Acessibilidade / Reportar erro

Exploring Strategic Approaches for CvFAP Photodecarboxylation through Violet Light Irradiation

Abstract

In this study, we describe a light-driven photocatalytic decarboxylation of palmitic acid and related fatty acids using Chlorella variabilis fatty acid photodecarboxylase (CvFAP). By utilizing violet light emitting diode (LED) light (50 W; 397 nm), we achieved a remarkable conversion efficiency of 99% within just 4 min, surpassing the previous 79% conversion achieved in 60 min using blue LED light (300 W; 439 nm). Importantly, the use of 50 W violet LED light also resulted in a lower enzyme photoinactivation rate when compared to 300 W blue LED. Comparing the whole-cell biocatalyst with the enzymatic extract, we found that the former demonstrated superior catalytic performance and reduced susceptibility to photoinactivation. Furthermore, whole-cell biocatalyst reuse was demonstrated after five sequential batches. Employing this approach, we successfully synthesized 26 mmol L-1 h-1 of pentadecane, showcasing a promising strategy to improve productivity. These findings represent a significant advancement in CvFAP photodecarboxylation processes compared to the literature, utilizing an alternative light source, with potential implications to the biofuel sector.

Keywords:
photodecarboxylation; biocatalysis; green chemistry; violet light; CvFAP


Introduction

Sustainable alternatives, such as enzymes, for the chemical synthesis of molecules have been pursued to replace traditional chemical processes, which have long been associated with environmental harm.11 Sheldon, R. A.; Woodley, J. M.; Chem. Rev. 2018, 118, 801. [Crossref]
Crossref...
In this context, photobiocatalysis has garnered significant attention over the past 25 years by combining the high selectivity and efficiency of biocatalysts with the transformative power of photoexcitation.22 Emmanuel, M. A.; Bender, S. G.; Bilodeau, C.; Carceller, J. M.; DeHovitz, J. S.; Fu, H.; Liu, Y.; Nicholls, B. T.; Ouyang, Y.; Page, C. G.; Qiao, T.; Raps, F. C.; Sorigué, D. R.; Sun, S. Z.; Turek-Herman, J.; Ye, Y.; Rivas-Souchet, A.; Cao, J.; Hyster, T. K.; Chem. Rev. 2023, 123, 5459. [Crossref]
Crossref...

The exploration of this captivating field led scientists to an important photoenzyme, Chlorella variabilis fatty acid photodecarboxylase (CvFAP), purified and identified for the first time in 2017.33 Sorigué, D.; Légeret, B.; Cuiné, S.; Blangy, S.; Moulin, S.; Billon, E.; Richaud, P.; Brugière, S.; Couté, Y. ; Nurizzo, D.; Müller, P.; Brettel, K.; Pignol, D.; Arnoux, P.; Li-beisson, Y.; Peltier, G.; Beisson, F.; Plant Sci. 2017, 907, 903. [Crossref]
Crossref...
CvFAP possesses the capability to convert fatty acids into alka(e)nes in a light-driven reaction. The potential applications of this enzyme are remarkable,44 Guo, X.; Xia, A.; Zhang, W.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q.; Bioresour. Technol. 2023, 367, 128232. [Crossref]
Crossref...
such as in the production of alkane-based biofuels and it has also been demonstrated in the synthesis of other compounds such as chiral secondary fatty alcohols.55 Zhang, W.; Lee, J. H.; Younes, S. H. H.; Tonin, F.; Hagedoorn, P. L.; Pichler, H.; Baeg, Y. ; Park, J. B.; Kourist, R.; Hollmann, F.; Nat. Commun. 2020, 11, 2258. [Crossref]
Crossref...
Mutant variants of CvFA P have also been proposed and studied,66 Santner, P.; Szabó, L. K.; Nahuel, C. S.; Merrild, A. H.; Hollmann, F.; Kara, S.; Eser, B. E.; ChemCatChem 2021, 13, 4038. [Crossref]
Crossref...
,77 Li, D.; Han, T.; Xue, J.; Xu, W.; Xu, J.; Wu, Q.; Angew. Chem., Int. Ed. 2021, 60, 20863. [Crossref]
Crossref...
such as other enzymes of FAP group88 Ma, Y. ; Zhong, X.; Wu, B.; Lan, D.; Zhang, H.; Hollmann, F.; Wang, Y.; Chin. J. Catal. 2023, 44, 160. [Crossref]
Crossref...
,99 Zeng, Y.; Yin, X.; Liu, L.; Zhang, W.; Chen, B.; Mol. Catal. 2022, 532, 112717. [Crossref]
Crossref...
and possible ancestral decarboxylases.1010 Sun, Y. ; Calderini, E.; Kourist, R.; ChemBioChem 2021, 22, 1833. [Crossref]
Crossref...

