. for C15H10ClOS [M + H]+: 273.0141, found: 273.0141.

Procedure for identify the nucleophilic species formed through 77Se NMR spectroscopy

In a 10.0 mL reaction vial containing Se (0.3 mmol) in PEG-400 (2.0 mL) under argon atmosphere was added NaBH4 (0.7 mmol), and the mixture was slowly heated to 50 °C being stirred for 30 min. Then, 500 µL of this solution was transferred to a 5 mm NMR tube, purged with argon gas and a capillary tube with a solution of the diphenyl diselenide in CDCl3 was used as the chemical shift reference (δ 463 ppm), after the NMR tube was capped with a rubber septum and analyzed by 77Se NMR. The spectra were recorded at 298 K and with 845 scans.

Results and Discussion

Based on the results of our recent studies using elemental chalcogens,1919 Perin, G.; Barcellos, A. M.; Luz, E. Q.; Borges, E. L.; Jacob, R. G.; Lenardão, E. J.; Sancineto, L.; Santi, C.; Molecules 2017, 22, 327; Peglow, T. J.; Schumacher, R. F.; Cargnelutti, R.; Reis, A. S.; Luchese, C.; Wilhelm, E. A.; Perin, G.; Tetrahedron Lett. 2017, 58, 3734. we chose selenium powder 1a, NaBH4 and 1-(2-chlorophenyl)-3-phenylprop-2-yn-1-one 2a as model substrates to identify the optimum conditions under argon (Ar) atmosphere and PEG-400 as the solvent (Table 1). For this test, a mixture of selenium (0.25 mmol) and NaBH4 (2.3 equiv) in PEG-400 (2.0 mL) was stirred at 50 °C, for the in situ generation of the nucleophilic selenium species. This formation was monitored by the color change of the reaction medium, changing from grey to colorless after 0.5 h of stirring. After that, the 2-chlorophenyl ethynyl ketone 2a (0.25 mmol) was added to the reaction vessel and the temperature was raised to 100 °C. In these conditions, the corresponding 2-phenyl-4H-selenochromen-4-one 3a was obtained with 56% gas chromatography (GC) yield in a reaction time of 2 h (Table 1, entry 1). To our delight, increasing the amount of selenium powder to 0.3 mmol provides an improvement in the reaction performance, and the target compound 3a could be achieved with 99% GC yield and an isolated yield of 98% (Table 1, entry 2). Reducing the reaction time to 1 h showed a negative effect to produce the desired Se-favone 3a, and only 69% GC yield was observed (Table 1, entry 3). We also investigated the effect of the temperature on the reaction yield. However, decreasing the temperature results in lower yields (Table 1, entries 4-6). Subsequently, other solvents were investigated under similar reaction conditions. Polar solvents such as EtOH, glycerol and water provided product 3a, but in lower yields compared to the use of PEG-400, furthermore, several by-products were observed in gas chromatography mass spectrometry (GC-MS, Table 1, entries 7-9 vs. entry 2). Additionally, aprotic solvents were ineffcient in our study and the use of dimethyl sulfoxide (DMSO) or MeCN failed to afford the desired product (Table 1, entries 10-11). Thus, we established the best reaction conditions as being a two steps onepot procedure, which starts with the reaction of selenium 1a (0.3 mmol) and NaBH4 (0.7 mmol) in PEG-400 (2.0 mL) at 50 °C under Ar for 0.5 h. Then, compound 2a (0.25 mmol) is added into the reaction medium, and the resulting mixture is stirred for an additional 2 h at 100 °C (Table 1, entry 2).

Table 1
Optimization of the synthesis of Se-flavone 3aa a Reactions were performed using Se0 1a, NaBH4 (2.33 equiv in relation to selenium powder) in 2.0 mL of the solvent at 50 ºC under argon for 0.5 h. Then, 0.25 mmol of 2a was added.

