Acessibilidade / Reportar erro

The Versatility of Two-Dimensional Liquid Chromatography

Abstract

This review deals with two-dimensional liquid chromatography (2D-LC) separations encompassing target heart-cut (LC-LC), multiple heart-cut (mLC-LC), non-targeted comprehensive (LC × LC), and selective comprehensive (sLC × LC) analysis. It presents an overview of basic concepts and emphasizes the versatility of the applications gained by going from one-(1D) to two-dimensional (2D) separations. This review also discusses target analysis of achiral and chiral drugs for different applications and the use of 2D-LC in zonal bioaffinity chromatography. Advances in instrumental and column technologies have widened the application of LC × LC and sLC × LC separations, and we will discuss some of them.

Keywords:
bioanalysis; chiral samples; food samples; natural products; bioaffinity columns


1. Introduction

The versatility of two-dimensional liquid chromatography (2D-LC) is widely acknowledged, despite usually being used to only analyze complex mixtures with a large number of peaks.11 Stoll, D. R.; Lhotka, H. R.; Harmes, D. C.; Madigan, B.; Hsiao, J. J.; Staples, G. O.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019, 1134-1135, 121832. [Crossref]
Crossref...
,22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
Nevertheless, it must be borne in mind that, in some cases, a difficult separation does not mean that the mixture contains a large number of analytes, but that the difficulty stems from the physicochemical or stereochemical parameters of the analytes and the application of the separation.44 Barreiro, J. C.; Tiritan, M. E.; Cass, Q. B.; TrAC, Trends Anal. Chem. 2021, 142, 116326. [Crossref]
Crossref...

When we searched Web of Science™ by using the term “two-dimensional liquid chromatography” (in all fields), we retrieved 5,178 results in the period spanning from 02 Jan 2000 to 17 Apr 2023 (index date). According to Web of Science™, the retrieved papers are categorized as depicted in Figure 1.

Figure 1
Ten Web of Science™ Core Collection categories that most use 2D-LC in the period spanning from 02 Jan 2000 to 17 Apr 2023. The term “two-dimensional liquid chromatography” was used in all fields.

Most of the retrieved papers are in the field of analytical chemistry or biochemical research methods, but some publications concern different application fields.

2D-LC can be conceived off-line and on-line. In this review, we only consider the on-line approaches and the categorizations target heart-cut (LC-LC) and comprehensive (LC × LC) separations; we also discuss the two-hybrid modes multiple heart-cut (mLC-LC) and selective comprehensive (sLC × LC) 2D separations.33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...

Knowing when to go from one- (1D) to two-dimension (2D) separation helps the appropriate 2D-LC approach to be selected. Some of Stoll and co-workers11 Stoll, D. R.; Lhotka, H. R.; Harmes, D. C.; Madigan, B.; Hsiao, J. J.; Staples, G. O.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019, 1134-1135, 121832. [Crossref]
Crossref...
,22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
papers depict the fundamentals and the actual notations of 2D-LC separation.11 Stoll, D. R.; Lhotka, H. R.; Harmes, D. C.; Madigan, B.; Hsiao, J. J.; Staples, G. O.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019, 1134-1135, 121832. [Crossref]
Crossref...
,22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...

Technological advances in chromatographic columns and in LC systems have broaden the interest and diminished the main drawbacks (e.g., sample dilution, modulation, data-analysis, and visualization software)33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
in using 2D-LC and, thus, have produced a wide variety of applications mainly on the basis of commercially available instruments.55 Li, F.; Lämmerhofer, M.; J. Chromatogr. A 2021, 1643, 462065. [Crossref]
Crossref...
,66 Woiwode, U.; Reischl, R. J.; Buckenmaier, S.; Lindner, W.; Lämmerhofer, M.; Anal. Chem. 2018, 90, 7963. [Crossref]
Crossref...
,77 Groeneveld, G.; Dunkle, M. N.; Rinken, M.; Gargano, A. F. G.; de Niet, A.; Pursch, M.; Mes, E. P. C.; Schoenmakers, P. J.; J. Chromatogr. A 2018, 1569, 128. [Crossref]
Crossref...
,88 Li, F.; Su, X.; Bäurer, S.; Lämmerhofer, M.; J. Chromatogr. A 2020, 1625, 461338. [Crossref]
Crossref...

2. LC-LC and mLC-LC

LC-LC or single heart-cut analysis has been most used in bioanalysis, and examples of its applications date back to the 80s.99 Wahlund, K. G.; J. Chromatogr. A 1981, 218, 671. [Crossref]
Crossref...
Most of the applications include on-line sample cleanup with columns for depleting protein in the first dimension (1D).1010 Cass, Q. B.; Gomes, R. F.; Calafatti, S. A.; Pedrazolli Jr., J.; J. Chromatogr. A 2003, 987, 235. [Crossref]
Crossref...
,1111 Cassiano, N.; Barreiro, J. J.; Oliveira, R. R.; Cass, Q. Q.; Bioanalysis 2012, 4, 2737. [Crossref]
Crossref...
,1212 Ribeiro, A. R.; Maia, A. S.; Cass, Q. B.; Tiritan, M. E.; J. Chromatogr. B 2014, 968, 8. [Crossref]
Crossref...
,1313 Cassiano, N. M.; Barreiro, J. C.; Cass, Q. B.; J. Braz. Chem. Soc. 2014, 25, 9. [Crossref]
Crossref...
LC-LC is also the mode of choice for separating achiral impurities in a mixture of chiral molecules.44 Barreiro, J. C.; Tiritan, M. E.; Cass, Q. B.; TrAC, Trends Anal. Chem. 2021, 142, 116326. [Crossref]
Crossref...
,1414 Cass, Q. B.; Oliveira, R. V.; De Pietro, A. C.; J. Agric. Food Chem. 2004, 52, 5822. [Crossref]
Crossref...

In LC-LC, peak capacity is not important because the target analytes are the separation space. Usually, one or few peaks are targets, and the entire peak(s) or a fraction of it is transferred. For quantification, the target analyte is transferred with a fraction volume that is larger than the peak volume. Although this warrants accuracy, it can deleteriously affect separation in the second dimension (2D).1515 Pereira, A. V.; Cass, Q. B.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2005, 826, 139. [Crossref]
Crossref...
,1616 Carr, P.W.; Stoll, D.R.; Two-Dimensional Liquid Chromatography Principles, Practical Implementation and Applications, https://www.agilent.com/cs/library/primers/public/5991-2359EN.pdf, accessed in July 2023.
https://www.agilent.com/cs/library/prime...
Although transfer can be centered from the middle of the target peak, in a much smaller fraction, any slight shift in the retention time at the 1D will affect the quantification precision.22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...

The columns are coupled through different configurations of a switching valve, and the peaks are transferred employing the back or forward-flush mode as illustrated in Figure 2. By using six-, eight-, or ten-port valves, the peaks are transferred directly from 1D to 2D without loops or trap columns. Under these configurations, the target analytes are usually transferred in a single heart-cut.22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
,1111 Cassiano, N.; Barreiro, J. J.; Oliveira, R. R.; Cass, Q. Q.; Bioanalysis 2012, 4, 2737. [Crossref]
Crossref...
,1717 Cassiano, N. M.; Barreiro, J. C.; Moraes, M. C.; Oliveira, R. V.; Cass, Q. B.; Bioanalysis 2009, 1, 577. [Crossref]
Crossref...

Figure 2
Schematic switching valve system in the transfer and analysis mode for the (a) back- or (b) forward-flush mode transfer.

The use of loops, trap columns, or parallel column arrays in the second dimension allows multiple cuts to be transferred without some of the targets being missed.22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,88 Li, F.; Su, X.; Bäurer, S.; Lämmerhofer, M.; J. Chromatogr. A 2020, 1625, 461338. [Crossref]
Crossref...
,1818 Arena, K.; Mandolfino, F.; Cacciola, F.; Dugo, P.; Mondello, L.; J. Sep. Sci. 2021, 44, 17. [Crossref]
Crossref...
,1919 Miyoshi, Y.; Hamase, K.; Tojo, Y.; Mita, M.; Konno, R.; Zaitsu, K.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2009, 877, 2506. [Crossref]
Crossref...
,2020 Woiwode, U.; Neubauer, S.; Lindner, W.; Buckenmaier, S.; Lämmerhofer, M.; J. Chromatogr. A 2018, 1562, 69. [Crossref]
Crossref...
Well-designed mLC-LC applications based on multiloop deck or trap columns for collecting the peaks from the 1D have been reported.2020 Woiwode, U.; Neubauer, S.; Lindner, W.; Buckenmaier, S.; Lämmerhofer, M.; J. Chromatogr. A 2018, 1562, 69. [Crossref]
Crossref...
,2121 Lv, W.; Shi, X.; Wang, S.; Xu, G.; TrAC, Trends Anal. Chem. 2019, 120, 115302. [Crossref]
Crossref...
,2222 Gackowski, D.; Starczak, M.; Zarakowska, E.; Modrzejewska, M.; Szpila, A.; Banaszkiewicz, Z.; Olinski, R.; Anal. Chem. 2016, 88, 12128. [Crossref]
Crossref...
In the case of column arrays in the second dimension in either alternating, sequential, or simultaneous configuration increases the number of applications and have been exploited for achiral-chiral screenings.2323 Hegade, R. S.; Chen, K.; Boon, J.-P.; Hellings, M.; Wicht, K.; Lynen, F.; J. Chromatogr. A 2020, 1628, 461425. [Crossref]
Crossref...
,2424 Foster, S. W.; Parker, D.; Kurre, S.; Boughton, J.; Stoll, D. R.; Grinias, J. P.; Anal. Chim. Acta 2022, 1228, 340300. [Crossref]
Crossref...

The main problems encountered when using mLC-LC, as well as LC × LC and sLC × LC, are the software for processing the multiple chromatograms in the second dimension and the plugins for hyphenating the 2D-LC system with the mass spectrometer system software.

3. LC × LC and sLC × LC

Given that LC × LC has high peak capacity, this mode is the most frequently used to analyze highly complex mixtures consisting of different classes of molecules and with broad retention time span. In LC × LC separation, the eluate is completely transferred from 1D to the 2D for further analysis. To avoid remixing or undersampling, four fractions per 8σ peak width are collected in the 1D and transferred into the 2D.22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
The modulation interface for sample transfer can vary, but they are mostly based on six-, eight-, or ten-port switching valves, with either loops or trap columns.22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,2525 Stoll, D. R.; Shoykhet, K.; Petersson, P.; Buckenmaier, S.; Anal. Chem. 2017, 89, 9260. [Crossref]
Crossref...
,2626 Chen, Y. ; Montero, L.; Schmitz, O. J.; TrAC, Trends Anal. Chem. 2019, 120, 115647. [Crossref]
Crossref...
The modulation strategies should not focus only on obtaining high peak capacity because other important metrics such as separation time or detection could be compromised.2525 Stoll, D. R.; Shoykhet, K.; Petersson, P.; Buckenmaier, S.; Anal. Chem. 2017, 89, 9260. [Crossref]
Crossref...
,2626 Chen, Y. ; Montero, L.; Schmitz, O. J.; TrAC, Trends Anal. Chem. 2019, 120, 115647. [Crossref]
Crossref...
The fractions must be transferred from 1D to 2D without the undersampling effect being elicited,22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,1111 Cassiano, N.; Barreiro, J. J.; Oliveira, R. R.; Cass, Q. Q.; Bioanalysis 2012, 4, 2737. [Crossref]
Crossref...
which can be achieved by fast 2D separation. Therefore, columns comprised of fully porous (FPP) or core shell (superficially porous-SPP) silica particles (with particle size varying from sub-2 to sub-3 μm) have been preferred.2727 Bedani, F.; Schoenmakers, P. J.; Janssen, H.-G.; J. Sep. Sci. 2012, 35, 1697. [Crossref]
Crossref...
,2828 Barhate, C. L.; Regalado, E. L.; Contrella, N. D.; Lee, J.; Jo, J.; Makarov, A. A.; Armstrong, D. W.; Welch, C. J.; Anal. Chem. 2017, 89, 3545. [Crossref]
Crossref...

