Acessibilidade / Reportar erro

Superabsorbent biodegradable CMC membranes loaded with propolis: Peppas-Sahlin kinetics release

Abstract

Propolis is a resinous product collected by honeybees with a complex chemical composition. Sodium carboxymethylcellulose is a polymer commonly used in wound care. The goal of the present work was to produce and characterize NaCMC membranes loaded with extract of Brazilian brown propolis (CMC-P). Flavonoids and phenolic acids were identified in the propolis extracts, where the main identified substance was kaempferide. The brown propolis extracted was active against S. aureus. The low swelling capacity and high gel fraction of CMC-P would be the consequence of propolis (responsible for a hydrophobic barrier) filling the pores of the membrane. Propolis could be anchoring the NaCMC chains (as observed by FTIR) due to interaction between components, which is corroborated by the CMC-P sample degrading less than the CMC sample (>400ºC). There was non-linear diffusion release kinetics for most phenolic substances of the propolis extract. The CMC-P sample presents potential as a dressing material.

Keywords:
wound care; NaCMC hydrogel; propolis release

1. Introduction

Wound healing is a complex process contemplating the following steps: hemostasis (vascular constriction, thrombus formation), inflammation (neutrophil, monocyte, and lymphocyte infiltration), proliferation (angiogenesis, collagen synthesis, and extracellular matrix formation), and remodeling (collagen remodeling).[11 Guo, S., & DiPietro, L. A. (2010). Factors Affecting Wound Healing. Journal of Dental Research, 89(3), 219-229. http://dx.doi.org/10.1177/0022034509359125. PMid:20139336.
http://dx.doi.org/10.1177/00220345093591...
][22 Gonzalez, A. C. O., Costa, T. F., Andrade, Z. A., & Medrado, A. R. A. P. (2016). Wound healing - A literature review. Anais Brasileiros de Dermatologia, 91(5), 614-620. http://dx.doi.org/10.1590/abd1806-4841.20164741. PMid:27828635.
http://dx.doi.org/10.1590/abd1806-4841.2...
] Wound proper care should reach the previous steps without delay. However, the World Health Organization highlights the importance of wound proper care to avoid infection, since up to 30% of patients in intensive care develop an infection.[33 World Health Organization (2013). Prevention and management of wound infection. Switzerland: Department of Violence and Injury Prevention and Disability - World Health Organization. Retrieved in 2023, February 05, from https://www.who.int/publications-detail-redirect/prevention-and-management-of-wound-infection
https://www.who.int/publications-detail-...
][44 World Health Organization (2022). Global Report on infection prevention and control. Switzerland:World Health Organization] Wound infection can be considered a major cause of healing delay and high costs related to it.[55 Cook, L., & Ousey, K. (2011). Demystifying wound infection: identification and management. Practice Nursing, 22(8), 424-428. http://dx.doi.org/10.12968/pnur.2011.22.8.424.
http://dx.doi.org/10.12968/pnur.2011.22....
] Regarding skin wound infection microorganisms, P. aeruginosa (gram-negative) and S. aureus (gram-positive) are common bacteria that colonize wounds.[11 Guo, S., & DiPietro, L. A. (2010). Factors Affecting Wound Healing. Journal of Dental Research, 89(3), 219-229. http://dx.doi.org/10.1177/0022034509359125. PMid:20139336.
http://dx.doi.org/10.1177/00220345093591...
] Infection control might be difficult since to avoid bacterial resistance, the rational usage of systemic antibiotics is advised.[66 Filius, P. M. G., & Gyssens, I. C. (2002). Impact of increasing antimicrobial resistance on wound management. American Journal of Clinical Dermatology, 3(1), 1-7. http://dx.doi.org/10.2165/00128071-200203010-00001. PMid:11817964.
http://dx.doi.org/10.2165/00128071-20020...
] Infection kinetics is also a variable process, but usually, Gram-positive bacteria are the first ones to colonize the wound site (1st week of infection), followed by gram-negative bacterial colonization. Regarding P. aeruginosa and S. aureus resistance, they usually are resistant to several antibiotics, e.g., methicillin,[77 Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: staphylococcus aureus in the antibiotic era. Nature Reviews. Microbiology, 7(9), 629-641. http://dx.doi.org/10.1038/nrmicro2200. PMid:19680247.
http://dx.doi.org/10.1038/nrmicro2200...
] carbapenems,[88 Centers for Disease Control and Prevention - CDC (2019). Multidrug-resistant pseudomonas aeruginosa. Atlanta: CDC. Retrieved in 2023, February 05, from https://www.cdc.gov/drugresistance/pdf/threats-report/pseudomonas-aeruginosa-508.pdf.
https://www.cdc.gov/drugresistance/pdf/t...
] cephalosporins (3rd generation antibiotics)[99 Puca, V., Marulli, R. Z., Grande, R., Vitale, I., Niro, A., Molinaro, G., Prezioso, S., Muraro, R., & Di Giovanni, P. (2021). Microbial species isolated from infected wounds and antimicrobial resistance analysis: data emerging from a three-years retrospective study. Antibiotics (Basel, Switzerland), 10(10), 1162. http://dx.doi.org/10.3390/antibiotics10101162. PMid:34680743.
http://dx.doi.org/10.3390/antibiotics101...
].

Bee products like honey are known to inhibit both, gram-positive and gram-negative resistant mechanisms, due to their broad spectrum of activity.[1010 Mieles, J. Y., Vyas, C., Aslan, E., Humphreys, G., Diver, C., & Bartolo, P. (2022). Honey: an advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics, 14(8), 1663. http://dx.doi.org/10.3390/pharmaceutics14081663. PMid:36015289.
http://dx.doi.org/10.3390/pharmaceutics1...
] In addition, propolis, at proper amounts, can be bacteriostatic and even bactericide on wound infections without inducing bacterial resistance.[1111 Ghasemi, F. S., Eshraghi, S. S., Andalibi, F., Hooshyar, H., Kalantar- Neyestanaki, D., Samadi, A., & Fatahi-Bafghi, M. (2017). Anti-bacterial effect of propolis extract in oil against different bacteria. Zahedan Journal of Researches in Medical Sciences, 19(3), e7225. http://dx.doi.org/10.5812/zjrms.7225.
http://dx.doi.org/10.5812/zjrms.7225...
] Propolis is a beehive product containing mainly beeswax and resins obtained from plants. Apis Mellifera bees produce propolis to seal the hive, protecting it from insects and pathogenic microorganisms. More than 300 substances have been identified in different propolis and their composition varies according to the region of collection, the season of the year, species of bees, and local flora.[1212 Quintino, R. L., Reis, A. C., Fernandes, C. C., Martins, C. H. G., Colli, A. C., Crotti, A. E. M., Squarisi, I. S., Ribeiro, A. B., Tavares, D. C., & Miranda, M. L. D. (2020). Brazilian green propolis: chemical composition of essential oil and their in vitro antioxidant, antibacterial and antiproliferative activities. Brazilian Archives of Biology and Technology, 63, e20190408. http://dx.doi.org/10.1590/1678-4324-2020190408.
http://dx.doi.org/10.1590/1678-4324-2020...
][1313 Pinto, L. M. A., Prado, N. R. T., & Carvalho, L. B. (2011). Propriedades, usos e aplicações da própolis. Revista Eletrônica de Farmácia, 8(3), 76-100.] Propolis presents antibacterial, antioxidant, antifungal, anti-inflammatory, and wound-healing properties.[1414 Martinotti, S., & Ranzato, E. (2015). Propolis: a new frontier for wound healing? Burns and Trauma, 3, 9. http://dx.doi.org/10.1186/s41038-015-0010-z. PMid:27574655.
http://dx.doi.org/10.1186/s41038-015-001...
] Different classes of compounds, including hydrocarbons, fatty acids, fatty esters, flavonoids, phenolic acids, and phenolic esters have been reported in propolis around the world.[1515 Araujo, M. A. R., Libério, S. A., Guerra, R. N. M., Ribeiro, M. N. S., & Nascimento, F. R. F. (2012). Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review. Revista Brasileira de Farmacognosia, 22(1), 208-219. http://dx.doi.org/10.1590/S0102-695X2011005000167.
http://dx.doi.org/10.1590/S0102-695X2011...
][1616 Woźniak, M., Mrówczyńska, L., Waśkiewicz, A., Rogoziński, T., & Ratajczak, I. (2019). The role of seasonality on the chemical composition, antioxidant activity and cytotoxicity of Polish propolis in human erythrocytes. Revista Brasileira de Farmacognosia, 29(3), 301-308. http://dx.doi.org/10.1016/j.bjp.2019.02.002.
http://dx.doi.org/10.1016/j.bjp.2019.02....
] The color of propolis varies from dark green to reddish, and its composition depends on the plant source of the resin. The most studied Brazilian propolis is the green type originating from Baccharis dracunculifolia and produced mainly in the southeast of Brazil.[1212 Quintino, R. L., Reis, A. C., Fernandes, C. C., Martins, C. H. G., Colli, A. C., Crotti, A. E. M., Squarisi, I. S., Ribeiro, A. B., Tavares, D. C., & Miranda, M. L. D. (2020). Brazilian green propolis: chemical composition of essential oil and their in vitro antioxidant, antibacterial and antiproliferative activities. Brazilian Archives of Biology and Technology, 63, e20190408. http://dx.doi.org/10.1590/1678-4324-2020190408.
http://dx.doi.org/10.1590/1678-4324-2020...
] Other types of Brazilian propolis are known, such as brown and yellow ones, but with undetermined plant origin. Although its geographical origin is unknown, Brazilian brown propolis is rich in terpenes,[1717 Olegário, L. S., Andrade, J. K. S., Andrade, G. R. S., Denadai, M., Cavalcanti, R. L., Silva, M. A. A. P., & Narain, N. (2019). Chemical characterization of four Brazilian brown propolis: an insight in tracking of its geographical location of production and quality control. Food Research International, 123, 481-502. http://dx.doi.org/10.1016/j.foodres.2019.04.004. PMid:31284998.
http://dx.doi.org/10.1016/j.foodres.2019...
] while Brazilian yellow propolis can be considered rich in triterpenoids.[1818 Machado, C. S., Mokochinski, J. B., Lira, T. O., Oliveira, F. C. E., Cardoso, M. V., Ferreira, R. G., Sawaya, A. C. H. F., Ferreira, A. G., Pessoa, C., Cuesta-Rubio, O., Monteiro, M. C., Campos, M. S., & Torres, Y. R. (2016). Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. Evidence-Based Complementary and Alternative Medicine, 2016, 6057650. http://dx.doi.org/10.1155/2016/6057650. PMid:27525023.
http://dx.doi.org/10.1155/2016/6057650...
]

Propolis' effects on wound healing are according to its composition. Nonetheless, flavonoids’ bactericide mechanism includes damage to bacteria’s cytoplasmic membrane and inhibition of nucleic acid synthesis.[1919 Pontes, M. L. C., Vasconcelos, I. R. A., Diniz, M. F. F. M., & Pessôa, H. D. L. F. (2018). Chemical characterization and pharmacological action of Brazilian red propolis. Acta Brasiliensis, 2(1), 34-39. http://dx.doi.org/10.22571/2526-433868.
http://dx.doi.org/10.22571/2526-433868...
] Regarding propolis application in wound care, green and red propolis have been successfully applied in Wistar rats’ wounds. Although red propolis presented high amounts of flavonoids, green propolis led to high reepithelization,[2020 Batista, L. L. V., Campesatto, E. A., Assis, M. L. B., Barbosa, A. P. F., Grillo, L. A. M., & Dornelas, C. B. (2012). Comparative study of topical green and red propolis in the repair of wounds induced in rats. Revista do Colégio Brasileiro de Cirurgiões, 39(6), 515-520. http://dx.doi.org/10.1590/S0100-69912012000600012. PMid:23348649.
http://dx.doi.org/10.1590/S0100-69912012...
] also controlling inflammatory response.[2121 Moura, S. A. L., Negri, G., Salatino, A., Lima, L. D. C., Dourado, L. P. A., Mendes, J. B., Andrade, S. P., Ferreira, M. A. N. D., & Cara, D. C. (2011). Aqueous extract of Brazilian Green Propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evidence-Based Complementary and Alternative Medicine, 2011, 748283. http://dx.doi.org/10.1093/ecam/nep112. PMid:19690045.
http://dx.doi.org/10.1093/ecam/nep112...
] Red propolis was tested in male Wistar rats’ wounds. It increased the wounds’ contraction rate, as well as stimulated healing factors, and increased collagenase activity.[2222 Conceição, M., Gushiken, L. F. S., Aldana-Mejía, J. A., Tanimoto, M. H., Ferreira, M. V. S., Alves, A. C. M., Miyashita, M. N., Bastos, J. K., Beserra, F. P., & Pellizzon, C. H. (2022). Histological, immunohistochemical and antioxidant analysis of skin wound healing influenced by the topical application of Brazilian red propolis. Antioxidants, 11(11), 2188. http://dx.doi.org/10.3390/antiox11112188. PMid:36358560.
http://dx.doi.org/10.3390/antiox11112188...
] Brown propolis was compared to green propolis regarding their action on oxidative stress and inflammation. Brown propolis and green propolis present different metabolite profiles and mechanisms of action, but brown propolis was more active than a green one.[2323 Zaccaria, V., Curti, V., Di Lorenzo, A., Baldi, A., Maccario, C., Sommatis, S., Mocchi, R., & Daglia, M. (2017). Effect of green and brown propolis extracts on the expression levels of microRNAs, mRNAs and proteins, related to oxidative stress and inflammation. Nutrients, 9(10), 1090. http://dx.doi.org/10.3390/nu9101090. PMid:28974022.
http://dx.doi.org/10.3390/nu9101090...
] Brown propolis was tested against the biofilm formation of S. aureus. Propolis’ prenylated phenylpropanoic acids were antibiofilm (S. aureus’ colonies spread) probably due to artepillin C, drupanin, and baccharin metabolites.[2424 Dembogurski, D. S. O., Trentin, D. S., Boaretto, A. G., Rigo, G. V., Silva, R. C., Tasca, T., Macedo, A. J., Carollo, C. A., & Silva, D. B. (2018). Brown propolis-metabolomic innovative approach to determine compounds capable of killing Staphylococcus aureus biofilm and Trichomonas vaginalis. Food Research International, 111, 661-673. http://dx.doi.org/10.1016/j.foodres.2018.05.033. PMid:30007730.
http://dx.doi.org/10.1016/j.foodres.2018...
] Brown propolis was incorporated in alginate membranes to be used as a food covering when the membrane was active against gram-positive bacteria.[2525 Costa, M. C., Cruz, A. I. C., Ferreira, M. A., Bispo, A. S. R., Ribeiro, P. R., Costa, J. A., Araújo, F. M., & Evangelista-Barreto, N. S. (2023). Brown propolis bioactive compounds as a natural antimicrobial in alginate films applied to Piper nigrum L. Ciência Rural, 53(5), e20210805. http://dx.doi.org/10.1590/0103-8478cr20210805.
http://dx.doi.org/10.1590/0103-8478cr202...
]