The literature surrounding CvFAP has already reported the dependence of light intensity and wavelength in the reaction yields.33 Sorigué, D.; Légeret, B.; Cuiné, S.; Blangy, S.; Moulin, S.; Billon, E.; Richaud, P.; Brugière, S.; Couté, Y. ; Nurizzo, D.; Müller, P.; Brettel, K.; Pignol, D.; Arnoux, P.; Li-beisson, Y.; Peltier, G.; Beisson, F.; Plant Sci. 2017, 907, 903. [Crossref]
Crossref...
,1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
,1212 Simić, S.; Jakštaitė, M.; Huck, W. T. S.; Winkler, C. K.; Kroutil, W.; ACS Catal. 2022, 12, 14040. [Crossref]
Crossref...
,1313 Winkler, C. K.; Simic, S.; Jurkas, V. ; Bierbaumer, S.; Schmermund, L.; Poschenrieder, S.; Berger, S. A.; Kulterer, E.; Kourist, R.; Kroutil, W.; ChemPhotoChem 2021, 5, 957. [Crossref]
Crossref...
Benincá et al.1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
described the improvement in the conversion of palmitic acid to pentadecane by increasing the power of the blue light emitting diode (LED). Furthermore, the use of high-power LEDs (blue and white) was demonstrated in continuous flow systems reducing the reaction time and the amount of enzymatic extract and achieving 99% conversion in 10 min. The benefit of continuous flow technology was then proved for CvFAP mediated photodecarboxylation reactions.1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...

Although blue LEDs (ca. 430-490 nm) are the most commonly used light source, the reported high photoinactivation by the blue light is a concern.1212 Simić, S.; Jakštaitė, M.; Huck, W. T. S.; Winkler, C. K.; Kroutil, W.; ACS Catal. 2022, 12, 14040. [Crossref]
Crossref...
,1414 Wu, Y.; Paul, C. E.; Hollmann, F.; ChemBioChem 2021, 22, 2420. [Crossref]
Crossref...
,1515 Lakavath, B.; Hedison, T. M.; Heyes, D. J.; Shanmugam, M.; Sakuma, M.; Hoeven, R.; Tilakaratna, V.; Scrutton, N. S.; Anal. Biochem. 2020, 600, 113749. [Crossref]
Crossref...
Green light (ca. 495-570 nm) has been reported to enhance the photostability of CvFAP, offering a potential advantage in certain applications.1616 Xia, A.; Guo, X.; Chai, Y.; Zhang, W.; Huang, Y. ; Zhu, X.; Zhu, X.; Liao, Q.; Chem. Commun. 2023, 59, 6674. [Crossref]
Crossref...
However, it is noteworthy that this enhancement in photostability is accompanied by a tradeoff in terms of overall performance.1212 Simić, S.; Jakštaitė, M.; Huck, W. T. S.; Winkler, C. K.; Kroutil, W.; ACS Catal. 2022, 12, 14040. [Crossref]
Crossref...
,1616 Xia, A.; Guo, X.; Chai, Y.; Zhang, W.; Huang, Y. ; Zhu, X.; Zhu, X.; Liao, Q.; Chem. Commun. 2023, 59, 6674. [Crossref]
Crossref...

França et al.1717 França, A. S.; Breda, G. C.; de Oliveira, K. T.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Front. Catal. 2023, 3, 1165079. [Crossref]
Crossref...
recently showed that the sunlight is a great alternative to the blue LEDs in terms of efficiency. Full conversion (> 99%) of palmitic acid to pentadecane was attained in just 12 min compared to > 99% conversion obtained after 50 min with blue LED,1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
despite the lower light intensity presented by the sunlight in the visible range (380-700 nm). Therefore, the present work followed our previous investigation of the CvFAP photodecarboxylation, and herein, we present our results on the use of violet LED (397 nm) as an alternative light source for decarboxylation reactions.