The main advantage of LC × LC is that it produces well-resolved peaks at a rate of about one peak per second, whereas one-dimensional LC separations produce well-resolved peaks at a much slower rate.33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...

For this, orthogonality between the two dimensions promotes separation of high heterogeneity mixture.2727 Bedani, F.; Schoenmakers, P. J.; Janssen, H.-G.; J. Sep. Sci. 2012, 35, 1697. [Crossref]
Crossref...
Despite moderate peak capacity in a hydrophilic interaction liquid chromatography (HILIC) × reversed-phase liquid chromatography (RPLC) separation, the orthogonality between the two dimensions allowed speciation based on the degree of ethoxylation to propoxylation for a polyether polyol synthetic formulation.77 Groeneveld, G.; Dunkle, M. N.; Rinken, M.; Gargano, A. F. G.; de Niet, A.; Pursch, M.; Mes, E. P. C.; Schoenmakers, P. J.; J. Chromatogr. A 2018, 1569, 128. [Crossref]
Crossref...

The use of different elution modes between the two dimensions can promote much higher orthogonality. Despite of this, several examples can be found for RPLC in both dimensions.22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...
,2929 Guillarme, D.; Rouvière, F.; Heinisch, S.; Anal. Bioanal. Chem. 2022, 415, 2357. [Crossref]
Crossref...
,3030 Saint Germain, F. M.; Faure, K.; Saunier, E.; Lerestif, J.-M.; Heinisch, S.; J. Pharm. Biomed. Anal. 2022, 208, 114465. [Crossref]
Crossref...
For that, different column selectivity and chromatographic elution conditions are needed. In this regard, quality descriptors such as peak capacity, analysis time, dilution factor, number of runs in the second dimension, and injection volume have been determined for small molecules and peptides.2929 Guillarme, D.; Rouvière, F.; Heinisch, S.; Anal. Bioanal. Chem. 2022, 415, 2357. [Crossref]
Crossref...
,3030 Saint Germain, F. M.; Faure, K.; Saunier, E.; Lerestif, J.-M.; Heinisch, S.; J. Pharm. Biomed. Anal. 2022, 208, 114465. [Crossref]
Crossref...
The preference for RPLC is justified by solvent compatibility, which facilitates the interface between the two dimensions.33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
,2727 Bedani, F.; Schoenmakers, P. J.; Janssen, H.-G.; J. Sep. Sci. 2012, 35, 1697. [Crossref]
Crossref...

In sLC × LC, targets region of the 1D chromatogram is comprehensively sampled to the 2D without the resolution of the target analytes being diminished.22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...

When the fraction is collected and transferred, the fractions are not remixed regardless of peak width. Although the mLC-LC instrumentation hardware can be used for sLC × LC, they are fundamentally different. Moreover, sLC × LC holds great advantage over mLC-LC in quantification analysis. In heart-cut analysis, a fraction volume that is much larger than the peak volume of the target analyte must be transferred, which can crowd separation in the 2D.22 Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
Crossref...

Bearing in mind that only multiple peaks are transferred from the 1D to the 2D, during method development it is important to see how practical constraints of current sLC × LC system affect the performance of the separations. In other words, the number of fractions that can be transferred, the size of the sampling window, and whether the transfer is serial or parallel must be considered.3131 Davis, J. M.; Stoll, D. R.; J. Chromatogr. A 2018, 1537, 43. [Crossref]
Crossref...
,3232 Davis, J. M.; Stoll, D. R.; J. Chromatogr. A 2014, 1360, 128. [Crossref]
Crossref...
As example of application, sLC × LC has been used to profile impurities in synthetic and therapeutic peptides.3333 Karongo, R.; Ikegami, T.; Stoll, D. R.; Lämmerhofer, M.; J. Chromatogr. A 2020, 1627, 461430. [Crossref]
Crossref...

The workflow for modelling chromatographic conditions for analysis of therapeutic peptides has been recently updated.3434 Petersson, P.; Buckenmaier, S. M. C.; Euerby, M. R.; Stoll, D. R.; J. Chromatogr. A 2023, 1693, 463874. [Crossref]
Crossref...
,3535 Stoll, D. R.; Sylvester, M.; Euerby, M. R.; Buckenmaier, S. M. C.; Petersson, P.; J. Chromatogr. A 2023, 1693, 463873. [Crossref]
Crossref...
The other sections of this review deal with separation examples covering all 2D-LC categories.

4. LC-LC and mLC-LC Applications

Bioanalysts have taken advantage of the advances in LC-LC methods and employed them to analyze plasma and other biological matrixes directly, that is, without adopting laborious pretreatment steps.3636 Earley, R. A.; Tini, L. P.; J. Liq. Chromatogr. Relat. Technol. 1996, 19, 2527. [Crossref]
Crossref...
,3737 Campíns-Falcó, P.; Herráez-Hernández, R.; Sevillano-Cabeza, A.; J. Chromatogr. B: Biomed. Sci. Appl. 1993, 619, 177. [Crossref]
Crossref...
,3838 Fried, K.; Wainer, I. W.; J. Chromatogr. B: Biomed. Sci. Appl. 1997, 689, 91. [Crossref]
Crossref...
Yamaguchi et al.3939 Yamaguchi, M.; Monji, H.; Aoki, I.; Yashiki, T.; J. Chromatogr. B: Biomed. Sci. Appl. 1994, 661, 93. [Crossref]
Crossref...
developed an LC-LC method to determine total phenylephrine (conjugated and free PL) in human serum. The method did not require extensive sample pretreatment procedures and was based on fluorescence detection. Initially, the authors deproteinized with acetonitrile and hydrolyzed conjugated with diluted hydrochloric acid. After the solution was dried, the authors reconstituted the residue and analyzed it by LC. Analysis of the residue in a single C18 column lead to large interfering peaks to coelute with PL and prevented the required sensitivity and selectivity from being achieved. Therefore, the authors transferred the eluate fraction containing the analyte initially separated on a 1D C18 column to the 2D C18 column by valve operation. This LC-LC method provided the required selectivity and sensitivity for determining the total PL concentration after oral administration of PL hydrochloride, and the limit of quantification (LOQ) was 5 ng mL-1.

To gain throughput and reproducibility in bioanalysis while decreasing solid or chemical waste during analysis, restricted-access materials (RAM) columns have been used in the 1D of a 2D-LC separation to retain small molecules selectively while macromolecules are excluded in the void volume of the column.1111 Cassiano, N.; Barreiro, J. J.; Oliveira, R. R.; Cass, Q. Q.; Bioanalysis 2012, 4, 2737. [Crossref]
Crossref...
In this configuration, single heart-cut transfers the targets analytes to the analytical column in the 2D by forward or back flush.1313 Cassiano, N. M.; Barreiro, J. C.; Cass, Q. B.; J. Braz. Chem. Soc. 2014, 25, 9. [Crossref]
Crossref...
,1717 Cassiano, N. M.; Barreiro, J. C.; Moraes, M. C.; Oliveira, R. V.; Cass, Q. B.; Bioanalysis 2009, 1, 577. [Crossref]
Crossref...

The stereoselective metabolism of lansoprazole, omeprazole, and pantoprazole in healthy subjects has been investigated.4040 Gomes, R. F.; Cassiano, N. M.; Pedrazzoli, J.; Cass, Q. B.; Chirality 2010, 22, 35. [Crossref]
Crossref...
,4141 Cass, Q. B.; Lima, V. V.; Oliveira, R. V. ; Cassiano, N. M.; Degani, A. L. G.; Pedrazzoli, J.; J. Chromatogr. B 2003, 798, 275. [Crossref]
Crossref...
,4242 Cass, Q. B.; Degani, A. L. G.; Cassiano, N. M.; Pedrazolli Jr., J.; J. Chromatogr. B 2002, 766, 153. [Crossref]
Crossref...
To this end, the plasma samples were analyzed by directly injecting them into a bovine serum albumin RAM (RAM-BSA) column in 1D, followed by single forward-flush transfer of the analytes to polysaccharide columns in the 2D. Despite the structural similarity of the proton pump inhibitors, the chiral columns used for lansoprazole4040 Gomes, R. F.; Cassiano, N. M.; Pedrazzoli, J.; Cass, Q. B.; Chirality 2010, 22, 35. [Crossref]
Crossref...
and pantoprazole4242 Cass, Q. B.; Degani, A. L. G.; Cassiano, N. M.; Pedrazolli Jr., J.; J. Chromatogr. B 2002, 766, 153. [Crossref]
Crossref...
differed from the column used for omeprazole.4141 Cass, Q. B.; Lima, V. V.; Oliveira, R. V. ; Cassiano, N. M.; Degani, A. L. G.; Pedrazzoli, J.; J. Chromatogr. B 2003, 798, 275. [Crossref]
Crossref...

RAM-BSA columns can be employed during environmental analysis by direct sample injection. Barreiro et al.4343 Barreiro, J. C.; Vanzolini, K. L.; Cass, Q. B.; J. Chromatogr. A 2011, 1218, 2865. [Crossref]
Crossref...
coupled a RAM-BSA column with a polysaccharide-based chiral column to quantify simultaneously pantoprazole and lansoprazole enantiomers fraction in native aqueous matrixes. The RAM-BSA column allowed humic substances to be excluded, while the polysaccharide-based chiral column enabled the enantiomers of both pharmaceuticals to be separated. The LC-LC method provided an analysis time of 40 min, did not require any sample pretreatment, and proved a useful tool to assess biotic and abiotic enantioselective degradation and temporal changes of the enantiomeric fractions.

The enantiomeric shifts of propranolol and its hydroxy metabolites, namely 4-, 5-, and 7-hydroxy propanolol (HOPL) have been quantified by mLC-LC.4444 Harps, L. C.; Schipperges, S.; Bredendiek, F.; Wuest, B.; Borowiak, A.; Parr, M. K.; J. Chromatogr. A 2020, 1617, 460828. [Crossref]
Crossref...
Achiral separation of racemic propranolol and its metabolites 4-HOPL, 5-HOPL, and 7-HOPL was achieved with gradient elution on a phenyl-hexyl column in 1D. The analyte fractions were cut out and parked separately in several 40 µL loops. Then, each fraction was transferred to the 2D containing a glycopeptide teicoplanin-based chiral column, which separated the matrix residues from the analyte and discriminated between enantiomers. The enantiomers of propranolol and its hydroxy metabolites were successfully separated and quantified in urine samples. The separation and quantification evidenced that (R)-5-HOPL and (R)-7-HOPL were excreted in higher excess than their respective enantiomers, while (R)-propranolol and (R)-4-HOPL and their (S)-enantiomers had similar excretion rate.