Sodium carboxymethylcellulose (CMC) is one of the main polymers derived from cellulose. It is soluble in water, and its viscosity and adsorption capacity can be modulated by varying pH, concentration, and temperature. It is a hydrocolloid, forming a gel or a viscous dispersion in water.[2626 Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47(6), 587-597. http://dx.doi.org/10.1007/s13197-010-0162-6. PMid:23572691.
http://dx.doi.org/10.1007/s13197-010-016...
][2727 Xu, H., Chen, G., Jin, R., Chen, D., Wang, Y., & Pei, J. (2014). Green synthesis of Bi2Se3 hierarchical nanostructure and its electrochemical properties. RSC Advances, 4(17), 8922-8929. http://dx.doi.org/10.1039/c3ra46473c.
http://dx.doi.org/10.1039/c3ra46473c...
] Sodium carboxymethylcellulose has recently been used in dressings for the treatment of wounds and burns. Its membranes improve the healing process, and they can be used pure or in combination with other polymers. Due to its hygroscopic characteristic, carboxymethylcellulose promotes an autolytic debridement of wounds; facilitates cellular rehydration; and has bacteriostatic action. It is, therefore, applicable to wounds with scabs, fibrinous, devitalized, and necrotic tissues.[2828 Waring, M. J., & Parsons, D. (2001). Physico-chemical characterisation of carboxymethylated spun cellulose fibres. Biomaterials, 22(9), 903-912. http://dx.doi.org/10.1016/S0142-9612(00)00254-4. PMid:11311009.
http://dx.doi.org/10.1016/S0142-9612(00)...
][2929 Moseley, R., Walker, M., Waddington, R. J., & Chen, W. Y. J. (2003). Comparison of the antioxidant properties of wound dressing materials-carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species. Biomaterials, 24(9), 1549-1557. http://dx.doi.org/10.1016/S0142-9612(02)00540-9. PMid:12559815.
http://dx.doi.org/10.1016/S0142-9612(02)...
][3030 Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings - a review. Biomedicine (Taipei), 5(4), 22. http://dx.doi.org/10.7603/s40681-015-0022-9. PMid:26615539.
http://dx.doi.org/10.7603/s40681-015-002...
] CMC hydrocolloids allow the incorporation and controlled release of different drugs or natural products. CMC-tamarind gum hydrocolloids were loaded with moxifloxacin hydrochloride, where the equimolar gel delivered moxifloxacin hydrochloride properly[3131 Mali, K. K., Dhawale, S. C., Dias, R. J., Dhane, N. S., & Ghorpade, V. S. (2018). Citric acid crosslinked carboxymethyl cellulose-based composite hydrogel films for drug delivery. Indian Journal of Pharmaceutical Sciences, 80(4), 657-667. http://dx.doi.org/10.4172/pharmaceutical-sciences.1000405.
http://dx.doi.org/10.4172/pharmaceutical...
]. Red propolis extract from Alagoas/Brazil was added to CMC hydrogels, and they were effective against microbes' penetration towards the wound site, being considered promising materials for dressings.[3232 Silva, V. C., Silva, A. M. G. S., Basílio, J. A. D., Xavier, J. A., Nascimento, T. G., Naal, R. M. Z. G., del Lama, M. P., Leonelo, L. A. D., Mergulhão, N. L. O. N., Maranhão, F. C. A., Silva, D. M. W., Owen, R., Duarte, I. F. B., Bulhões, L. C. G., Basílio, I. D. Jr, & Goulart, M. O. F. (2020). New insights for red propolis of alagoas: chemical constituents, topical membrane formulations and their physicochemical and biological properties. Molecules (Basel, Switzerland), 25(24), 5811. http://dx.doi.org/10.3390/molecules25245811. PMid:33317120.
http://dx.doi.org/10.3390/molecules25245...
] The goal of the present work is to develop and characterize CMC membranes loaded with Brazilian southeast brown propolis for wound care.

2. Materials and Methods

2.1 Propolis analysis

Propolis extraction was performed by four methods: dynamic maceration at room temperature (DM) - 50ml of ethanol PA was used as solvent for 48h to extract 2g of propolis; dynamic maceration at 50ºC (DMT) - 50ml of ethanol PA was used, at 50ºC for 48h, to extract 2g of propolis; by ultrasound bath (US) - 50ml of ethanol PA in ultrasound bath for 2h at room temperature; and by immersion of ultrasound probe (USI) - 50ml of ethanol PA under ultrasound probe for 30min at room temperature. The samples were then characterized following their active compound amounts.

2.1.1 Propolis’ phenols quantification

To a 50μL aliquot of methanolic solution (1.0 mg/mL) of propolis extract (triplicates), methanol from VETEC/Brazil, was added to 2.5 mL of the Folin-Ciocalteau reagent (1:10) (Sigma-Aldrich) and 2.0 mL of 4% sodium carbonate (Sigma-Aldrich) aqueous solution. After 5 minutes at 50°C, the color of the solution changed from greenish to blue, and the absorbance was recorded at 760 nm, equipment NOVA 2000UV.[3333 Papotti, G., Bertelli, D., Plessi, M., & Rossi, M. C. (2010). Use of HR-NMR to classify propolis obtained using different harvesting methods. International Journal of Food Science & Technology, 45(8), 1610-1618. http://dx.doi.org/10.1111/j.1365-2621.2010.02310.x.
http://dx.doi.org/10.1111/j.1365-2621.20...
] In addition, a gallic acid (25, 50, 100, 200, 300, 400, 500 e 600 µg/mL) (Sigma-Aldrich) standard curve was plotted (Absorbance = 0.12497+ 0.12951 concentration of gallic acid (R2 = 0.999)).

2.1.2 Propolis’ flavonoids quantification

Aliquots of 400 μL of propolis extract (triplicates) and 200 μL of 2% aluminum chloride (Sigma-Aldrich) methanolic solution were mixed. The final volume was adjusted to 10 mL by adding methanol. After 30 minutes, the absorbance at 425 nm was measured. A standard curve of quercetin (Sigma-Aldrich) (50, 40, 30, 20, 10, 15, 5 e 1 µg/ml) was plotted (Absorbance = 0.04078 + 0.06553 concentration of quercetin (R2 = 0.999)).

2.1.3 Propolis antioxidant activity (DPPH, FRAP, and ABTS)

The percentage of antiradical activity was calculated through the decolorization of the DPPH• radical (Sigma-Aldrich), according to Equation 1.[3434 Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127-130. http://dx.doi.org/10.1002/ptr.687. PMid:11268111.
http://dx.doi.org/10.1002/ptr.687...
] To determine the antioxidant activity (%AA) of each propolis sample, the absorbance of the solution of methanol + DPPH (Abscontrol) was considered the negative control, and methanol was used as a reference (AbsREF). This analysis was performed in triplicate. To calculate the amount of antioxidant (hydrogen donator) necessary to diminish the initial concentration of DPPH by 50% (CE50), a stock methanolic solution of propolis was prepared (concentration of 1000 μg/mL). Then, 0.29μL of the DPPH solution was added to ELISA plate wells as well as the prepared solutions. After 30 minutes of incubation in the dark, the absorbance was measured at 520nm. Analysis was performed in triplicate.

A A % = 100 A b s s a m p l e A b s R E F A b s c o n t r o l (1)

The antioxidant capacity can be evaluated by the reduction of the ferric complex 2,4,6-tripyridyl-s-triazine (Fe3+-TPTZ) to the ferrous complex 2,4,6-tripyridyl-s-triazine (Fe2+-TPTZ). A 0.5mL aliquot of each methanolic propolis extract solution was added to 4.5mL of FRAP Reagent. Each mixture was heated at 37°C for 10 minutes, and then their absorbance was registered at 593nm. A standard curve based on an aqueous solution of heptahydrate ferrous sulfate (FeSO4.7H2O (Sigma-Aldrich)), concentrations of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 µM was plotted (Absorbance = 0.00107 + 0.0018 concentration of FeSO4.7H2O (R2 = 0.999)).

For the cation radical ABTS scavenging activity, 5ml of ABTS+ solution (7mM ABTS+) (Sigma-Aldrich) was mixed with 88μL of 140 mM potassium persulfate solution in the dark for 16h at room temperature. For the stock solution, to a 50μL aliquot of propolis solution, 5.0mL of ABTS reagent was added. The absorbance of the dilutions was recorded at 734nm, after 6 minutes. The reference was ethanol. A Trolox standard curve (ethanolic solution, 0,0; 0;3; 0,6; 0,9; 1,2; 1,5; 1,8; 2,1 e 2,4 mmol/L) was plotted (Absorbance = -26.37778 concentration of Trolox + 0.65164, R2 = 0.999), and the results were expressed as mmol Trolox per 100 mg of extract.[3535 Embrapa Agroindústria Tropical (2007). Comunicado técnico n. 128. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS°+. Fortaleza: Embrapa.]

2.1.4 CLAE-DAD chromatography

Chromatographic analysis was performed on a C-18 reversed-phase analytical column (Betasil, Thermo, 5μm particles size), at 30 °C. The mobile phase used was water with 1% acetic acid (solvent A) and methanol (solvent B), a constant flow of 1.0 mL/min, and a volume of the injected sample of 20μL. The concentration gradient was performed from 35% of solvent B for 2min, followed by (35-80)% at 20min, (80-92)% at 25min, returning then to 35%B for 2min. The chromatograms were recorded at 280 and 340 nm since most of the phenolic acids and flavonoids in propolis are excited near these wavelengths. Data acquisition used the LCSolution (Shimadzu) software.

2.1.5 Antimicrobial analysis

The antimicrobial activity of propolis extracts against S. aureus was determined according to the agar diffusion method with modifications.[3636 Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. http://dx.doi.org/10.1093/ajcp/45.4_ts.493. PMid:5325707.
http://dx.doi.org/10.1093/ajcp/45.4_ts.4...
] The S. aureus strain (ATCC 25923) was incubated at 36ºC for 24h. A suspension of cells was prepared in 3mL of peptone saline solution to reach 2x108 cfu/mL (turbidity equivalent to Mc Farland scale number 5). This suspension was diluted 100 times and 0.1 mL was inoculated on Mueller Hinton agar plates. Wells (sterile drill, diameter of 0.75 cm) were drilled and, in each well, 50 µL of propolis extract (10 µg/mL) was inoculated. Ampicillin (10 µg/mL, positive control) was used, as well as a solution of 95% ethanol (negative control). The incubation occurred at 36°C for 20-24 hours, after which the inhibition diameter of each well was measured. All tests were performed in triplicates. The inhibition (I) was calculated according to Equation 2.

I % = 100 S a m p l e s i n h i b i t i o n h a l o N e g a t i v e c o n t r o l ' s h a l o P o s i t i v e c o n t r o l s h a l o (2)

2.2 CMC gels

The hydrogels were prepared according to the casting method[3737 Taylor, R. F., & Schultz, J. S., editors (1996). Handbook of chemical and biological sensors. USA: CRC Press. http://dx.doi.org/10.1887/0750303239.
http://dx.doi.org/10.1887/0750303239...
]. 3g of sodium carboxymethyl cellulose - CMC (Sigma Aldrich) was diluted in 100 mL of deionized water under mechanical stirring (Fisatom brand, model 710) for 90 min at room temperature. The solution was then divided into 25 mL portions and, under magnetic stirring (Fisatom brand, model 752), 0.8g of citric acid (VETEC) was added [3838 Kamel, S., Ali, N., Jahangir, K., Shah, S. M., & El-Gendy, A. A. (2008). Pharmaceutical significance of cellulose: a review. Express Polymer Letters, 2(11), 758-778. http://dx.doi.org/10.3144/expresspolymlett.2008.90.
http://dx.doi.org/10.3144/expresspolymle...
][3939 Ghorpade, V. S., Yadav, A. V., & Dias, R. J. (2017). Citric acid crosslinked β -cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydrate Polymers, 164, 339-348. http://dx.doi.org/10.1016/j.carbpol.2017.02.005. PMid:28325334.
http://dx.doi.org/10.1016/j.carbpol.2017...
]. The samples were dried in an oven (Nova instruments, model NI1512) for 24 h at 50 ºC. The CMC membranes obtained were immersed in deionized water for excess citric acid removal (10 mL of deionized water for 24 h in an oven at 50 ºC per sample). After this, the CMC membranes were subjected to the swelling process in propolis extracts (20 w/v%, resulting in 2.4 g of propolis per membrane) for 24 h.