With the optimal reaction conditions identified, various 2-chloroaryl ethynyl ketone 2 for this ring closure reaction were investigated and the results are summarized in Scheme 2. In the beginning, the electronic effects on the substituent R1 of the compound 2 were investigated. Briefly, this method proved to be more efficient for electron-donating substituents when compared with electron-withdrawing substituents in the aromatic ring. When using electron-donating groups in the aromatic ring (2-CH3 and 4-CH3), the corresponding Se-favones 3b and 3c were obtained in high yields. Since by using electronwithdrawing atoms in the aromatic ring (2-Cl and 4-Cl), the Se-favones 3d and 3e were obtained 61 and 76%, respectively. To our delight, the substitution of the aryl group by naphthyl group did not affect the effciency of this transformation, and the Se-favone 3f was obtained in an excellent yield of 98%. In the same manner, substrate possessing styryl moiety can also be effectively converted into Se-favone functionalized with styryl derivative 3g in 74% yield under well-established conditions. Despite employing a reduction system (NaBH4/PEG-400), this method proved to be chemoselective, since no reaction in the carbon-carbon double bond of the styryl group was observed. We can also prepare an analogous compound with an aliphatic chain, through the reaction compound 2h, leading to the formation of the product 3h in an excellent yield of 97%. We also explored the R position of the 2-chloro ethynyl ketone 2, substrate 2i (R = Cl) reacted under well-established conditions, affording the desired product 3i in 72% yield.

Scheme 2
Substrate scope to the synthesis of Se-favones 3a-3i. Reactions was performed using Se0 1a (0.3 mmol), NaBH4 (0.7 mmol, 2.33 equiv in relation to selenium powder) in 2.0 mL of the solvent at 50 °C under argon for 0.5 h. Then, 0.25 mmol of 2 was added. Yields for the isolated products. ªReaction was performed using 2-bromophenyl ethynyl ketone 2b (0.25 mmol). bPerformed on 4.0 mmol scale.

In addition, we explored the change of the chlorine atom by bromine atom in the substrate 2 under optimized conditions. After 2 h of reaction time, the Se-favone 3a was also obtained in a good yield, however lower than the chlorine one. This result is consistent because it clearly supports the point about halogen’s atom role, in which electron-withdrawing groups improve the reactivity for the aromatic nucleophilic substitution reaction. Considering the straightforward method herein developed, it was successfully applied in the gram-scale synthesis of Se-favone 3a (4 mmol), leading to 81% yield of the corresponding product.

Encouraged by the Se-favones results, we next studied the general applicability of the method for the synthesis of thiofavones 4 by the reaction of sulfur powder 1b with a variety of 2-chloroaryl ethynyl ketones 2, as shown in the Scheme 3. Thus, when using the compound 2a, with a neutral group, the 2-phenyl-4H-thiochromen-4-one 4a was afforded in 99% yield. Next, we explore the infuence of the substituents on the 2-chlorophenyl ethynyl ketone 2 in the R1 position, frstly, containing electron-donating groups (2-CH3 and 4-CH3), and subsequently with electronwithdrawing atoms (2-Cl and 4-Cl) in the aromatic ring. In both cases, substituents at the ortho position in the aromatic ring showed better results, when compared with the para position, affording the desired products 4c and 4e in 81 and 83% yield, respectively. According to the groups in the para position in the aromatic ring, the S-favones 4b and 4d were obtained in 75 and 62% yield, respectively. Similar to the selenium reactivity, 2-naphthyl substituent did not infuence the reaction performance, leading to product 4f in an excellent yield of 94%. To our delight, when using the compound 2g, possessing a styryl moiety, the respective S-favone was obtained in 61% yield and no parallel reaction in the C-C double bond of the styrene group being observed. In addition, changing the substituent R1 to an aliphatic chain was possible, and the desired product 4h was obtained in 91% yield. We next evaluated the reaction of 2,4-dichlorophenyl ethynyl ketone 2i containing a chlorine atom in the R position, under optimized conditions, and the S-favone 4i was obtained in a good yield. In counterpart, our attempts to synthesize the Te-favones derivatives through the reaction between tellurium powder and compound 2a under the optimized conditions have been proved fruitless. In all cases, only reduction by-products derived from substrate 2a were observed by GC-MS analysis.2222 Perin, G.; Barcellos, A. M.; Peglow, T. J.; Nobre, P. C.; Cargnelutti, R.; Lenardão, E. J.; Marini, F.; Santi, C.; RSC Adv. 2016, 6, 103657.