Food analysis involves very complex samples by high-throughput analytical procedures. Therefore, LC-LC methods offer the required resolving power to assess food safety, food quality, and the relationship between health and food and to characterize particular groups of food components.4545 Montero, L.; Herrero, M.; Anal. Chim. Acta 2019, 1083, 1. [Crossref]
Crossref...
For instance, the use of antibiotics for treating inflammatory diseases or in cattle breeding can contaminate milk, which is a problem for the milk processor and the consumer. An LC-LC method has been developed to monitor 20 antibiotics of seven (7) categories in milk and powder milk.4646 Wang, L.; Yang, B.; Zhang, X.; Zheng, H.; Food Anal. Methods 2017, 10, 2001. [Crossref]
Crossref...
The analytes, which had a wide polarity range, were separated by coupling an HILIC column with an RP C18 column. For the first time, this LC-LC method allowed the 20 selected antibiotics, including β-lactams, tetracyclines, macrolides, aminoglycosides, amphenicols, quinolones, and sulfonamides, to be separated and detected simultaneously.

An LC-LC method involving HILIC in 1D combined with an RPLC column in 2D by LC-LC has been applied to determine the level of N,N-dimethyltryptamine (DMT) in plasma and brain samples; α-methyltryptamine (AMT) was used as internal standard.4747 Körmöczi, T.; Szabó, Í.; Farkas, E.; Penke, B.; Janáky, T.; Ilisz, I.; Berkecz, R.; J. Pharm. Biomed. Anal. 2020, 191, 113615. [Crossref]
Crossref...
DMT is an endogenous hallucinogen that is present in various mammals tissues such as the brain, pineal gland, and lung and in body fluids like urine, cerebrospinal fluid, and blood plasma. Selective and sensitivity assays are required for determining DMT in experimental models of cerebral ischemia/reperfusion by DMT administration. DMT and AMT eluted from the HILIC column were trapped in a C18 trap column and, after the valves were switched, the trap column was connected to the RP analytical column. This LC-LC method was significantly faster (10 min) and exhibited better sensitivity than many published 1D-LC methods.4747 Körmöczi, T.; Szabó, Í.; Farkas, E.; Penke, B.; Janáky, T.; Ilisz, I.; Berkecz, R.; J. Pharm. Biomed. Anal. 2020, 191, 113615. [Crossref]
Crossref...

2D-LC has found widespread use in several industries, especially for producing biotherapeutics (e.g., peptides, proteins, and drug formulations). Recombinant monoclonal antibodies (mAbs) are highly heterogeneous proteins, whose characterization requires a battery of analytical techniques. Antibody-based drugs, for example, can have varied size (due to aggregation) and charge (because of amino-acid sequence differences), which makes their separation by size-exclusion chromatography (SEC) in 1D and ion-exchange (IEC) in 2D a very effective approach for analyzing them.4848 Stoll, D.; Danforth, J.; Zhang, K.; Beck, A.; J. Chromatogr. B 2016, 1032, 51. [Crossref]
Crossref...

Although IEC and SEC usually provide optimal separation of mAb variants, the mobile phase employed in these methods contains salt and other non-volatile buffers that are not compatible with on-line mass spectrometry (MS) detection, a technique that plays an essential role in the mAb structural elucidation. Therefore, mAb charge and size variants can be characterized by 2D-LC, by coupling an SEC or IEC column with an RPLC and interfacing the system with a high-resolution mass spectrometer (HRMS). SEC and IEC are highly orthogonal to RP, i.e., they are complementary separation modes, so they can spread sample constituents out over the entire 2D separation space.4949 Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C.; Anal. Chem. 2005, 77, 6426. [Crossref]
Crossref...
Thus, fractions from 1D can be directly transferred to the RP gradient, which employs MS-compatible solvents. Then, the fractions can be further analyzed, providing highly resolved peaks and structural information through top-down analyses.5050 Alvarez, M.; Tremintin, G.; Wang, J.; Eng, M.; Kao, Y. H.; Jeong, J.; Ling, V. T.; Borisov, O. V. ; Anal. Biochem. 2011, 419, 17. [Crossref]
Crossref...

By using a similar approach, an SEC-RPLC-HRMS has been employed to separate and to characterize polymerized impurities in cephalosporins.5151 Xu, Y. ; Wang, D. D.; Tang, L.; Wang, J.; J. Pharm. Biomed. Anal. 2017, 145, 742. [Crossref]
Crossref...
The mobile phase of 1D (SEC) consisted of phosphate buffer solution and acetonitrile in gradient elution. Individual analysis of cefodizime, cefonicid, and cefmenoxime exhibited two polymerized peaks detected before each cephalosporin peak, which were loaded into six loops by using a seven-port switching valves (sample collection configuration, Figure 3). After that, the effluent of each impurity peak was transferred to the C18 column with an MS-compatible mobile phase to enable mass spectrometry detection (LCMS analysis, Figure 3). Eleven allergic impurities were separated, and their structures were annotated by MSn data. Nine of these impurities were polymerized impurities.

Figure 3
LC-LC instrumental set-up employed to separate and to characterize polymerized impurities in cephalosporins (adapted from Xu et al.5151 Xu, Y. ; Wang, D. D.; Tang, L.; Wang, J.; J. Pharm. Biomed. Anal. 2017, 145, 742. [Crossref]
Crossref...
).

Synthetic oligonucleotides for pharmaceutical applications in humans and clinical trials must exhibit high purity. Ion-par reversed-phase is the predominant separation mode for characterizing synthetic oligonucleotides, but this mode can suppress ionization during MS detection. Thus, an mLC-LC method that uses an RP/weak anion exchange in 1D has been developed to separate closely structurally related oligonucleotide sequences and deletions selectively.88 Li, F.; Su, X.; Bäurer, S.; Lämmerhofer, M.; J. Chromatogr. A 2020, 1625, 461338. [Crossref]
Crossref...
Heart cuts of the oligonucleotide peaks were transferred to 2D, via a five-position-10-port valve connected to two six-position-14-port valve carrying six 40 µL loops each; and the phosphate buffer was removed by using an RP column. This allowed oligonucleotides to be sensitively detected by electrospray ionization mass spectometry (ESI-MS).

Considering that many of the chiral drugs are currently used as racemates, and that enantiomers display different biological activities, suitable analytical methods for monitoring stereoisomeric impurities are still needed. In this context, an achiral-chiral LC-LC method has been described for enhanced pharmaceutical impurity analysis.2323 Hegade, R. S.; Chen, K.; Boon, J.-P.; Hellings, M.; Wicht, K.; Lynen, F.; J. Chromatogr. A 2020, 1628, 461425. [Crossref]
Crossref...
RP separation, employed in 1D, is the most used to analyze impurities in active pharmaceutical ingredients (APIs), and it can remove interfering compounds before chiral separation. A multi-column selection approach was designed for the 2D-the multi-column arrangement comprises a set of six polysaccharide-based chiral columns operating in reversed-phase mode, which allowed five racemates with a wide range of polarity to be separated. This automated 2D chiral screening provided highly efficient selectivity tuning and Rs values of up to 17.21 for some of the racemates.

2D-LC has also been employed to isolate the active constituents of natural products. Wong and Shalliker5252 Wong, V. ; Shalliker, R. A.; J. Chromatogr. A 2004, 1036, 15. [Crossref]
Crossref...
reported an LC-LC method to isolate the major bioactive compound (xanthine oxidase inhibitor) in a crude extract of Clerodendrum floribundum. Chromatographic separation using 1D gradient elution helped to identify the target bioactive compound. However, because this compound eluted in a region with a vast array of minor components, it could not be isolated with high purity. When the heart-cut approach with a nitrile column in 1D and a C18 column in 2D was used, the purity of the isolated sample was greater than 99%, and the recovery was 95%. Under the same loading factor, the 1D gradient elution method gave a final product with purity lower than 95% and recovery lower than 70%. Moreover, because the 1D separation took less time than the 2D separation, the sample could be re-injected into the system before separation was achieved in the 2D, to yield a brief cycle time with full use of the separation space.

5. LC × LC and sLC × LC Applications

LC × LC is a versatile technique that has been applied in many analytical fields, to analyze various types of sample and analytes. It provides higher separation and identification capabilities than traditional 1D-LC.5353 Amin, R.; Alam, F.; Dey, B. K.; Mandhadi, J. R.; Bin Emran, T.; Khandaker, M. U.; Saf, S. Z.; Separations 2022, 9, 326. [Crossref]
Crossref...
Food analysis also takes advantage of the high-resolution power of LC × LC to overcome the low peak capacity of 1D-LC methods, which cannot often separate complex matrixes.5454 Cacciola, F.; Dugo, P.; Mondello, L.; TrAC, Trends Anal. Chem. 2017, 96, 116. [Crossref]
Crossref...
From the omics/foodomics perspective, Montero et al.4545 Montero, L.; Herrero, M.; Anal. Chim. Acta 2019, 1083, 1. [Crossref]
Crossref...
overviewed some of the most notable 2D-LC applications developed from 2009 to 2019.

Cacciola et al.5555 Cacciola, F.; Rigano, F.; Dugo, P.; Mondello, L.; TrAC, Trends Anal. Chem. 2020, 127, 115894. [Crossref]
Crossref...
discussed method optimization and modulation approaches by using an sLC × LC3131 Davis, J. M.; Stoll, D. R.; J. Chromatogr. A 2018, 1537, 43. [Crossref]
Crossref...
,5656 Groskreutz, S. R.; Swenson, M. M.; Secor, L. B.; Stoll, D. R.; J. Chromatogr. A 2012, 1228, 31. [Crossref]
Crossref...
longitudinal on-column thermal modulation device to analyze red wine samples.5757 Creese, M. E.; Creese, M. J.; Foley, J. P.; Cortes, H. J.; Hilder, E. F.; Shellie, R. A.; Breadmore, M. C.; Anal. Chem. 2017, 89, 1123. [Crossref]
Crossref...
Applications of sLc × LC in food analysis include analysis of polyphenols, lipids, and carotenoids. The two most commonly used approaches for polyphenol analysis in food and natural products, RPLC × RP-LC and HILIC × RPLC, have recently been reviewed5858 Cacciola, F.; Arena, K.; Mandolfino, F.; Donnarumma, D.; Dugo, P.; Mondello, L.; J. Chromatogr. A 2021, 1645, 462129. [Crossref]
Crossref...
and investigated.5959 Ojo, O. A.; Ojo, A. B.; Okolie, C.; Nwakama, M.-A. C.; Iyobhebhe, M.; Evbuomwan, I. O.; Nwonuma, C. O.; Maimako, R. F.; Adegboyega, A. E.; Taiwo, O. A.; Alsharif, K. F.; Batiha, G. E.-S.; Molecules 2021, 26, 1996. [Crossref]
Crossref...
The mobile phases compatibility between HILIC and RPLC makes this combination valuable for application of different purposes. The mismatch in mobile phase strength is, however, something not to be overlooked.

HILIC × RPLC approaches based on dilution of the 1D effluent and large injection volume provide powerful and relatively fast analysis for detailed screening of the phenolic content in several natural products. As the sample eluting from the 1D should be in a weaker mobile phase than the one entering the 2D, these aqueous-rich fractions are not suitable when an HILIC column is used in the 2D position. In contrast, RPLC is equally used as 1D or 2D, allowing numerous HILIC × RPLC or RPLC × RPLC combinations.5858 Cacciola, F.; Arena, K.; Mandolfino, F.; Donnarumma, D.; Dugo, P.; Mondello, L.; J. Chromatogr. A 2021, 1645, 462129. [Crossref]
Crossref...

