Acessibilidade / Reportar erro

Unraveling the Metabolomic Profile and Bioactivities of the Paratoid Gland Secretion from Rhinella granulosa

Abstract

Toads of the Rhinella genus have a pair of paratoid glands that store biological secretions of high toxicity and varied chemical composition, rich in biologically active compounds. The present work aimed to carry out the investigation of the metabolomic profile and evaluation of the biological potential of the secretion paratoid glands (PGS) from Rhinella granulosa. The paratoid secretion was collected in the Piauí state (Brazil), extracted with methanol and the extract was analyzed by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Fifty chemical constituents were identified. The extract showed cytotoxicity against tumor cell lines of the central nervous system (half maximal inhibitory concentration (IC50) = 1.9 µg mL-1) and prostate (IC50 = 1.6 µg mL-1), unsatisfactory antimicrobial potential (minimal inhibitory concentration (MIC) > 312 µg mL-1) and inhibited the enzyme acetylcholinesterase (IC50 = 5.119 mg mL-1). The results presented relevant information about the PGS and contributed to the understanding of the metabolomic and biological potential of R. granulosa.

Keywords:
Rhinella granulosa; toad secretion; UPLC-QToF-MS/MS; fingerprint; biological activities


Introduction

Natural products have been widely used by humanity since ancient times, mainly in the prevention, treatment, and cure of various diseases.11 Costa Neto, E. M.; Ciênc. Saúde Coletiva 2011, 16, 1639. [Crossref]
Crossref...
The use of animal body parts and products of their metabolism (biological secretions and excrements) for the treatment of diseases, as well as for hunting, defense, and execution of prisoners, was a common practice among peoples of the Ancient Age.22 Kerkhoff, J.; Noronha, J. C.; Bonfilio, R.; Sinhorin, A. P.; Rodrigues, D. J.; Chaves, M. H.; Vieira Jr., G. M.; Toxicon 2016, 119, 311. [Crossref]
Crossref...
,33 Viegas Jr., C.; Bolzani, V. S.; Barreiro, E. J.; Quim. Nova 2006, 29, 326. [Crossref]
Crossref...
Brazil has a rich herpetofauna, with a large number of amphibian species.44 Ferreira, P. M. P.; Lima, D. J. B.; Debiasi, B. W.; Soares, B. M.; Machado, K. C.; Noronha, J. C.; Rodrigues, D. J.; Sinhorin, A. P.; Pessoa, C.; Vieira Jr., G. M.; Toxicon 2013, 72, 43. [Crossref]
Crossref...
A total of 1026 species of amphibians have already been recorded in the country, of which 988 belong to the order Anura, representing the largest known anurofauna in the world, distributed in all Brazilian biomes.55 Saporito, R. A.; Donnelly, M. A.; Spande, T. F.; Garraffo, H. M.; Chemoecology 2012, 22, 159. [Crossref]
Crossref...
,66 Coutinho, L. M.; Acta Bot. Bras. 2006, 20, 13. [Crossref]
Crossref...

The Bufonidae family has a cosmopolitan geographic distribution, being present on all continents except Antarctica.77 Pramuk, J. B.; Zool. J. Linn. Soc. 2006, 146, 407. [Crossref]
Crossref...
,88 de Sousa, L. Q.; Machado, K. C.; Oliveira, S. F. C.; Araújo, L. S.; Monção-Filho, E. S.; Melo-Cavalcante, A. A. C. M.; Vieira Jr., G. M.; Ferreira, P. M. P.; Toxicon 2017, 127, 63. [Crossref]
Crossref...
In Brazil, the Bufonidae family is represented by eight genera, totaling 85 species, with the Rhinella genus being the most common.99 Pyron, R. A.; Wiens, J. J.; Mol. Phylogenet. Evol. 2011, 61, 543. [Crossref]
Crossref...
Toads of the Rhinella genus have a worldwide distribution, totaling about 200 species, most frequently in humid and tropical regions.1010 Gadelha, I. C. N.; Melo, M. M.; Soto-Blanco, B.; Rev. Bras. Hig. Sanid. Anim. 2015, 9, 195. [Crossref]
Crossref...
,1111 Machado, K. C.; de Sousa, L. Q.; Lima, D. J. B.; Soares, B. M.; Cavalcanti, B. C.; Maranhão, S. S. A.; Noronha, J. C.; Rodrigues, D. J.; Militão, G. C. G.; Chaves, M. H.; Vieira Jr., G. M.; Pessoa, C.; de Moraes, M. O.; e Sousa, J. M. C.; Cavalcante, A. A. C. M.; Ferreira, P. M. P.; Toxicol. Lett. 2018, 285, 121. [Crossref]
Crossref...

Anurans of the Bufonidae family have a pair of paratoid glands, present in the dorsolateral region of the body, which store biological secretions of high toxicity and varied chemical composition, having the function of defense against infections, microorganisms, and predators.1212 Alexandre, L. S.; Braga, F. M. S.; de Oliveira, P. K.; Coelho, T. L. S.; Fonseca, M. G.; de Sousa, R. W. R.; Dittz, D.; Sousa, J. M. C.; Ferreira, P. M. P.; Dantas, C.; Barbosa, H. S.; Chaves, M. H.; Lopes Jr., C. A.; Vieira Jr., G. M.; Toxicon 2021, 192, 32. [Crossref]
Crossref...
A wide variety of compounds such as steroids (bufadienolides and bufotoxins), arginine diacids, alkaloids, peptides and proteins can be found in the paratoid secretions of amphibians.1313 Clarke, B. T.; Biol. Rev. Cambridge Philos. Soc. 1997, 72, 365. [Crossref]
Crossref...
Bufadienolides have proven cardiotonic activity, while peptides and proteins are biomolecules, commonly referred to as toxins, which generally act on the central nervous system.1414 Utkin, Y. N.; World J. Biol. Chem. 2015, 6, 28. [Crossref]
Crossref...
About 2000 peptides have already been identified in amphibian glandular secretions. Among them are angiotensins, neuropeptides, myotropic peptides, antimicrobials and several others with a wide variety of biological activities.1515 Xu, X.; Lai, R.; Chem. Rev. 2015, 115, 1760. [Crossref]
Crossref...

The biological secretions produced through glands found in the skin of anurans are rich in biologically active components and have great biotechnological potential.1616 Oliveira, A. F.; Castoldi, L.; Vieira Jr., G. M.; Monção Filho, E. S.; Chaves, M. H.; Rodrigues, D. J.; Sugui, M. M.; Acta Amaz. 2019, 49, 145. [Crossref]
Crossref...
In ancient civilizations, secretion paratoid glands (PGS) of toads was already used as a diuretic, cardiac stimulant, expectorant, analgesic, and anti-inflammatory.1717 Chen, K. K.; Kovariková, A.; J. Pharm. Sci. 1967, 56, 1535. [Crossref]
Crossref...
,1818 Chen, Y.-L.; Bian, X.-L.; Guo, F.-J.; Wu, Y.-C.; Li, Y.-M.; Fitoterapia 2018, 131, 215. [Crossref]
Crossref...
In vitro studies showed compounds in paratoid secretions of these animals with several biological activities, such as antimalarial, antifungal, antitrypanosomal, antiviral, antileishmanial, antibacterial, insecticidal, anesthetic, and cytotoxic.44 Ferreira, P. M. P.; Lima, D. J. B.; Debiasi, B. W.; Soares, B. M.; Machado, K. C.; Noronha, J. C.; Rodrigues, D. J.; Sinhorin, A. P.; Pessoa, C.; Vieira Jr., G. M.; Toxicon 2013, 72, 43. [Crossref]
Crossref...
,1111 Machado, K. C.; de Sousa, L. Q.; Lima, D. J. B.; Soares, B. M.; Cavalcanti, B. C.; Maranhão, S. S. A.; Noronha, J. C.; Rodrigues, D. J.; Militão, G. C. G.; Chaves, M. H.; Vieira Jr., G. M.; Pessoa, C.; de Moraes, M. O.; e Sousa, J. M. C.; Cavalcante, A. A. C. M.; Ferreira, P. M. P.; Toxicol. Lett. 2018, 285, 121. [Crossref]
Crossref...
,1919 Tempone, A. G.; Pimenta, D. C.; Lebrun, I.; Sartorelli, P.; Taniwaki, N. N.; Andrade-Júnior, H. F.; Antoniazzi, M. M.; Jared, C.; Toxicon 2008, 52, 13. [Crossref]
Crossref...