2.2.1 Physical properties

The samples’ physic-chemical analysis was conducted by FTIR. The analysis was performed on Bruker equipment (Vertex 70), in the range of 400 cm-1-4000 cm-1, 16 scans per sample. The microstructural analysis of the samples was performed by X-ray diffraction (XRD) using the equipment Brucker-AXS D8 Advance Eco diffractometer (CETEM -UFRJ), with CuKα radiation at 40 kV and 25 mA, angular diffraction range of 2θ = 5°-70°, a step of 0.02°, and step time of 2 seconds. The XRD plotted curves were then smoothed (Method Savitzky-Golay, 400 points per window). The thermogravimetric analysis used the equipment TGA Q500 (TA Instruments Co.), Catalysis Lab-UFRRJ. The samples (~10 mg) were loaded in an open platinum crucible, where an empty crucible was used as a reference, continuous flow of N2 (30 mL.min-1), a heating rate of 10 °C / min, between 25° C and 400° C [4040 Capanema, N. S. V., Mansur, A. A. P., Jesus, A. C., Carvalho, S. M., Oliveira, L. C., & Mansur, H. S. (2018). Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 106, 1218-1234. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.124. PMid:28851645.
http://dx.doi.org/10.1016/j.ijbiomac.201...
]. For the mechanical tests (modified ASTM D882 - 02 standard), rectangular samples of (40x20x1) mm3 in triplicate were evaluated (EMIC DL 10000 equipment, load cell Trd 21 / 50 kgf), strain rate of 3 mm/min until failure, at room temperature.

2.2.2 In-vitro properties

The swelling test was performed in triplicate, where the hydrogels were immersed in 25 mL of saline solution [4141 Kokabi, M., Sirousazar, M., & Hassan, Z. M. (2007). PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal, 43(3), 773-781. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.030.
http://dx.doi.org/10.1016/j.eurpolymj.20...
]. The sample weight was evaluated at predetermined time intervals (0.5h, 1h, 2h, 3h, 4h, 24h, and 48h of immersion). The samples’ swelling degree (SG) was calculated according to SD%=100(WtWi/Wi), where Wt is the weight of the samples at each time interval and Wi, is the dry samples' initial weight. The samples' gel fraction (GF) and weight loss (WL) were calculated according to GF%=100Wf/Wi and WL%=100WiWf/Wi, respectively, where Wf is the final dry weight of the samples (after 96h of swelling).

The in vitro release study of phenolic compounds was carried out according to the shake-flask methodology [4242 Brasil. Ministério da Saúde. Resolução-Re nº 90. (2003, May 29). Guia para ensaios de dissolução para Formas Farmacêuticas Sólidas Orais de Liberação Imediata (FFSOLI). Biblioteca Virtual em Saúde. Retrieved in 2023, February 05, from https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0901_29_05_2003.html.
https://bvsms.saude.gov.br/bvs/saudelegi...
]. Carboxymethylcellulose membranes impregnated with propolis extract were immersed in 100mL of phosphate buffer pH 6 with 1% Sodium Sulfate Luaril (Sigma Aldrich). They were stirred under 50 rpm for 96 h, at 32ºC. The aliquots of the samples were collected at the following times: 0.5; 1,0;2,0; 3,0; 4,0; 5,0; 24; 48; 72; 96h for analysis of the release kinetic profile by HPLC-DAD. Before analysis, the aliquots were filtered (0.45 μm membrane) and analyzed by HPLC.

The data acquisition was done through the LCSolution software (Shimadzu). The analyses were performed in a reverse phase analytical column C-18 (Betasil, Thermo), maintained at 40 ºC. The mobile phase used was ultrapure water with 1% acetic acid (solvent A) and methanol (100, solvent B), with a constant flow of 1.0 mL min/4.6 mm, and the volume of the sample injected was 20μL. The propolis aliquots were solubilized in spectroscopic grade methanol, with a concentration of 1000 μg/mL, and the solution was filtered (0.45 μm, PVDF, Millipore). The substances identification was based on the comparison of retention times. The release kinetics of propolis substances was performed through non-linear regression analysis, applying two models: Korsmeyer-Peppas and Peppas-Sahlin models. The model with the highest R2 value was considered the best fit.

3. Results and Discussions

3.1 Propolis

Brown propolis from Southeast Brazil was evaluated and its flavonoids varied from 37 mg quercetin/g propolis extract (MDT) up to 58 mg quercetin/g propolis extract (US), Figure 1. The minimum concentration of flavonoids required by Brazilian regulation is 0.25% (w/w).[4343 Brasil. Ministério da Agricultura e do Abastecimento. Instrução Normativa nº3. (2001, January 19). Diario Oficial da União, Brasília. Retrieved in 2023, February 05, from https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=23/01/2001&jornal=1&pagina=46&totalArquivos=56.
https://pesquisa.in.gov.br/imprensa/jsp/...
] All propolis extracts presented higher amounts of flavonoids than the minimum required. Nonetheless, the current propolis presents low amounts of flavonoids, since brown propolis from northeast Brazil presented ~14% flavonoids.[2525 Costa, M. C., Cruz, A. I. C., Ferreira, M. A., Bispo, A. S. R., Ribeiro, P. R., Costa, J. A., Araújo, F. M., & Evangelista-Barreto, N. S. (2023). Brown propolis bioactive compounds as a natural antimicrobial in alginate films applied to Piper nigrum L. Ciência Rural, 53(5), e20210805. http://dx.doi.org/10.1590/0103-8478cr20210805.
http://dx.doi.org/10.1590/0103-8478cr202...
]

Figure 1
- Propolis (a) phenols and flavonoids; (b) antioxidant activity; (c) active substances.

The samples also presented phenolic acids (from 45 mg gallic acid / g propolis extract (DM) up to 100 mg gallic acid / g propolis extract (DMT), 4.5-10% phenolic acids), but this amount can be considered low.[2525 Costa, M. C., Cruz, A. I. C., Ferreira, M. A., Bispo, A. S. R., Ribeiro, P. R., Costa, J. A., Araújo, F. M., & Evangelista-Barreto, N. S. (2023). Brown propolis bioactive compounds as a natural antimicrobial in alginate films applied to Piper nigrum L. Ciência Rural, 53(5), e20210805. http://dx.doi.org/10.1590/0103-8478cr20210805.
http://dx.doi.org/10.1590/0103-8478cr202...
][4444 Kurek-Górecka, A., Keskin, Ş., Bobis, O., Felitti, R., Górecki, M., Otręba, M., Stojko, J., Olczyk, P., Kolayli, S., & Rzepecka-Stojko, A. (2022). Comparison of the antioxidant activity of propolis samples from different geographical regions. Plants, 11(9), 1203. http://dx.doi.org/10.3390/plants11091203. PMid:35567206.
http://dx.doi.org/10.3390/plants11091203...
] Maceration can be considered the best process, Figure 1, although the ultrasound energy usually results in high content of phenolic acids and flavonoids in the propolis extract.[4545 González-Montiel, L., Figueira, A. C., Medina-Pérez, G., Fernández-Luqueño, F., Aguirre-Álvarez, G., Pérez-Soto, E., Pérez-Ríos, S., & Campos-Montiel, R. G. (2022). Bioactive compounds, antioxidant and antimicrobial activity of propolis extracts during in vitro digestion. Applied Sciences (Basel, Switzerland), 12(15), 7892. http://dx.doi.org/10.3390/app12157892.
http://dx.doi.org/10.3390/app12157892...
]

All samples presented antioxidant activity/scavenging activity. Regarding brown propolis,[4646 Sousa, J. P. L. M., Pires, L. O., Prudêncio, E. R., Santos, R. F., Sant’Ana, L. D., Ferreira, D. A. S., & Castro, R. N. (2019). Chemical and antimicrobial potential study of Brazilian propolis produced by different species of bees. Revista Virtual de Química, 11(5), 1480-1497. http://dx.doi.org/10.21577/1984-6835.20190103.
http://dx.doi.org/10.21577/1984-6835.201...
] low amounts of propolis extract were required to scavenge 50% of DPPH (from DMT (3.7 μg/mL) to USI (4.1 μg/mL)). The ABTS scavenging activity was in the expected range,[4747 Muzzolon, A., Bicudo, Á. J. A., Oldoni, T. L. C., & Sado, R. Y. (2021). Dietary brown propolis extract modulated nonspecific immune system and intestinal morphology of Pacu Piaractus mesopotamicus. Brazilian Archives of Biology and Technology, 64, e21200787. http://dx.doi.org/10.1590/1678-4324-2021200787.
http://dx.doi.org/10.1590/1678-4324-2021...
] from 91 mmol trolox/100mg of propolis (DM) up to 103 mmol trolox/100mg of propolis (USI). DMT and USI techniques presented high FRAP results (264 mmol Fe(II)/100 mg propolis extract (DM) - 372 mmol Fe(II)/100 mg propolis extract (USI)), although these values can be considered low for propolis extracts.[4646 Sousa, J. P. L. M., Pires, L. O., Prudêncio, E. R., Santos, R. F., Sant’Ana, L. D., Ferreira, D. A. S., & Castro, R. N. (2019). Chemical and antimicrobial potential study of Brazilian propolis produced by different species of bees. Revista Virtual de Química, 11(5), 1480-1497. http://dx.doi.org/10.21577/1984-6835.20190103.
http://dx.doi.org/10.21577/1984-6835.201...
] The ultrasound extraction technique presented high values of antioxidant activity according to DPPH, FRAP, and ABTS methods.[4848 Castro, R. N., & Salgueiro, F. B. (2016). Comparação entre a composição química e capacidade antioxidante de diferentes extratos de própolis verde. Quimica Nova, 39(10), 1192-1199. http://dx.doi.org/10.21577/0100-4042.20160136.
http://dx.doi.org/10.21577/0100-4042.201...
]

Regarding the identified phenolic compounds, there were chlorogenic, caffeic, ferulic, para-coumaric and rosmarinic acids, pinobanksin, kaempferol and kaempferide. The phenols amount in the propolis ethanolic extracts differ considerably, e.g., propolis from Brazilian South’s region may present low amounts of artepilin C and coumaric acid.[1818 Machado, C. S., Mokochinski, J. B., Lira, T. O., Oliveira, F. C. E., Cardoso, M. V., Ferreira, R. G., Sawaya, A. C. H. F., Ferreira, A. G., Pessoa, C., Cuesta-Rubio, O., Monteiro, M. C., Campos, M. S., & Torres, Y. R. (2016). Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. Evidence-Based Complementary and Alternative Medicine, 2016, 6057650. http://dx.doi.org/10.1155/2016/6057650. PMid:27525023.
http://dx.doi.org/10.1155/2016/6057650...
] Chromatographic analysis revealed the main active compounds in the propolis extract, Figure 1. Kaempferide was the main flavonoid in the propolis extracts, regardless of the type of extraction.[4949 Funari, C. S., Ferro, V. O., & Mathor, M. B. (2007). Analysis of propolis from Baccharis dracunculifolia DC. (Compositae) and its effects on mouse fibroblasts. Journal of Ethnopharmacology, 111(2), 206-212. http://dx.doi.org/10.1016/j.jep.2006.11.032. PMid:17207952.
http://dx.doi.org/10.1016/j.jep.2006.11....
] There were lower amounts of rosmarinic acid[5050 Ramanauskienė, K., Savickas, A., Inkėnienė, A., Vitkevičius, K., Kasparavičienė, G., Briedis, V., & Amšiejus, A. (2009). Analysis of content of phenolic acids in Lithuanian propolis using high-performance liquid chromatography technique. Medicina, 45(9), 712-717. http://dx.doi.org/10.3390/medicina45090093. PMid:19834308.
http://dx.doi.org/10.3390/medicina450900...
], p-coumaric acid[5151 Tomazzoli, M. M., Zeggio, A. R. S., Dal Pai Neto, R., Specht, L., Costa, C., Rocha, M., Yunes, R. A., & Maraschin, M. (2020). Botanical source investigation and evaluation of the effect of seasonality on Brazilian propolis from Apis mellifera L. Scientia Agrícola, 77(6), e20180258. http://dx.doi.org/10.1590/1678-992x-2018-0258.
http://dx.doi.org/10.1590/1678-992x-2018...
][5252 Calegari, M. A., Prasniewski, A., Silva, C., Sado, R. Y., Maia, F. M. C., Tonial, L. M. S., & Oldoni, T. L. C. (2017). Propolis from Southwest of Parana produced by selected bees: influence of seasonality and food supplementation on antioxidant activity and phenolic profile. Anais da Academia Brasileira de Ciências, 89(1), 45-55. http://dx.doi.org/10.1590/0001-3765201620160499. PMid:28177054.
http://dx.doi.org/10.1590/0001-376520162...
], ferulic acid[5353 Chaa, S., Boufadi, M. Y., Keddari, S., Benchaib, A. H., Soubhye, J., Van Antwerpen, P., & Riazi, A. (2019). Chemical composition of propolis extract and its effects on epirubicin-induced hepatotoxicity in rats. Revista Brasileira de Farmacognosia, 29(3), 294-300. http://dx.doi.org/10.1016/j.bjp.2019.01.005.
http://dx.doi.org/10.1016/j.bjp.2019.01....
], and pinobanksin[5454 Xu, W., Lu, H., Yuan, Y., Deng, Z., Zheng, L., & Li, H. (2022). The antioxidant and anti-inflammatory effects of flavonoids from propolis via Nrf2 and NF-κB pathways. Foods, 11(16), 2439. http://dx.doi.org/10.3390/foods11162439. PMid:36010439.
http://dx.doi.org/10.3390/foods11162439...
], mostly substances presenting antioxidant activity. Propolis extract also presented low amounts of chlorogenic acid, kaempferol, and caffeic acid.[5555 Lima, A. B. S., Santos, D. O., Almeida, V. V. S., Oliveira, A. C., & Santos, L. S. (2022). Quantificação de constituintes fenólicos de extratos de própolis vermelha de diferentes concentrações por HPLC. Research. Social Development, 11(8), e1111830536. http://dx.doi.org/10.33448/rsd-v11i8.30536.
http://dx.doi.org/10.33448/rsd-v11i8.305...
]

