Acessibilidade / Reportar erro

Litter traits and palatability to detritivores: a case study across bio-geographical boundaries

Abstract

The activity of the litter-feeding macrofauna affects litter decomposition rates at the local scale, and their preference for particular litter types is mediated by litter traits. Environmental changes such as invasion by exotic plants may change the characteristics of the litter at a local scale, with consequences to ecosystem processes. Here we evaluated the feeding preferences of four detritivores (terrestrial isopods) from two biogeographic regions (neotropical and palearctic), offering them native or non-native litter in cafeteria experiments. Our results show that isopods from different geographical regions exhibit essentially the same food preference, irrespective of whether or not they previously had encountered the litter tested. Combining the isopods' preference ranks with the principal component analysis of nine litter traits, we show that preference increases with increasing nitrogen and calcium contents and decreases with increasing toughness, C:N ratio and thickness, irrespective of the geographical origin of both litter and detritivores. We conclude that the palatability of a non-native litter to the native detritivore community can be predicted from their respective litter traits and thus, native detritivores will feed on a particular non-native litter type as likely as do detritivores in the native range of the plant. As the combination of traits that indicates palatability to the isopods also indicates litter decomposability, it could be possible to predict ecosystem responses in terms of litter decomposition rates upon changes in litter composition.

Detritivory; feeding preferences; litter traits; terrestrial isopods


  • Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79: 439-449.
  • Ashton, I.W.; Hyatt, L.A.; Howe, K.M.; Gurevitch, J. and Lerdau, M.T. 2005. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecological Applications, 15: 1263-1272.
  • Ashwini, K.M. and Sridhar, K.R. 2005. Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems. Pedobiologia, 49: 307-316.
  • Bärlocher, F. and Graça, M.A.S. 2005. Total phenolics. p. 97-100. In: M.A.S Graça, F. Bärlocher and M.O. Gessner (eds.), Methods to Study Litter Decomposition: A Practical Guide. Berlin, Springer.
  • Bastow, J.L.; Preisser, E.L. and Strong, D.R. 2008. Holcus lanatus invasion slows decomposition through its interaction with a macroinvertebrate detritivore, Porcellio scaber Biological Invasions, 10: 191-199.
  • Cameron, G.N. and Spencer, S.R. 1989. Rapid leaf decay and nutrient release in a chinese tallow forest. Oecologia, 80: 222-228.
  • Catalán, T.P.; Lardies, M.A. and Bozinovic, F. 2008. Food selection and nutritional ecology of woodlice in Central Chile. Physiological Entomology, 33: 89-94.
  • Cornelissen, J.H.C.; Pérez-Harguindeguy, N.; Díaz, S.; Grime, J.P.; Marzano, B. and Cabido, M. 1999. Leaf structure and defense control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist, 143: 191-200.
  • Cornelissen, J.H.C.; Quested, H.M.; Gwynn-Jones, D.; Van Logtestijn, R.S.P.; De Beus, M.A.H.; Kondratchuk, A.; Callaghan, T.V. and Aerts, R. 2004. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology, 18: 779-786.
  • Cornwell, W.K.; Cornelissen, J.H.C.; Amatangelo, K.; Dorrepaal, E.; Eviner, V.T.; Godoy, O.; Hobbie, S.E.; Hoorens, B.; Kurokawa, H.; Perez-Hardeguindeguy, N.; Quested, H.M.; Santiago, L.S.; Wardle, D.A.; Wright, I.J.; Aerts, R.; Allison, S.D.; van Bodegom, P.; Brovkin, V.; Chatain, A.; Callaghan, T.V.; Díaz, S.; Garnier, E.; Gurvich, D.E.; Kazakou, E.; Klein, J.A.; Read, J.; Reich, P.B.; Soudzilovskaia, N.A.; Vaieretti, M.V. and Westoby, M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11: 1065-1071.
  • Cotrufo, M.F.; Briones, M.J.I. and Ineson, P. 1998. Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biology and Biochemistry, 30: 1565-1571.