Incompatible solvent strength limits HILIC × RPLC and requires modulation strategies.33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
Reduced orthogonality is an issue with RPLC × RPLC methods. To improve orthogonality, tailored 2D gradient programs can be employed.33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
,5555 Cacciola, F.; Rigano, F.; Dugo, P.; Mondello, L.; TrAC, Trends Anal. Chem. 2020, 127, 115894. [Crossref]
Crossref...
Montero et al.6060 Montero, L.; Ayala-Cabrera, J. F.; Bristy, F. F.; Schmitz, O. J.; Anal. Chem. 2023, 95, 3398. [Crossref]
Crossref...
used a LC × LC-DAD system consisting of two columns with complementary separation behavior in 2D. The columns were automatically alternated according to the chemical characteristics of the compounds eluted from the 1D. Direct injection of crude vermouth samples (a beverage containing a complex mixtures of phenolic compounds) without sample preparation have been analyzed. The setup uses an RP column pentafluorophenyl (PFP) in the 1D and a ZIC-HILIC column and C18 column in 2D. A two positions/four-ports dual valve with 60 µL sampling loops was employed to couple the 1D to the 2D. To select the column in 2D automatically, an additional twoposition/six-port valve was connected to the modulation valve exit. Gradient elution in both 2D columns was conducted by using water and acetonitrile in different strength order, modulation time of 2 min, and elution rate of 1.8 mL min-1. The switching time for the selector valve was set at 30 min, which resulted in high HILIC column efficiency for analysis of polar compounds in 2D. From 30 min to the end of the analysis time (120 min), the C18 column separated the medium and less polar compounds well. The peak capacity (2Dnc) and orthogonality increased compared to individual LC × LC methods providing maximum sample separation in a single analysis.

To address the growing demand for eco-friendly separation techniques, researchers have developed a new LC × LC approach that replaces acetonitrile with propylene carbonate (PC), to efficiently separate a mixture of 39 drugs of various pharmaceutical classes. Two LC × LC methods were devised using PC: ethanol, at a PC/ethanol ratio of 60:40 in the 1D, and ethanol alone in the 2D. The compounds were separated by using a C18 column in the 1D and either a C18 column (method A) or Pinnacle DB PFPP (method B) column in the 2D. Compared to traditional conditions that use acetonitrile, using PC reduced the analysis time (32 min versus 53 min with acetonitrile) while the peak capacity and orthogonality were maintained. This study demonstrates the potential use of PC as an organic modifier in RPLC × RPLC separations to make LC × LC a greener method.6161 Aly, A. A.; Górecki, T.; Omar, M. A.; J. Chromatogr. Open 2022, 2, 100046. [Crossref]
Crossref...

Anti-doping analysis requires exceptional accuracy and precision. Whereas the world anti-doping agency (WADA) currently relies on chromatography (LC or GC) hyphenated with mass spectrometry and immunological methods,6262 Hand, R. A.; Bassindale, T.; Turner, N.; Morgan, G.; J. Chromatogr. B 2021, 1178, 1570. [Crossref]
Crossref...
LC × LC methods have also been reported for anti-doping analysis, such as the quantification of the beta blockers alprenolol and propranolol in human plasma,6363 Gonçalves, V. M. F.; Rodrigues, P.; Ribeiro, C.; Tiritan, M. E.; J. Pharm. Biomed. Anal. 2017, 141, 1. [Crossref]
Crossref...
and the multiclass screening method for quantifying prednisolone, methylprednisolone, dexamethasone, and betamethasone in urine.6464 Blokland, M. H.; Zoontjes, P. W.; Van Ginkel, L. A.; Van De Schans, M. G. M.; Sterk, S. S.; Bovee, T. F. H.; Food Addit. Contam.: Part A 2018, 35, 1703. [Crossref]
Crossref...

Protein biopharmaceuticals, such as monoclonal antibodies (mAbs) and therapeutic proteins, are widely applied to treat various life-threatening diseases,6565 Vanhoenacker, G.; Vandenheede, I.; David, F.; Sandra, P.; Sandra, K.; Anal. Bional. Chem. 2015, 407, 355. [Crossref]
Crossref...
so robust analytical approaches are required to characterize them. 2D-LC applications have potential use for this purpose.6666 Zhang, X.; Fang, A.; Riley, C. P.; Wang, M.; Regnier, F. E.; Buck, C.; Anal. Chim. Acta 2010, 664, 101. [Crossref]
Crossref...
,6767 Sandra, K.; Vandenheede, I.; Sandra, P.; J. Chromatogr. A 2014, 1335, 81. [Crossref]
Crossref...
LC × LC analysis for therapeutic mAbs determination based on a tryptic digest of trastuzumab and different LC × LC combinations, including strong cation-exchange (SCX) × RPLC, RPLC × RPLC, and HILIC × RPLC, has been reported.6565 Vanhoenacker, G.; Vandenheede, I.; David, F.; Sandra, P.; Sandra, K.; Anal. Bional. Chem. 2015, 407, 355. [Crossref]
Crossref...
,6868 Sandra, K.; Steenbeke, M.; Vandenheede, I.; Vanhoenacker, G.; Sandra, P.; J. Chromatogr. A 2017, 1523, 283. [Crossref]
Crossref...
These approaches have demonstrated the potential use of 2D-LC for characterizing mAbs and related products, such as host cell protein, antibody-drug conjugates, and small molecular drugs.4848 Stoll, D.; Danforth, J.; Zhang, K.; Beck, A.; J. Chromatogr. B 2016, 1032, 51. [Crossref]
Crossref...

sLC × LC-MS has been applied to identify the main isoforms and subunits of rituximab through a middle-up approach that incorporates cation exchange chromatography (CEX) and RPLC in 1D and 2D, respectively. According to Stoll et al.,6969 Stoll, D. R.; Harmes, D. C.; Danforth, J.; Wagner, E.; Guillarme, D.; Fekete, S.; Beck, A.; Anal. Chem. 2015, 87, 8307. [Crossref]
Crossref...
this approach offers several advantages over single heart-cut or fully comprehensive 2D separations and allows maximum information to be obtained from both separation dimensions in each analysis time. The use of CEX, a well-known strategy for separating charge variants in biopharmaceutical analysis, coupled to RPLC in the 2D, as desalting step, allows MS information to be directly acquired from a CEX experiment, while improving peak capacity resolution.

Biosimilars are a rapidly growing segment of the pharmaceutical market. This segment requires highly efficient analytical methods to distinguish biossimilars from reference products to ensure that they are clinically efficacious. Sorensen et al.7070 Sorensen, M.; Harmes, D. C.; Stoll, D. R.; Staples, G. O.; Fekete, S.; Guillarme, D.; Beck, A.; mAbs 2016, 8, 1224. [Crossref]
Crossref...
combined a CEX and RP platform in a middle-up approach to compare three pairs of reference/biosimilar mABs: cetuximab, trastuzumab, and infliximab.

Back in 1991, Oda et al.7171 Oda, Y. ; Asakawa, N.; Kajima, T.; Yoshida, Y. ; Sato, T.; J. Chromatogr. A 1991, 541, 411. [Crossref]
Crossref...
demonstrated the benefits of reducing the volume of the 1D effluent injected into the 2D column. More recently, researchers have employed the RPLC × RPLC configuration and active solvent modulation (ASM) to separate peptides.11 Stoll, D. R.; Lhotka, H. R.; Harmes, D. C.; Madigan, B.; Hsiao, J. J.; Staples, G. O.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019, 1134-1135, 121832. [Crossref]
Crossref...
The advantages of using ASM and an HILIC × RPLC configuration to analyze the mAbs cetuximab, obinutuzumab, and atezolizumab have also been reported. These mAbs differ significantly in terms of the of N-glycosylation level, but the HILIC × RPLC analyses swiftly provided the degree of glycosylation on the Fc/2 and Fd subunits of each mAb. Moreover, this setup was considerably more discriminatory when it came to separating the numerous glycoforms of heavily glycosylated mAbs, such as cetuximab, as compared to other LC × LC configurations like CEX × RPLC.7272 Stoll, D. R.; Harmes, D. C.; Staples, G. O.; Potter, O. G.; Dammann, C. T.; Guillarme, D.; Beck, A.; Anal. Chem. 2018, 90, 5923. [Crossref]
Crossref...

Most commercially available therapeutic peptides are synthetic and often contain impurities that co-elute with the main peak during purification. This demands complementary analytical methods to ensure that peptide quality is controlled beyond the typically used 1D RPLC. Karongo et al.3333 Karongo, R.; Ikegami, T.; Stoll, D. R.; Lämmerhofer, M.; J. Chromatogr. A 2020, 1627, 461430. [Crossref]
Crossref...
developed a novel generic sLC × LC (RPLC × RPLC) method with various orthogonal detection modalities including UV (diode array detector, DAD), charged aerosol detection (CAD) and HRMS, they kept the available generic 1D RPLC peptide impurity profiling method and set it as the 1D separation (UV detection). Oxytocin octreotide, cyclosporin A, and proprietary peptides 1-3 were used as a proof of concept. Experiments based on ASM showed that the generic sRP × RP 2D-LC method did not require ASM for standard peptides.

However, for peptides with multiple ionizable groups (e.g., peptides that have chelating moieties and which are used for imaging), the use of ASM is highly recommended to avoid peak splitting. 2D contour plots presented impurity profiles (UV detection) that could not be identified by the generic 1D RP, except for exenatide. In the experimental multi-detector configuration, the effluent from the 2D column was divided by a flow splitter at a 5:1 ratio. The smaller flow was directed to the HRMS, while the larger volumetric flow was directed to the DAD detector and CAD, which were coupled in-line.

LC × LC analysis has been used to analyze biomarkers. The normal phase (NPLC) × RPLC-HRMS method has been developed for comprehensive lipid profiling of human plasma samples collected from atherosclerosis patients to compare the differences in lipid metabolism between the control and the patient samples. This method allowed 540 endogenous lipid species from 17 different classes to be identified. Furthermore, the isomers, galactosylceramides (GalC) and glucosylceramides (GluC), were successfully separated, revealing that only the levels of GalC were significantly increased in atherosclerosis patients compared to controls (the ratio in controls vs. patients was 1.5-2.8 fold).11 Stoll, D. R.; Lhotka, H. R.; Harmes, D. C.; Madigan, B.; Hsiao, J. J.; Staples, G. O.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019, 1134-1135, 121832. [Crossref]
Crossref...

Isobaric tags for relative and absolute quantification (iTRAQ) have been widely adopted as a screening assay for detecting cancer protein biomarkers. In a study by Bouchal et al.,7373 Bouchal, P.; Roumeliotis, T.; Hrstka, R.; Nenutil, R.; Vojtesek, B.; Garbis, S. D.; J. Proteome Res. 2009, 8, 362. [Crossref]
Crossref...
an off-line iTRAQ-2D-LC-MS/MS approach was proposed to identify potential biomarkers related to metastatic processes in breast cancer. Recently, Yu et al.7474 Yu, R.; Cheng, L.; Yang, S.; Liu, Y. ; Zhu, Z.; Front. Oncol. 2022, 12, 1. [Crossref]
Crossref...
improved upon this approach by combining RPLC × RPLC-HRMS, creating an on-line iTRAQ-2D-LC-MS/MS platform to investigate potential serum biomarkers of pediatric Non-Hodgkin’s lymphoma (NHL) in patients and controls (B-NHL vs. control and T-NHL vs. control). Samples obtained from healthy controls and children with B-NHL and T-NHL were pooled, and the 14 high-abundance proteins were eliminated using the human 14 multiple affinity removal system (MARS) before tryptic digestion and iTRAQ labelling. The peptide mixture was then analyzed by 2D-LC-MS/MS, and the bioinformatics software IPA was used to analyze the differentially expressed proteins. The candidate biomarkers S100A8 and LRG1 were selected for further validation with enzyme-linked immunosorbent assays (ELISAs), and their efficacy was evaluated by using receiver operating characteristic (ROC) curves.