Experimental

Solvents and reagents

Tris base (Sigma-Aldrich, Burlington, Massachusetts, USA), HCl 37% (Vetec Química, Duque de Caxias, Brazil), Kanamycin (Fluka, Buchs, Switzerland), methyl sulfoxide (Tedia, USA), ethyl acetate (Tedia, USA), ethanol (Vetec Química), methanol (Vetec Química, Duque de Caxias, Brazil), sodium sulfate anhydrous (Vetec Química, Duque de Caxias, Brazil), palmitic acid (Sigma-Aldrich, Burlington, Massachusetts, USA), Pierce™ BCA Protein Assay Kit (ThermoFisher Scientific, Waltham, Massachusetts, USA) were used in the present work.

Equipment

Analytical balance Mettler Toledo (USA), magnetic stirrer heating plate Model 753A-FISATOM (Brazil), orbital shaker incubator Marconi (Brazil), gas chromatographyflame ionization detection (GC-FID) Hewlett-Packard (USA) Model GC-6890C, Shimadzu (Japan) GC2014 GC-FID-Cpsil 5 CB column (50 m × 0.53 mm × 1.0 µm), portable digital HighMed KR812 luximeter until 200000 lux (Brazil), ultrasonic sonicator VIBRA-CELL VCX 500 Sonics USA) were used in the present work.

Strain, vector and materials

Escherichia coli DH5α strains were employed for deoxyribonucleic acid (DNA) manipulation purposes. The plasmid housed the CvFAP gene as described in previous work.1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
Recombinant enzyme production involved transforming competent E. coli BL21 (DE3) cells with this plasmid. Kanamycin, obtained from Fluka (Buchs, Switzerland), was used in the process. For experimental requirements, palmitic acid was purchased from Sigma-Aldrich (Burlington, Massachusetts, USA). Additionally, the Pierce™ BCA Protein Assay Kit was purchased from ThermoFisher Scientific (Waltham, Massachusetts, USA).

Preparation of the biocatalysts

The methodology for enzyme expression followed the protocol outlined by Huijbers et al.1818 Huijbers, M. M. E.; Zhang, W.; Tonin, F.; Hollmann, F.; Angew. Chem., Int. Ed. 2018, 57, 13648. [Crossref]
Crossref...
Following CvFAP expression, E. coli BL21 (DE3) cells were stored and used to prepare the enzymatic extract (CvFAP_EE) following previous protocols of the research group.1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
The total protein concentration of the CvFAP_EE samples was determined and standardized using the Pierce™ BCA Protein Assay Kit, following the supplier’s instructions. The whole-cell biocatalyst (CvFAP_WC) was prepared by resuspension in reaction buffer (100 mM Tris-HCl buffer, pH 8.5, containing 1 mM phenylmethylsulfonyl fluoride (PMSF) and 5% glycerol) with 11 mg mL-1 of dry cell weight, measured using spectrophotometric analysis at a wavelength of 600 nm.

General photocatalytic reactions in batch with LED light

Standard photoenzymatic decarboxylation reactions were conducted in triplicate as previously reported by Benincá et al.1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
containing CvFAP_EE or CvFAP_WC as biocatalysts. Different LED lights were used in the reactions, such as a 300 W blue LED lamp and a 50 W violet LED lamp. The reusability tests were performed for CvFAP_WC biocatalysts by starting a standard batch reaction using a 50 W violet LED lamp for 15 min. Then, the cells were centrifuged at 6.000 rpm for 15 min at room temperature and recovered to subsequent batches. Photostability tests were performed by pre-illuminating the CvFAP_WC and CvFAP_EE biocatalysts in the absence of the substrate using different illumination times and light sources. Then, the substrate was added, and 1 h standard batch reactions were performed using the same light source used for the pre-illumination.

Gas chromatography analysis

Samples were prepared in ethyl acetate with a solvent-to-reaction ratio of 3:1 and subsequently dried using Na2SO4. Chromatography areas were used to determine conversion percentages using the Shimadzu GC2014 GC-FID-Cpsil 5 CB column (50 m × 0.53 mm × 1.0 µm) as reported by Benincá et al.1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...

