Acessibilidade / Reportar erro

Do bird communities of neotropical monodominant forests have their own identity? The case of Eremanthus erythropappus forests

ABSTRACT

Background:

Monodominant Eremanthus erythropappus forests are dispersed in neotropical montane regions of southeastern and northeastern Brazil, forming ecotonal areas among other high altitude phytophysiognomies, with no information from their fauna communities and how these communities vary between phytophysiognomies adjacent. We examined the bird community of three preserved and three managed E. erythropappus forests, and compared them two other coexisting phytophysiognomies (cloud forests and montane fields), being three samples of each, in an ecotonal region between two biodiversity hotspot domains (Cerrado and Atlantic Forest), in southeastern Brazil (1300 to 1570m high).

Results:

The bird community of the natural E. erythropappus forests was shared with other vegetation, while the managed E. erythropappus forests presented the lowest species richness. However, even though managed E. erythropappus forests has almost no exclusive elements, their community caused a balanced variation (a set of very similar species, only changing the representativeness), suggesting that the abundance of the registered species varies along these phytophysiognomies.

Conclusion:

The species associated with the natural E. erythropappus forests represented 50% of the total species, in contrast to the remaining 50% associated with the areas of cloud forests and montane fields, and their sharing behaves as an ecotonal community, since its community coincides with elements which are also present in the avifauna of the other two sampled phytophysiognomies. The composition of the avifauna from managed E. erythropappus forests was more similar to the community registered in the montane fields.

Keywords:
Candeia ; montane ecosystems; conservation

HIGHLIGHTS

The composition in bird community in montane landscapes at Chapada das Perdizes is unique. The bird community in montane landscapes has threatened species.

The composition of the avifauna from managed E. erythropappus forests was more similar to the community registered in the montane fields.The bird community in the ecotonal region (Cerrado and Atlantic Forest) needs to be preserved because they have faunal elements from the two morphoclimatic domains.

INTRODUCTION

Avifauna can have a great capacity to be dispersed among the landscape, and ample knowledge on them have grounded classical theories such as the island biogeography theory ( MacArthur and Wilson, 1967MACARTHUR, R. H.; WILSON, E. O. The Theory of Island Biogeography. Princeton: Princeton University Press, 1967.) and the optimal foraging theory ( MacArthur and Pianka, 1966MACARTHUR, R. H.; PIANKA, E. R. On optimal use of a patchy environment. The American Naturalist, v. 100, n. 916, p. 603-609, 1966.). However, the bird community may also have a very low dispersion capacity, with their distribution being restricted by barriers such as mountain ranges, agricultural areas, large rivers ( Cracraft, 1985CRACRAFT, J. Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithological monographs, v. 36, p. 49-84, 1985.; Haffer, 1992HAFFER, J. On the “river effect” in some forest birds of southern Amazonia. Boletim do Museu Paraense Emilio Goeldi, v. 8, p. 217-245, 1992.; Rahbek, 1997RAHBEK, C. The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, v. 149, n. 5, p. 875902, 1997.; Hayes and Sewlal, 2004HAYES, F. E.; SEWLAL, J. N. The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography, v. 31, p. 1809-1818, 2004.; Silva et al., 2005SILVA, J. M. C.; SANTOS, M. P. D. A importância relativa dos processos biogeográficos na formação da avifauna do Cerrado e de outros biomas brasileiros, p. 219-233, 2005. In: Scariot A, Sousa-Silva JC, Felfili JM (eds.)Cerrado: ecologia, biodiversidade e conservação. Brasília: Ministério do Meio Ambiente., Ribas et al., 2009RIBAS, C. C.; MIYAKI, C. Y.; CRACRAFT, J. Phylogenetic relationships, diversification and biogeography in Neotropical Brotogeris parakeets. Journal of Biogeography, v. 36, p. 1712-1729, 2009.), and also narrow roads ( Develey and Stouffer, 2001DEVELEY, P. F.; STOUFFER, P. C. Effects of roads on movements by understory birds in mixed-species flocks in central Amazonian Brazil. Conservation Biology, v. 15, p. 1416-1422, 2001.). Thus, a species’ dispersion capacity on both local and regional scales seems to influence the avifauna community composition ( Cracraft, 1985CRACRAFT, J. Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithological monographs, v. 36, p. 49-84, 1985.; Rahbek, 1997RAHBEK, C. The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, v. 149, n. 5, p. 875902, 1997.).