Scheme 3
Substrate scope to the synthesis of S-favones 4a-4i. Reactions was performed using S0 1b (0.3 mmol), NaBH4 (0.7 mmol, 2.33 equiv in relation to sulfur powder) in 2.0 mL of the solvent at 50 °C under argon for 0.5 h. Then, 0.25 mmol of 2 was added. Yields for isolated products.

In order to clarify the possible mechanism of the ring closure reaction, a set of control experiments were carried out (Scheme 4). Polyethylene glycols, open-chain analogs of crown ethers, are well documented to have the tendency to bind with alkali cations as crown ethers.2323 Li, Y.-N.; Wang, J.-L.; He, L.-N.; Tetrahedron Lett. 2011, 52, 3485; Humne, V.; Lokahnde, P.; Synth. Commun. 2014, 44, 929; Panwar, V.; Ray, S. S.; Jain, S. L.; Tetrahedron Lett. 2015, 56, 4184. Our hypothesis is that the PEG-400 could be forming a crown-like structure in this reaction. For this purpose, the 2-chlorophenyl ethynyl ketone 2a was reacted with selenium powder 1a, NaBH4 using ethanol as solvent (since among the tested solvents, it was able to form Se-favone in a low yield; Table 1, entry 7) and 1.0 equiv of the 15-crown-5 was added in the reaction. In this condition, the desired product was obtained in 78% yield (Scheme 4, i). This result demonstrates that the presence of a crown-like species favors the formation of Se-favone, once, in the absence of the crown ether, only 32% yield of the product was obtained (Table 1, entry 7). Similarly, compound 2a was reacted with selenium powder 1a, NaBH4 using ethanol as solvent and 1.0 equiv of the PEG-400 was added in the reaction. Gratifyingly, the desired product was obtained in 71% yield. This result indicates a possible coordination of the PEG-400, such crown-like, to sodium atom and this complex cause the selenium anion to be more activated, favoring the formation of the Se-favone 3a (Scheme 4, ii).

Scheme 4
Control experiments.

Our next endeavor was to identify the nucleophilic species formed by the reaction of the selenium powder with NaBH4 in PEG-400 solvent, through 77Se NMR spectroscopy. In 2016, Oliveira et al.2424 Oliveira, A. R. M.; Piovan, L.; Simonelli, F.; Barison, A.; Santos, M. F. C.; Mello, M. B. M.; J. Organomet. Chem. 2016, 806, 54. reported the identifcation of the nucleophilic selenium species from the reaction between Se0 and NaBH4 in ethanol solvent through a proton-coupled 77Se NMR experiment. Thus, a similar procedure was performed, and a mixture of selenium powder 1a (0.3 mmol) and NaBH4 (0.7 mmol) was stirred at 50 °C in PEG-400 for 0.5 h and then a 77Se NMR spectrum was immediately recorded. It was observed in the selenium spectrum a doublet resonance at -458.1 ppm with a coupling constant of 16.6 Hz, confrming the Se-H bonding (Figure 2). Oliveira et al.2424 Oliveira, A. R. M.; Piovan, L.; Simonelli, F.; Barison, A.; Santos, M. F. C.; Mello, M. B. M.; J. Organomet. Chem. 2016, 806, 54. reported a similar result (d = –496 ppm), corroborating the characterization of this nucleophilic selenium species. It is noteworthy that as 15N and 17O NMR profle,2525 Cusick, J.; Dance, I.; Polyhedron 1991, 10, 2629.,2626 Brown, S. In NMR Crystallography; Harris, R. K.; Wasylishen, R. E.; Duer, M. J., eds.; John Wiley & Sons Ltd.: Chichester, 2009, p. 321. the deshielding of the 77Se chemical shift in PEG-400 solvent indicates a solvent effect, producing a less effective solvation and, consequently, obtaining a more nucleophilic selenium species.2727 Daolio, A.; Scilabra, P.; Pietro, M. E. D.; Resnati, C.; Rissanen, K.; Resnati, G.; New J. Chem. 2020, 44, 20697.