An HILIC × RPLC and RPLC × RPLC-MS configuration that uses C18 trapping column modulation has been examined for separating and identifying two gastrointestinal digests of commercial microalgae formulations (Spirulina platensis and Klamath). The study evaluated how both configurations performed in terms of peak capacity, maximum number of identified phycocyanin peptides, and their properties. Results showed that the HILIC × RPLC approach provided higher peak capacity values (nc HILIC × RPLC: 932) compared to RPLC × RPLC (nc RPLC × RPLC: 701), while RPLC × RPLC identified a slightly larger number of phycocyanin-derived peptides (HILIC × RPLC: 88 vs. RPLC × RPLC: 103) within the same analysis time of 60 min.7575 Sommella, E.; Salviati, E.; Musella, S.; Di Sarno, V. ; Gasparrini, F.; Campiglia, P.; Separations 2020, 7, 25. [Crossref]
Crossref...

LC × LC methods have been used to analyze degraded APIs. Naproxen and its photodegradation products have been separated and detected by using RPLC × RPLC-UV.7676 Stoll, D. R.; Talus, E. S.; Harmes, D. C.; Zhang, K.; Anal. Bioanal. Chem. 2015, 407, 265. [Crossref]
Crossref...
Wicht et al.7777 Wicht, K.; Baert, M.; Kajtazi, A.; Schipperges, S.; von Doehren, N.; Desmet, G.; de Villiers, A.; Lynen, F.; J. Chromatogr. A 2020, 1630, 461561. [Crossref]
Crossref...
reported an innovative LC × LC approach for analyzing API impurities. They used a temperature responsive (TRLC) column in the 1D with a RPLC column in the 2D. The TRLC column was made of poly (N-isopropylacrylamide) (PNIPAAm) silica-based material, which can change hydrophobicity retention at temperatures above ca. 32 °C.7878 Baert, M.; Wicht, K.; Hou, Z.; Szucs, R.; du Prez, F.; Lynen, F.; Anal. Chem. 2020, 92, 9815. [Crossref]
Crossref...
This feature allows aqueous mobile phase without organic modifier, to be used and chromatographic retention can be adjusted by changing the temperature. For non-targeted screening of impurities, a mixture of 17 APIs was used,7777 Wicht, K.; Baert, M.; Kajtazi, A.; Schipperges, S.; von Doehren, N.; Desmet, G.; de Villiers, A.; Lynen, F.; J. Chromatogr. A 2020, 1630, 461561. [Crossref]
Crossref...
and three different selective SPP columns were investigated in the 2D with acetonitrile in water (0.1% formic acid) in gradient elution at 2.5 mL min-1. The developed generic method effectively separated all the impurities from the overloaded APIs. The authors7777 Wicht, K.; Baert, M.; Kajtazi, A.; Schipperges, S.; von Doehren, N.; Desmet, G.; de Villiers, A.; Lynen, F.; J. Chromatogr. A 2020, 1630, 461561. [Crossref]
Crossref...
suggested that TRLC × RPLC can be implemented on current state-of-the-art LC × LC instrumentation.

LC × LC to analyze polymers has become increasingly popular and has been extensively documented in the literature. Various combinations of chromatographic conditions, such as SEC, RPLC, and NPLC, have been employed.7979 Van Der Horst, A.; Schoenmakers, P. J.; J. Chromatogr. A 2003, 1000, 693. [Crossref]
Crossref...
,8080 Berek, D.; Anal. Bioanal. Chem. 2010, 396, 421. [Crossref]
Crossref...
,8181 Im, K.; Park, H.-w.; Lee, S.; Chang, T.; J. Chromatogr. A 2009, 1216, 4606. [Crossref]
Crossref...
Thermal modulation, also known as cold trapping, has been suggested to separate polymers by 2D-LC fast and efficiently which can be applied to analytes that exhibit sufficiently increased retention with decreasing temperature. Pump-frequency synchronized modulation helps to minimize the observed pressure pulses resulting from the switching valve have been minimized. A 2D-LC cold-trap set-up has been used to separate a polystyrene/ polybutadiene star block copolymer. Qualitative evaluation of the trapping efficiency was accomplished by monitoring the trap effluent with an evaporative light-scattering detector, while quantitative evaluation was conducted by determining the recovery of polystyrene standards from RPLC × SEC experiments.8282 Niezen, L. E.; Staal, B. B. P.; Lang, C.; Pirok, B. W. J.; Schoenmakers, P. J.; J. Chromatogr. A 2021, 1653, 462429. [Crossref]
Crossref...

LC × LC has been used to analyze pesticides. Firstly, to samples containing both chiral and achiral compounds and to improve the resolution capacity of multiple pesticides in a single analysis, Díaz Merino et al.8383 Díaz Merino, M. E.; Acquaviva, A.; Padró, J. M.; Castells, C. B.; J. Chromatogr. A 2022, 1673, 463126. [Crossref]
Crossref...
devised a chiral × achiral approach that successfully separated 24 pesticides (17 chiral and 7 achiral compounds). An active flow splitter pump was utilized to facilitate adjustments in sample volume transferred to the second dimension, as well as to independently optimize flow rates in the first dimension.

More recently, an LC × LC-MS/MS method has been developed for the simultaneous analysis of 112 pesticides in corn-based products.8484 Martín-Pozo, L.; Arena, K.; Cacciola, F.; Dugo, P.; Mondello, L.; J. Chromatogr. A 2023, 1701, 464064. [Crossref]
Crossref...
The sample treatment was conducted using a scaled-down QuEChERS (quick, easy, cheap, effective, rugged and safe) method, which reduces the amount of sample, solvent, and sorbents required. The LC × LC method employed two RP columns: an F5 column in the 1D and a short partially porous C18 column in the 2D. To enhance sensitivity and minimize broadening of bands in the 2D, two identical trapping columns were incorporated in the modulator. The introduction of a focusing effect resulted in reduced band broadening, as the analytes from the 1D were captured in the trapping column during the collection step. The method achieved LOQ values ranging from 0.5 µg kg-1 (for fenoxycarb) to 43.6 µg kg-1 (for carbaryl). When analyzing two different samples of corn-based foods, only three pesticides out of 112 tested were detected below the LOQ and the maximum residue limit (MRL) values.8484 Martín-Pozo, L.; Arena, K.; Cacciola, F.; Dugo, P.; Mondello, L.; J. Chromatogr. A 2023, 1701, 464064. [Crossref]
Crossref...

Herbal medicine often contains numerous small molecules with different polarities, structures, and contents, which makes separation a challenging task. In recent years, 2D-LC has become a popular separation technique whose efficacy has been assessed in various studies on natural extracts,8585 Ji, S.; Wang, S.; Xu, H.; Su, Z.; Tang, D.; Qiao, X.; Ye, M.; J. Pharm. Biomed. Anal. 2018, 160, 301. [Crossref]
Crossref...
including the screening of bioactive components from natural products8686 Xiang, H.; Xu, P.; Qiu, H.; Wen, W.; Zhang, A.; Tong, S.; Phytochem. Anal. 2022, 33, 1161. [Crossref]
Crossref...
and preparative separations.8787 Qiu, Y. K.; Chen, F. F.; Zhang, L. L.; Yan, X.; Chen, L.; Fang, M. J.; Wu, Z.; Anal. Chim. Acta 2014, 820, 176. [Crossref]
Crossref...
For example, Shang et al.8888 Shang, Z.; Xu, L.; Xiao, Y. ; Du, W.; An, R.; Ye, M.; Qiao, X.; J. Chromatogr. A 2021, 1642, 462021. [Crossref]
Crossref...
proposed a chemical profiling strategy for Xiaoer-Feire-Kechuan (XFK), an 11-herb Chinese medicine formula. To this end, they used LC × LC (CHS C18 × phenyl-hexyl) coupled to an Orbitrap- and triple quadrupole (QqQ-MS) platform. This system had peak capacity of 990.5 and orthogonality of 90.3%. The untargeted mass spectra data, which was collected by using data-dependent MS2 (dd-MS2) scan on the Orbitrap-MS, corresponded to 542 peaks, or four times the number detected by 2D-LC-UV (131 peaks) and annotated 108 compounds.

A low-cost and gradual gradient on-line 2D preparative LC system has been developed for the preparative separation of compounds of interest from natural products. The system consisted of medium-pressure liquid chromatography (MPLC) in the 1D (RP column) and preparative LC in the 2D (RP column). Two trapping columns (C18) and a makeup pump were also employed. This MPLC × preparative LC system was evaluated via Gram-scale isolation of a crude methanol extract venom from the toad Bufo gargarizans. By means of a single 2D separation run (345 min), 18 bufadienolides were isolated from 0.5 g of crude extract, and the purity of each compound was higher than 90%.8989 Wang, Z.; Xie, T. T.; Yan, X.; Xue, S.; Chen, J. W.; Wu, Z.; Qiu, Y.-K.; Chromatographia 2019, 82, 543. [Crossref]
Crossref...

The workflow applications of 2D-LC have been recent reviewed.33 Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
Crossref...
Table 1 provides a complementary overview of LC × LC and sLC × LC applications reported of from 2019 to 2023.

Table 1
Examples of applications of LC × LC and sLC × LC

Xu et al.100100 Xu, Y.; Liu, Y. ; Zhou, H.; Wang, R.; Yu, D.; Guo, Z.; Liang, X.; Talanta 2023, 251, 123738. [Crossref]
Crossref...
created a 2D-LC column selection manual for analyzing natural alkaloids. The guide is a result of evaluating multiple columns with distinct separation mechanisms and offers a straightforward starting point for column selection. The use of this guide allowed for successful isolation of alkaloids from a Uncaria rhynchophylla medicinal plant sample.

6. Bioaffinity Chromatography in 2D-LC

Bioaffinity chromatography have been used for a wide variety of applications101101 Sotolongo, V.; Johnson, D. V. ; Wahnon, D.; Wainer, I. W.; Chirality 1999, 11, 39. [Crossref]
Crossref...
,102102 Markoglou, N.; Wainer, I. W.; J. Chromatogr. A 2002, 948, 249. [Crossref]
Crossref...
,103103 Pasternyk Di Marco, M.; Felix, G.; Descorps, V.; Ducharme, M. P.; Wainer, I. W.; J. Chromatogr. B: Biomed. Sci. Appl. 1998, 715, 379. [Crossref]
Crossref...
such as producing metabolites and enantioselective synthesis101101 Sotolongo, V.; Johnson, D. V. ; Wahnon, D.; Wainer, I. W.; Chirality 1999, 11, 39. [Crossref]
Crossref...
,102102 Markoglou, N.; Wainer, I. W.; J. Chromatogr. A 2002, 948, 249. [Crossref]
Crossref...
but, mainly for profiling binding events between target proteins and ligands.104104 de Oliveira, P. C. O.; Lessa, R. C.; Ceroullo, M. S.; Wegermann, C. A.; de Moraes, M. C.; Front. Anal. Sci. 2022, 2, 1004113. [Crossref]
Crossref...
,105105 de Moraes, M. C.; Cardoso, C. L.; Cass, Q. B.; Front. Chem. 2019, 7, 752. [Crossref]
Crossref...
,106106 Rodriguez, E. L.; Poddar, S.; Iftekhar, S.; Suh, K.; Woolfork, A. G.; Ovbude, S.; Pekarek, A.; Walters, M.; Lott, S.; Hage, D. S.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2020, 1157, 122332. [Crossref]
Crossref...