Rhinella granulosa (Figure 1) is a toad found in different ecosystems with a wide distribution in the Brazilian Northeast and some southeastern Brazilian states, occurring mainly in the Caatinga biome, being more easily evidenced in the vicinity of streams, ponds, and water puddles.2020 Narvaes, P.; Rodrigues, M. T.; Arq. Zool. 2009, 40, 1. [Crossref]
Crossref...
,2121 Santana, A. S.; Juncá, F. A.; Braz. J. Biol. 2007, 67, 125. [Crossref]
Crossref...
It is a small animal (48 to 53 mm) that has a nocturnal habit, explosive reproduction, and a diet consisting of arthropods, ants, and coleopterans.2222 Pereyra, M. O.; Baldo, D.; Blotto, B. L.; Iglesias, P. P.; Thomé, M. T.; Haddad, C. F. B.; Barrio-Amorós, C.; Ibáñez, R.; Faivovich, J.; Cladistics 2016, 32, 36. [Crossref]
Crossref...
These toads have a back covered by small irregular granules (wart-like), varied coloration (from burnt yellow to brown), a whitish belly (cream), small dark spots scattered along the body, and inconspicuous paratoid glands, located just behind the eyes.2323 Sabagh, L. T.; Carvalho-e-Silva, A. M. P. T.; Rev. Bras. Zool. 2008, 25, 247. [Crossref]
Crossref...

Figure 1
Picture of a Rhinella granulosa.

Considering the significant occurrence of R. granulosa in the southern region of the state of Piauí (Northeast Brazil) and the lack of scientific research on the PGS of this species, the present work aimed to carry out the investigation of the metabolomic profile and evaluation of the cytotoxicity, antimicrobial and anticholinesterase activities of the paratoid gland secretion from R. granulosa.

Experimental

Obtaining the PGS

The toads of the species Rhinella granulosa were identified by biologists of the Federal University of Piauí, Picos campus, under the supervision of herpetologist, Prof Dr Mariluce Gonçalves Fonseca (IBAMA/SISBIO No. 22508-2). Through manual compression of the animal’s paratoid glands in their natural habitat, the biological secretion of interest in this study was obtained. PGS was collected from toads distributed in the city of Picos (7°04’48”S, 41º26’10”W), located in the southern region of the Piauí state (Northeast Brazil), during the month of February 2022. After collection, the animals were returned to their natural habitat without injuries and/or bruises.

The collection of PGS from the animals was carried out after authorization from the Ethics Committee on the Use of Animals of the Federal University of Piauí (CEUA/UFPI No. 52107-2), supported by the research registration (SisGen No. AE58A09) and the permanent license for collection of zoological material (IBAMA/SISBIO No. 55970-1).

Preparation of extract from paratoid secretion

During collection, the biological secretion was deposited in disposable plastic bottles and stored in a desiccator with silica for 72 h at room temperature (under vacuum). After this period, the dry PGS was transferred to a glass bottle and placed in a freezer at 4 °C. The extract was prepared by adding 50 mL of methanol (MeOH, Synth, Diadema, Brazil) to 1 g of PGS powder. The mixture was subjected to sonication in an ultrasonic (Ultronic, Indaiatuba, Brazil) bath for 15 min (four times), followed by simple filtration. The MeOH extract of PGS (yield of 55%) was obtained after rotoevaporation (Heidolph, Schwabach, Germany) of the solvent.

UPLC-QToF-MS/MS analysis

Ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC QToF MS/MS) analysis was performed on a Waters Acquity UPLC Xevo G2-XS Q-TOF instrument (Waters, Milford, USA) with an electrospray ionization interface (ESI). The chromatographic separation was performed using an Acquity UPLC®HSS T3 column (2.1 × 100 mm, 1.8 µm), with a mobile phase composed of ultrapure H2O + 0.1% formic acid (Merck, Darmstadt, Germany) (A) and MeCN (Sigma-Aldrich, Saint Louis, USA) + 0.1% formic acid (B). The elution gradient used was: 10 to 100% B in 8 min, maintaining the condition of 100% B for 0.2 min, returning to 10% B at t = 8.20 min, and maintaining this gradient until the time of 10 min. 0.1 µL aliquots of the samples were injected at a flow rate of 0.5 mL min 11 Costa Neto, E. M.; Ciênc. Saúde Coletiva 2011, 16, 1639. [Crossref]
Crossref...
, and the samples were solubilized (0.5 mg mL11 Costa Neto, E. M.; Ciênc. Saúde Coletiva 2011, 16, 1639. [Crossref]
Crossref...
) in H2O/MeCN (3:7, v/v).

UPLC-MS data were obtained in positive ion detection mode. The parameters defined for MS were mass range m/z between 100-1500 Da, source temperature of 100 °C, capillary voltage of 2500 V, desolvation temperature of 250 °C, 40 V cone voltage, desolvation gas flow of 550 L h-1, cone gas flow of 50 L h-1, centroid mode, and 0.2 s-1 scan time. The MS/MS mode analysis was performed based on the application of a collision-induced dissociation energy gradient ranging from 10 to 30 eV.

Cytotoxic assay

The tumor lines used, HCT-116 (human colon), SNB-19 (glioblastoma), and PC-3 (prostate), were provided by the National Cancer Institute (USA), cultivated in RPMI-1640 medium (Thermo Fisher Scientific, Paisley, UK), and the non-tumor lineage L929 (murine fibroblast) was cultured in Dulbecco’s Modified Eagle Medium (DMEM) medium (Thermo Fisher Scientific, Paisley, UK), supplemented with 10% fetal bovine serum (Thermo Fisher Scientific, Paisley, UK) and 1% antibiotics (Penicillin-Streptomycin, Thermo Fisher Scientific, New York, USA), and kept in an oven at 37 ºC and an atmosphere containing 5% CO2. The sample was diluted in pure sterile dimethyl sulfoxide (DMSO, Tedia, Fairfield, USA), obtaining a stock solution with a concentration of 50 mg mL-1, which was further diluted in working solutions to concentrations between 250 and 1.95 µg mL-1.