Figure 2
77Se NMR experiments to determination of the intermediate.

On the basis of the above results and reported literature,66 Fuchs, F. C.; Eller, G. A.; Holzer, W.; Molecules 2009, 14, 3814; Sangeetha, S.; Sekar, G.; Org. Lett. 2019, 21, 75; Yang, W.-R.; Choi, Y.-S.; Jeong, J.-H.; Org. Biomol. Chem. 2017, 15, 3074; Sashida, H.; Synthesis 1998, 745; Pistoia, R. P.; Back, D. F.; Zeni, G.; Eur. J. Org. Chem. 2019, 3794. a plausible mechanism is proposed (Scheme 5). Firstly, the chalcogen 1 in its elemental form is reduced by NaBH4, forming the corresponding sodium hydrochalcogenide (NaHSe or NaHS). In the presence of PEG-400, which behaves as a crown ether, the in situ formation of sodium complex is favored, making the chalcogen nucleophilic species species more active. Subsequently, the nucleophilic species is added to the carbon-carbon triple bond of the 2-chlorophenyl ethynyl ketone 2 in a Michaeltype addition, giving the intermediate A, that after an intramolecular cyclization result in the chalcogenofavones 3 or 4 (Scheme 5, path I). The nucleophilic species can also attack the carbon atom attached to the chlorine atom of the compound 2 in an aromatic nucleophilic substitution reaction giving the intermediate B, that after the intramolecular cyclization results in the chalcogenofavones 3 or 4 (Scheme 5, path II).

Scheme 5
Plausible mechanism.

Conclusions

In summary, we have developed an effcient method for the synthesis of chalcogenofavones by ring closure reaction of 2-chlorophenyl ethynyl ketones with nucleophilic chalcogen species. The nucleophiles were generated in situ using PEG-400 as solvent and NaBH4 as reduction agent. This green and environmentally friendly strategy demonstrates great compatibility with selenium and sulfur derivatives, affording a series of chalcogenofavones in good to excellent yields. Moreover, PEG-400 proved to be crucial in this method, acting as a green solvent and mainly forming crown-like complexes. In addition, the nucleophilic species was identifed by proton-coupled 77Se NMR experiments, contributing to the understanding about the reactivity of this nucleophilic chalcogen species in organic synthesis.

Acknowledgments

This study was fnanced in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil (CAPES) - Finance Code 001. FAPERGS (PqG 19/2551-0001867-3), CNPq and FINEP are acknowledged for financial support. CNPq is also acknowledged for fellowships to RGJ and GP.

  • Supplementary Information
    Supplementary information is available free of charge at http://jbcs.sbq.org.br as PDF fle.