Results and Discussion

Our previous research1717 França, A. S.; Breda, G. C.; de Oliveira, K. T.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Front. Catal. 2023, 3, 1165079. [Crossref]
Crossref...
findings have highlighted the promising potential of sunlight for CvFAP photodecarboxylation. In this way, the approach using the sunlight has motivated us to a more specific investigation aiming to explore the correlation between the efficacy of our results with the broad emission spectra of sunlight. The UV-Vis absorption spectrum of the purified CvFAP-bound flavin adenine dinucleotide (FAD) cofactor and free FAD exhibits maxima at 467 nm (blue) and also at 389 nm (violet).1515 Lakavath, B.; Hedison, T. M.; Heyes, D. J.; Shanmugam, M.; Sakuma, M.; Hoeven, R.; Tilakaratna, V.; Scrutton, N. S.; Anal. Biochem. 2020, 600, 113749. [Crossref]
Crossref...
Typically, the blue range is used for photoactivation purposes. However, a previous study1313 Winkler, C. K.; Simic, S.; Jurkas, V. ; Bierbaumer, S.; Schmermund, L.; Poschenrieder, S.; Berger, S. A.; Kulterer, E.; Kourist, R.; Kroutil, W.; ChemPhotoChem 2021, 5, 957. [Crossref]
Crossref...
has reported the utilization of low-power strip LEDs (1-1.4 W) emitting violet light and showed similar results to blue light under these experimental conditions.

We propose a batch study utilizing a 50 W violet LED lamp (397 nm) with a reaction time of up to 40 min (Tables S1 and S2, Supplementary Information (SI)PDF section). Remarkably, complete conversion (> 99%) was achieved within mere 4 min. Consequently, we compared the results using 300 W blue LED lamps with the performance of the violet LED (397 nm) under the same experimental conditions (Table S3, SI section). References from the literature were also included to highlight the differences between light sources. Clearly, the 50 W violet LED exhibits superior efficiency compared to the 300 W blue LED, requiring significantly less power output and light intensity (Table S6, SI section) to achieve a similar conversion for the same substrate.

The discrepancy observed in the data obtained by Winkler et al.1313 Winkler, C. K.; Simic, S.; Jurkas, V. ; Bierbaumer, S.; Schmermund, L.; Poschenrieder, S.; Berger, S. A.; Kulterer, E.; Kourist, R.; Kroutil, W.; ChemPhotoChem 2021, 5, 957. [Crossref]
Crossref...
(44% conversion for blue light and 41% for violet light in 20 min) might be attributed to variations in enzyme concentration and specific form, the utilization of lower-power LEDs with slightly different wavelengths and specific photoreactor. Similarly notable discrepancies were observed between the results obtained from experiments conducted with low-power strip LEDs emitting blue light1313 Winkler, C. K.; Simic, S.; Jurkas, V. ; Bierbaumer, S.; Schmermund, L.; Poschenrieder, S.; Berger, S. A.; Kulterer, E.; Kourist, R.; Kroutil, W.; ChemPhotoChem 2021, 5, 957. [Crossref]
Crossref...
and our previous research findings involving high-power blue LEDs.1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
By increasing the intensity of blue light, we were able to enhance the reaction rate under our experimental conditions,1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
aligning with the observations reported by Sorigué et al.33 Sorigué, D.; Légeret, B.; Cuiné, S.; Blangy, S.; Moulin, S.; Billon, E.; Richaud, P.; Brugière, S.; Couté, Y. ; Nurizzo, D.; Müller, P.; Brettel, K.; Pignol, D.; Arnoux, P.; Li-beisson, Y.; Peltier, G.; Beisson, F.; Plant Sci. 2017, 907, 903. [Crossref]
Crossref...
using white light. However, according to Winkler et al.,1313 Winkler, C. K.; Simic, S.; Jurkas, V. ; Bierbaumer, S.; Schmermund, L.; Poschenrieder, S.; Berger, S. A.; Kulterer, E.; Kourist, R.; Kroutil, W.; ChemPhotoChem 2021, 5, 957. [Crossref]
Crossref...
a plateau effect was observed after reaching 20% of the maximum intensity tested for blue light.