The cytotoxicity of the MeOH extract from R. granulosa was evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma-Aldrich, Saint Louis, USA) colorimetric method, using serial sample dilution.2424 Mossman, T.; J. Immunol. Methods 1983, 65, 55. [Crossref]
Crossref...
Cells were plated at concentrations of 7.0 × 104, 1.0 × 105, 1.0 × 105, and 7.0 × 104 cells mL-1 for the HCT 116, SNB-19, PC-3, and L929 strains, respectively. The plates were incubated with the MeOH extract for 72 h in an oven at 5% CO2 at 37 ºC. After this period, the plates were centrifuged and the supernatant removed. Then, 100 µL of the MTT solution (tetrazolium salt) was added, and the plates were incubated for 3 h. After incubation, the plates were centrifuged again to remove the MTT solution. The absorbances were measured after dissolving the formazan precipitate with 100 µL of pure DMSO in a plate spectrophotometer (PerkinElmer, Pontyclun, UK) at 595 nm.

The absorbances obtained in the test were used to calculate the concentration capable of inhibiting 50% of cell growth (IC50) of the sample through non-linear regression using the GraphPad Prism program (version 8.0).2525 Motulsky, H.; Software Prism, version 8.0; GraphPad Software, USA, 1989. The MeOH extract from R. granulosa was tested in triplicate in three independent experiments. Doxorubicin (Sigma-Aldrich, Saint Louis, USA) was used as a positive control.

Antimicrobial assay

Staphylococcus aureus (ATCC 29213), Escherichia coli (ATCC 25922), Candida albicans (ATCC 90028), and Candida krusei (ATCC 6258) were kindly provided by the Biology Laboratory Microorganism Collection of the Federal Institute of Maranhão, Monte Castelo Campus. Bacteria were cultured on Mueller-Hinton agar (MH, Merck, Darmstadt, Germany) at 37 ºC for 24 h, and the yeasts were cultured onto Sabouraud dextrose agar (SDA, Merck, Darmstadt, Germany) at 37 ºC for 48 h before tests. During the experiments, each culture medium was kept at 4°C.

The minimal inhibitory concentration (MIC) of the MeOH extract from R. granulosa was determined using the broth dilution method, as recommended by the Clinical Laboratory Standards Institute (CLSI).2626 Clinical and Laboratory Standards Institute (CLSI); CLSI Guide M100: Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: USA, 2019. For this method, 190 µL per well of MH broth or 200 µL per well RPMI-1640 (Sigma-Aldrich, Poole, UK) buffered with 0.165 mol L-1 morpholinepropanesulfonic acid (MOPS, Sigma-Aldrich, Saint Louis, USA) for bacteria or yeasts, respectively, were added to 96-well microplates.

Before experiments, extract powder dissolved in dimethyl sulfoxide (DMSO, Merck, Darmstadt, Germany) was diluted in RPMI-1640 or MH broth medium, depending on whether the tests were against yeast or bacteria, respectively. Then, an aliquot of the MeOH extract (100 µL per well) was added to the first well of 96-well microplates, and serial dilutions were carried out in subsequent wells. Tested concentrations of MeOH extract were 2500-4.88 µg mL-1. Fluconazole (FLZ, Sigma-Aldrich, Poole, UK) and ciprofloxacin (CPR, Sigma-Aldrich, Poole, UK) were used as positive controls.

Following that, 100 µL of RPMI-diluted Candida inoculum (1 × 103 colony forming units (CFU) mL-1) or 10 µL of saline-diluted bacteria inoculum (1.5 × 108 CFU mL 11 Costa Neto, E. M.; Ciênc. Saúde Coletiva 2011, 16, 1639. [Crossref]
Crossref...
) was added to each well and incubated at 37 ºC for 24 h in RPMI-1640 medium. After the incubation period, the MIC was defined as the lowest concentration that visibly inhibited fungal growth. MIC values were confirmed after adding 10 µL of resazurin 0.03% (Thermo Fisher Scientific, Waltham, USA) to each well and incubating for 4 h in the dark at 37 ºC. RPMI-1640 or MH (100 µL) plus standardized inoculum was used as a negative control. Sterile DMSO (1% in saline) was also used as a negative control. The results were obtained from three independent assays performed in triplicate.

Acetylcholinesterase enzyme inhibiting assay

The inhibition potential of the acetylcholinesterase enzyme (AChE, Sigma-Aldrich, Saint Louis, USA) was determined in 96-well microplates by the method of Ellman, modified by Rhee et al.2727 Rhee, I. K.; Van de Meent, M.; Ingkaninan, K.; Verpoorte, R.; J. Chromatogr. 2001, 915, 217. [Crossref]
Crossref...
Initially, solutions (50 mmol L-1) of buffer A (tris(hydroxymethyl)aminomethane (Sigma-Aldrich, São Paulo, Brazil) + HCl (Synth, Diadema, Brazil), at pH 8; Tris/HCl; buffer B (Tris/HCl + 0.1% bovine albumin (ACS Scientific, Sumaré, Brazil)); buffer C (Tris/HCl + NaCl (Neon, São Paulo, Brazil) 0.1 mol L-1 + 0.02 mol L-1 MgCl26H2O (Vetec, Rio de Janeiro, Brazil)); 15 mmol L-1 iodide of acetylcholine (ATCI, Merck, Darmstadt, Germany); 3 mmol L-1 5,5’-dithiobis-2-nitrobenzoic acid (DTNB, Thermo Fisher Scientific, Waltham, USA) and AchE 0.22 U mL-1 (10 units of AchE enzyme diluted in 45.45 mL in buffer B) were prepared.

The quantitative test for AchE enzyme inhibition was performed, in triplicate, by dissolving 10 mg of MeOH extract in buffer A and 10% ethanol (Synth, Diadema, Brazil) (stock solution). From this solution, working solutions were prepared (dilution in buffer A) in concentrations of 10, 5, 2.5, 1.25, and 0.625 mg mL-1. 25 µL of MeOH extract solution, 50 µL of buffer B, and 25 µL of AchE 0.22 U mL-1 were added to the microplate wells. The blank was prepared with 25 µL of buffer A with 10% ethanol in 50 µL of buffer B with 25 µL of AchE 0.22 U mL-1. The microplate with the extract solutions was kept in an oven for 15 min at 37 °C. Subsequently, 125 µL of 3 mmol L-1 DTNB and 25 µL of 15 mmol L-1 ATCI were added to each investigated extract solution, and the plate was measured at λ = 405 nm, at 0 and 5 min, using a microplate reader model Polaris (Celer, Belo Horizonte, Brazil). Rivastigmine (Exelon, Basel, Switzerland) was used as the positive control.

Results and Discussion

Identification of chemical constituents of PGS

The investigation of the chemical profile of the methanolic extract of PGS from Rhinella granulosa, collected in the city of Picos (Caatinga biome) in the southern region of the state of Piauí (Brazil), allowed the identification of 50 constituents (Figure 2), distributed in six classes of compounds: one amino acid, one carboxylic acid, three indole alkaloids, five arginine derivatives, 16 bufadienolides, and 24 bufotoxins. The compounds were identified by comparison with data reported in the literature, considering the relative error, the elution order of the chromatographic column (retention time), and the main fragment ions of the protonated molecules (Table 1). The compounds evidenced in the matrix studied (Figure 3) are reported in glandular secretions of other anuran species of the genera Bufo, Rhinella and Rhaebo.2828 Cao, Y.; Wu, J.; Pan, H.; Wang, L.; Molecules 2019, 24, 3595. [Crossref]
Crossref...