References

  • 1
    Santi, C.; Organoselenium Chemistry: Between Synthesis and Biochemistry; Santi, C., ed.; Bentham Science: Sharjah U. A. E., 2014; Lenardão, E. J.; Santi, C.; Sancineto, L.; New Frontiers in Organoselenium Compound; Springer: Cham, Switzerland, 2018; Jain, V. K.; Priyadarsini, K. I.; Organoselenium Compounds in Biology and Medicine Synthesis, Biological and Therapeutic Treatments; Royal Society of Chemistry: London, UK, 2017.
  • 2
    Barth, A.; Vogt, A. G.; Reis, A. S.; Pinz, M. P.; Krüger, R.; Domingues, W. B.; Alves, D.; Campos, V. F.; Pinton, S.; Paroul, N.; Wilhelm, E. A.; Luchese, C.; Mol. Neurobiol. 2019, 56, 6398; Mołchowski, J.; Kloc, K.; Lisiak, R.; Potaczek, P.; Wójtowicz, H.; Arkivoc 2007, vi, 14; Vogt, A. G.; Voss, G. T.; Oliveira, R. L.; Paltian, J. J.; Duarte, L. F. B.; Alves, D.; Jesse, C. R.; Roman, S. S.; Roehrs, J. A.; Wilhelm, E. A.; Luchese, C.; Chem.-Biol. Interact. 2018, 282, 7; Lopes, E. F.; Penteado, F.; Thurow, S.; Pinz, M.; Reis, A. S.; Wilhelm, E. A.; Luchese, C.; Barcellos, T.; Dalberto, B.; Alves, D.; Silva, M. S.; Lenardão, E. J.; J. Org. Chem. 2019, 84, 12452; Soares, A. T. G.; Junior, L. B. L. R.; Salgueiro, W. G.; dal Forno, A. H. C.; Rodrigues, C. F.; Sacramento, M.; Franco, J.; Alves, D.; Oliveira, R. P.; Pinton, S.; Ávila, D. S.; J. Trace Elem. Med. Biol. 2019, 53, 34; Couto, S. F.; Araujo, S. M.; Bortolotto, V. C.; Poetini, M. R.; Pinheiro, F. C.; Musachio, E. A. S.; Meichtry, L. B.; Sacramento, M.; Alves, D.; Novo, D. L. R.; Mesko, M. F.; Prigol, M.; J. Trace Elem. Med. Biol. 2019, 54, 232.
  • 3
    Khadem, S.; Marles, R. J.; Molecules 2012, 17, 191; Sharma, S. K.; Kumar, S.; Chand, K.; Kathuria, A.; Gupta, A.; Jain, R.; Curr. Med. Chem. 2012, 18, 3825; Gaspar, A.; Matos, M. J.; Garrido, J.; Uriarte, E.; Borges, F.; Chem. Rev. 2014, 114, 4960; Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G.; Eur. J. Med. Chem. 2014, 78, 340.
  • 4
    Horvath, A.; Nussbaumer, P.; Wolff, B.; Billich, A.; J. Med. Chem. 2004, 47, 4268; Gotoda, S.; Takahashi, N.; Nakagawa, H.; Murakami, M.; Takechi, T.; Komura, T.; Uchida, T.; Takagi, Y.; Pestic. Sci. 1998, 52, 309; Zhang, D.; Ji, X.; Gao, R.; Wang, H.; Meng, S.; Zhong, Z.; Li, Y.; Jiang, J.; Li, Z.; Acta Pharm. Sin. B 2012, 2, 575; Kataoka, T.; Watanabe, S.-i.; Mori, E.; Kadomoto, R.; Tanimura, S.; Kohno, M.; Bioorg. Med. Chem. 2004, 12, 2397; Dong, J.; Zhang, Q.; Meng, Q.; Wang, Z.; Li, S.; Cui, J.; Mini-Rev. Med. Chem. 2018, 18, 1714; Choi, E. J.; Lee, J. I.; Kim, G.-H.; Int. J. Mol. Med. 2012, 29, 252; Choi, Y.-S.; Kim, D.-M.; Kim, Y.-J.; Yang, S.; Lee, K.-T.; Ryu, J. H.; Jeong, J.-H.; Int. J. Mol. Sci. 2015, 16, 29574; Holshouser, M. H.; Loeffler, L. J.; Hall, I. H.; J. Med. Chem. 1981, 24, 853; Nussbaumer, P.; Lehr, P.; Billich, A.; J. Med. Chem. 2002, 45, 4310.
  • 5