Propolis extract obtained through various techniques did not present significant differences regarding the active compounds. Then, macerated propolis extract was the one evaluated by antimicrobial activity. Propolis was placed in agar discs’ wells, where S. aureus was incubated. The samples presented measurable halos, inhibiting approximately (40.97 ± 2.41) % of S. aureus microorganisms. The antimicrobial activity of propolis extracts is often related to their phenolic content.[5656 Torres, A. R., Sandjo, L. P., Friedemann, M. T., Tomazzoli, M. M., Maraschin, M., Mello, C. F., & Santos, A. R. S. (2018). Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata quadrifasciata and Tetragonisca angustula stingless bees. Brazilian Journal of Medical and Biological Research, 51(6), e7118. http://dx.doi.org/10.1590/1414-431x20187118. PMid:29791598.
http://dx.doi.org/10.1590/1414-431x20187...
] Phenolic substances are capable of interfering with the structure and properties of bacterial membranes, increasing their susceptibility to proton permeation, and resulting in microorganisms’ death.[5757 Sousa, A. K. A. (2018). Atividade antibacteriana do extrato hidroalcoólico da própolis vermelha no semiárido paraibano sobre streptococcus pyogenes. (Master''s Thesis). Campina Grande: Universidade Federal de Campina Grande.] The propolis extract activity against S. aureus might be related to the high amount of kaempferide, an antimicrobial substance related to a skin infection.[5858 Dégi, J., Herman, V., Igna, V., Dégi, D. M., Hulea, A., Muselin, F., & Cristina, R. T. (2022). Antibacterial activity of romanian propolis against Staphylococcus aureus isolated from dogs with superficial pyoderma: in vitro test. Veterinary Sciences, 9(6), 299. http://dx.doi.org/10.3390/vetsci9060299. PMid:35737351.
http://dx.doi.org/10.3390/vetsci9060299...
]

3.2 CMC gels

Since brown propolis obtained through different techniques were similar regarding the active compounds, the direct macerated (DM) extract was used to incorporate in CMC membranes. Swelling capacity is a fundamental characteristic of hydrogel dressings, since they can absorb wound exudate.[5959 Xiao, Y., Zhao, H., Ma, X., Gu, Z., Wu, X., Zhao, L., Ye, L., & Feng, Z. (2022). Hydrogel dressing containing basic fibroblast growth factor accelerating chronic wound healing in aged mouse model. Molecules (Basel, Switzerland), 27(19), 6361. http://dx.doi.org/10.3390/molecules27196361. PMid:36234898.
http://dx.doi.org/10.3390/molecules27196...
] Hydration content and swelling are relevant properties of dressings. Healing is improved by a moisturized environment. Wound dressings with high swelling capacity would be the best ones, they would absorb exudates and diminish the occurrence of infection.[6060 Berglund, L., Squinca, P., Baş, Y., Zattarin, E., Aili, D., Rakar, J., Junker, J., Starkenberg, A., Diamanti, M., Sivlér, P., Skog, M., & Oksman, K. (2023). Self-assembly of nanocellulose hydrogels mimicking bacterial cellulose for wound dressing applications. Biomacromolecules, 24(5), 2264-2277. http://dx.doi.org/10.1021/acs.biomac.3c00152. PMid:37097826.
http://dx.doi.org/10.1021/acs.biomac.3c0...
] CMC membranes presented high water absorption capacity compared to CMC-propolis (CMC-P) samples, Figure 2. Both samples reached the equilibrium of swelling degree (ESD) in 24h, CMC samples reached an ESD of ~449% while CMC-P samples reached an ESD of ~168%.[6161 Hezaveh, H., Muhamad, I. I., Noshadi, I., Shu Fen, L., & Ngadi, N. (2012). Swelling behaviour and controlled drug release from cross-linked κ-carrageenan/NaCMC hydrogel by diffusion mechanism. Journal of Microencapsulation, 29(4), 368-379. http://dx.doi.org/10.3109/02652048.2011.651501. PMid:22309480.
http://dx.doi.org/10.3109/02652048.2011....
], where CMC gels could be considered superabsorbent.[6262 Akalin, G. O., & Pulat, M. (2018). Preparation and characterization of nanoporous sodium carboxymethyl cellulose hydrogel beads. Journal of Nanomaterials, 2018, 9676949. http://dx.doi.org/10.1155/2018/9676949.
http://dx.doi.org/10.1155/2018/9676949...
] The low swelling capacity of CMC-P would be the consequence of propolis filling the pores of the membrane. Since the ethanolic extract of propolis is quite resinous, it may be responsible for a hydrophobic barrier formation. This barrier difficult the absorption of moisture by the pores of the polymer, leading to a low swelling degree and low weight loss.[6363 Oliveira, R. N., McGuinness, G. B., Rouze, R., Quilty, B., Cahill, P., Soares, G. D. A., & Thiré, R. M. S. M. (2015). PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. Journal of Applied Polymer Science, 132(25), 42129. http://dx.doi.org/10.1002/app.42129.
http://dx.doi.org/10.1002/app.42129...
] The CMC-P samples presented a high gel fraction, where the presence of propolis extracts difficult the polymer's chains mobility, interfering with the entanglement of amorphous chains. Due to the hydrophobic barrier of propolis, fewer chains could be leached out by the water entrance, and the CMC-P samples’ weight loss was low, as well as its biodegradability rate in water.[6464 Pereira, I. C. S., Santos, N. R. R., Middea, A., Prudencio, E. R., Luchese, R. H., Moreira, A. P. D., & Oliveira, R. N. (2019). In vitro evaluation of PVA gels loaded with Copaiba Oil and Duotrill®. Polímeros: Ciência e Tecnologia, 29(3), e2019039. http://dx.doi.org/10.1590/0104-1428.03719.
http://dx.doi.org/10.1590/0104-1428.0371...
] Propolis extract, rich in phenolic substances, may be forming bonds with the polymer chains and thus contribute to the physical crosslinking of the gels, hindering the expansion of CMC chains. A low swelling degree allows a slow release of the active agents.[6565 Oshiro, J. A. Junior, Shiota, L. M., & Chiavacci, L. A. (2014). Desenvolvimento de formadores de filmes poliméricos orgânico-inorgânico para liberação controlada de fármacos e tratamento de feridas. Matéria (Rio de Janeiro), 19(1), 24-32. http://dx.doi.org/10.1590/S1517-70762014000100005.
http://dx.doi.org/10.1590/S1517-70762014...
]

Figure 2
- (a) CMC and CMC-P (CMC-propolis) samples’ swelling degree (SD) and (b) samples’ gel fraction (GF) and weight loss (WL).

The CMC sample, as well as the CMC-P sample, presented these materials’ characteristic FTIR bands and vibration modes, in Table 1 and Figure 3. The CMC-P sample presented mainly bands related to both phases, indicating proper incorporation. However, some band shifts were observed, indicating an interaction between propolis and CMC/citric acid.[6666 Alhazmi, H. A. (2019). FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin. Scientia Pharmaceutica, 87(1), 5. http://dx.doi.org/10.3390/scipharm87010005.
http://dx.doi.org/10.3390/scipharm870100...
] Nonetheless, two bands, non-identified in the original materials, could be identified in the CMC-P sample (indicated by arrows in Figure 3), at 835 cm-1 and 700 cm-1, probably related to new bonding between components’ groups.[6767 Yamakami, S. A., Ubaldini, A. L. M., Sato, F., Medina Neto, A., Pascotto, R. C., & Baesso, M. L. (2018). Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. Journal of Applied Oral Science, 26(0), e20170384. http://dx.doi.org/10.1590/1678-7757-2017-0384. PMid:30020351.
http://dx.doi.org/10.1590/1678-7757-2017...
] Further analysis would be required to properly identify the groups’ interactions.

Table 1
- CMC and propolis bands and their vibrational modes; CMC-P samples bands.
Figure 3
- (a) FTIR spectra of CMC, propolis, and CMC-P samples, where new bands are indicated by arrows; XRD analysis of (b) CMC sample and (c) CMC-P sample, where fitted gauss curves (“peak”) indicating the CMC diffraction peaks can be observed.

Regarding the XRD analysis, the CMC and CMC-P diffractograms were smoothed, then Gauss curves were fitted. Three crystalline peaks (2θ ~11º, ~21º, and ~35º) were identified, in Figure 3, related to CMC diffraction plans (110), (200), and (004) respectively.[8282 Trilokesh, C., & Uppuluri, K. B. (2019). Isolation and characterization of cellulose nanocrystals from jackfruit peel. Scientific Reports, 9(1), 16709. http://dx.doi.org/10.1038/s41598-019-53412-x. PMid:31723189.
http://dx.doi.org/10.1038/s41598-019-534...
][8383 Shetty, S. K., Ismayil, Hegde, S., Ravindrachary, V., Sanjeev, G., Bhajantri, R. F., & Masti, S. P. (2021). Dielectric relaxations and ion transport study of NaCMC:NaNO3 solid polymer electrolyte films. Ionics, 27(6), 2509-2525. http://dx.doi.org/10.1007/s11581-021-04023-y.
http://dx.doi.org/10.1007/s11581-021-040...
] The data (Half-width of the peak - FWHM, location of the peak, 2θ (rad)) related to the main peak (2θ ~21º) were the basis to calculate, by Scherrer equation, the crystallite size of CMC.[8484 Bokuniaeva, A. O., & Vorokh, A. S. (2019). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO 2 powder. In J, 6th International School and Conference "Saint Petersburg OPEN 2019": Optoelectronics, Photonics, Engineering and Nanostructures (012057). Moscow: Journal of Physics: Conference Series.] The CMC sample presented a crystallite size of 9.2 Å while the CMC-P sample crystallite size was 7.4 Å, which can be considered low-size crystallites.[8585 Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153. http://dx.doi.org/10.1016/j.biortech.2011.11.122. PMid:22306076.
http://dx.doi.org/10.1016/j.biortech.201...
] Propolis seems to interfere with the bonds between CMC chains, leading to low crystallite size. Probably it breaks hydrogen bonds between CMC molecules; or the presence of propolis physically interferes with the CMC chains' mobility, diminishing the possibility of contact between chains.[8686 Mohkami, M., & Talaeipour, M. (2011). Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via Xrd and Ftir analysis. BioResources, 6(2), 1988-2003. http://dx.doi.org/10.15376/biores.6.2.1988-2003.
http://dx.doi.org/10.15376/biores.6.2.19...
]

Regarding thermal properties, propolis increased the stability of the samples, Figure 4. The CMC hydrogel thermal degradation analysis began at 25º C, and the slight weight loss between 25 ºC-200 ºC would be related to volatile (H2O, etc.) substances. The major loss is at 277 ºC, due to the degradation of the CMC chains (bonds’ cleavage related to functional groups and loss of weak groups of the main chains).[8787 Ahmad, N., Wahab, R., & Al-Omar, S. Y. (2014). Thermal decomposition kinetics of sodium carboxymethyl cellulose: model‐free methods. European Journal of Chemistry, 5(2), 247-251. http://dx.doi.org/10.5155/eurjchem.5.2.247-251.971.
http://dx.doi.org/10.5155/eurjchem.5.2.2...
] The degradation profile of both samples, CMC e CMC-P, are similar, but their behavior at high temperatures (above 400 ºC) differs. The CMC-P sample degraded less than the CMC sample, probably due to propolis interaction with the CMC chains (which could be compared to the citric acid effect on CMC), where connection by hydrogen bonds would increase this sample's thermal stability.[8888 Lee, J. Y., Im, J. N., Kim, T. H., Chung, D. J., & Doh, S. J. (2015). Structure and liquid handling properties of water-insoluble carboxymethyl cellulose foam. Fibers and Polymers, 16(4), 726-734. http://dx.doi.org/10.1007/s12221-015-0726-1.
http://dx.doi.org/10.1007/s12221-015-072...
] The CMC sample's final residue was 1% while the CMC-P sample was 23%. The CMC sample weight loss in the first step was ~18% and in the second step, 49%. The CMC-P samples presented 14% and 37% of weight loss in the mentioned steps, where these two first degradation steps would be responsible for the samples' high degradation.[8989 El-Sayed, S., Mahmoud, K. H., Fatah, A. A., & Hassen, A. (2011). DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B, Condensed Matter, 406(21), 4068-4076. http://dx.doi.org/10.1016/j.physb.2011.07.050.
http://dx.doi.org/10.1016/j.physb.2011.0...
][9090 Badry, R., Ezzat, H. A., El-Khodary, S., Morsy, M., Elhaes, H., Nada, N., & Ibrahim, M. (2021). Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. Journal of Molecular Structure, 1224, 129013. http://dx.doi.org/10.1016/j.molstruc.2020.129013.
http://dx.doi.org/10.1016/j.molstruc.202...
] The increased stability of CMC-P was also shown by the high GF values and by the new FTIR bands, indicating an interaction between components of the CMC-P sample. The CMC sample presented many degradation steps above 400 ºC, which might be related to the products of the 2nd stage degradation step, where the last steps would lead to gases (CO, CO2, etc.) evolution and carbonaceous residue.[9191 Yaradoddi, J. S., Banapurmath, N. R., Ganachari, S. V., Soudagar, M. E. M., Mubarak, N. M., Hallad, S., Hugar, S., & Fayaz, H. (2020). Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Scientific Reports, 10(1), 21960. http://dx.doi.org/10.1038/s41598-020-78912-z. PMid:33319818.
http://dx.doi.org/10.1038/s41598-020-789...
]

Figure 4
- (a) Thermal degradation (TGA) curves of CMC and CMC-P samples and these curves’ (1st) derivative curves; Samples (b) mechanical properties and (c) Young Modulus (E), elongation at break and failure strength.