A broad range of long-chain fatty acids was converted by CvFAP using high-power blue LED light source, in up to 1 h reaction time (Table S4, SI section). It is clear the preference of CvFAP to saturated fatty acid chains higher than 14 carbons. Unsaturated fatty acids could also lead to reasonable results while C14 fatty acids allowed only 23% of conversion after 1 h. Those results were comparable to 14 h reactions using higher substrate concentration (30 mM) reported by Huijbers et al.,1818 Huijbers, M. M. E.; Zhang, W.; Tonin, F.; Hollmann, F.; Angew. Chem., Int. Ed. 2018, 57, 13648. [Crossref]
Crossref...
with slightly higher conversion obtained for linoleic acid.

Herein, we specifically focused on exploiting the potential of CvFAP in the form of enzymatic extract (CvFAP_EE). However, CvFAP has been reported in several other forms such as cell-free extract (which involves centrifugation following cell lysis), purified enzyme and whole cell.1818 Huijbers, M. M. E.; Zhang, W.; Tonin, F.; Hollmann, F.; Angew. Chem., Int. Ed. 2018, 57, 13648. [Crossref]
Crossref...
,1919 Guo, X.; Xia, A.; Li, F.; Huang, Y. ; Xianqing, Z.; Zhang, W.; Zhu, X.; Liao, Q.; Energy Convers. Manage. 2022, 255, 115311. [Crossref]
Crossref...
Considering the advantages associated with whole cells, including the elimination of cell disruption and simplification of the experimental process, we performed time-course reaction analysis using CvFAP in the form of whole cells (CvFAP_WC). Notably, the achieved conversions at a concentration of only 11 mg mL-1 of dry cell weight (Table 1) were comparable to the results obtained using enzymatic extract with a total protein concentration of 2.8 mg mL-1 (Table S2, SI section).

Table 1
Palmitic acid photodecarboxylation reaction mediated by CvFAP_WC using a 50 W violet LED lamp (397 nm) with different initial substrate concentrations for 60 min

Guo et al.1919 Guo, X.; Xia, A.; Li, F.; Huang, Y. ; Xianqing, Z.; Zhang, W.; Zhu, X.; Liao, Q.; Energy Convers. Manage. 2022, 255, 115311. [Crossref]
Crossref...
conducted a thorough comparison between CvFAP whole-cells and enzymatic extract biocatalysts, resulting in similar global conversion rates, with 15.2 mmol L-1 h-1 achieved by the whole-cell biocatalyst at a concentration of 35.2 mg mL-1 of dry cell weight. It is noteworthy that higher conversions were achieved at the present work with significantly less biocatalyst (11 mg mL-1 of dry cell weight) in reduced time, as indicated in Table 1. Moreover, a significant decline in conversion rates was observed in our previous photodecarboxylation studies using higher substrate concentrations illuminated by blue LED1111 Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
Crossref...
(16% conversion at 39 mM) and sunlight1717 França, A. S.; Breda, G. C.; de Oliveira, K. T.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Front. Catal. 2023, 3, 1165079. [Crossref]
Crossref...
(36% conversion at 34.5 mM) with the enzymatic extract for 1 h. However, it is worth mentioning that even with the increased substrate concentration of 65 mM, we were able to achieve an excellent conversion rate of 30 mmol L-1 h-1 palmitic acid within just 1 h using violet LED and whole-cell biocatalysts.

The reusability of whole cell biocatalysts is a highly advantageous feature, offering potential cost reductions and improved process efficiency.2020 de Carvalho, C. C. C. R.; Microb. Biotechnol. 2017, 10, 250. [Crossref]
Crossref...
The extent of reusability and the optimal conditions for biocatalyst reuse depend on several factors, including the specific biotransformation reaction and biocatalyst stability. In our study, we assessed the reusability of the CvFAP_WC biocatalyst under 50 W violet LED illumination and observed exceptional performance, with a consistent conversion rate of 75% maintained even after five consecutive batch cycles, although the use of longer reaction times was required in most cases (Table 2).