    Alcaide, B.; Almendros, P.; Lázaro-Milla, C.; Delgado-Martínez, P.; Chem.-Eur. J. 2018, 24, 8186; Kobayashi, K.; Kobayashi, A.; Ezaki, K. A.; Heterocycles 2012, 85, 1997; Luxen, A. J.; Christiaens, L. E. E.; Renson, M. J.; J. Organomet. Chem. 1985, 287, 81; Xu, J.; Zhang, F.; Zhang, S.; Zhang, L.; Yu, X.; Yan, J.; Song, Q.; Org. Lett. 2019, 21, 1112.
  • 6
    Fuchs, F. C.; Eller, G. A.; Holzer, W.; Molecules 2009, 14, 3814; Sangeetha, S.; Sekar, G.; Org. Lett. 2019, 21, 75; Yang, W.-R.; Choi, Y.-S.; Jeong, J.-H.; Org. Biomol. Chem. 2017, 15, 3074; Sashida, H.; Synthesis 1998, 745; Pistoia, R. P.; Back, D. F.; Zeni, G.; Eur. J. Org. Chem. 2019, 3794.
  • 7
    Shen, C.; Spannenberg, A.; Wu, X.-F.; Angew. Chem., Int. Ed. 2016, 55, 5067; Willy, B.; Frank, W.; Müller, T. J. J.; Org. Biomol. Chem. 2010, 8, 90; Zhang, F.-L.; Chen, Z.-B.; Liu, K.; Yuan, Q.; Jiang, Q.; Zhu, Y.-M.; Synlett 2018, 29, 621; Willy, B.; Müller, T. J. J.; Synlett 2009, 1255.
  • 8
    Lee, J. I.; Bull. Korean Chem. Soc. 2009, 30, 710.
  • 9
    Lee, J. I.; Kim, M. J.; Bull. Korean Chem. Soc. 2011, 32, 1383.
  • 10
    Inami, T.; Kurahashi, T.; Matsubara, S.; Org. Lett. 2014, 16, 5660.
  • 11
    Vijay, T. A. J.; Nandeesh, K. N.; Raghavendra, G. M.; Rangappa, K. S.; Mantelingu, K.; Tetrahedron Lett. 2013, 54, 6533.
  • 12
    Yang, X.; Li, S.; Liu, H.; Jiang, Y.; Fu, H.; RSC Adv. 2012, 2, 6549; Nakazumi, H.; Ueyama, T.; Kitao, T.; J. Heterocycl. Chem. 1984, 21, 193; Huang, C.-N.; Chuang, R.-R.; Kuo, P.-Y.; Yang, D.-Y.; Synlett 2008, 1825; Gu, Z.-Y.; Cao, J.-J.; Wang, S.-Y.; Ji, S.-J.; Chem. Sci. 2016, 7, 4067; Wang, D.; Sun, P.; Jia, P.; Peng, J.; Yue, Y.; Chen, C.; Synthesis 2017, 49, 4309.
  • 13
    Anastas, P.; Eghbali, N.; Chem. Soc. Rev 2010, 39, 301; Marco, B. A.; Rechelo, B. S.; Tótoli, E. G.; Kogawa, A. C.; Salgado, H. R. N.; Saudi Pharm. J. 2019, 27, 1; Mulimani, P.; Br. Dent. J. 2017, 222, 954; Bryan, M. C.; Dunn, P. J.; Entwistle, D.; Gallou, F.; Koenig, S. G.; Hayler, J. D.; Hickey, M. R.; Hughes, S.; Kopach, M. E.; Moine, G.; Richardson, P.; Roschangar, F.; Stevenh, A.; Weiberth, F. J.; Green Chem. 2018, 20, 5082; Erythropel, H. C.; Zimmerman, J. B.; Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q.; Pincus, L. N.; Falinski, M. M.; Shi, W.; Coish, P.; Plata, D. L.; Anastas, P. T.; Green Chem 2018, 20, 1929.
  • 14
    Kerton, F. M.; Marriott, R.; Alternative Solvents for Green Chemistry, 2nd ed.; RSC Publishing: Cambridge, UK, 2013; Reichardt C.; Welton, T.; Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, 2011.
  • 15
    Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D.; Green Chem 2005, 7, 64.
  • 16
    Vafaeezadeh, M.; Hashemi, M. M.; J. Mol. Liq. 2015, 207, 73; Chandrasekhar, S.; Narsihmulu, C.; Sultana, S. S.; Reddy, N. R.; Org. Lett. 2002, 25, 4399; Harraza, F. A.; El-Hout, S. E.; Killa, H. M.; Ibrahim, I. A.; J. Catal. 2012, 286, 184; Kadam, N. D.; Jayaram, R. V.; Curr. Catal 2018, 7, 52; Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S.; Tetrahedron Lett. 2008, 49, 6974.