29 Schmeda-Hirschmann, G.; de Andrade, J. P.; Soto-Vasquez, M. R.; Alvarado-García, P. A. A.; Palominos, C.; Fuentes-Retamal, S.; Mellado, M.; Correa, P.; Urra, F. A.; Toxins 2020, 12, 608. [Crossref]
Crossref...
-3030 de Souza, E. B. R.; Sousa Jr., P. T.; Vasconcelos, L. G.; Rodrigues, D. J.; Sinhorin, V. D. G.; Kerkhoff, J.; Pelissari, S. R. N.; Sinhorin, A. P.; Toxicon 2020, 179, 101. [Crossref]
Crossref...
However, this is the first time that the amino acid arginine (1) and martinelic carboxylic acid (50) are identified in the PGS of toads of the genus Rhinella, especially from the South American continent.

Table 1
Identification of compounds of the MeOH extract of paratoid secretion from R. granulosa by UPLC-QToF-MS/MS fragmentation pattern in positive ion mode

Figure 2
Total ion chromatogram of methanolic extract of the paratoid secretion from R. granulosa.

Figure 3
Chemical constituents identified in the methanolic extract of PGS from R. granulosa.

Compound 1 was identified as the amino acid L-arginine, being reported for the first time in the secretion of the paratoid glands of toads of the Rhinella genus, Cao et al.2828 Cao, Y.; Wu, J.; Pan, H.; Wang, L.; Molecules 2019, 24, 3595. [Crossref]
Crossref...
identified this amino acid in Chansu, a commercial product from the glandular secretions of Bufo gargarizans Cantor, used in traditional Chinese medicine for the treatment of various diseases, including cancer.

Compounds 3, 5, and 6 belong to the class of alkaloids. Although they occur mostly in plants, they can be found in animals, especially amphibians, which use these substances for their defense and protection against pathogens and predators.3939 Daly, J. W.; Noimai, N.; Kongkathip, B.; Kongkathip, N.; Wilham, J. M.; Garraffo, H. M.; Kaneko, T.; Spande, T. F.; Nimit, Y.; Nabhitabhata, J.; Chan-Ard, T.; Toxicon 2004, 44, 805. [Crossref]
Crossref...
,4040 Monção Filho, E. S.; Chaves, M. H.; Ferreira, P. M. P.; Pessoa, C.; Lima, D. J. B.; Maranhão, S. S. A.; Rodrigues, D. J.; Vieira Jr., G. M.; Toxicon 2021, 194, 37. [Crossref]
Crossref...
Studies4141 Sciani, J. M.; Angeli, C. B.; Antoniazzi, M. M.; Jared, C.; Pimenta, D. C.; Sci. World. J. 2013, 2013, ID 937407. [Crossref]
Crossref...
,4242 Maciel, N. M.; Schwartz, C. A.; Pires-Júnior, O. R.; Sebben, A.; Castro, M. S.; Sousa, M. V.; Fontes, W.; Schwartz, E. N. F.; Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 2003, 134, 641. [Crossref]
Crossref...
have shown that the concentration of alkaloids in anurans can vary depending on the species, geographic location, diet, and other associated complex characteristics.

Compound 3 was identified as indole-3-acetaldehyde and was evidenced in the chemical composition of Bufonis venenum, a product of the glandular secretions of Bufo gargarizans Cantor, widely used in traditional Chinese medicine.3232 He, R.; Ma, H.; Zhou, J.; Zhu, Z.; Li, X.; Li, Q.; Wang, H.; Yan, Y.; Luo, N.; Di, L.; Wu, Q.; Duan, J.; Molecules 2019, 24, 1943. [Crossref]
Crossref...
,3333 Wei, W.-L.; Hou, J.-J.; Wang, X.; Yu, Y.; Li, H. J.; Li, Z. W.; Feng, Z. J.; Qu, H.; Wu, W.-Y.; Guo, D. A.; J. Ethnopharmacol. 2019, 237, 215. [Crossref]
Crossref...
Compound 5 was identified as bufotenin and has already been identified in methanolic extracts from toads of different species distributed on the oceanic continent.3131 Barros, E. D. S.; Monção Filho, E. S.; Pio, Y. P. F.; de Amorim, M. R.; Berlinck, R. G. S.; Moura, R. C.; Fonseca, M. G.; Dantas, C.; Coelho, R. C.; Silva, G. R.; Chaves, M. H.; Vieira Jr., G. M.; Toxicon 2022, 214, 37. [Crossref]
Crossref...
,3434 Zulfiker, A. H. M.; Sohrabi, M.; Qi, J.; Matthews, B.; Wei, M. Q.; Grice, I. D.; J. Pharm. Biomed. Anal. 2016, 129, 260. [Crossref]
Crossref...
Compound 6 was identified as dehydrobufotenine and has already been described in the PGS of Rhinella schneideri from the Brazilian Pantanal, Rhinella marina from Iquitos and from the Amazon region of Brazil, and Rhinella jimi from the state of Piauí, Northeast region of Brazil.3737 Monção Filho, E. S.; Pio, Y. P. F.; Chaves, M. H.; Ferreira, P. M. P.; Fonseca, M. G.; Pessoa, C.; Lima, D. J. B.; Araújo, B. Q.; Vieira Jr., G. M.; J. Braz. Chem. Soc. 2021, 32, 1060. [Crossref]
Crossref...
,4040 Monção Filho, E. S.; Chaves, M. H.; Ferreira, P. M. P.; Pessoa, C.; Lima, D. J. B.; Maranhão, S. S. A.; Rodrigues, D. J.; Vieira Jr., G. M.; Toxicon 2021, 194, 37. [Crossref]
Crossref...

Compounds 2, 4, 7, 8, and 9 belong to the class of arginine-derived diacids. As a homologous series, these compounds have a similar fragmentation pattern, characterized by the loss of H2O, NH3, and CO, being peculiar in the MS/MS mass spectra of these compounds the presence of fragment ions m/z 175 [C6H14N4O2]+, characteristic of the arginine portion and m/z 158 [C6H14N4O2-NH3]+, referring the loss of the NH3 group of this amino acid.3737 Monção Filho, E. S.; Pio, Y. P. F.; Chaves, M. H.; Ferreira, P. M. P.; Fonseca, M. G.; Pessoa, C.; Lima, D. J. B.; Araújo, B. Q.; Vieira Jr., G. M.; J. Braz. Chem. Soc. 2021, 32, 1060. [Crossref]
Crossref...
,3939 Daly, J. W.; Noimai, N.; Kongkathip, B.; Kongkathip, N.; Wilham, J. M.; Garraffo, H. M.; Kaneko, T.; Spande, T. F.; Nimit, Y.; Nabhitabhata, J.; Chan-Ard, T.; Toxicon 2004, 44, 805. [Crossref]
Crossref...
Also, the existence of fragment ions diverging by 14 Da was observed, referring to the CH2 units of the carbonic portion of the diacid bound to arginine.3737 Monção Filho, E. S.; Pio, Y. P. F.; Chaves, M. H.; Ferreira, P. M. P.; Fonseca, M. G.; Pessoa, C.; Lima, D. J. B.; Araújo, B. Q.; Vieira Jr., G. M.; J. Braz. Chem. Soc. 2021, 32, 1060. [Crossref]
Crossref...
,3838 Petroselli, G.; Raices, M.; Jungblut, L. D.; Pozzi, A. G.; Erra-Balsells, R.; J. Mass Spectrom. 2018, 53, 465. [Crossref]
Crossref...
The arginine diacids identified in the PGS of R. granulosa were adipoyl arginine (2), pimeloyl arginine (4), suberoyl arginine (7), azelayl arginine (8), and sebarcyl arginine (9). These compounds are widely described in the glandular secretions of toads of the genera Bufo, Rhinella, and Rhaebo.4343 Pelissari, S. R. N.; Sinhorin, V. D. G.; Castoldi, L.; de Vasconcelos, L. G.; Rodrigues, D. J.; Ribeiro, E. B. S.; Kerkhoff, J.; Sinhorin, A. P.; J. Braz. Chem. Soc. 2021, 32, 1584. [Crossref]
Crossref...