Table 2
Conversions obtained for whole-cell biocatalyst reuse in photodecarboxylation reactions using a 50 W violet LED light and centrifugation to recover the cells

Photostability is a relevant concern regarding CvFAP photodecarboxylation and has been investigated by various research groups.1414 Wu, Y.; Paul, C. E.; Hollmann, F.; ChemBioChem 2021, 22, 2420. [Crossref]
Crossref...
,1515 Lakavath, B.; Hedison, T. M.; Heyes, D. J.; Shanmugam, M.; Sakuma, M.; Hoeven, R.; Tilakaratna, V.; Scrutton, N. S.; Anal. Biochem. 2020, 600, 113749. [Crossref]
Crossref...
,1818 Huijbers, M. M. E.; Zhang, W.; Tonin, F.; Hollmann, F.; Angew. Chem., Int. Ed. 2018, 57, 13648. [Crossref]
Crossref...
Wu et al.1414 Wu, Y.; Paul, C. E.; Hollmann, F.; ChemBioChem 2021, 22, 2420. [Crossref]
Crossref...
have shown that excessive light exposure decreases CvFAP activity, especially in the absence of free fatty acids (FFA). The photostability of CvFAP is influenced by light intensity and oxygen presence,1212 Simić, S.; Jakštaitė, M.; Huck, W. T. S.; Winkler, C. K.; Kroutil, W.; ACS Catal. 2022, 12, 14040. [Crossref]
Crossref...
,1414 Wu, Y.; Paul, C. E.; Hollmann, F.; ChemBioChem 2021, 22, 2420. [Crossref]
Crossref...
,2121 Guo, X.; Xia, A.; Zhang, W.; Li, F.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q.; Chin. Chem. Lett. 2022, 34, 107875. [Crossref]
Crossref...
such as the biocatalyst type, with cell-free extracts remarkably more stable than the purified enzyme.1414 Wu, Y.; Paul, C. E.; Hollmann, F.; ChemBioChem 2021, 22, 2420. [Crossref]
Crossref...
,1818 Huijbers, M. M. E.; Zhang, W.; Tonin, F.; Hollmann, F.; Angew. Chem., Int. Ed. 2018, 57, 13648. [Crossref]
Crossref...
Additionally, the spectral window of irradiation plays a significant role, as exemplified for CvFA P 1616 Xia, A.; Guo, X.; Chai, Y.; Zhang, W.; Huang, Y. ; Zhu, X.; Zhu, X.; Liao, Q.; Chem. Commun. 2023, 59, 6674. [Crossref]
Crossref...
and the photodecarboxylase from Micractinium conductrix (McFAP).88 Ma, Y. ; Zhong, X.; Wu, B.; Lan, D.; Zhang, H.; Hollmann, F.; Wang, Y.; Chin. J. Catal. 2023, 44, 160. [Crossref]
Crossref...
High stability was demonstrated by McFAP in the dark and under red light pre-illumination, 40% residual activity was observed after 3 h of sunlight pre-illumination, while complete inactivation occurred after 30 min under blue light. Green light has been used for photodecarboxylation reactions using CvFAP with lower catalytic activity and higher photostability.1212 Simić, S.; Jakštaitė, M.; Huck, W. T. S.; Winkler, C. K.; Kroutil, W.; ACS Catal. 2022, 12, 14040. [Crossref]
Crossref...
,1616 Xia, A.; Guo, X.; Chai, Y.; Zhang, W.; Huang, Y. ; Zhu, X.; Zhu, X.; Liao, Q.; Chem. Commun. 2023, 59, 6674. [Crossref]
Crossref...

Thus, the photostability of CvFAP biocatalysts (CvFAP_EE and CvFAP_WC) was evaluated by the pre-illumination of the biocatalysts under the two light sources, 300 W blue LED and 50 W violet LED. The results demonstrated higher stability when using whole-cells biocatalysts compared to enzymatic extract for both light sources (Table 3). Previous reports1818 Huijbers, M. M. E.; Zhang, W.; Tonin, F.; Hollmann, F.; Angew. Chem., Int. Ed. 2018, 57, 13648. [Crossref]
Crossref...
have also indicated that the addition of cell-free extract to the purified enzyme enhances stability. The encapsulation of the enzyme of interest within the whole-cells provides a more favorable environment,2222 Madavi, T. B.; Chauhan, S.; Keshri, A.; Alavilli, H.; Choi, K. Y. ; Pamidimarri, S. D. V. N.; Biofuels, Bioprod. Biorefin. 2022, 16, 859. [Crossref]
Crossref...
potentially facilitating the presence of fatty acids to maintain the active site fulflled.1414 Wu, Y.; Paul, C. E.; Hollmann, F.; ChemBioChem 2021, 22, 2420. [Crossref]
Crossref...