  • 17
    Perin, G.; Alves, D.; Jacob, R. G.; Barcellos, A. M.; Soares, L. K.; Lenardão, E. L.; ChemistrySelect 2016, 2, 205; Perin, G.; Silveira, M. B.; Barcellos, A. M.; Jacob, R. G.; Alves, D.; Org. Chem. Front 2015, 2, 1531; Stach, G.; Peglow, T. J.; Roehrs, J. A.; Penteado, F.; Barcellos, T.; Jacob, R. G.; Lenardão, E. J.; Perin, G.; Synthesis 2019, 51, 578; Borges, E. L.; Peglow, T. J.; Silva, M. S.; Jacoby, C. G.; Schneider, P. H.; Lenardão, E. J.; Jacob, R. G.; Perin, G.; New J. Chem 2016, 40, 2321.
  • 18
    Perin, G.; Borges, E. L.; Alves, D.; Tetrahedron Lett 2012, 53, 2066; Perin, G.; Borges, E. L.; Rosa, P. C.; Carvalho, P. N.; Lenardão, E. J.; Tetrahedron Lett 2013, 54, 1718; Perin, G.; Borges, E. L.; Peglow, T. J.; Lenardão, E. J.; Tetrahedron Lett. 2014, 55, 5652; Silva, P. C.; Borges, E. L.; Lima, D. B.; Jacob, R. G.; Lenardão, E. J.; Perin, G.; Silva, M. S.; Arkivoc 2016, v, 376; Perin, G.; Goulart, H. A.; Soares, L. K.; Peglow, T. J.; Schumacher, R. F.; Pinz, M. P.; Reis, A. S.; Luchese, C.; Appl. Biochem. Biotechnol. 2018, 184, 1398.
  • 19
    Perin, G.; Barcellos, A. M.; Luz, E. Q.; Borges, E. L.; Jacob, R. G.; Lenardão, E. J.; Sancineto, L.; Santi, C.; Molecules 2017, 22, 327; Peglow, T. J.; Schumacher, R. F.; Cargnelutti, R.; Reis, A. S.; Luchese, C.; Wilhelm, E. A.; Perin, G.; Tetrahedron Lett. 2017, 58, 3734.
  • 20
    Pierce, B. M.; Simpson, B. F.; Ferguson, K. H.; Whittaker, R. E.; Org. Biomol. Chem. 2018, 16, 6659; Vyas, V. K.; Knighton, R. C.; Bhanage, B. M.; Wills, M.; Org. Lett. 2018, 20, 975.
  • 21
    French, K. L.; Angel, A. J.; Williams, A. R.; Hurst, D. R.; Beam, C. F.; J. Heterocyclic. Chem 1998, 35, 45.
  • 22
    Perin, G.; Barcellos, A. M.; Peglow, T. J.; Nobre, P. C.; Cargnelutti, R.; Lenardão, E. J.; Marini, F.; Santi, C.; RSC Adv. 2016, 6, 103657.
  • 23
    Li, Y.-N.; Wang, J.-L.; He, L.-N.; Tetrahedron Lett. 2011, 52, 3485; Humne, V.; Lokahnde, P.; Synth. Commun. 2014, 44, 929; Panwar, V.; Ray, S. S.; Jain, S. L.; Tetrahedron Lett. 2015, 56, 4184.
  • 24
    Oliveira, A. R. M.; Piovan, L.; Simonelli, F.; Barison, A.; Santos, M. F. C.; Mello, M. B. M.; J. Organomet. Chem. 2016, 806, 54.
  • 25
    Cusick, J.; Dance, I.; Polyhedron 1991, 10, 2629.
  • 26
    Brown, S. In NMR Crystallography; Harris, R. K.; Wasylishen, R. E.; Duer, M. J., eds.; John Wiley & Sons Ltd.: Chichester, 2009, p. 321.
  • 27
    Daolio, A.; Scilabra, P.; Pietro, M. E. D.; Resnati, C.; Rissanen, K.; Resnati, G.; New J. Chem. 2020, 44, 20697.

Publication Dates

  • Publication in this collection
    28 July 2021
  • Date of issue
    Aug 2021

History

  • Received
    11 Feb 2021
  • Accepted
    15 Apr 2021
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br