Compounds 10, 15, 16, 23, 29, 33, 35, 36, 38, 40, 42, 43, 46, 47, 48, and 49 belong to the class of bufadienolides, which are the major chemical constituents found in the PGS of anurans of the Bufonidae family.4444 Schmeda-Hirschmann, G.; Quispe, C.; Theoduloz, C.; Sousa Jr., P. T.; Parizotto, C.; J. Ethnopharmacol. 2014, 155, 1076. [Crossref]
Crossref...
These steroids are primarily responsible for the biological activities identified in amphibian glandular secretions.4545 Shimada, K.; Ishii, N.; Nambara, T.; Chem. Pharm. Bull. 1986, 34, 3453. [Crossref]
Crossref...
More than one hundred bufadienolides identified in biological secretions of toads are described in the literature.3131 Barros, E. D. S.; Monção Filho, E. S.; Pio, Y. P. F.; de Amorim, M. R.; Berlinck, R. G. S.; Moura, R. C.; Fonseca, M. G.; Dantas, C.; Coelho, R. C.; Silva, G. R.; Chaves, M. H.; Vieira Jr., G. M.; Toxicon 2022, 214, 37. [Crossref]
Crossref...
The bufadienolides identified in this work showed a similar fragmentation pattern, evidenced by the successive losses of water molecules [M + H - H2O]+, the α-pyrone group [M + H - C5H4O2]+, and the carbon monoxide group [M + H - CO]+.

The bufadienolides identified in the MeOH extract of R. granulosa can be divided into two groups. The compounds cinobufagin (10), resibufaginol (35), bufotalinin (36), marinobufagin (43), resibufagin (47), and resibufogenin (48) have an epoxy group at the C-14 and C-15 carbons, while the compounds bufarenogin (15), Ψ-bufarenogin (16), arenobufagin (23), hellebrigenin (29), gamabufotalin (33), argentinogenin (38), desacetylbufotalin (40), telocinobufagin (42), bufalin (46), and scillaridin A (49) have a hydroxyl group at the C-14 carbon. The presence of cyclic ether in the compounds alters the fragmentation pattern, generating distinct fragment ions between the two groups of bufadienolides.3737 Monção Filho, E. S.; Pio, Y. P. F.; Chaves, M. H.; Ferreira, P. M. P.; Fonseca, M. G.; Pessoa, C.; Lima, D. J. B.; Araújo, B. Q.; Vieira Jr., G. M.; J. Braz. Chem. Soc. 2021, 32, 1060. [Crossref]
Crossref...

Bufotoxins constitute the largest number of compounds identified in this study, totaling 24 metabolites. The number of bufotoxins identified in the glandular secretions of anurans is increasing, since there are numerous possibilities of combination between diacids, bufadienolides, and amino acids.4646 Lebedev, D. S.; Ivanov, I. A.; Kryukova E. V.; Starkov, V. G.; Dokl. Biochem. Biophys. 2017, 474, 178. [Crossref]
Crossref...
Bufotoxins are widely described in glandular secretions of toads of the Bufo, Rhinella, and Rhaebo genera distributed around the world.3636 Schmeda-Hirschmann, G.; Gomez, C. V.; Arias, A. R.; Burgos Edwards, A.; Alfonso, J.; Rolon, M.; Brusquetti, F.; Netto, F.; Urra, F. A.; Cárdenas, C.; J. Ethnopharmacol. 2017, 199, 106. [Crossref]
Crossref...
A general fragmentation pattern for bufotoxins is the loss of the arginine-derived diacid [M + H - arginine diacid]+, followed by the loss of an amine group [M + H - NH3]+ and one or two water molecules by the generated diacid.4343 Pelissari, S. R. N.; Sinhorin, V. D. G.; Castoldi, L.; de Vasconcelos, L. G.; Rodrigues, D. J.; Ribeiro, E. B. S.; Kerkhoff, J.; Sinhorin, A. P.; J. Braz. Chem. Soc. 2021, 32, 1584. [Crossref]
Crossref...
A reduction of 28 Da in the mass of the compound was also observed, referring to the loss of the carbonyl group [M + H - CO]+ and the loss of one or more water molecules by the bufadienolide portion.3737 Monção Filho, E. S.; Pio, Y. P. F.; Chaves, M. H.; Ferreira, P. M. P.; Fonseca, M. G.; Pessoa, C.; Lima, D. J. B.; Araújo, B. Q.; Vieira Jr., G. M.; J. Braz. Chem. Soc. 2021, 32, 1060. [Crossref]
Crossref...
,3838 Petroselli, G.; Raices, M.; Jungblut, L. D.; Pozzi, A. G.; Erra-Balsells, R.; J. Mass Spectrom. 2018, 53, 465. [Crossref]
Crossref...

Similarly to the bufadienolides reported in this study, bufotoxins can also be organized into two distinct groups, characterized by the presence or absence of the epoxy group in the steroidal ring of the bufadienolide portion of the bufotoxin. The compounds 3-(N-suberoyl argininyl) hydroxybufotalinin (18), 3-(N-pimeloyl argininyl) bufotalinin (25), 3-(N-suberoyl argininyl) bufotalinin (31), 3-(N-pimeloyl argininyl) marinobufagin (34), 3-(N-suberoyl argininyl) marinobufagin (39), 3-(N-adipoyl argininyl) resibufogenin (41), and 3-(N-suberoyl argininyl) resibufogenin (45) have an epoxy group in their molecular structure, whereas in bufotoxins 3-(N-adipoyl argininyl) bufarenogin (11), 3-(N-adipoyl argininyl) Ψ-bufarenogin (12), 3-(N-pimeloyl argininyl) bufarenogin (13), 3-(N-pimeloyl argininyl) Ψ-bufarenogin (14), 3-(N-adipoyl argininyl) arenobufagin (17), 3-(N-suberoyl argininyl) hydroxyhellebrigenin (19), 3-(N-adipoyl argininyl) hellebrigenin (20), 3-(N-pimeloyl argininyl) arenobufagin (21), 3-(N-suberoyl argininyl) arenobufagin (22), 3-(N-suberoyl argininyl) hellebrigenol (24), 3-(N-pimeloyl argininyl) hellebrigenin (26), 3-(N-pimeloyl argininyl) gamabufotalin (27), 3-(N-suberoyl argininyl) hellebrigenin (28), 3-(N-suberoyl argininyl) gamabufotalin (30), 3-(N-pimeloyl argininyl) telocinobufagin (32), 3-(N-suberoyl argininyl) telocinobufagin (37), and 3-(N-suberoyl argininyl) bufalin (44), this structure is not observed. However, the observed structural difference does not change the fragmentation pattern of this class of compounds.3737 Monção Filho, E. S.; Pio, Y. P. F.; Chaves, M. H.; Ferreira, P. M. P.; Fonseca, M. G.; Pessoa, C.; Lima, D. J. B.; Araújo, B. Q.; Vieira Jr., G. M.; J. Braz. Chem. Soc. 2021, 32, 1060. [Crossref]
Crossref...
,3838 Petroselli, G.; Raices, M.; Jungblut, L. D.; Pozzi, A. G.; Erra-Balsells, R.; J. Mass Spectrom. 2018, 53, 465. [Crossref]
Crossref...