The natural montane region landscape of the Atlantic Forest-Cerrado ecotone constitutes two biogeographic regions which are considered biodiversity hotspots ( Myers et al., 2000MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. B.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, p. 853-858, 2000.), houses vegetation types which coexist and vary in a short geographical space, and have high diversity and richness of plant species ( Oliveira-Filho et al., 2004OLIVEIRA-FILHO, A. T.; CARVALHO, D. A.; FONTES, M. A. L.; DEN BERG, E. V.; CARVALHO, W. A. C. Variaçs estruturais do compartimento arbeo de uma floresta semidecídua alto-montana na chapada das Perdizes, Carrancas, MG. Revista Brasileira de Botânica, 27(2), 291-309, 2004.; Souza et al., 2020SOUZA, C. R.; PAULA, G. G. P.; MENDES, C. N.; MAIA, V. A.; AGUIAR-CAMPOS, N.; ARAUJO, F. C.; MARIANO, R. F.; OLIVEIRA, H. F.; MOREL, J. D.; SANTOS, R. M. Local-scale tree community ecotones are distinct vegetation types instead of mixed ones: a case study from the Cerrado-Atlantic forest ecotonal region in Brazil. Australian Journal of Botany, v. 68, p. 153-164, 2020.), with emphasis on rupestrian fields ( Vasconcelos et al., 2011VASCONCELOS, M. F. O que são campos rupestres e campos de altitude nos topos de montanha do leste do Brasil? Revista Brasileira de Botânica, v. 34, n. 2, p. 241-246, 2011.; Moura et al., 2020MOURA, A. S.; MACHADO, F. S.; MARIANO, R. F.; SOUZA, C. R.; FONTES, M. A. L. Bird community of upper-montane rupestrian fields in south of Minas Gerais state, southeastern Brazil. Acta Scientiarum Biological Sciences, v. 42, p. e48675, 2020.) and cloud forests ( Oliveira-Filho et al., 2004OLIVEIRA-FILHO, A. T.; CARVALHO, D. A.; FONTES, M. A. L.; DEN BERG, E. V.; CARVALHO, W. A. C. Variaçs estruturais do compartimento arbeo de uma floresta semidecídua alto-montana na chapada das Perdizes, Carrancas, MG. Revista Brasileira de Botânica, 27(2), 291-309, 2004.). There is also vegetation with a low number of plant species in this ecotonal region in the midst of fields and forests, such as the monodominant forests with trees of the Eremanthus genus of the Asteraceae family (Araújo 1944) (from now on Eremanthus forests). Although these forests occur abundantly in the southeastern region of Brazil ( Pedralli et al., 1997PEDRALLI, G.; TEIXEIRA, M. C. B.; NUNES, Y. R. Estudos sinecolicos sobre a Candeia (Vanillopsis erythropapa Schult. BIP) na estação ecolica do Tripuí, Ouro Preto (MG, Brasil). Árvore, v. 21, p. 117-118, 1997.) and are well studied by studies involving forest management ( Scolforo et al., 2002SCOLFORO, J. R. S.; OLIVEIRA, A. D.; DAVIDE, A. C.; MELLO, J. M, ACERBI JUNIOR, F. W. Manejo sustentado das Candeias Eremanthus erythropappus (DC) McLeisch e Eremanthus incanus (Less.) Less. Lavras: UFLA/FAEPE, 2002.; Araújo et al., 2018ARAÚJO, E. J. G. D.; PÉLLICO NETTO, S.; SCOLFORO, J. R. S.; MACHADO, S. D. A.; MORAIS, V. A.; DAVID, H. C. Sustainable Management of Eremanthus erythropappus in Minas Gerais, Brazil–A Review. Floresta e Ambiente, v. 25, n. 3, p. e20160516, 2018.), studies involving the bird community which frequent this type of vegetation are incipient ( Carrara and Faria, 2012CARRARA, L. A.; FARIA, L. C. P. Aves de floresta montana da Serra do Cip Mata Atlântica da Cadeia do Espinhaço. Cotinga, v. 34, p. 43-56, 2012.). The management of monodominant Eremanthus erythropappus and Eremanthus incanus forests was legally instituted in the state of Minas Gerais, Brazil, in 2007 (Ordinance No. 01, of January 5, 2007 from the State Forestry Institute of the state of Minas Gerais), however knowledge about the impacts of forest management on avifauna are incipient due to the lack of studies which have investigated the avifauna which frequent these forests ( Carrara and Faria, 2012CARRARA, L. A.; FARIA, L. C. P. Aves de floresta montana da Serra do Cip Mata Atlântica da Cadeia do Espinhaço. Cotinga, v. 34, p. 43-56, 2012.).