Back in 1998, Wainer and co-workers103103 Pasternyk Di Marco, M.; Felix, G.; Descorps, V.; Ducharme, M. P.; Wainer, I. W.; J. Chromatogr. B: Biomed. Sci. Appl. 1998, 715, 379. [Crossref]
Crossref...
used β-glucuronidase immobilized reactors (BG-IMER) to hydrolyze glucuronides on-line. For that, they used BG-IMER in 1D, and the hydrolysis products (glucuronide metabolites) were directly transferred to an RP analytical column in the 2D and analyzed with gradient elution. The enzymatic activity of the BG-IMER was evaluated by using seven glucuronides. These configurations have been referred only as coupling columns, mainly because the IMERs at the 1D have low chromatographic resolution, while the chromatographic separation is obtained exclusively at the 2D.

Later on, a more complex system configuration with two LC pumps and three six-port valves was used online to hydrolyze of chloramphenicol-β-D-glucuronide in urine samples.107107 Pasternyk (Di Marco), M.; Ducharme, M. P.; Descorps, V.; Felix, G.; Wainer, I. W.; J. Chromatogr. A 1998, 828, 135. [Crossref]
Crossref...
For that, a RAM column was used to sample clean-up for 5 min in the off-line mode (pump 1).

Glucuronide was then transferred by means of a six-port valve to the BG-IMER and hydrolyzed at a flowrate of 0.25 mL min-1; 0.01 M ammonium acetate (pH 6.7) was the mobile phase. Through a second six-port valve, chloramphenicol was concentrated in-line on the bed of a C8 analytical column. For the analysis, a third six-port valve was switched to pump 2, and chloramphenicol was quantified by gradient elution (acetonitrile in 0.01 M ammonium acetate (pH 5.0)) at flowrate of 1 mL min-1 at 280 nm.

A 2D-LC configuration was envisaged for sorting out ligands and non-ligands for a nicotinic acetylcholine receptor (α3b4-nAChR). To this end, an α3b4-nAChR bioaffinity column was coupled to a C18 column via a switching valve. Then, for detection purposes, the analytical column was hyphenated with a single quadrupole mass spectrometer. By using nicotine as probe, this system allowed 18 compounds to be ranked and identified in 32 min.108108 Moaddel, R.; Wainer, I. W.; J. Pharm. Biomed. Anal. 2003, 30, 1715. [Crossref]
Crossref...

In 2005, Girelli and Mattei109109 Girelli, A. M.; Mattei, E.; J. Chromatogr. B 2005, 819, 3. [Crossref]
Crossref...
summarized publications about bioaffinity chromatography covering the period from 1994 to 2003. In this review, the authors discussed different configurations in which the bioaffinity columns could be assembled in the LC system. To try to solve inconsistences of the mobile phase between the two dimensions, trap columns have been inserted after the bioaffinity column. The mobile phases of a bioaffinity columns are usually buffers compatible with the immobilized target and containing no or very small percentage of an organic modifier; the flow rate is very low. These characteristics of the mobile phase can alter the chromatographic selectivity of the analytical column.110110 Cardoso, C. L.; de Moraes, M. C.; Carvalho Guido, R. V. ; Oliva, G.; Andricopulo, A. D.; Wainer, I. W.; Cass, Q. B.; Analyst 2008, 133, 93. [Crossref]
Crossref...

To avoid coupled enzymatic reactions and false positive results during inhibitors screening, 2D-LC configuration combined with UV detection has been explored for monitoring enzymatic activitity.111111 de Moraes, M. C.; Cardoso, C. L.; Cass, Q. B.; Anal. Bioanal. Chem. 2013, 405, 4871. [Crossref]
Crossref...
,112112 de Moraes, M. C.; Ducati, R. G.; Donato, A. J.; Basso, L. A.; Santos, D. S.; Cardoso, C. L.; Cass, Q. B.; J. Chromatogr. A 2012, 1232, 110. [Crossref]
Crossref...
This has been well explored for purine nucleoside phosphorylases (PNP). In this case, most assays are based on the Kalckar method wherein hypoxanthine generated by inosine phosphorolysis is oxidized by xanthine oxidase (XO), to generate uric acid, which is spectrophotometrically monitored at 293 nm. In searching for inhibitors, the use of coupled assays demands that selectivity toward both enzymes (PNP and XO) be evaluated, which is not always done.113113 Castilho, M. S.; Postigo, M. P.; Pereira, H. M.; Oliva, G.; Andricopulo, A. D.; Bioorg. Med. Chem. 2010, 18, 1421. [Crossref]
Crossref...

The production of uric acid by an XO capillary column in the 1D using xanthine (as substrate) has been monitored in the 2D allowing an allopurinol ruthenium derivative to be characterized as a selective and competitive tight binder with a true inhibition constant (Ki) value of 0.29 μM.114114 Rodrigues, M. V. N.; Corrêa, R. S.; Vanzolini, K. L.; Santos, D. S.; Batista, A. A.; Cass, Q. B.; RSC Adv. 2015, 5, 37533. [Crossref]
Crossref...
By using this same system, we have been able to disclose a 3-nitrobenzoyl 9-deazaguanine (LSPN451) from a series of 10 synthetic derivatives as a novel potent XO inhibitor, with inhibition constant of 55.1 ± 9.80 nM. The 2D-LC system with XO in the 1D allowed XO inhibitors to be screened, their inhibition constants to be determined, and their inhibition modes to be characterized.115115 Rodrigues, M. V. N.; Barbosa, A. F.; da Silva, J. F.; dos Santos, D. A.; Vanzolini, K. L.; de Moraes, M. C.; Corrêa, A. G.; Cass, Q. B.; Bioorg. Med. Chem. 2016, 24, 226. [Crossref]
Crossref...

The advance in 2D-LC system hardware has allowed eight compounds with acetylcholinesterase (AChE) binding affinities to be identified in a Corydalis yanhusuo extract. For that, a system with two parallel AChE columns (active and inactive) in the 1D were used to sort out ligands from non-ligands. The ligands retained in the active AChE column were transferred to a C18 analytical column in the 2D for separation and diode array-MS detection.116116 Wang, L.; Zhao, Y. ; Zhang, Y. ; Zhang, T.; Kool, J.; Somsen, G. W.; Wang, Q.; Jiang, Z.; J. Chromatogr. A 2018, 1563, 135. [Crossref]
Crossref...

An innovative comprehensive AChE inhibitors screening assay has recently been published.117117 Seidl, C.; Lima, J. M. de; Leme, G. M.; Pires, A. F.; Stoll, D. R.; Cardoso, C. L.; Front. Mol. Biosci. 2022, 9, 259. [Crossref]
Crossref...
The 2D-LC-MS system had a C18 analytical column in the 1D while the capillary bioaffinity column (AChE-cIMER) was assembled in the 2D. The system interface consisted of an eight-port/two-position high-pressure switching valve equipped with two identical sample loops. This interface allowed time-controlled fraction transfer of the 1D effluent to the AChE-cIMER and acetylcholine insertion, facilitating correlation of the active fractions with the natural product library.

7. Final Remarks

The advances in 2D-LC system configurations in the last decade have allowed a wider range of applications and taken the instrumentations out of the universe of lab-assembled systems, which has its pros and cons. A commercial instrument has a settled number of switching valves, loops or trap columns and a certain modulation strategy that may not fit all purposes.

2D-LC offers high peak capacity and resolution but demands for adequate modulation strategies, otherwise it will deleteriously affect retention, separation and bandwidth in the 2D. The dilution effect is other important factor to be considered, it negatively impacts sensitivity and increases the complexity of method development and affects the prevalent use of this chromatographic technique. Moreover, detection in 2D-LC is still the Achilles’ heel due to plugins and software to control the LC and the mass spectrometer.

In the meantime, we expect that some current challenges will be dealt soon, and that 2D-LC will be routinely used, especially in the pharmaceutical industry.

  • Editor handled this article: Andréa R. Chaves (Associate)

Acknowledgments

This work was supported by São Paulo State Research Foundation (FAPESP - grants 2019/05363-0 and 2022/00432-7). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq (grants: 307108/2021-0 and 0302464/2022-0) and FAPERJ (grants E-26/202.909/2019, E-26/010.000978/2019 and SEI-260003/001167/2020).