The tensile tests of samples (triplicates for each composition) were performed until failure. CMC-P samples presented high strength compared to CMC samples, Figure 4. The samples' Young Modulus (E), elongation at break (e), and Failure strength (σf) were evaluated by ANOVA-1 way analysis (factor: composition; levels: CMC and CMC-P), with a confidence level of 95%. It was observed that the CMC sample presented Young Modulus (E) significantly lower than CMC-P (p-value = 0.01732). In addition, according to the ANOVA analysis, CMC-P showed failure strength significantly higher than CMC, with p-value = 0.04781. These results are in agreement with the finds reported in the FTIR and TGA analysis, where the propolis connection to the CMC chains could anchor the CMC molecules, diminishing the chains' mobility (and elongation at break), and increasing E and σf. Nevertheless, the samples’ failure strength (CMC and CMC-P) can be considered low, as well as the young modulus.[9292 Seki, Y., Altinisik, A., Demircioğlu, B., & Tetik, C. (2014). Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization. Cellulose (London, England), 21(3), 1689-1698. http://dx.doi.org/10.1007/s10570-014-0204-8.
http://dx.doi.org/10.1007/s10570-014-020...
][9393 Tabari, M. (2017). Investigation of Carboxymethyl Cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods, 6(6), 41. http://dx.doi.org/10.3390/foods6060041. PMid:28555025.
http://dx.doi.org/10.3390/foods6060041...
] The CMC-P samples presented elongation at break significantly lower than CMC samples (p = 0.02858). The elongation at the break would indirectly represent the samples' crosslinking, indicating effective interaction.[9494 Lan, W., He, L., & Liu, Y. (2018). Preparation and properties of sodium carboxymethyl cellulose/sodium alginate/chitosan composite film. Coatings, 8(8), 291. http://dx.doi.org/10.3390/coatings8080291.
http://dx.doi.org/10.3390/coatings808029...
]

Wound dressings have been designed to carry and to release drugs / antimicrobial agents locally. This property would be adequate for chronic lesions treatment, for wounds presenting prolonged inflammation step, as well as for delayed wound closure.[9595 Laurano, R., Boffito, M., Ciardelli, G., & Chiono, V. (2022). Wound dressing products: a translational investigation from the bench to the market. Engineered Regeneration, 3(2), 182-200. http://dx.doi.org/10.1016/j.engreg.2022.04.002.
http://dx.doi.org/10.1016/j.engreg.2022....
] Mapping the drug release of the matrix (toward a controlled profile) would guarantee that the drug dose is within the therapeutical level. There are sustainable drug release systems (commercially available), e.g., Insulin Pen e Synchromate B., none of them for wound healing, though.[9696 Hassan, S., Ali, M. N., Mir, M., Ahmed, A., & Arshad, M. (2021). Development and evaluation of drug delivery patch for topical wound healing application. SN Applied Sciences, 3(10), 825. http://dx.doi.org/10.1007/s42452-021-04809-9.
http://dx.doi.org/10.1007/s42452-021-048...
] To highlight the importance of kinetics release knowledge regarding wound dressings, drug delivery can be the sine qua non condition to achieve robust delivery’s steps and controlled amount of drug locally released. Local antibiotic sustainable release (within the dressing), compared to systemic antibiotic administration, led to efficient bactericide effect (against gram-positive and gram-negative bacteria) with low cytotoxicity to skin/eukaryotic cells.[9797 Miranda-Calderon, L., Yus, C., Landa, G., Mendoza, G., Arruebo, M., & Irusta, S. (2022). Pharmacokinetic control on the release of antimicrobial drugs from pH-responsive electrospun wound dressings. International Journal of Pharmaceutics, 624, 122003. http://dx.doi.org/10.1016/j.ijpharm.2022.122003. PMid:35811042.
http://dx.doi.org/10.1016/j.ijpharm.2022...
]

The delivered substances identified in the in vitro release studies were chlorogenic acid, caffeic acid, ferulic acid, p-coumaric acid, rosmarinic acid, and pinobanksin, Figure 5. The release profiles of all substances were similar (beginning of the release at 0.5 h and maximum release at 4h of testing, reaching a constant release/plateau from 4 h to 96 h).[9898 Basílio, J. A. D. (2018). Desenvolvimento e avaliação in vitro da atividade cicatrizante de membranas poliméricas incorporadas com própolis vermelha (Doctoral Dissertation). Maceió: Universidade Federal de Alagoas.] The burst release is adequate for wound dressings since the delivery of the drug / active principle would prevent infection evolution. In pills, for example, it is expected that 75% of the active substance would be delivered within 45 minutes of administration.[9999 Brasil. Ministério da Saúde. Resolução-RDC nº 31. (2010, August 11 ). Dispõe sobre a realização dos Estudos de Equivalência Farmacêutica e de Perfil de Dissolução Comparativo. Biblioteca Virtual em Saúde. Retrieved in 2023, February 05, from http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2010/res0031_11_08_2010.html.
http://bvsms.saude.gov.br/bvs/saudelegis...
] Two release models were used to fit the results and the R2 values, Korsmeyer-Peppas (K-P) model (Equation 4)[100100 Rozo, G., Bohorques, L., & Santamaría, J. (2019). Controlled release fertilizer encapsulated by a κ-carrageenan hydrogel. Polímeros: Ciência e Tecnologia, 29(3), e2019033. http://dx.doi.org/10.1590/0104-1428.02719.
http://dx.doi.org/10.1590/0104-1428.0271...
] and Peppas-Sahlin (P-S) model,[101101 Peppas, N. A., & Sahlin, J. J. (1989). A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International Journal of Pharmaceutics, 57(2), 169-172. http://dx.doi.org/10.1016/0378-5173(89)90306-2.
http://dx.doi.org/10.1016/0378-5173(89)9...
]Figure 5. Peppas-Sahlin model is the best fit for the studied substances, but caffeic acid release was not properly adjusted by the studied models. All other substances were released according to the Peppas-Sahlin model, Equation 4.[101101 Peppas, N. A., & Sahlin, J. J. (1989). A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International Journal of Pharmaceutics, 57(2), 169-172. http://dx.doi.org/10.1016/0378-5173(89)90306-2.
http://dx.doi.org/10.1016/0378-5173(89)9...
] This model consists of 2 terms on the right-hand side: the first term is the Fickian contribution, and the second term is the Case-II relaxational contribution.[102102 Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5(1), 23-36. http://dx.doi.org/10.1016/0168-3659(87)90034-4.
http://dx.doi.org/10.1016/0168-3659(87)9...
] A high k1 value represents the drug diffusion release mechanism, while a high k2 means polymer relaxation or heterogeneous erosion as the release mechanism.[103103 Chaiya, P., Rojviriya, C., Pichayakorn, W., & Phaechamud, T. (2022). New Insight into the Impact of Effervescence on Gel Layer Microstructure and Drug Release of Effervescent Matrices Using Combined Mechanical and Imaging Characterisation Techniques. Pharmaceutics, 14(11), 2299. http://dx.doi.org/10.3390/pharmaceutics14112299. PMid:36365118.
http://dx.doi.org/10.3390/pharmaceutics1...
][104104 Trucillo, P. (2022). Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes (Basel, Switzerland), 10(6), 1094. http://dx.doi.org/10.3390/pr10061094.
http://dx.doi.org/10.3390/pr10061094...
] Since negative k values should not be included in this analysis,[103103 Chaiya, P., Rojviriya, C., Pichayakorn, W., & Phaechamud, T. (2022). New Insight into the Impact of Effervescence on Gel Layer Microstructure and Drug Release of Effervescent Matrices Using Combined Mechanical and Imaging Characterisation Techniques. Pharmaceutics, 14(11), 2299. http://dx.doi.org/10.3390/pharmaceutics14112299. PMid:36365118.
http://dx.doi.org/10.3390/pharmaceutics1...
] mainly non-linear Peppas-Sahlin propolis diffusion mechanism would be responsible for the release of the substances.

M t M = k t m (3)
M t M = k 1 t m + k 2 t 2 m (4)

Mt = amount of substance released at time t; M∞ = amount of substance released at an ∞ period; m = release exponent; k = Korsmeyer-Peppas release constant; k1, k2 = rate constant and correlation coefficients.[105105 Altun, E., Yuca, E., Ekren, N., Kalaskar, D. M., Ficai, D., Dolete, G., Ficai, A., & Gunduz, O. (2021). Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics, 13(5), 613. http://dx.doi.org/10.3390/pharmaceutics13050613. PMid:33922739.
http://dx.doi.org/10.3390/pharmaceutics1...
][106106 Liu, F., Wang, Z., Guo, H., Li, H., Chen, Y., & Guan, S. (2023). A Double-Layer Hydrogel Dressing with High Mechanical Strength and Water Resistance Used for Drug Delivery. Molecules (Basel, Switzerland), 28(2), 499. http://dx.doi.org/10.3390/molecules28020499. PMid:36677557.
http://dx.doi.org/10.3390/molecules28020...
]

Figure 5
- Kinetics of drug delivery: (a) R2 values of Korsmeyer-Peppas (K-P) and Peppas-Sahlin (P-S) models; (b) substances released - Peppas-Sahlin (“Peppas”) fit.

4. Conclusion

Flavonoids and phenolic acids were identified in the studied propolis extracts, where the main substance was kaempferide, an antimicrobial substance. There were also considerable amounts of rosmarinic acid, p-coumaric acid, ferulic acid, and pinobanksin. Propolis had antioxidant properties, identified through DPPH, FRAP, and ABTS and it was active against S. aureus, no matter the extraction method. Propolis was successfully incorporated into CMC gels. The swelling capacity of the gels might be dose-dependent with the agent added, whereas CMC gels could be considered superabsorbent. The low swelling capacity and high gel fraction of CMC-P would be the consequence of propolis filling the pores of the membrane. Since the ethanolic extract of propolis is quite resinous, it may be responsible for the low absorption of moisture, leading to a low swelling degree and weight loss (biodegradability in water). Propolis could be anchoring the CMC chains, which was also observed by FTIR, where there was interaction and bonding between components. To corroborate the previous observation, propolis led to low CMC crystallite size formation (propolis could physically interfere with the CMC molecules, diminishing the possibility of contact between chains). The thermal degradation profile of CMC e CMC-P is similar, but the CMC-P sample degraded less than the CMC sample at temperatures above 400ºC. The CMC-P presented mainly a diffusion-controlled propolis release (Peppas-Sahlin model). The in vitro release studies showed a non-linear diffusion-based release kinetics for most phenolic substances of propolis extract (pinobankisin, rosmarinic acid, p-cumaric acid, ferulic acid, chlorogenic acid), characterizing a diffusion-controlled release system. The CMC-P samples present potential as a dressing material.