There are some incipient studies which have evaluated the avifauna composition which frequents monodominant montane forests in the Neotropical region ( Lloyd and Marsden, 2008LLOYD, H.; MARSDEN, S. J. Bird community variation across Polylepis woodland fragments and matrix habitats: implications for biodiversity conservation within a high Andean landscape. Biodiversity and Conservation, v. 17, n. 11, p. 2645-2660, 2008.; Gareca et al., 2010GARECA, E. E., HERMY, M., FJELDSÅ, J., OLIVIER, H. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodiversity and Conservation, v. 19, p. 3327–3346, 2010.; Carrara and Faria, 2012CARRARA, L. A.; FARIA, L. C. P. Aves de floresta montana da Serra do Cip Mata Atlântica da Cadeia do Espinhaço. Cotinga, v. 34, p. 43-56, 2012.). However, due to the low diversity of tree species in monodominant forests, they run the risk of not being considered important for conservation policies and are neglected by research, including in well-sampled regions ( Mariano et al., 2019MARIANO, R. F.; FONTES, M. A. L.; SANTOS, R. M.; MENDES, C. N.; MOURA, A. S.; TORRES, D. M.; FREITAS, L. B.; BARBOSA, A. C. M. C.; CARVALHO, W. A. C. Well-sampled regions risk loosing key biological data: a case study in the Atlantic Forest. Biodiversity and Conservation, v. 28, p. 2581-2598, 2019.), and even today new types of these forests can be described ( Fonty et al., 2011FONTY, E.; MOLINO, J. F.; PRÉVOST, M. F.; SABATIER, D. A new case of neotropicalmonodominant forest: Spirotropis longifolia (Leguminosae -Papilionoideae) in French Guiana. Journal of Tropical Ecology, v. 27, n. 6, p. 641-644, 2011.).

Thus, in order to create bases for the conservation of monodominant rupestrian neotropical forests, subsidize conservation strategies for montane ecosystems of the Atlantic Forest-Cerrado ecotone, and subsidize the forest management of Eremanthus forests, this study aimed to investigate whether monodominant E. erythropappus forests have a unique bird community in relation to other types of adjacent vegetation along a montane ecosystem in an ecotonous Atlantic-Cerrado Forest in Brazil, and to compare the avifauna of preserved and managed monodominant E. erythropappus forests. In order to achieve our main objectives, we compared the richness, structure and composition of the bird community of the preserved and managed E. erythropappus forests with the bird communities of the adjacent vegetation (i.e. rupestrian fields and cloud forests).