  • Díaz, S.; Hodgson, J.G.; Thompson, K.; Cabido, M.; Cornelissen, J.H.C.; Jalili, A.; Montserrat-Martí, G.; Grime, J.P.; Zarrinkamar, F.; Asri, Y.; Band, S.R.; Basconcelo, S.; Castro-Díez, P.; Funes, G.; Hamzehee, B.; Khoshnevi, M.; Pérez-Harguindeguy, N.; Pérez-Rontomé, M.C.; Shirvany, F.A.; Vendramini, F.; Yazdani, S.; Abbas-Azimi, R.; Bogaard, A.; Boustani, S.; Charles, M.; Dehghan M.; de Torres-Espuny, L.; Falczuk, V.; Guerrero-Campo, J.; Hynd, A.; Jones, G.; Kowsary, E.; Kazemi-Saeed, F.; Maestro-Martínez, M.; Romo-Díez, A.; Shaw, S.; Siavash, B.; Villar-Salvador, P. and Zak, M.R. 2004. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15: 295-304.
  • Dudgeon, D.; Ma, H.H.T. and Lam, P.K.S. 1990. Differential palatability of leaf litter to four sympatric isopods in a Hong Kong forest. Oecologia, 84: 398-403.
  • Dunger, W. 1958. Uber die Zersetzung der Laubstreu durch die Boden-Makrofauna im Auenwald. ZoologischeJahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere, 86: 139-180.
  • Ehrenfeld, J.G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6: 503-523.
  • Gholz, H.L.; Wedin, D.A.; Smitherman, S.M.; Harmon, M.E. and Parton, W.J. 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6: 751-765.
  • Graça, M.A.S. and Zimmer, M. 2005. Leaf toughness. p. 121-126. In: M.A.S Graça, F. Bärlocher and M.O. Gessner (eds.), Methods to Study Litter Decomposition: A Practical Guide. Berlin, Springer
  • Hammer, Ø.; Harper, D.A.T. and Ryan, P.D. 2001. PAST: Paleontological Statistics software for education and data analysis. Paleontologia Electronica, 4:1-9.
  • Hättenschwiler, S. and Bretscher, D., 2001. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Global Change Biology, 7: 565-579.
  • Hättenschwiler, S.; Bühler, S. and Körner, C. 1999. Quality, decomposition and isopod consumption of tree litter produced under elevated CO2 Oikos, 85, 271-281.
  • Hendriksen, N.B. 1990. Leaf litter selection by detritivore and geophagous earthworms. Biology and Fertility of Soils, 10: 17-21.
  • Hood, G.M. 2010. PopTools version 3.2.5. Available at http://www.poptools.org.Accessed on 20 October 2014.
  • Ihnen, K. and Zimmer, M. 2008. Selective consumption and digestion of litter microbes by Porcellio scaber (Isopoda: Oniscidea). Pedobiologia, 51: 335-342.
  • Kasurinen, A.; Peltonen, P.A.; Julkunen-Tiitto, R.; Vapaavuori, E.; Nuutinen, V.; Holopainen, T. and Holopainen, J.K. 2007. Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant and Soil, 292: 25-43.
  • Kazakou, E.; Violle, C.; Roumet, C.; Pintor, C.; Gimenez, O. and Garnier, E. 2009. Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply. Annals of Botany, 104: 1151-1161.
  • Kurokawa, H.; Peltzer, D.A. and Wardle, DA. 2010. Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Functional Ecology, 24: 513-523.
  • Liski, J.; Nissinen, A.; Erhard, M. and Taskinen, O. 2003. Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change Biology, 9: 575-584.
  • Mack, M.C. and D'Antonio, C.M. 2003. The effects of exotic grasses on litter decomposition in a hawaiian woodland: the importance of indirect effects. Ecosystems, 6: 723-738.
  • Makkonen, M.; Berg, M.P.; Handa, I.T.; Hättenschwiler, S.; van Ruijven, J.; van Bodegom, P.M. and Aerts, R. 2012. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecology Letters, 15: 1033-1041.
  • Mayer, P.M. 2008. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient. Acta Oecologica, 33: 222-230.
  • Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology, 59: 465-472.
  • Melillo, J.M.; Aber, J.D. and Muratore. J.F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63: 621-626.
  • Pérez-Corona, M.E.; Pérez Hernández, M.C. and Castro, F.B. 2006. Decomposition of Alder, Ash, and Poplar litter in a Mediterranean Riverine area. Communications in Soil Science and Plant Analysis, 37: 1111-1125.
  • Pérez-Harguindeguy, N.; Díaz, S.; Cornelissen, J.H.C.; Vendramini, F.; Cabido, M. and Castellanos, A. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil, 218: 21-30.
  • Quadros, A.F. and Araujo, P.B. 2008. An assemblage of terrestrial isopods (Crustacea) in southern Brazil and its contribution to leaf litter processing. Revista Brasileira de Zoologia, 25: 58-66.