Compound 50 was identified as martinelic acid, being evidenced for the first time in acetic extract from the skin of the Australian cane toad (Bufo marinus).3434 Zulfiker, A. H. M.; Sohrabi, M.; Qi, J.; Matthews, B.; Wei, M. Q.; Grice, I. D.; J. Pharm. Biomed. Anal. 2016, 129, 260. [Crossref]
Crossref...
There are no reports in the literature of the identification of this carboxylic acid in glandular secretions of toads in the Rhinella genus, distributed in the South American continent. It is the first time that martinelic acid has been detected in PGS from toads occurring in Brazil.

Cytotoxicity

The investigation of the cytotoxic potential of the biological secretions from anurans, as well as isolated metabolites of these fluids, has shown significant growth in recent years, especially the secretions from the paratoid glands of toads from the Bufo, Rhinella, and Rhaebo genera.2828 Cao, Y.; Wu, J.; Pan, H.; Wang, L.; Molecules 2019, 24, 3595. [Crossref]
Crossref...

29 Schmeda-Hirschmann, G.; de Andrade, J. P.; Soto-Vasquez, M. R.; Alvarado-García, P. A. A.; Palominos, C.; Fuentes-Retamal, S.; Mellado, M.; Correa, P.; Urra, F. A.; Toxins 2020, 12, 608. [Crossref]
Crossref...
-3030 de Souza, E. B. R.; Sousa Jr., P. T.; Vasconcelos, L. G.; Rodrigues, D. J.; Sinhorin, V. D. G.; Kerkhoff, J.; Pelissari, S. R. N.; Sinhorin, A. P.; Toxicon 2020, 179, 101. [Crossref]
Crossref...
This animal matrix has attracted the attention of the scientific community, mainly due to the richness of compounds and the amount of biologically active metabolites, making it a promising alternative in the development of new therapeutic resources for the treatment of the most varied types of cancer.4747 Oliveira, L. P.; Pinheiro, R. C.; Vieira, M. S.; Paula, J. R.; Bara, M. T. F.; Valadares, M. C.; Rev. Bras. Farmacogn. 2010, 20, 201. [Crossref]
Crossref...

The use of the MTT dye reduction method showed that the MeOH extract from the secretion of the paratoid glands of R. granulosa produced a considerable cytotoxic effect in central nervous system (SNB-19) and prostate (PC-3) tumor cells, with no similar behavior being observed in the colorectal tumor cell line (HCT-116). Against SNB-19 tumor cells (glioblastoma), the MeOH extract showed similar cytotoxicity (IC50 = 1.9 µg mL-1) to the positive control used (doxorubicin, IC50 = 2.0 µg mL-1).

The cytotoxicity of the R. granulosa MeOH extract was also evaluated in the non-tumor cell line L929 (murine fibroblast) and did not present effect on growth inhibition, even when tested at the highest extract concentration, being more selective for tumoral cells. The IC50 value was above 125 µg mL-1. Due to the low cytotoxicity of the extract on the L929 cell line, at the tested concentrations (1 125 µg mL-1), it was not possible to obtain a dose-response curve to determine the exact IC50 value. The IC50 values, with a confidence interval of 95%, of the methanolic extract and doxorubicin against the tumor and non-tumor cell lines tested in this assay are presented in Table 2.

Table 2
Bioactivities of the MeOH extract of paratoid gland secretion from Rhinella granulosa

Antimicrobial activity

The glandular secretions from anurans are complex mixtures of bioactive compounds; however, the biological activities of many of these biomolecules are still unknown, especially regarding the antimicrobial activities of the compounds present in the secretions of the paratoid glands of toads.4848 Sales, D. L.; Morais-Braga, M. F. B.; dos Santos, A. T. L.; Machado, A. J. T.; Araújo Filho, J. A.; Dias, D. Q.; da Cunha, F. A. B.; Saraiva, R. A.; de Menezes, I. R. A.; Coutinho, H. D. M.; Costa, J. G. M.; Ferreira, F. S.; Alves, R. R. N.; Almeida, W. O.; Biomed. Pharmacother. 2017, 92, 554. [Crossref]
Crossref...

Table 2 presents the values of the MIC detected for the MeOH extract from the secretion of the paratoid glands of R. granulosa against the standard strains of S. aureus (ATCC 29213), E. coli (ATCC 25922), C. albicans (ATCC 90028), and C. krusei (ATCC 6258).

The MeOH extract of R. granulosa showed low antibacterial potential against strains of S. aureus (MIC = 312 µg mL-1) and E. coli (MIC = 625 µg mL 11 Costa Neto, E. M.; Ciênc. Saúde Coletiva 2011, 16, 1639. [Crossref]
Crossref...
), not showing relevance for practical uses (MIC of interest < 1.0 µg mL-1). Similarly, the investigated extract did not show a satisfactory antifungal effect (MIC = 1250 µg mL 11 Costa Neto, E. M.; Ciênc. Saúde Coletiva 2011, 16, 1639. [Crossref]
Crossref...
) against yeasts of the genus Candida (MIC of interest < 8 µg mL 11 Costa Neto, E. M.; Ciênc. Saúde Coletiva 2011, 16, 1639. [Crossref]
Crossref...
). There are reports in the scientific literature4848 Sales, D. L.; Morais-Braga, M. F. B.; dos Santos, A. T. L.; Machado, A. J. T.; Araújo Filho, J. A.; Dias, D. Q.; da Cunha, F. A. B.; Saraiva, R. A.; de Menezes, I. R. A.; Coutinho, H. D. M.; Costa, J. G. M.; Ferreira, F. S.; Alves, R. R. N.; Almeida, W. O.; Biomed. Pharmacother. 2017, 92, 554. [Crossref]
Crossref...
on the antimicrobial activity of PGS from other species of the genus Rhinella; however, this work is pioneer in showing the antibacterial potential of R. granulosa.

Potential to inhibit the enzyme acetylcholinesterase

The in vitro study carried out with the MeOH extract of PGS from R. granulosa at concentrations of 0.625, 1.25, 2.50, 5.00, and 10.00 mg mL-1 produced inhibitions of 17.45, 18.78, 27.83, 55.35, and 63.69% in the activity of the enzyme AChE, respectively. From this data set, the IC50 of the MeOH extract was calculated, which corresponded to 5.119 mg mL-1, ranging from 4.411 to 6.059 mg mL-1, with a confidence interval of 95%. These data are reported in Table 2.

Although this scientific investigation represents a preliminary study of bioprospecting of the paratoid secretion of R. granulosa from Northeast Brazil, future research may lead to the isolation of identified metabolites and investigation of the biological potential of these substances, like the studies developed by Tempone et al.,1919 Tempone, A. G.; Pimenta, D. C.; Lebrun, I.; Sartorelli, P.; Taniwaki, N. N.; Andrade-Júnior, H. F.; Antoniazzi, M. M.; Jared, C.; Toxicon 2008, 52, 13. [Crossref]
Crossref...
Machado et al.1111 Machado, K. C.; de Sousa, L. Q.; Lima, D. J. B.; Soares, B. M.; Cavalcanti, B. C.; Maranhão, S. S. A.; Noronha, J. C.; Rodrigues, D. J.; Militão, G. C. G.; Chaves, M. H.; Vieira Jr., G. M.; Pessoa, C.; de Moraes, M. O.; e Sousa, J. M. C.; Cavalcante, A. A. C. M.; Ferreira, P. M. P.; Toxicol. Lett. 2018, 285, 121. [Crossref]
Crossref...
and Monção Filho et al.3737 Monção Filho, E. S.; Pio, Y. P. F.; Chaves, M. H.; Ferreira, P. M. P.; Fonseca, M. G.; Pessoa, C.; Lima, D. J. B.; Araújo, B. Q.; Vieira Jr., G. M.; J. Braz. Chem. Soc. 2021, 32, 1060. [Crossref]
Crossref...
,4040 Monção Filho, E. S.; Chaves, M. H.; Ferreira, P. M. P.; Pessoa, C.; Lima, D. J. B.; Maranhão, S. S. A.; Rodrigues, D. J.; Vieira Jr., G. M.; Toxicon 2021, 194, 37. [Crossref]
Crossref...