Table 3
Conversions obtained for 1 h CvFAP photodecarboxylation reactions after the pre-illumination of the biocatalysts using different light sources

Both CvFAP biocatalysts exhibited higher stability under 50 W violet LED light, which can be attributed to the lower energy power and the differences in light intensity and wavelength compared to the 300 W blue LED light. The possible accumulation of superoxide radical and singlet oxygen under high power blue LED illumination2121 Guo, X.; Xia, A.; Zhang, W.; Li, F.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q.; Chin. Chem. Lett. 2022, 34, 107875. [Crossref]
Crossref...
may explain the results for these light sources.

The remarkable efficiency of violet LEDs compared to blue LEDs demonstrated in the present work opens a new window of opportunities for CvFAP mediated reactions. The use of violet LED can not only increase the reaction yield and photostability of the biocatalyst but also represents a path to unveil new aspects of its catalytic mechanism. Further analysis using spectrophotometric methods and reactions in the absence of oxygen could provide a rationale for our experimental observations, such as previously demonstrated for blue and green light illumination.1616 Xia, A.; Guo, X.; Chai, Y.; Zhang, W.; Huang, Y. ; Zhu, X.; Zhu, X.; Liao, Q.; Chem. Commun. 2023, 59, 6674. [Crossref]
Crossref...
,2121 Guo, X.; Xia, A.; Zhang, W.; Li, F.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q.; Chin. Chem. Lett. 2022, 34, 107875. [Crossref]
Crossref...

Conclusions

In conclusion, these studies reinforce the importance of wavelength on decarboxylation mediated by CvFA P and corroborate the previous reports using the broad electromagnetic spectrum of sunlight. The present work has shown that CvFAP photodecarboxylation reaction is possible to be performed under high power violet LED light with very fast reaction conditions where full conversion can be obtained after only 4 min. To the best of our knowledge, the present report also shows the best conversion rates and pentadecane concentrations obtained for CvFAP photodecarboxylation of palmitic acid using the strategic whole-cells biocatalysts.

Acknowledgments

The authors acknowledge the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq) and Carlos Chagas Filho Foundation for Support of Research of the State of Rio de Janeiro (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro-FAPERJ) for financial support. We also thank FAPESP-São Paulo State Research Foundation (K.T.O. grants 2013/07276-1, 2019/27176-8, 2020/06874-6 and 2023/0402-8). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Supplementary Information

Supplementary information is available free of charge at http://jbcs.sbq.org.br as PDF file.