  • Quadros, A.F. and Araujo, P.B. 2007. Ecological traits of two neotropical oniscideans (Crustacea: Isopoda). Acta Zoologica Sinica, 53: 241-249.
  • Rouifed, S.; Handa, I.T.; David, J.F. and Hättenschwiler, S. 2010. The importance of biotic factors in predicting global change effects on decomposition of temperate forest leaf litter. Oecologia, 163: 247-256.
  • Rushton, S.P. and Hassall, M. 1983. The effects of food quality on the life history parameters of the terrestrial isopod (Armadillidium vulgare (Latreille)). Oecologia 57: 257-261.
  • Sanson, G. 2006. The biomechanics of browsing and grazing. American Journal of Botany, 93: 1531-1545.
  • Smith, J.; Potts, S.G.; Woodcock, B.A. and Eggleton, P. 2009. The impact of two arable field margin management schemes on litter decomposition. Applied Soil Ecology, 41: 90-97.
  • Soma, K. and Saitô, T. 1983. Ecological studies of soil organisms with references to the decomposition of pine needles II. Litter feeding and breakdown by the woodlouse, Porcellio scaber Plant and Soil, 75: 139-151.
  • Sousa, J.P.; Vingada, J.V.; Loureiro, S.; da Gama, M.M. and Soares, A.M.V.M. 1998. Effects of introduced exotic tree species on growth, consumption and assimilation rates of the soil detritivore Porcellio dilatatus (Crustacea: Isopoda). Applied Soil Ecology, 9: 399-403.
  • Swift, M.J.; Heal, O.W. and Anderson, J.M. 1979. Decomposition in terrestrial ecosystems. Oxford, Blackwell, 372p.
  • Taylor, B.R.; Parkinson, D. and Parsons, W.F.J. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70: 97-104.
  • Tian, G.; Kang, B.T. and Brussaard, L. 1992. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions - Decomposition and nutrient release. Soil Biology & Biochemistry, 24: 1051-1060.
  • Treplin, M. and Zimmer, M. 2012. Drowned or dry: a cross-habitat comparison of detrital breakdown processes. Ecosystems, 15: 477-491.
  • Van Soest, P.J.; Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Vitousek, P.M. 1990. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos, 57: 7-13.
  • Vos, V.C.A.; van Ruijven, J.; Berg, M.P.; Peeters, E.T.H.M. and Berendse, F. 2011. Macro-detritivore identity drives leaf litter diversity effects. Oikos, 120: 1092-1098.
  • Wall, D.H.; Bradford, M.A.; St. John, M.G.; Trofymow, J.A.; Behan-Pelletier, V.; Bignell, D.E.; Dangerfield, M.; Parton, W.J.; Rusek, J.; Voigt, W.; Wolters, V.; Gardel, H.Z.; Ayuke, F.O.; Bashford, R.; Beljakova, O.I.; Bohlen, P.J.; Brauman, A.; Flemming, S.; Henschel, J.R.; Johnson, D.L.; Jones, T.H.; Kovarova, M.; Kranabetter, J.M.; Kutny, L.; Kuo-Chuan, L.; Maryati, M.; Masse D.; Pokarzhevskii, A.; Rahman, H.; Sabara, M.G,; Salamon, J-A.; Swift, M.J.; Varela, A.; Vasconcelos, H.L.; White, D. and Zou, X. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate dependent. Global Change Biology, 14: 1-17.
  • Wedderburn, M.E. and Carter, J. 1999. Litter decomposition by four functional tree types for use in silvopastoral systems. Soil Biology & Biochemistry, 31: 455-461.
  • Zimmer, M. 2002a. Is decomposition of woodland leaf litter influenced by its species richness? Soil Biology & Biochemistry, 34: 277-284.
  • Zimmer, M. 2002b. Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biological Review, 77: 455-493.
  • Zimmer, M.; Brauckmann, H-J.; Broll, G. and Topp, W. 2000. Correspondence analytical evaluation of factors that influence soil macro-arthropod distribution in abandoned grassland. Pedobiologia, 44: 695-704.
  • Zimmer, M. and Topp, W. 1997. Does leaf litter quality influence population parameters of the common woodlouse, Porcellio scaber (Crustacea:Isopoda)? Biology and Fertility of Soils, 24: 435-441.
  • Zimmer, M. and Topp, W. 2000. Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). Journal of Animal Ecology, 69: 1071-1082.

Publication Dates

  • Publication in this collection
    28 Jan 2015
  • Date of issue
    Dec 2014

History

  • Accepted
    21 Dec 2014
  • Received
    22 Oct 2014
Sociedade Brasileira de Carcinologia Instituto de Biociências, UNESP, Campus Botucatu, Rua Professor Doutor Antônio Celso Wagner Zanin, 250 , Botucatu, SP, 18618-689 - Botucatu - SP - Brazil
E-mail: editor.nauplius@gmail.com