Conclusions

The investigation of the chemical profile of the methanolic extract of PGS from Rhinella granulosa allowed the identification of 50 constituents, distributed in six classes of compounds: one amino acid, one carboxylic acid, three indole alkaloids, five arginine-derived diacids, 16 bufadienolides, and 24 bufotoxins. The compounds evidenced in the matrix studied are reported in glandular secretions of other anuran species of the genera Bufo, Rhinella and Rhaebo. However, this is the first time that the compounds arginine (1) and martinelic acid (50) are identified in the PGS of toads of the genus Rhinella, mainly from the South American continent. The extract from the secretion of the paratoid glands of R. granulosa showed promising cytotoxicity, mainly against tumor cell lines of the central nervous system (SNB-19) and prostate (PC-3), unsatisfactory antimicrobial potential and considerable potential to inhibit the enzyme acetylcholinesterase. This study presents relevant information about the PGS analyzed and contributes to the understanding of the chemical and biological potential of R. granulosa, expanding the knowledge about the anurofauna of the state of Piauí (Brazil).

Supplementary Information

Supplementary information (Figures S1-S47) is available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgments

The authors are grateful to Prof Dr Everton Leandro de França Ferreira (Federal University of Vale do São Francisco-UNIVASF) and doctoral student Leonardo Santos Alexandre (USP-São Carlos), for obtaining the MS/MS spectra; to master student Felipe Pereira da Silva Santos (Federal University of Piauí-UFPI), for support in the AChE enzyme inhibition assay, to graphic designer Elton Maykow Sousa Barros (SEDUC-PI), for the elaboration of the graphical abstract and to the development agencies INCTBioNat (465637/2014-0), CAPES (1776790/2017-0), CNPq (302197/2017-6; 402302/2021-4) and FAPEMA (004348/2021) for financial support and scholarships.