6. Acknowledgements

The authors thank Multi-User Analytical Lab of Chemical Institute / UFRRJ; CETEM / UFRJ; LSP/UFRRJ. Este estudo foi financiado pela FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Processo SEI E-26/201.381/2021 (260532). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

  • How to cite: Sousa, J. P. L. M., Oliveira, R. N., Santos, A. M. N., Gamalho, O. D., Araújo, L. S., Middea, A., Cid, Y. P., & Castro, R. N. (2023). Superabsorbent biodegradable CMC membranes loaded with propolis: Peppas-Sahlin kinetics release. Polímeros: Ciência e Tecnologia, 33(2), e20230022. https://doi.org/10.1590/0104-1428.20230010

7. References

  • 1
    Guo, S., & DiPietro, L. A. (2010). Factors Affecting Wound Healing. Journal of Dental Research, 89(3), 219-229. http://dx.doi.org/10.1177/0022034509359125 PMid:20139336.
    » http://dx.doi.org/10.1177/0022034509359125
  • 2
    Gonzalez, A. C. O., Costa, T. F., Andrade, Z. A., & Medrado, A. R. A. P. (2016). Wound healing - A literature review. Anais Brasileiros de Dermatologia, 91(5), 614-620. http://dx.doi.org/10.1590/abd1806-4841.20164741 PMid:27828635.
    » http://dx.doi.org/10.1590/abd1806-4841.20164741
  • 3
    World Health Organization (2013). Prevention and management of wound infection Switzerland: Department of Violence and Injury Prevention and Disability - World Health Organization. Retrieved in 2023, February 05, from https://www.who.int/publications-detail-redirect/prevention-and-management-of-wound-infection
    » https://www.who.int/publications-detail-redirect/prevention-and-management-of-wound-infection
  • 4
    World Health Organization (2022). Global Report on infection prevention and control. Switzerland:World Health Organization
  • 5
    Cook, L., & Ousey, K. (2011). Demystifying wound infection: identification and management. Practice Nursing, 22(8), 424-428. http://dx.doi.org/10.12968/pnur.2011.22.8.424
    » http://dx.doi.org/10.12968/pnur.2011.22.8.424
  • 6
    Filius, P. M. G., & Gyssens, I. C. (2002). Impact of increasing antimicrobial resistance on wound management. American Journal of Clinical Dermatology, 3(1), 1-7. http://dx.doi.org/10.2165/00128071-200203010-00001 PMid:11817964.
    » http://dx.doi.org/10.2165/00128071-200203010-00001
  • 7
    Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: staphylococcus aureus in the antibiotic era. Nature Reviews. Microbiology, 7(9), 629-641. http://dx.doi.org/10.1038/nrmicro2200 PMid:19680247.
    » http://dx.doi.org/10.1038/nrmicro2200
  • 8
    Centers for Disease Control and Prevention - CDC (2019). Multidrug-resistant pseudomonas aeruginosa Atlanta: CDC. Retrieved in 2023, February 05, from https://www.cdc.gov/drugresistance/pdf/threats-report/pseudomonas-aeruginosa-508.pdf
    » https://www.cdc.gov/drugresistance/pdf/threats-report/pseudomonas-aeruginosa-508.pdf
  • 9
    Puca, V., Marulli, R. Z., Grande, R., Vitale, I., Niro, A., Molinaro, G., Prezioso, S., Muraro, R., & Di Giovanni, P. (2021). Microbial species isolated from infected wounds and antimicrobial resistance analysis: data emerging from a three-years retrospective study. Antibiotics (Basel, Switzerland), 10(10), 1162. http://dx.doi.org/10.3390/antibiotics10101162 PMid:34680743.
    » http://dx.doi.org/10.3390/antibiotics10101162
  • 10
    Mieles, J. Y., Vyas, C., Aslan, E., Humphreys, G., Diver, C., & Bartolo, P. (2022). Honey: an advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics, 14(8), 1663. http://dx.doi.org/10.3390/pharmaceutics14081663 PMid:36015289.
    » http://dx.doi.org/10.3390/pharmaceutics14081663
  • 11
    Ghasemi, F. S., Eshraghi, S. S., Andalibi, F., Hooshyar, H., Kalantar- Neyestanaki, D., Samadi, A., & Fatahi-Bafghi, M. (2017). Anti-bacterial effect of propolis extract in oil against different bacteria. Zahedan Journal of Researches in Medical Sciences, 19(3), e7225. http://dx.doi.org/10.5812/zjrms.7225
    » http://dx.doi.org/10.5812/zjrms.7225
  • 12
    Quintino, R. L., Reis, A. C., Fernandes, C. C., Martins, C. H. G., Colli, A. C., Crotti, A. E. M., Squarisi, I. S., Ribeiro, A. B., Tavares, D. C., & Miranda, M. L. D. (2020). Brazilian green propolis: chemical composition of essential oil and their in vitro antioxidant, antibacterial and antiproliferative activities. Brazilian Archives of Biology and Technology, 63, e20190408. http://dx.doi.org/10.1590/1678-4324-2020190408
    » http://dx.doi.org/10.1590/1678-4324-2020190408
  • 13
    Pinto, L. M. A., Prado, N. R. T., & Carvalho, L. B. (2011). Propriedades, usos e aplicações da própolis. Revista Eletrônica de Farmácia, 8(3), 76-100.
  • 14
    Martinotti, S., & Ranzato, E. (2015). Propolis: a new frontier for wound healing? Burns and Trauma, 3, 9. http://dx.doi.org/10.1186/s41038-015-0010-z PMid:27574655.
    » http://dx.doi.org/10.1186/s41038-015-0010-z
  • 15
    Araujo, M. A. R., Libério, S. A., Guerra, R. N. M., Ribeiro, M. N. S., & Nascimento, F. R. F. (2012). Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review. Revista Brasileira de Farmacognosia, 22(1), 208-219. http://dx.doi.org/10.1590/S0102-695X2011005000167
    » http://dx.doi.org/10.1590/S0102-695X2011005000167
  • 16
    Woźniak, M., Mrówczyńska, L., Waśkiewicz, A., Rogoziński, T., & Ratajczak, I. (2019). The role of seasonality on the chemical composition, antioxidant activity and cytotoxicity of Polish propolis in human erythrocytes. Revista Brasileira de Farmacognosia, 29(3), 301-308. http://dx.doi.org/10.1016/j.bjp.2019.02.002
    » http://dx.doi.org/10.1016/j.bjp.2019.02.002
  • 17
    Olegário, L. S., Andrade, J. K. S., Andrade, G. R. S., Denadai, M., Cavalcanti, R. L., Silva, M. A. A. P., & Narain, N. (2019). Chemical characterization of four Brazilian brown propolis: an insight in tracking of its geographical location of production and quality control. Food Research International, 123, 481-502. http://dx.doi.org/10.1016/j.foodres.2019.04.004 PMid:31284998.
    » http://dx.doi.org/10.1016/j.foodres.2019.04.004
  • 18
    Machado, C. S., Mokochinski, J. B., Lira, T. O., Oliveira, F. C. E., Cardoso, M. V., Ferreira, R. G., Sawaya, A. C. H. F., Ferreira, A. G., Pessoa, C., Cuesta-Rubio, O., Monteiro, M. C., Campos, M. S., & Torres, Y. R. (2016). Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. Evidence-Based Complementary and Alternative Medicine, 2016, 6057650. http://dx.doi.org/10.1155/2016/6057650 PMid:27525023.
    » http://dx.doi.org/10.1155/2016/6057650
  • 19
    Pontes, M. L. C., Vasconcelos, I. R. A., Diniz, M. F. F. M., & Pessôa, H. D. L. F. (2018). Chemical characterization and pharmacological action of Brazilian red propolis. Acta Brasiliensis, 2(1), 34-39. http://dx.doi.org/10.22571/2526-433868
    » http://dx.doi.org/10.22571/2526-433868
  • 20
    Batista, L. L. V., Campesatto, E. A., Assis, M. L. B., Barbosa, A. P. F., Grillo, L. A. M., & Dornelas, C. B. (2012). Comparative study of topical green and red propolis in the repair of wounds induced in rats. Revista do Colégio Brasileiro de Cirurgiões, 39(6), 515-520. http://dx.doi.org/10.1590/S0100-69912012000600012 PMid:23348649.
    » http://dx.doi.org/10.1590/S0100-69912012000600012
  • 21
    Moura, S. A. L., Negri, G., Salatino, A., Lima, L. D. C., Dourado, L. P. A., Mendes, J. B., Andrade, S. P., Ferreira, M. A. N. D., & Cara, D. C. (2011). Aqueous extract of Brazilian Green Propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evidence-Based Complementary and Alternative Medicine, 2011, 748283. http://dx.doi.org/10.1093/ecam/nep112 PMid:19690045.
    » http://dx.doi.org/10.1093/ecam/nep112
  • 22
    Conceição, M., Gushiken, L. F. S., Aldana-Mejía, J. A., Tanimoto, M. H., Ferreira, M. V. S., Alves, A. C. M., Miyashita, M. N., Bastos, J. K., Beserra, F. P., & Pellizzon, C. H. (2022). Histological, immunohistochemical and antioxidant analysis of skin wound healing influenced by the topical application of Brazilian red propolis. Antioxidants, 11(11), 2188. http://dx.doi.org/10.3390/antiox11112188 PMid:36358560.
    » http://dx.doi.org/10.3390/antiox11112188
  • 23
    Zaccaria, V., Curti, V., Di Lorenzo, A., Baldi, A., Maccario, C., Sommatis, S., Mocchi, R., & Daglia, M. (2017). Effect of green and brown propolis extracts on the expression levels of microRNAs, mRNAs and proteins, related to oxidative stress and inflammation. Nutrients, 9(10), 1090. http://dx.doi.org/10.3390/nu9101090 PMid:28974022.
    » http://dx.doi.org/10.3390/nu9101090
  • 24
    Dembogurski, D. S. O., Trentin, D. S., Boaretto, A. G., Rigo, G. V., Silva, R. C., Tasca, T., Macedo, A. J., Carollo, C. A., & Silva, D. B. (2018). Brown propolis-metabolomic innovative approach to determine compounds capable of killing Staphylococcus aureus biofilm and Trichomonas vaginalis. Food Research International, 111, 661-673. http://dx.doi.org/10.1016/j.foodres.2018.05.033 PMid:30007730.
    » http://dx.doi.org/10.1016/j.foodres.2018.05.033
  • 25
    Costa, M. C., Cruz, A. I. C., Ferreira, M. A., Bispo, A. S. R., Ribeiro, P. R., Costa, J. A., Araújo, F. M., & Evangelista-Barreto, N. S. (2023). Brown propolis bioactive compounds as a natural antimicrobial in alginate films applied to Piper nigrum L. Ciência Rural, 53(5), e20210805. http://dx.doi.org/10.1590/0103-8478cr20210805
    » http://dx.doi.org/10.1590/0103-8478cr20210805
  • 26
    Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47(6), 587-597. http://dx.doi.org/10.1007/s13197-010-0162-6 PMid:23572691.
    » http://dx.doi.org/10.1007/s13197-010-0162-6
  • 27
    Xu, H., Chen, G., Jin, R., Chen, D., Wang, Y., & Pei, J. (2014). Green synthesis of Bi2Se3 hierarchical nanostructure and its electrochemical properties. RSC Advances, 4(17), 8922-8929. http://dx.doi.org/10.1039/c3ra46473c
    » http://dx.doi.org/10.1039/c3ra46473c
  • 28
    Waring, M. J., & Parsons, D. (2001). Physico-chemical characterisation of carboxymethylated spun cellulose fibres. Biomaterials, 22(9), 903-912. http://dx.doi.org/10.1016/S0142-9612(00)00254-4 PMid:11311009.
    » http://dx.doi.org/10.1016/S0142-9612(00)00254-4
  • 29
    Moseley, R., Walker, M., Waddington, R. J., & Chen, W. Y. J. (2003). Comparison of the antioxidant properties of wound dressing materials-carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species. Biomaterials, 24(9), 1549-1557. http://dx.doi.org/10.1016/S0142-9612(02)00540-9 PMid:12559815.
    » http://dx.doi.org/10.1016/S0142-9612(02)00540-9
  • 30
    Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings - a review. Biomedicine (Taipei), 5(4), 22. http://dx.doi.org/10.7603/s40681-015-0022-9 PMid:26615539.
    » http://dx.doi.org/10.7603/s40681-015-0022-9
  • 31
    Mali, K. K., Dhawale, S. C., Dias, R. J., Dhane, N. S., & Ghorpade, V. S. (2018). Citric acid crosslinked carboxymethyl cellulose-based composite hydrogel films for drug delivery. Indian Journal of Pharmaceutical Sciences, 80(4), 657-667. http://dx.doi.org/10.4172/pharmaceutical-sciences.1000405
    » http://dx.doi.org/10.4172/pharmaceutical-sciences.1000405
  • 32
    Silva, V. C., Silva, A. M. G. S., Basílio, J. A. D., Xavier, J. A., Nascimento, T. G., Naal, R. M. Z. G., del Lama, M. P., Leonelo, L. A. D., Mergulhão, N. L. O. N., Maranhão, F. C. A., Silva, D. M. W., Owen, R., Duarte, I. F. B., Bulhões, L. C. G., Basílio, I. D. Jr, & Goulart, M. O. F. (2020). New insights for red propolis of alagoas: chemical constituents, topical membrane formulations and their physicochemical and biological properties. Molecules (Basel, Switzerland), 25(24), 5811. http://dx.doi.org/10.3390/molecules25245811 PMid:33317120.
    » http://dx.doi.org/10.3390/molecules25245811
  • 33
    Papotti, G., Bertelli, D., Plessi, M., & Rossi, M. C. (2010). Use of HR-NMR to classify propolis obtained using different harvesting methods. International Journal of Food Science & Technology, 45(8), 1610-1618. http://dx.doi.org/10.1111/j.1365-2621.2010.02310.x