References

  • 1
    Sheldon, R. A.; Woodley, J. M.; Chem. Rev. 2018, 118, 801. [Crossref]
    » Crossref
  • 2
    Emmanuel, M. A.; Bender, S. G.; Bilodeau, C.; Carceller, J. M.; DeHovitz, J. S.; Fu, H.; Liu, Y.; Nicholls, B. T.; Ouyang, Y.; Page, C. G.; Qiao, T.; Raps, F. C.; Sorigué, D. R.; Sun, S. Z.; Turek-Herman, J.; Ye, Y.; Rivas-Souchet, A.; Cao, J.; Hyster, T. K.; Chem. Rev. 2023, 123, 5459. [Crossref]
    » Crossref
  • 3
    Sorigué, D.; Légeret, B.; Cuiné, S.; Blangy, S.; Moulin, S.; Billon, E.; Richaud, P.; Brugière, S.; Couté, Y. ; Nurizzo, D.; Müller, P.; Brettel, K.; Pignol, D.; Arnoux, P.; Li-beisson, Y.; Peltier, G.; Beisson, F.; Plant Sci. 2017, 907, 903. [Crossref]
    » Crossref
  • 4
    Guo, X.; Xia, A.; Zhang, W.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q.; Bioresour. Technol. 2023, 367, 128232. [Crossref]
    » Crossref
  • 5
    Zhang, W.; Lee, J. H.; Younes, S. H. H.; Tonin, F.; Hagedoorn, P. L.; Pichler, H.; Baeg, Y. ; Park, J. B.; Kourist, R.; Hollmann, F.; Nat. Commun. 2020, 11, 2258. [Crossref]
    » Crossref
  • 6
    Santner, P.; Szabó, L. K.; Nahuel, C. S.; Merrild, A. H.; Hollmann, F.; Kara, S.; Eser, B. E.; ChemCatChem 2021, 13, 4038. [Crossref]
    » Crossref
  • 7
    Li, D.; Han, T.; Xue, J.; Xu, W.; Xu, J.; Wu, Q.; Angew. Chem., Int. Ed. 2021, 60, 20863. [Crossref]
    » Crossref
  • 8
    Ma, Y. ; Zhong, X.; Wu, B.; Lan, D.; Zhang, H.; Hollmann, F.; Wang, Y.; Chin. J. Catal. 2023, 44, 160. [Crossref]
    » Crossref
  • 9
    Zeng, Y.; Yin, X.; Liu, L.; Zhang, W.; Chen, B.; Mol. Catal. 2022, 532, 112717. [Crossref]
    » Crossref
  • 10
    Sun, Y. ; Calderini, E.; Kourist, R.; ChemBioChem 2021, 22, 1833. [Crossref]
    » Crossref
  • 11
    Benincá, L. A. D.; França, A. S.; Breda, G. C.; Le, R. A. C.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Mol. Catal. 2022, 528, 112469. [Crossref]
    » Crossref
  • 12
    Simić, S.; Jakštaitė, M.; Huck, W. T. S.; Winkler, C. K.; Kroutil, W.; ACS Catal. 2022, 12, 14040. [Crossref]
    » Crossref
  • 13
    Winkler, C. K.; Simic, S.; Jurkas, V. ; Bierbaumer, S.; Schmermund, L.; Poschenrieder, S.; Berger, S. A.; Kulterer, E.; Kourist, R.; Kroutil, W.; ChemPhotoChem 2021, 5, 957. [Crossref]
    » Crossref
  • 14
    Wu, Y.; Paul, C. E.; Hollmann, F.; ChemBioChem 2021, 22, 2420. [Crossref]
    » Crossref
  • 15
    Lakavath, B.; Hedison, T. M.; Heyes, D. J.; Shanmugam, M.; Sakuma, M.; Hoeven, R.; Tilakaratna, V.; Scrutton, N. S.; Anal. Biochem. 2020, 600, 113749. [Crossref]
    » Crossref
  • 16
    Xia, A.; Guo, X.; Chai, Y.; Zhang, W.; Huang, Y. ; Zhu, X.; Zhu, X.; Liao, Q.; Chem. Commun. 2023, 59, 6674. [Crossref]
    » Crossref
  • 17
    França, A. S.; Breda, G. C.; de Oliveira, K. T.; Almeida, R. V.; Hollmann, F.; de Souza, R. O. M. A.; Front. Catal. 2023, 3, 1165079. [Crossref]
    » Crossref
  • 18
    Huijbers, M. M. E.; Zhang, W.; Tonin, F.; Hollmann, F.; Angew. Chem., Int. Ed. 2018, 57, 13648. [Crossref]
    » Crossref
  • 19
    Guo, X.; Xia, A.; Li, F.; Huang, Y. ; Xianqing, Z.; Zhang, W.; Zhu, X.; Liao, Q.; Energy Convers. Manage. 2022, 255, 115311. [Crossref]
    » Crossref
  • 20
    de Carvalho, C. C. C. R.; Microb. Biotechnol. 2017, 10, 250. [Crossref]
    » Crossref
  • 21
    Guo, X.; Xia, A.; Zhang, W.; Li, F.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q.; Chin. Chem. Lett. 2022, 34, 107875. [Crossref]
    » Crossref
  • 22
    Madavi, T. B.; Chauhan, S.; Keshri, A.; Alavilli, H.; Choi, K. Y. ; Pamidimarri, S. D. V. N.; Biofuels, Bioprod. Biorefin. 2022, 16, 859. [Crossref]
    » Crossref

Edited by

Editor handled this article: Brenno A. D. Neto

Publication Dates

  • Publication in this collection
    22 Mar 2024
  • Date of issue
    2024

History

  • Received
    11 Dec 2023
  • Accepted
    01 Mar 2024
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br