References

  • 1
    Costa Neto, E. M.; Ciênc. Saúde Coletiva 2011, 16, 1639. [Crossref]
    » Crossref
  • 2
    Kerkhoff, J.; Noronha, J. C.; Bonfilio, R.; Sinhorin, A. P.; Rodrigues, D. J.; Chaves, M. H.; Vieira Jr., G. M.; Toxicon 2016, 119, 311. [Crossref]
    » Crossref
  • 3
    Viegas Jr., C.; Bolzani, V. S.; Barreiro, E. J.; Quim. Nova 2006, 29, 326. [Crossref]
    » Crossref
  • 4
    Ferreira, P. M. P.; Lima, D. J. B.; Debiasi, B. W.; Soares, B. M.; Machado, K. C.; Noronha, J. C.; Rodrigues, D. J.; Sinhorin, A. P.; Pessoa, C.; Vieira Jr., G. M.; Toxicon 2013, 72, 43. [Crossref]
    » Crossref
  • 5
    Saporito, R. A.; Donnelly, M. A.; Spande, T. F.; Garraffo, H. M.; Chemoecology 2012, 22, 159. [Crossref]
    » Crossref
  • 6
    Coutinho, L. M.; Acta Bot. Bras. 2006, 20, 13. [Crossref]
    » Crossref
  • 7
    Pramuk, J. B.; Zool. J. Linn. Soc. 2006, 146, 407. [Crossref]
    » Crossref
  • 8
    de Sousa, L. Q.; Machado, K. C.; Oliveira, S. F. C.; Araújo, L. S.; Monção-Filho, E. S.; Melo-Cavalcante, A. A. C. M.; Vieira Jr., G. M.; Ferreira, P. M. P.; Toxicon 2017, 127, 63. [Crossref]
    » Crossref
  • 9
    Pyron, R. A.; Wiens, J. J.; Mol. Phylogenet. Evol. 2011, 61, 543. [Crossref]
    » Crossref
  • 10
    Gadelha, I. C. N.; Melo, M. M.; Soto-Blanco, B.; Rev. Bras. Hig. Sanid. Anim. 2015, 9, 195. [Crossref]
    » Crossref
  • 11
    Machado, K. C.; de Sousa, L. Q.; Lima, D. J. B.; Soares, B. M.; Cavalcanti, B. C.; Maranhão, S. S. A.; Noronha, J. C.; Rodrigues, D. J.; Militão, G. C. G.; Chaves, M. H.; Vieira Jr., G. M.; Pessoa, C.; de Moraes, M. O.; e Sousa, J. M. C.; Cavalcante, A. A. C. M.; Ferreira, P. M. P.; Toxicol. Lett. 2018, 285, 121. [Crossref]
    » Crossref
  • 12
    Alexandre, L. S.; Braga, F. M. S.; de Oliveira, P. K.; Coelho, T. L. S.; Fonseca, M. G.; de Sousa, R. W. R.; Dittz, D.; Sousa, J. M. C.; Ferreira, P. M. P.; Dantas, C.; Barbosa, H. S.; Chaves, M. H.; Lopes Jr., C. A.; Vieira Jr., G. M.; Toxicon 2021, 192, 32. [Crossref]
    » Crossref
  • 13
    Clarke, B. T.; Biol. Rev. Cambridge Philos. Soc. 1997, 72, 365. [Crossref]
    » Crossref
  • 14
    Utkin, Y. N.; World J. Biol. Chem 2015, 6, 28. [Crossref]
    » Crossref
  • 15
    Xu, X.; Lai, R.; Chem. Rev. 2015, 115, 1760. [Crossref]
    » Crossref
  • 16
    Oliveira, A. F.; Castoldi, L.; Vieira Jr., G. M.; Monção Filho, E. S.; Chaves, M. H.; Rodrigues, D. J.; Sugui, M. M.; Acta Amaz. 2019, 49, 145. [Crossref]
    » Crossref
  • 17
    Chen, K. K.; Kovariková, A.; J. Pharm. Sci. 1967, 56, 1535. [Crossref]
    » Crossref
  • 18
    Chen, Y.-L.; Bian, X.-L.; Guo, F.-J.; Wu, Y.-C.; Li, Y.-M.; Fitoterapia 2018, 131, 215. [Crossref]
    » Crossref
  • 19
    Tempone, A. G.; Pimenta, D. C.; Lebrun, I.; Sartorelli, P.; Taniwaki, N. N.; Andrade-Júnior, H. F.; Antoniazzi, M. M.; Jared, C.; Toxicon 2008, 52, 13. [Crossref]
    » Crossref
  • 20
    Narvaes, P.; Rodrigues, M. T.; Arq. Zool. 2009, 40, 1. [Crossref]
    » Crossref
  • 21
    Santana, A. S.; Juncá, F. A.; Braz. J. Biol. 2007, 67, 125. [Crossref]
    » Crossref
  • 22
    Pereyra, M. O.; Baldo, D.; Blotto, B. L.; Iglesias, P. P.; Thomé, M. T.; Haddad, C. F. B.; Barrio-Amorós, C.; Ibáñez, R.; Faivovich, J.; Cladistics 2016, 32, 36. [Crossref]
    » Crossref
  • 23
    Sabagh, L. T.; Carvalho-e-Silva, A. M. P. T.; Rev. Bras. Zool. 2008, 25, 247. [Crossref]
    » Crossref
  • 24
    Mossman, T.; J. Immunol. Methods 1983, 65, 55. [Crossref]
    » Crossref
  • 25
    Motulsky, H.; Software Prism, version 8.0; GraphPad Software, USA, 1989.
  • 26
    Clinical and Laboratory Standards Institute (CLSI); CLSI Guide M100: Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: USA, 2019.
  • 27
    Rhee, I. K.; Van de Meent, M.; Ingkaninan, K.; Verpoorte, R.; J. Chromatogr. 2001, 915, 217. [Crossref]
    » Crossref
  • 28
    Cao, Y.; Wu, J.; Pan, H.; Wang, L.; Molecules 2019, 24, 3595. [Crossref]
    » Crossref
  • 29
    Schmeda-Hirschmann, G.; de Andrade, J. P.; Soto-Vasquez, M. R.; Alvarado-García, P. A. A.; Palominos, C.; Fuentes-Retamal, S.; Mellado, M.; Correa, P.; Urra, F. A.; Toxins 2020, 12, 608. [Crossref]
    » Crossref
  • 30
    de Souza, E. B. R.; Sousa Jr., P. T.; Vasconcelos, L. G.; Rodrigues, D. J.; Sinhorin, V. D. G.; Kerkhoff, J.; Pelissari, S. R. N.; Sinhorin, A. P.; Toxicon 2020, 179, 101. [Crossref]
    » Crossref
  • 31
    Barros, E. D. S.; Monção Filho, E. S.; Pio, Y. P. F.; de Amorim, M. R.; Berlinck, R. G. S.; Moura, R. C.; Fonseca, M. G.; Dantas, C.; Coelho, R. C.; Silva, G. R.; Chaves, M. H.; Vieira Jr., G. M.; Toxicon 2022, 214, 37. [Crossref]
    » Crossref
  • 32
    He, R.; Ma, H.; Zhou, J.; Zhu, Z.; Li, X.; Li, Q.; Wang, H.; Yan, Y.; Luo, N.; Di, L.; Wu, Q.; Duan, J.; Molecules 2019, 24, 1943. [Crossref]
    » Crossref
  • 33
    Wei, W.-L.; Hou, J.-J.; Wang, X.; Yu, Y.; Li, H. J.; Li, Z. W.; Feng, Z. J.; Qu, H.; Wu, W.-Y.; Guo, D. A.; J. Ethnopharmacol. 2019, 237, 215. [Crossref]
    » Crossref
  • 34
    Zulfiker, A. H. M.; Sohrabi, M.; Qi, J.; Matthews, B.; Wei, M. Q.; Grice, I. D.; J. Pharm. Biomed. Anal. 2016, 129, 260. [Crossref]
    » Crossref
  • 35
    Sinhorin, A. P.; Kerkhoff, J.; Dall’Oglio, E. L.; Rodrigues, D. J.; Vasconcelos, L. G.; Sinhorin, V. D. G.; Toxicon 2020, 182, 30. [Crossref]
    » Crossref
  • 36
    Schmeda-Hirschmann, G.; Gomez, C. V.; Arias, A. R.; Burgos Edwards, A.; Alfonso, J.; Rolon, M.; Brusquetti, F.; Netto, F.; Urra, F. A.; Cárdenas, C.; J. Ethnopharmacol. 2017, 199, 106. [Crossref]
    » Crossref
  • 37
    Monção Filho, E. S.; Pio, Y. P. F.; Chaves, M. H.; Ferreira, P. M. P.; Fonseca, M. G.; Pessoa, C.; Lima, D. J. B.; Araújo, B. Q.; Vieira Jr., G. M.; J. Braz. Chem. Soc. 2021, 32, 1060. [Crossref]
    » Crossref
  • 38
    Petroselli, G.; Raices, M.; Jungblut, L. D.; Pozzi, A. G.; Erra-Balsells, R.; J. Mass Spectrom. 2018, 53, 465. [Crossref]
    » Crossref
  • 39
    Daly, J. W.; Noimai, N.; Kongkathip, B.; Kongkathip, N.; Wilham, J. M.; Garraffo, H. M.; Kaneko, T.; Spande, T. F.; Nimit, Y.; Nabhitabhata, J.; Chan-Ard, T.; Toxicon 2004, 44, 805. [Crossref]
    » Crossref
  • 40
    Monção Filho, E. S.; Chaves, M. H.; Ferreira, P. M. P.; Pessoa, C.; Lima, D. J. B.; Maranhão, S. S. A.; Rodrigues, D. J.; Vieira Jr., G. M.; Toxicon 2021, 194, 37. [Crossref]
    » Crossref
  • 41
    Sciani, J. M.; Angeli, C. B.; Antoniazzi, M. M.; Jared, C.; Pimenta, D. C.; Sci. World. J. 2013, 2013, ID 937407. [Crossref]
    » Crossref
  • 42
    Maciel, N. M.; Schwartz, C. A.; Pires-Júnior, O. R.; Sebben, A.; Castro, M. S.; Sousa, M. V.; Fontes, W.; Schwartz, E. N. F.; Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 2003, 134, 641. [Crossref]
    » Crossref
  • 43
    Pelissari, S. R. N.; Sinhorin, V. D. G.; Castoldi, L.; de Vasconcelos, L. G.; Rodrigues, D. J.; Ribeiro, E. B. S.; Kerkhoff, J.; Sinhorin, A. P.; J. Braz. Chem. Soc. 2021, 32, 1584. [Crossref]
    » Crossref
  • 44
    Schmeda-Hirschmann, G.; Quispe, C.; Theoduloz, C.; Sousa Jr., P. T.; Parizotto, C.; J. Ethnopharmacol 2014, 155, 1076. [Crossref]
    » Crossref
  • 45
    Shimada, K.; Ishii, N.; Nambara, T.; Chem. Pharm. Bull. 1986, 34, 3453. [Crossref]
    » Crossref
  • 46
    Lebedev, D. S.; Ivanov, I. A.; Kryukova E. V.; Starkov, V. G.; Dokl. Biochem. Biophys. 2017, 474, 178. [Crossref]
    » Crossref
  • 47
    Oliveira, L. P.; Pinheiro, R. C.; Vieira, M. S.; Paula, J. R.; Bara, M. T. F.; Valadares, M. C.; Rev. Bras. Farmacogn. 2010, 20, 201. [Crossref]
    » Crossref
  • 48
    Sales, D. L.; Morais-Braga, M. F. B.; dos Santos, A. T. L.; Machado, A. J. T.; Araújo Filho, J. A.; Dias, D. Q.; da Cunha, F. A. B.; Saraiva, R. A.; de Menezes, I. R. A.; Coutinho, H. D. M.; Costa, J. G. M.; Ferreira, F. S.; Alves, R. R. N.; Almeida, W. O.; Biomed. Pharmacother. 2017, 92, 554. [Crossref]
    » Crossref

Edited by

Editor handled this article: Paulo Cezar Vieira

Publication Dates

  • Publication in this collection
    06 Oct 2023
  • Date of issue
    2023

History

  • Received
    09 Nov 2022
  • Published
    13 Apr 2023
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br