    » http://dx.doi.org/10.1111/j.1365-2621.2010.02310.x
  • 34
    Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127-130. http://dx.doi.org/10.1002/ptr.687 PMid:11268111.
    » http://dx.doi.org/10.1002/ptr.687
  • 35
    Embrapa Agroindústria Tropical (2007). Comunicado técnico n. 128. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS°+ Fortaleza: Embrapa.
  • 36
    Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. http://dx.doi.org/10.1093/ajcp/45.4_ts.493 PMid:5325707.
    » http://dx.doi.org/10.1093/ajcp/45.4_ts.493
  • 37
    Taylor, R. F., & Schultz, J. S., editors (1996). Handbook of chemical and biological sensors USA: CRC Press. http://dx.doi.org/10.1887/0750303239
    » http://dx.doi.org/10.1887/0750303239
  • 38
    Kamel, S., Ali, N., Jahangir, K., Shah, S. M., & El-Gendy, A. A. (2008). Pharmaceutical significance of cellulose: a review. Express Polymer Letters, 2(11), 758-778. http://dx.doi.org/10.3144/expresspolymlett.2008.90
    » http://dx.doi.org/10.3144/expresspolymlett.2008.90
  • 39
    Ghorpade, V. S., Yadav, A. V., & Dias, R. J. (2017). Citric acid crosslinked β -cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydrate Polymers, 164, 339-348. http://dx.doi.org/10.1016/j.carbpol.2017.02.005 PMid:28325334.
    » http://dx.doi.org/10.1016/j.carbpol.2017.02.005
  • 40
    Capanema, N. S. V., Mansur, A. A. P., Jesus, A. C., Carvalho, S. M., Oliveira, L. C., & Mansur, H. S. (2018). Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 106, 1218-1234. http://dx.doi.org/10.1016/j.ijbiomac.2017.08.124 PMid:28851645.
    » http://dx.doi.org/10.1016/j.ijbiomac.2017.08.124
  • 41
    Kokabi, M., Sirousazar, M., & Hassan, Z. M. (2007). PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal, 43(3), 773-781. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.030
    » http://dx.doi.org/10.1016/j.eurpolymj.2006.11.030
  • 42
    Brasil. Ministério da Saúde. Resolução-Re nº 90 (2003, May 29). Guia para ensaios de dissolução para Formas Farmacêuticas Sólidas Orais de Liberação Imediata (FFSOLI). Biblioteca Virtual em Saúde. Retrieved in 2023, February 05, from https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0901_29_05_2003.html
    » https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0901_29_05_2003.html
  • 43
    Brasil. Ministério da Agricultura e do Abastecimento. Instrução Normativa nº3 (2001, January 19). Diario Oficial da União, Brasília. Retrieved in 2023, February 05, from https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=23/01/2001&jornal=1&pagina=46&totalArquivos=56
    » https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=23/01/2001&jornal=1&pagina=46&totalArquivos=56
  • 44
    Kurek-Górecka, A., Keskin, Ş., Bobis, O., Felitti, R., Górecki, M., Otręba, M., Stojko, J., Olczyk, P., Kolayli, S., & Rzepecka-Stojko, A. (2022). Comparison of the antioxidant activity of propolis samples from different geographical regions. Plants, 11(9), 1203. http://dx.doi.org/10.3390/plants11091203 PMid:35567206.
    » http://dx.doi.org/10.3390/plants11091203
  • 45
    González-Montiel, L., Figueira, A. C., Medina-Pérez, G., Fernández-Luqueño, F., Aguirre-Álvarez, G., Pérez-Soto, E., Pérez-Ríos, S., & Campos-Montiel, R. G. (2022). Bioactive compounds, antioxidant and antimicrobial activity of propolis extracts during in vitro digestion. Applied Sciences (Basel, Switzerland), 12(15), 7892. http://dx.doi.org/10.3390/app12157892
    » http://dx.doi.org/10.3390/app12157892
  • 46
    Sousa, J. P. L. M., Pires, L. O., Prudêncio, E. R., Santos, R. F., Sant’Ana, L. D., Ferreira, D. A. S., & Castro, R. N. (2019). Chemical and antimicrobial potential study of Brazilian propolis produced by different species of bees. Revista Virtual de Química, 11(5), 1480-1497. http://dx.doi.org/10.21577/1984-6835.20190103
    » http://dx.doi.org/10.21577/1984-6835.20190103
  • 47
    Muzzolon, A., Bicudo, Á. J. A., Oldoni, T. L. C., & Sado, R. Y. (2021). Dietary brown propolis extract modulated nonspecific immune system and intestinal morphology of Pacu Piaractus mesopotamicus. Brazilian Archives of Biology and Technology, 64, e21200787. http://dx.doi.org/10.1590/1678-4324-2021200787
    » http://dx.doi.org/10.1590/1678-4324-2021200787
  • 48
    Castro, R. N., & Salgueiro, F. B. (2016). Comparação entre a composição química e capacidade antioxidante de diferentes extratos de própolis verde. Quimica Nova, 39(10), 1192-1199. http://dx.doi.org/10.21577/0100-4042.20160136
    » http://dx.doi.org/10.21577/0100-4042.20160136
  • 49
    Funari, C. S., Ferro, V. O., & Mathor, M. B. (2007). Analysis of propolis from Baccharis dracunculifolia DC. (Compositae) and its effects on mouse fibroblasts. Journal of Ethnopharmacology, 111(2), 206-212. http://dx.doi.org/10.1016/j.jep.2006.11.032 PMid:17207952.
    » http://dx.doi.org/10.1016/j.jep.2006.11.032
  • 50
    Ramanauskienė, K., Savickas, A., Inkėnienė, A., Vitkevičius, K., Kasparavičienė, G., Briedis, V., & Amšiejus, A. (2009). Analysis of content of phenolic acids in Lithuanian propolis using high-performance liquid chromatography technique. Medicina, 45(9), 712-717. http://dx.doi.org/10.3390/medicina45090093 PMid:19834308.
    » http://dx.doi.org/10.3390/medicina45090093
  • 51
    Tomazzoli, M. M., Zeggio, A. R. S., Dal Pai Neto, R., Specht, L., Costa, C., Rocha, M., Yunes, R. A., & Maraschin, M. (2020). Botanical source investigation and evaluation of the effect of seasonality on Brazilian propolis from Apis mellifera L. Scientia Agrícola, 77(6), e20180258. http://dx.doi.org/10.1590/1678-992x-2018-0258
    » http://dx.doi.org/10.1590/1678-992x-2018-0258
  • 52
    Calegari, M. A., Prasniewski, A., Silva, C., Sado, R. Y., Maia, F. M. C., Tonial, L. M. S., & Oldoni, T. L. C. (2017). Propolis from Southwest of Parana produced by selected bees: influence of seasonality and food supplementation on antioxidant activity and phenolic profile. Anais da Academia Brasileira de Ciências, 89(1), 45-55. http://dx.doi.org/10.1590/0001-3765201620160499 PMid:28177054.
    » http://dx.doi.org/10.1590/0001-3765201620160499
  • 53
    Chaa, S., Boufadi, M. Y., Keddari, S., Benchaib, A. H., Soubhye, J., Van Antwerpen, P., & Riazi, A. (2019). Chemical composition of propolis extract and its effects on epirubicin-induced hepatotoxicity in rats. Revista Brasileira de Farmacognosia, 29(3), 294-300. http://dx.doi.org/10.1016/j.bjp.2019.01.005
    » http://dx.doi.org/10.1016/j.bjp.2019.01.005
  • 54
    Xu, W., Lu, H., Yuan, Y., Deng, Z., Zheng, L., & Li, H. (2022). The antioxidant and anti-inflammatory effects of flavonoids from propolis via Nrf2 and NF-κB pathways. Foods, 11(16), 2439. http://dx.doi.org/10.3390/foods11162439 PMid:36010439.
    » http://dx.doi.org/10.3390/foods11162439
  • 55
    Lima, A. B. S., Santos, D. O., Almeida, V. V. S., Oliveira, A. C., & Santos, L. S. (2022). Quantificação de constituintes fenólicos de extratos de própolis vermelha de diferentes concentrações por HPLC. Research. Social Development, 11(8), e1111830536. http://dx.doi.org/10.33448/rsd-v11i8.30536
    » http://dx.doi.org/10.33448/rsd-v11i8.30536
  • 56
    Torres, A. R., Sandjo, L. P., Friedemann, M. T., Tomazzoli, M. M., Maraschin, M., Mello, C. F., & Santos, A. R. S. (2018). Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata quadrifasciata and Tetragonisca angustula stingless bees. Brazilian Journal of Medical and Biological Research, 51(6), e7118. http://dx.doi.org/10.1590/1414-431x20187118 PMid:29791598.
    » http://dx.doi.org/10.1590/1414-431x20187118
  • 57
    Sousa, A. K. A. (2018). Atividade antibacteriana do extrato hidroalcoólico da própolis vermelha no semiárido paraibano sobre streptococcus pyogenes. (Master''s Thesis). Campina Grande: Universidade Federal de Campina Grande.
  • 58
    Dégi, J., Herman, V., Igna, V., Dégi, D. M., Hulea, A., Muselin, F., & Cristina, R. T. (2022). Antibacterial activity of romanian propolis against Staphylococcus aureus isolated from dogs with superficial pyoderma: in vitro test. Veterinary Sciences, 9(6), 299. http://dx.doi.org/10.3390/vetsci9060299 PMid:35737351.
    » http://dx.doi.org/10.3390/vetsci9060299
  • 59
    Xiao, Y., Zhao, H., Ma, X., Gu, Z., Wu, X., Zhao, L., Ye, L., & Feng, Z. (2022). Hydrogel dressing containing basic fibroblast growth factor accelerating chronic wound healing in aged mouse model. Molecules (Basel, Switzerland), 27(19), 6361. http://dx.doi.org/10.3390/molecules27196361 PMid:36234898.
    » http://dx.doi.org/10.3390/molecules27196361
  • 60
    Berglund, L., Squinca, P., Baş, Y., Zattarin, E., Aili, D., Rakar, J., Junker, J., Starkenberg, A., Diamanti, M., Sivlér, P., Skog, M., & Oksman, K. (2023). Self-assembly of nanocellulose hydrogels mimicking bacterial cellulose for wound dressing applications. Biomacromolecules, 24(5), 2264-2277. http://dx.doi.org/10.1021/acs.biomac.3c00152 PMid:37097826.
    » http://dx.doi.org/10.1021/acs.biomac.3c00152
  • 61
    Hezaveh, H., Muhamad, I. I., Noshadi, I., Shu Fen, L., & Ngadi, N. (2012). Swelling behaviour and controlled drug release from cross-linked κ-carrageenan/NaCMC hydrogel by diffusion mechanism. Journal of Microencapsulation, 29(4), 368-379. http://dx.doi.org/10.3109/02652048.2011.651501 PMid:22309480.
    » http://dx.doi.org/10.3109/02652048.2011.651501
  • 62
    Akalin, G. O., & Pulat, M. (2018). Preparation and characterization of nanoporous sodium carboxymethyl cellulose hydrogel beads. Journal of Nanomaterials, 2018, 9676949. http://dx.doi.org/10.1155/2018/9676949
    » http://dx.doi.org/10.1155/2018/9676949
  • 63
    Oliveira, R. N., McGuinness, G. B., Rouze, R., Quilty, B., Cahill, P., Soares, G. D. A., & Thiré, R. M. S. M. (2015). PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. Journal of Applied Polymer Science, 132(25), 42129. http://dx.doi.org/10.1002/app.42129
    » http://dx.doi.org/10.1002/app.42129
  • 64
    Pereira, I. C. S., Santos, N. R. R., Middea, A., Prudencio, E. R., Luchese, R. H., Moreira, A. P. D., & Oliveira, R. N. (2019). In vitro evaluation of PVA gels loaded with Copaiba Oil and Duotrill®. Polímeros: Ciência e Tecnologia, 29(3), e2019039. http://dx.doi.org/10.1590/0104-1428.03719
    » http://dx.doi.org/10.1590/0104-1428.03719
  • 65
    Oshiro, J. A. Junior, Shiota, L. M., & Chiavacci, L. A. (2014). Desenvolvimento de formadores de filmes poliméricos orgânico-inorgânico para liberação controlada de fármacos e tratamento de feridas. Matéria (Rio de Janeiro), 19(1), 24-32. http://dx.doi.org/10.1590/S1517-70762014000100005
    » http://dx.doi.org/10.1590/S1517-70762014000100005
  • 66
    Alhazmi, H. A. (2019). FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin. Scientia Pharmaceutica, 87(1), 5. http://dx.doi.org/10.3390/scipharm87010005
    » http://dx.doi.org/10.3390/scipharm87010005
  • 67
    Yamakami, S. A., Ubaldini, A. L. M., Sato, F., Medina Neto, A., Pascotto, R. C., & Baesso, M. L. (2018). Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. Journal of Applied Oral Science, 26(0), e20170384. http://dx.doi.org/10.1590/1678-7757-2017-0384 PMid:30020351.
    » http://dx.doi.org/10.1590/1678-7757-2017-0384
  • 68
    Prasad, C. V., Sudhakar, H., Swamy, B. Y., Reddy, G. V., Reddy, C. L. N., Suryanarayana, C., Prabhakar, M. N., Subha, M. C. S., & Rao, K. C. (2011). Miscibility studies of sodium carboxymethylcellulose/poly(vinyl alcohol) blend membranes for pervaporation dehydration of isopropyl alcohol. Journal of Applied Polymer Science, 120(4), 2271-2281. http://dx.doi.org/10.1002/app.33418
    » http://dx.doi.org/10.1002/app.33418
  • 69
    Rajczak, E., Tylkowski, B., Constantí, M., Haponska, M., Trusheva, B., Malucelli, G., & Giamberini, M. (2020). Preparation and characterization of UV-curable acrylic membranes embedding natural antioxidants. Polymers, 12(2), 358. http://dx.doi.org/10.3390/polym12020358 PMid:32041291.