References

  • 1
    Stoll, D. R.; Lhotka, H. R.; Harmes, D. C.; Madigan, B.; Hsiao, J. J.; Staples, G. O.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019, 1134-1135, 121832. [Crossref]
    » Crossref
  • 2
    Stoll, D. R.; Carr, P. W.; Anal. Chem. 2017, 89, 519. [Crossref]
    » Crossref
  • 3
    Pirok, B. W. J. J.; Stoll, D. R.; Schoenmakers, P. J.; Anal. Chem. 2019, 91, 240. [Crossref]
    » Crossref
  • 4
    Barreiro, J. C.; Tiritan, M. E.; Cass, Q. B.; TrAC, Trends Anal. Chem. 2021, 142, 116326. [Crossref]
    » Crossref
  • 5
    Li, F.; Lämmerhofer, M.; J. Chromatogr. A 2021, 1643, 462065. [Crossref]
    » Crossref
  • 6
    Woiwode, U.; Reischl, R. J.; Buckenmaier, S.; Lindner, W.; Lämmerhofer, M.; Anal. Chem. 2018, 90, 7963. [Crossref]
    » Crossref
  • 7
    Groeneveld, G.; Dunkle, M. N.; Rinken, M.; Gargano, A. F. G.; de Niet, A.; Pursch, M.; Mes, E. P. C.; Schoenmakers, P. J.; J. Chromatogr. A 2018, 1569, 128. [Crossref]
    » Crossref
  • 8
    Li, F.; Su, X.; Bäurer, S.; Lämmerhofer, M.; J. Chromatogr. A 2020, 1625, 461338. [Crossref]
    » Crossref
  • 9
    Wahlund, K. G.; J. Chromatogr. A 1981, 218, 671. [Crossref]
    » Crossref
  • 10
    Cass, Q. B.; Gomes, R. F.; Calafatti, S. A.; Pedrazolli Jr., J.; J. Chromatogr. A 2003, 987, 235. [Crossref]
    » Crossref
  • 11
    Cassiano, N.; Barreiro, J. J.; Oliveira, R. R.; Cass, Q. Q.; Bioanalysis 2012, 4, 2737. [Crossref]
    » Crossref
  • 12
    Ribeiro, A. R.; Maia, A. S.; Cass, Q. B.; Tiritan, M. E.; J. Chromatogr. B 2014, 968, 8. [Crossref]
    » Crossref
  • 13
    Cassiano, N. M.; Barreiro, J. C.; Cass, Q. B.; J. Braz. Chem. Soc. 2014, 25, 9. [Crossref]
    » Crossref
  • 14
    Cass, Q. B.; Oliveira, R. V.; De Pietro, A. C.; J. Agric. Food Chem. 2004, 52, 5822. [Crossref]
    » Crossref
  • 15
    Pereira, A. V.; Cass, Q. B.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2005, 826, 139. [Crossref]
    » Crossref
  • 16
    Carr, P.W.; Stoll, D.R.; Two-Dimensional Liquid Chromatography Principles, Practical Implementation and Applications, https://www.agilent.com/cs/library/primers/public/5991-2359EN.pdf, accessed in July 2023.
    » https://www.agilent.com/cs/library/primers/public/5991-2359EN.pdf,
  • 17
    Cassiano, N. M.; Barreiro, J. C.; Moraes, M. C.; Oliveira, R. V.; Cass, Q. B.; Bioanalysis 2009, 1, 577. [Crossref]
    » Crossref
  • 18
    Arena, K.; Mandolfino, F.; Cacciola, F.; Dugo, P.; Mondello, L.; J. Sep. Sci. 2021, 44, 17. [Crossref]
    » Crossref
  • 19
    Miyoshi, Y.; Hamase, K.; Tojo, Y.; Mita, M.; Konno, R.; Zaitsu, K.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2009, 877, 2506. [Crossref]
    » Crossref
  • 20
    Woiwode, U.; Neubauer, S.; Lindner, W.; Buckenmaier, S.; Lämmerhofer, M.; J. Chromatogr. A 2018, 1562, 69. [Crossref]
    » Crossref
  • 21
    Lv, W.; Shi, X.; Wang, S.; Xu, G.; TrAC, Trends Anal. Chem. 2019, 120, 115302. [Crossref]
    » Crossref
  • 22
    Gackowski, D.; Starczak, M.; Zarakowska, E.; Modrzejewska, M.; Szpila, A.; Banaszkiewicz, Z.; Olinski, R.; Anal. Chem. 2016, 88, 12128. [Crossref]
    » Crossref
  • 23
    Hegade, R. S.; Chen, K.; Boon, J.-P.; Hellings, M.; Wicht, K.; Lynen, F.; J. Chromatogr. A 2020, 1628, 461425. [Crossref]
    » Crossref
  • 24
    Foster, S. W.; Parker, D.; Kurre, S.; Boughton, J.; Stoll, D. R.; Grinias, J. P.; Anal. Chim. Acta 2022, 1228, 340300. [Crossref]
    » Crossref
  • 25
    Stoll, D. R.; Shoykhet, K.; Petersson, P.; Buckenmaier, S.; Anal. Chem. 2017, 89, 9260. [Crossref]
    » Crossref
  • 26
    Chen, Y. ; Montero, L.; Schmitz, O. J.; TrAC, Trends Anal. Chem. 2019, 120, 115647. [Crossref]
    » Crossref
  • 27
    Bedani, F.; Schoenmakers, P. J.; Janssen, H.-G.; J. Sep. Sci. 2012, 35, 1697. [Crossref]
    » Crossref
  • 28
    Barhate, C. L.; Regalado, E. L.; Contrella, N. D.; Lee, J.; Jo, J.; Makarov, A. A.; Armstrong, D. W.; Welch, C. J.; Anal. Chem. 2017, 89, 3545. [Crossref]
    » Crossref
  • 29
    Guillarme, D.; Rouvière, F.; Heinisch, S.; Anal. Bioanal. Chem. 2022, 415, 2357. [Crossref]
    » Crossref
  • 30
    Saint Germain, F. M.; Faure, K.; Saunier, E.; Lerestif, J.-M.; Heinisch, S.; J. Pharm. Biomed. Anal. 2022, 208, 114465. [Crossref]
    » Crossref
  • 31
    Davis, J. M.; Stoll, D. R.; J. Chromatogr. A 2018, 1537, 43. [Crossref]
    » Crossref
  • 32
    Davis, J. M.; Stoll, D. R.; J. Chromatogr. A 2014, 1360, 128. [Crossref]
    » Crossref
  • 33
    Karongo, R.; Ikegami, T.; Stoll, D. R.; Lämmerhofer, M.; J. Chromatogr. A 2020, 1627, 461430. [Crossref]
    » Crossref
  • 34
    Petersson, P.; Buckenmaier, S. M. C.; Euerby, M. R.; Stoll, D. R.; J. Chromatogr. A 2023, 1693, 463874. [Crossref]
    » Crossref
  • 35
    Stoll, D. R.; Sylvester, M.; Euerby, M. R.; Buckenmaier, S. M. C.; Petersson, P.; J. Chromatogr. A 2023, 1693, 463873. [Crossref]
    » Crossref
  • 36
    Earley, R. A.; Tini, L. P.; J. Liq. Chromatogr. Relat. Technol. 1996, 19, 2527. [Crossref]
    » Crossref
  • 37
    Campíns-Falcó, P.; Herráez-Hernández, R.; Sevillano-Cabeza, A.; J. Chromatogr. B: Biomed. Sci. Appl. 1993, 619, 177. [Crossref]
    » Crossref
  • 38
    Fried, K.; Wainer, I. W.; J. Chromatogr. B: Biomed. Sci. Appl. 1997, 689, 91. [Crossref]
    » Crossref
  • 39
    Yamaguchi, M.; Monji, H.; Aoki, I.; Yashiki, T.; J. Chromatogr. B: Biomed. Sci. Appl. 1994, 661, 93. [Crossref]
    » Crossref
  • 40
    Gomes, R. F.; Cassiano, N. M.; Pedrazzoli, J.; Cass, Q. B.; Chirality 2010, 22, 35. [Crossref]
    » Crossref
  • 41
    Cass, Q. B.; Lima, V. V.; Oliveira, R. V. ; Cassiano, N. M.; Degani, A. L. G.; Pedrazzoli, J.; J. Chromatogr. B 2003, 798, 275. [Crossref]
    » Crossref
  • 42
    Cass, Q. B.; Degani, A. L. G.; Cassiano, N. M.; Pedrazolli Jr., J.; J. Chromatogr. B 2002, 766, 153. [Crossref]
    » Crossref
  • 43
    Barreiro, J. C.; Vanzolini, K. L.; Cass, Q. B.; J. Chromatogr. A 2011, 1218, 2865. [Crossref]
    » Crossref
  • 44
    Harps, L. C.; Schipperges, S.; Bredendiek, F.; Wuest, B.; Borowiak, A.; Parr, M. K.; J. Chromatogr. A 2020, 1617, 460828. [Crossref]
    » Crossref
  • 45
    Montero, L.; Herrero, M.; Anal. Chim. Acta 2019, 1083, 1. [Crossref]
    » Crossref
  • 46
    Wang, L.; Yang, B.; Zhang, X.; Zheng, H.; Food Anal. Methods 2017, 10, 2001. [Crossref]
    » Crossref
  • 47
    Körmöczi, T.; Szabó, Í.; Farkas, E.; Penke, B.; Janáky, T.; Ilisz, I.; Berkecz, R.; J. Pharm. Biomed. Anal. 2020, 191, 113615. [Crossref]
    » Crossref
  • 48
    Stoll, D.; Danforth, J.; Zhang, K.; Beck, A.; J. Chromatogr. B 2016, 1032, 51. [Crossref]
    » Crossref
  • 49
    Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C.; Anal. Chem. 2005, 77, 6426. [Crossref]
    » Crossref
  • 50
    Alvarez, M.; Tremintin, G.; Wang, J.; Eng, M.; Kao, Y. H.; Jeong, J.; Ling, V. T.; Borisov, O. V. ; Anal. Biochem. 2011, 419, 17. [Crossref]
    » Crossref
  • 51
    Xu, Y. ; Wang, D. D.; Tang, L.; Wang, J.; J. Pharm. Biomed. Anal. 2017, 145, 742. [Crossref]
    » Crossref
  • 52
    Wong, V. ; Shalliker, R. A.; J. Chromatogr. A 2004, 1036, 15. [Crossref]
    » Crossref
  • 53
    Amin, R.; Alam, F.; Dey, B. K.; Mandhadi, J. R.; Bin Emran, T.; Khandaker, M. U.; Saf, S. Z.; Separations 2022, 9, 326. [Crossref]
    » Crossref
  • 54
    Cacciola, F.; Dugo, P.; Mondello, L.; TrAC, Trends Anal. Chem. 2017, 96, 116. [Crossref]
    » Crossref
  • 55
    Cacciola, F.; Rigano, F.; Dugo, P.; Mondello, L.; TrAC, Trends Anal. Chem. 2020, 127, 115894. [Crossref]
    » Crossref
  • 56
    Groskreutz, S. R.; Swenson, M. M.; Secor, L. B.; Stoll, D. R.; J. Chromatogr. A 2012, 1228, 31. [Crossref]
    » Crossref
  • 57
    Creese, M. E.; Creese, M. J.; Foley, J. P.; Cortes, H. J.; Hilder, E. F.; Shellie, R. A.; Breadmore, M. C.; Anal. Chem. 2017, 89, 1123. [Crossref]
    » Crossref
  • 58
    Cacciola, F.; Arena, K.; Mandolfino, F.; Donnarumma, D.; Dugo, P.; Mondello, L.; J. Chromatogr. A 2021, 1645, 462129. [Crossref]
    » Crossref
  • 59
    Ojo, O. A.; Ojo, A. B.; Okolie, C.; Nwakama, M.-A. C.; Iyobhebhe, M.; Evbuomwan, I. O.; Nwonuma, C. O.; Maimako, R. F.; Adegboyega, A. E.; Taiwo, O. A.; Alsharif, K. F.; Batiha, G. E.-S.; Molecules 2021, 26, 1996. [Crossref]
    » Crossref
  • 60
    Montero, L.; Ayala-Cabrera, J. F.; Bristy, F. F.; Schmitz, O. J.; Anal. Chem. 2023, 95, 3398. [Crossref]
    » Crossref
  • 61
    Aly, A. A.; Górecki, T.; Omar, M. A.; J. Chromatogr. Open 2022, 2, 100046. [Crossref]
    » Crossref
  • 62
    Hand, R. A.; Bassindale, T.; Turner, N.; Morgan, G.; J. Chromatogr. B 2021, 1178, 1570. [Crossref]
    » Crossref
  • 63
    Gonçalves, V. M. F.; Rodrigues, P.; Ribeiro, C.; Tiritan, M. E.; J. Pharm. Biomed. Anal. 2017, 141, 1. [Crossref]
    » Crossref
  • 64
    Blokland, M. H.; Zoontjes, P. W.; Van Ginkel, L. A.; Van De Schans, M. G. M.; Sterk, S. S.; Bovee, T. F. H.; Food Addit. Contam.: Part A 2018, 35, 1703. [Crossref]
    » Crossref
  • 65
    Vanhoenacker, G.; Vandenheede, I.; David, F.; Sandra, P.; Sandra, K.; Anal. Bional. Chem. 2015, 407, 355. [Crossref]
    » Crossref
  • 66
    Zhang, X.; Fang, A.; Riley, C. P.; Wang, M.; Regnier, F. E.; Buck, C.; Anal. Chim. Acta 2010, 664, 101. [Crossref]
    » Crossref
  • 67
    Sandra, K.; Vandenheede, I.; Sandra, P.; J. Chromatogr. A 2014, 1335, 81. [Crossref]
    » Crossref
  • 68
    Sandra, K.; Steenbeke, M.; Vandenheede, I.; Vanhoenacker, G.; Sandra, P.; J. Chromatogr. A 2017, 1523, 283. [Crossref]
    » Crossref
  • 69
    Stoll, D. R.; Harmes, D. C.; Danforth, J.; Wagner, E.; Guillarme, D.; Fekete, S.; Beck, A.; Anal. Chem 2015, 87, 8307. [Crossref]
    » Crossref
  • 70
    Sorensen, M.; Harmes, D. C.; Stoll, D. R.; Staples, G. O.; Fekete, S.; Guillarme, D.; Beck, A.; mAbs 2016, 8, 1224. [Crossref]
    » Crossref
  • 71
    Oda, Y. ; Asakawa, N.; Kajima, T.; Yoshida, Y. ; Sato, T.; J. Chromatogr. A 1991, 541, 411. [Crossref]
    » Crossref
  • 72
    Stoll, D. R.; Harmes, D. C.; Staples, G. O.; Potter, O. G.; Dammann, C. T.; Guillarme, D.; Beck, A.; Anal. Chem. 2018, 90, 5923. [Crossref]
    » Crossref
  • 73
    Bouchal, P.; Roumeliotis, T.; Hrstka, R.; Nenutil, R.; Vojtesek, B.; Garbis, S. D.; J. Proteome Res. 2009, 8, 362. [Crossref]
    » Crossref
  • 74
    Yu, R.; Cheng, L.; Yang, S.; Liu, Y. ; Zhu, Z.; Front. Oncol. 2022, 12, 1. [Crossref]
    » Crossref
  • 75
    Sommella, E.; Salviati, E.; Musella, S.; Di Sarno, V. ; Gasparrini, F.; Campiglia, P.; Separations 2020, 7, 25. [Crossref]
    » Crossref
  • 76
    Stoll, D. R.; Talus, E. S.; Harmes, D. C.; Zhang, K.; Anal. Bioanal. Chem. 2015, 407, 265. [Crossref]
    » Crossref
  • 77
    Wicht, K.; Baert, M.; Kajtazi, A.; Schipperges, S.; von Doehren, N.; Desmet, G.; de Villiers, A.; Lynen, F.; J. Chromatogr. A 2020, 1630, 461561. [Crossref]
    » Crossref
  • 78
    Baert, M.; Wicht, K.; Hou, Z.; Szucs, R.; du Prez, F.; Lynen, F.; Anal. Chem. 2020, 92, 9815. [Crossref]
    » Crossref
  • 79
    Van Der Horst, A.; Schoenmakers, P. J.; J. Chromatogr. A 2003, 1000, 693. [Crossref]
    » Crossref
  • 80
    Berek, D.; Anal. Bioanal. Chem. 2010, 396, 421. [Crossref]
    » Crossref
  • 81
    Im, K.; Park, H.-w.; Lee, S.; Chang, T.; J. Chromatogr. A 2009, 1216, 4606. [Crossref]
    » Crossref
  • 82
    Niezen, L. E.; Staal, B. B. P.; Lang, C.; Pirok, B. W. J.; Schoenmakers, P. J.; J. Chromatogr. A 2021, 1653, 462429. [Crossref]
    » Crossref
  • 83
    Díaz Merino, M. E.; Acquaviva, A.; Padró, J. M.; Castells, C. B.; J. Chromatogr. A 2022, 1673, 463126. [Crossref]
    » Crossref
  • 84
    Martín-Pozo, L.; Arena, K.; Cacciola, F.; Dugo, P.; Mondello, L.; J. Chromatogr. A 2023, 1701, 464064. [Crossref]
    » Crossref
  • 85
    Ji, S.; Wang, S.; Xu, H.; Su, Z.; Tang, D.; Qiao, X.; Ye, M.; J. Pharm. Biomed. Anal. 2018, 160, 301. [Crossref]
    » Crossref
  • 86
    Xiang, H.; Xu, P.; Qiu, H.; Wen, W.; Zhang, A.; Tong, S.; Phytochem. Anal. 2022, 33, 1161. [Crossref]
    » Crossref
  • 87
    Qiu, Y. K.; Chen, F. F.; Zhang, L. L.; Yan, X.; Chen, L.; Fang, M. J.; Wu, Z.; Anal. Chim. Acta 2014, 820, 176. [Crossref]
    » Crossref
  • 88
    Shang, Z.; Xu, L.; Xiao, Y. ; Du, W.; An, R.; Ye, M.; Qiao, X.; J. Chromatogr. A 2021, 1642, 462021. [Crossref]
    » Crossref
  • 89
    Wang, Z.; Xie, T. T.; Yan, X.; Xue, S.; Chen, J. W.; Wu, Z.; Qiu, Y.-K.; Chromatographia 2019, 82, 543. [Crossref]
    » Crossref
  • 90
    Arcari, S. G.; Arena, K.; Kolling, J.; Rocha, P.; Dugo, P.; Mondello, L.; Cacciola, F.; Electrophoresis 2020, 41, 1784. [Crossref]
    » Crossref
  • 91
    Montero, L.; Meckelmann, S. W.; Kim, H.; Cabrera, J. F. A.; Schmitz, O. J.; Anal. Bioanal. Chem. 2022, 414, 5445. [Crossref]
    » Crossref
  • 92
    Arena, K.; Cacciola, F.; Mangraviti, D.; Zoccali, M.; Rigano, F.; Marino, N.; Dugo, P.; Mondello, L.; Anal. Bioanal. Chem. 2019, 411, 4819. [Crossref]
    » Crossref
  • 93
    Vergara-Barbera, M.; Navarro-Huerta, J. A.; Torres-Lapasió, J. R.; Simó-Alfonso, E. F.; García-Alvarez-Coque, M. C.; Food Chem. 2020, 320, 126630. [Crossref]
    » Crossref
  • 94
    Roca, L. S.; Gargano, A. F. G.; Schoenmakers, P. J.; Anal. Chim. Acta 2021, 1156, 338349. [Crossref]
    » Crossref
  • 95
    Feng, J.; Zhong, Q.; Kuang, J.; Liu, J.; Huang, T.; Zhou, T.; Anal. Chem. 2021, 93, 15192. [Crossref]
    » Crossref
  • 96
    Karongo, R.; Horak, J.; Lämmerhofer, M.; Anal. Chem. 2022, 94, 17063. [Crossref]
    » Crossref
  • 97
    Acquaviva, A.; Siano, G.; Quinta, P.; Filgueira, M. R.; Castells, C. B.; J. Chromatogr. A 2020, 1614, 460729. [Crossref]
    » Crossref
  • 98
    Freye, C. E.; Rosales, C. J.; Thompson, D. G.; Brown, G. W.; Larson, S. A.; J. Chromatogr. A 2020, 1611, 460580. [Crossref]
    » Crossref
  • 99
    Viktor, Z.; Farcet, C.; Moire, C.; Brothier, F.; Pfukwa, H.; Pasch, H.; Anal. Bioanal. Chem. 2019, 411, 3321. [Crossref]
    » Crossref
  • 100
    Xu, Y.; Liu, Y. ; Zhou, H.; Wang, R.; Yu, D.; Guo, Z.; Liang, X.; Talanta 2023, 251, 123738. [Crossref]
    » Crossref
  • 101
    Sotolongo, V.; Johnson, D. V. ; Wahnon, D.; Wainer, I. W.; Chirality 1999, 11, 39. [Crossref]
    » Crossref
  • 102
    Markoglou, N.; Wainer, I. W.; J. Chromatogr. A 2002, 948, 249. [Crossref]
    » Crossref
  • 103
    Pasternyk Di Marco, M.; Felix, G.; Descorps, V.; Ducharme, M. P.; Wainer, I. W.; J. Chromatogr. B: Biomed. Sci. Appl. 1998, 715, 379. [Crossref]
    » Crossref
  • 104
    de Oliveira, P. C. O.; Lessa, R. C.; Ceroullo, M. S.; Wegermann, C. A.; de Moraes, M. C.; Front. Anal. Sci. 2022, 2, 1004113. [Crossref]
    » Crossref
  • 105
    de Moraes, M. C.; Cardoso, C. L.; Cass, Q. B.; Front. Chem. 2019, 7, 752. [Crossref]
    » Crossref
  • 106
    Rodriguez, E. L.; Poddar, S.; Iftekhar, S.; Suh, K.; Woolfork, A. G.; Ovbude, S.; Pekarek, A.; Walters, M.; Lott, S.; Hage, D. S.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2020, 1157, 122332. [Crossref]
    » Crossref
  • 107
    Pasternyk (Di Marco), M.; Ducharme, M. P.; Descorps, V.; Felix, G.; Wainer, I. W.; J. Chromatogr. A 1998, 828, 135. [Crossref]
    » Crossref
  • 108
    Moaddel, R.; Wainer, I. W.; J. Pharm. Biomed. Anal. 2003, 30, 1715. [Crossref]
    » Crossref
  • 109
    Girelli, A. M.; Mattei, E.; J. Chromatogr. B 2005, 819, 3. [Crossref]
    » Crossref
  • 110
    Cardoso, C. L.; de Moraes, M. C.; Carvalho Guido, R. V. ; Oliva, G.; Andricopulo, A. D.; Wainer, I. W.; Cass, Q. B.; Analyst 2008, 133, 93. [Crossref]
    » Crossref
  • 111
    de Moraes, M. C.; Cardoso, C. L.; Cass, Q. B.; Anal. Bioanal. Chem. 2013, 405, 4871. [Crossref]
    » Crossref
  • 112
    de Moraes, M. C.; Ducati, R. G.; Donato, A. J.; Basso, L. A.; Santos, D. S.; Cardoso, C. L.; Cass, Q. B.; J. Chromatogr. A 2012, 1232, 110. [Crossref]
    » Crossref
  • 113
    Castilho, M. S.; Postigo, M. P.; Pereira, H. M.; Oliva, G.; Andricopulo, A. D.; Bioorg. Med. Chem. 2010, 18, 1421. [Crossref]
    » Crossref
  • 114
    Rodrigues, M. V. N.; Corrêa, R. S.; Vanzolini, K. L.; Santos, D. S.; Batista, A. A.; Cass, Q. B.; RSC Adv. 2015, 5, 37533. [Crossref]
    » Crossref
  • 115
    Rodrigues, M. V. N.; Barbosa, A. F.; da Silva, J. F.; dos Santos, D. A.; Vanzolini, K. L.; de Moraes, M. C.; Corrêa, A. G.; Cass, Q. B.; Bioorg. Med. Chem. 2016, 24, 226. [Crossref]
    » Crossref
  • 116
    Wang, L.; Zhao, Y. ; Zhang, Y. ; Zhang, T.; Kool, J.; Somsen, G. W.; Wang, Q.; Jiang, Z.; J. Chromatogr. A 2018, 1563, 135. [Crossref]
    » Crossref
  • 117
    Seidl, C.; Lima, J. M. de; Leme, G. M.; Pires, A. F.; Stoll, D. R.; Cardoso, C. L.; Front. Mol. Biosci. 2022, 9, 259. [Crossref]
    » Crossref

Publication Dates

  • Publication in this collection
    23 Oct 2023
  • Date of issue
    2023

History

  • Received
    03 May 2023
  • Accepted
    20 July 2023
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br