    » http://dx.doi.org/10.3390/polym12020358
  • 70
    Juncu, G., Stoica-Guzun, A., Stroescu, M., Isopencu, G., & Jinga, S. I. (2016). Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. International Journal of Pharmaceutics, 510(2), 485-492. http://dx.doi.org/10.1016/j.ijpharm.2015.11.053 PMid:26688041.
    » http://dx.doi.org/10.1016/j.ijpharm.2015.11.053
  • 71
    Silva, C., Prasniewski, A., Calegari, M. A., Lima, V. A., & Oldoni, T. L. C. (2018). Determination of total phenolic compounds and antioxidant activity of ethanolic extracts of propolis using ATR-FT-IR spectroscopy and chemometrics. Food Analytical Methods, 11(7), 2013-2021. http://dx.doi.org/10.1007/s12161-018-1161-x
    » http://dx.doi.org/10.1007/s12161-018-1161-x
  • 72
    Lapa, L. S. S., Silva, Y. R. O., & Sales, P. F. (2020). Aplicação das análises espectroscópicas e termogravimétricas em filmes biodegradáveis de amido de milho incorporados com extrato de própolis-verde. ForScience, 8(2), e00712. http://dx.doi.org/10.29069/forscience.2020v8n2.e712
    » http://dx.doi.org/10.29069/forscience.2020v8n2.e712
  • 73
    Freitas, L. H., & Lima, L. S. C. 73. Freitas, L. H., & Lima, L. S. C. (2018). Encapsulação de extrato de própolis utilizando soro de leite Fortaleza: Instituto Federal de Educação, Ciência e Tecnologia do Ceará - IFC. Retrieved in 2023, February 05, from http://prpi.ifce.edu.br/nl/_lib/file/doc4831-Trabalho/ENCAPSULACAOODEEXTRATODEPROPOLISUTILIZANDOSORODELEITE.pdf
    » http://prpi.ifce.edu.br/nl/_lib/file/doc4831-Trabalho/ENCAPSULACAOODEEXTRATODEPROPOLISUTILIZANDOSORODELEITE.pdf
  • 74
    Claudino, G. P. (2011). Estudo fitoquímico-biológico da madeira da espécie Dalbergia glaucescens (Mart. ex Benth.) Benth (Doctoral Dissertation). Campos dos Goytacazes: Universidade Estadual do Norte Fluminense Darcy Ribeiro.
  • 75
    Yeasmin, M. S., & Mondal, M. I. H. (2015). Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. International Journal of Biological Macromolecules, 80, 725-731. http://dx.doi.org/10.1016/j.ijbiomac.2015.07.040 PMid:26210036.
    » http://dx.doi.org/10.1016/j.ijbiomac.2015.07.040
  • 76
    Scatolini, A. M., Pugine, S. M. P., Vercik, L. C. O., Melo, M. P., & Rigo, E. C. S. (2018). Evaluation of the antimicrobial activity and cytotoxic effect of hydroxyapatite containing Brazilian propolis. Biomedical Materials (Bristol, England), 13(2), 025010. http://dx.doi.org/10.1088/1748-605X/aa9a84 PMid:29135460.
    » http://dx.doi.org/10.1088/1748-605X/aa9a84
  • 77
    Oliveira, R. N., Mancini, M. C., de Oliveira, F. C. S., Passos, T. M., Quilty, B., Thiré, R. M. S. M., & McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21(3), 767-779. http://dx.doi.org/10.1590/S1517-707620160003.0072
    » http://dx.doi.org/10.1590/S1517-707620160003.0072
  • 78
    Tyliszczak, B., Walczyk, D., & Wilczyński, S. (2015). Acrylic hydrogels modified with bee pollen for biomedical applications. Journal of Applied Pharmaceutical Science, 5(11), 010-014. http://dx.doi.org/10.7324/JAPS.2015.501102
    » http://dx.doi.org/10.7324/JAPS.2015.501102
  • 79
    Nascimento, T. G., Silva, P. F., Azevedo, L. F., Rocha, L. G., Porto, I. C. C. M., Moura, T. F. A. L., Basílio-Júnior, I. D., Grillo, L. A. M., Dornelas, C. B., Fonseca, E. J. S., Oliveira, E. J., Zhang, A. T., & Watson, D. G. (2016). Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity. Nanoscale Research Letters, 11(1), 301. http://dx.doi.org/10.1186/s11671-016-1517-3 PMid:27316742.
    » http://dx.doi.org/10.1186/s11671-016-1517-3
  • 80
    Salmazo, P. S. (2019). Biorremediação de solo e água contaminados por solventes aromáticos provenientes de combustíveis (Master's Thesis). Sorocaba: Universidade de Sorocaba.
  • 81
    Nasdala, L., Smith, D. C., Kaindl, R., & Ziemann, M. A. (2004). Raman spectroscopy. In A. Beran, & E. Libowitzky (Eds.), Spectroscopic methods in mineralogy (pp. 281-343). McLean: Mineralogical Society of Great Britain and Ireland. http://dx.doi.org/10.1180/EMU-notes.6.7
    » http://dx.doi.org/10.1180/EMU-notes.6.7
  • 82
    Trilokesh, C., & Uppuluri, K. B. (2019). Isolation and characterization of cellulose nanocrystals from jackfruit peel. Scientific Reports, 9(1), 16709. http://dx.doi.org/10.1038/s41598-019-53412-x PMid:31723189.
    » http://dx.doi.org/10.1038/s41598-019-53412-x
  • 83
    Shetty, S. K., Ismayil, Hegde, S., Ravindrachary, V., Sanjeev, G., Bhajantri, R. F., & Masti, S. P. (2021). Dielectric relaxations and ion transport study of NaCMC:NaNO3 solid polymer electrolyte films. Ionics, 27(6), 2509-2525. http://dx.doi.org/10.1007/s11581-021-04023-y
    » http://dx.doi.org/10.1007/s11581-021-04023-y
  • 84
    Bokuniaeva, A. O., & Vorokh, A. S. (2019). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO 2 powder. In J, 6th International School and Conference "Saint Petersburg OPEN 2019": Optoelectronics, Photonics, Engineering and Nanostructures (012057) Moscow: Journal of Physics: Conference Series.
  • 85
    Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153. http://dx.doi.org/10.1016/j.biortech.2011.11.122 PMid:22306076.
    » http://dx.doi.org/10.1016/j.biortech.2011.11.122
  • 86
    Mohkami, M., & Talaeipour, M. (2011). Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via Xrd and Ftir analysis. BioResources, 6(2), 1988-2003. http://dx.doi.org/10.15376/biores.6.2.1988-2003
    » http://dx.doi.org/10.15376/biores.6.2.1988-2003
  • 87
    Ahmad, N., Wahab, R., & Al-Omar, S. Y. (2014). Thermal decomposition kinetics of sodium carboxymethyl cellulose: model‐free methods. European Journal of Chemistry, 5(2), 247-251. http://dx.doi.org/10.5155/eurjchem.5.2.247-251.971
    » http://dx.doi.org/10.5155/eurjchem.5.2.247-251.971
  • 88
    Lee, J. Y., Im, J. N., Kim, T. H., Chung, D. J., & Doh, S. J. (2015). Structure and liquid handling properties of water-insoluble carboxymethyl cellulose foam. Fibers and Polymers, 16(4), 726-734. http://dx.doi.org/10.1007/s12221-015-0726-1
    » http://dx.doi.org/10.1007/s12221-015-0726-1
  • 89
    El-Sayed, S., Mahmoud, K. H., Fatah, A. A., & Hassen, A. (2011). DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B, Condensed Matter, 406(21), 4068-4076. http://dx.doi.org/10.1016/j.physb.2011.07.050
    » http://dx.doi.org/10.1016/j.physb.2011.07.050
  • 90
    Badry, R., Ezzat, H. A., El-Khodary, S., Morsy, M., Elhaes, H., Nada, N., & Ibrahim, M. (2021). Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. Journal of Molecular Structure, 1224, 129013. http://dx.doi.org/10.1016/j.molstruc.2020.129013
    » http://dx.doi.org/10.1016/j.molstruc.2020.129013
  • 91
    Yaradoddi, J. S., Banapurmath, N. R., Ganachari, S. V., Soudagar, M. E. M., Mubarak, N. M., Hallad, S., Hugar, S., & Fayaz, H. (2020). Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Scientific Reports, 10(1), 21960. http://dx.doi.org/10.1038/s41598-020-78912-z PMid:33319818.
    » http://dx.doi.org/10.1038/s41598-020-78912-z
  • 92
    Seki, Y., Altinisik, A., Demircioğlu, B., & Tetik, C. (2014). Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization. Cellulose (London, England), 21(3), 1689-1698. http://dx.doi.org/10.1007/s10570-014-0204-8
    » http://dx.doi.org/10.1007/s10570-014-0204-8
  • 93
    Tabari, M. (2017). Investigation of Carboxymethyl Cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods, 6(6), 41. http://dx.doi.org/10.3390/foods6060041 PMid:28555025.
    » http://dx.doi.org/10.3390/foods6060041
  • 94
    Lan, W., He, L., & Liu, Y. (2018). Preparation and properties of sodium carboxymethyl cellulose/sodium alginate/chitosan composite film. Coatings, 8(8), 291. http://dx.doi.org/10.3390/coatings8080291
    » http://dx.doi.org/10.3390/coatings8080291
  • 95
    Laurano, R., Boffito, M., Ciardelli, G., & Chiono, V. (2022). Wound dressing products: a translational investigation from the bench to the market. Engineered Regeneration, 3(2), 182-200. http://dx.doi.org/10.1016/j.engreg.2022.04.002
    » http://dx.doi.org/10.1016/j.engreg.2022.04.002
  • 96
    Hassan, S., Ali, M. N., Mir, M., Ahmed, A., & Arshad, M. (2021). Development and evaluation of drug delivery patch for topical wound healing application. SN Applied Sciences, 3(10), 825. http://dx.doi.org/10.1007/s42452-021-04809-9
    » http://dx.doi.org/10.1007/s42452-021-04809-9
  • 97
    Miranda-Calderon, L., Yus, C., Landa, G., Mendoza, G., Arruebo, M., & Irusta, S. (2022). Pharmacokinetic control on the release of antimicrobial drugs from pH-responsive electrospun wound dressings. International Journal of Pharmaceutics, 624, 122003. http://dx.doi.org/10.1016/j.ijpharm.2022.122003 PMid:35811042.
    » http://dx.doi.org/10.1016/j.ijpharm.2022.122003
  • 98
    Basílio, J. A. D. (2018). Desenvolvimento e avaliação in vitro da atividade cicatrizante de membranas poliméricas incorporadas com própolis vermelha (Doctoral Dissertation). Maceió: Universidade Federal de Alagoas.
  • 99
    Brasil. Ministério da Saúde. Resolução-RDC nº 31 (2010, August 11 ). Dispõe sobre a realização dos Estudos de Equivalência Farmacêutica e de Perfil de Dissolução Comparativo. Biblioteca Virtual em Saúde. Retrieved in 2023, February 05, from http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2010/res0031_11_08_2010.html
    » http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2010/res0031_11_08_2010.html
  • 100
    Rozo, G., Bohorques, L., & Santamaría, J. (2019). Controlled release fertilizer encapsulated by a κ-carrageenan hydrogel. Polímeros: Ciência e Tecnologia, 29(3), e2019033. http://dx.doi.org/10.1590/0104-1428.02719
    » http://dx.doi.org/10.1590/0104-1428.02719
  • 101
    Peppas, N. A., & Sahlin, J. J. (1989). A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International Journal of Pharmaceutics, 57(2), 169-172. http://dx.doi.org/10.1016/0378-5173(89)90306-2
    » http://dx.doi.org/10.1016/0378-5173(89)90306-2
  • 102
    Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5(1), 23-36. http://dx.doi.org/10.1016/0168-3659(87)90034-4
    » http://dx.doi.org/10.1016/0168-3659(87)90034-4
  • 103
    Chaiya, P., Rojviriya, C., Pichayakorn, W., & Phaechamud, T. (2022). New Insight into the Impact of Effervescence on Gel Layer Microstructure and Drug Release of Effervescent Matrices Using Combined Mechanical and Imaging Characterisation Techniques. Pharmaceutics, 14(11), 2299. http://dx.doi.org/10.3390/pharmaceutics14112299 PMid:36365118.
    » http://dx.doi.org/10.3390/pharmaceutics14112299
  • 104
    Trucillo, P. (2022). Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes (Basel, Switzerland), 10(6), 1094. http://dx.doi.org/10.3390/pr10061094
    » http://dx.doi.org/10.3390/pr10061094
  • 105
    Altun, E., Yuca, E., Ekren, N., Kalaskar, D. M., Ficai, D., Dolete, G., Ficai, A., & Gunduz, O. (2021). Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics, 13(5), 613. http://dx.doi.org/10.3390/pharmaceutics13050613 PMid:33922739.
    » http://dx.doi.org/10.3390/pharmaceutics13050613
  • 106
    Liu, F., Wang, Z., Guo, H., Li, H., Chen, Y., & Guan, S. (2023). A Double-Layer Hydrogel Dressing with High Mechanical Strength and Water Resistance Used for Drug Delivery. Molecules (Basel, Switzerland), 28(2), 499. http://dx.doi.org/10.3390/molecules28020499 PMid:36677557.
    » http://dx.doi.org/10.3390/molecules28020499

Publication Dates

  • Publication in this collection
    04 Sept 2023
  • Date of issue
    2023

History

  • Received
    05 Feb 2023
  • Reviewed
    01 July 2023
  • Accepted
    12 July 2023
Associação Brasileira de Polímeros Rua São Paulo, 994, Caixa postal 490, São Carlos-SP, Tel./Fax: +55 16 3374-3949 - São Carlos - SP - Brazil
E-mail: revista@abpol.org.br