MATERIAL AND METHODS

Study area

The montane ecosystem where the study was conducted is located in an ecotonal region between the Atlantic Forest and the Cerrado ( Lima et al., 2011LIMA, L. P. Z.; LOUZADA, J.; CARVALHO, L. M. T.; SCOLFORO, J. R. S. Análise da vulnerabilidade natural para implantação de unidades de conservação na microrregião da Serra de Carrancas, MG. Cerne, v. 17, n. 2, p. 151-159, 2011.), constituted as two biodiversity hotspots ( Myers et al., 2000MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. B.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, p. 853-858, 2000.) as it is in an area of high biodiversity ( Drummond et al., 2009DRUMMOND, G. M.; MARTINS, C. S.; GRECO, M. B.; VIEIRA, F. Biota Minas: Diagnostico do conhecimento sobre a biodiversidade no Estado de Minas Gerais-subsidio ao Programa Biota Minas, 2009. In: Biota Minas: Diagnostico do conhecimento sobre a biodiversidade no Estado de Minas Gerais-Subsidio ao Programa Biota Minas. Belo Horizonte: Fundação Biodiversitas.), and named Chapada das Perdizes (21º 35' 37'' S and 44º 34' 14'' W), southeastern Brazil. The landscape is composed of a complex mosaic of different vegetation types which vary on a short spatial scale, which includes areas of rupestrian fields (predominant in the landscape), cloud forests, monodominant Eremanthus forests (popularly known as “ Candeias”) and seasonal semi-deciduous forests. It is worth noting that these types of vegetation have sharp edges between themselves, and that this vegetation mosaic is therefore an excellent place to study the effects of vegetation on the animal community.

Eremanthus erythropappus forests in Chapada das Perdizes characteristically occur either as patches within the forest matrix or as narrow belts located at the interface between forests and fields, and have only one vertical stratum predominated by E. erythropappus ( Oliveira-Filho et al., 2004OLIVEIRA-FILHO, A. T.; CARVALHO, D. A.; FONTES, M. A. L.; DEN BERG, E. V.; CARVALHO, W. A. C. Variaçs estruturais do compartimento arbeo de uma floresta semidecídua alto-montana na chapada das Perdizes, Carrancas, MG. Revista Brasileira de Botânica, 27(2), 291-309, 2004.), in addition to the presence of grass species. The managed E. Erythropappus forests have lower density, basal area and average tree height in relation to natural E. erythropappus forests, and grass species are more abundant. Cloud forests occur on mountain tops, usually associated with streams and have greater structural complexity with two defined strata, canopy and understory. Finally, the rupestrian fields correspond to mountain pastures associated with quartzite outcrops ( Vasconcelos et al., 2011VASCONCELOS, M. F. O que são campos rupestres e campos de altitude nos topos de montanha do leste do Brasil? Revista Brasileira de Botânica, v. 34, n. 2, p. 241-246, 2011.).

The relief of Chapada das Perdizes is quite varied and has altitudes ranging from 1310 to 1530 m in altitude. The region’s climate is Cwb for mountain tops according to the Köppen-Geiger classification, with an average annual rainfall of 1529.7 mm and an average annual temperature of 19.4°C ( Alvares et al., 2013ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; DE MORAES, G.; LEONARDO, J.; SPAROVEK, G. Köppen’s climate classificationmap for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013.).

Data collection

We sampled 12 areas throughout our study area to assess the bird community: three preserved Eremanthus erythropappus forest areas, three managed E. erythropappus forest areas, three rupestrian field areas and three cloud forest areas ( Figure 1). Each sampled area was visited during a wet and hot season (March 2018) e another in a dry and cold season (August 2018). Each sampling period in the season had twelve days in order to register both resident birds and species which perform seasonal migrations.

Figure 1.
Sampling areas of the bird community in a montane ecosystem in the Atlantic Forest-Cerrado ecotone, southeastern Brazil.

The observations in each sampling area lasted five hours (from 6 am to 11 am and/or from 12 am to 5 pm) in each station, with the order of the observations of the areas between the stations being inverted in order to sample all the areas in both periods of the day (morning and afternoon). A total of 60 hours of observations per season and 120 hours of total observations, where the records within a variable detection radius were considered (as in Anjos et al., 2004ANJOS, L.; ZANETTE, L.; LOPES, E. V. Effects of fragmentation on the bird guilds ofthe Atlantic Forest in North Paraná, Southern Brazil. Ornitologia Neotropical, v. 15, p. 137–144, 2004.; Uezu et al., 2005UEZU, A.; METZGER, J. P.; VIELLIARD, J. M. E. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biological Conservation, v. 123 p. 507–519, 2005.; Alexandrino et al., 2016ALEXANDRINO, E. R.; BUECHLEY, E. R.; PIRATELLI, A. J.; FERRAZ, K. M. P. M. B.; MORAL, R. A.; SEKERCIOGLU, Ç. H.; SILVA, W. R.; COUTO, H. T. Z. Bird sensitivity to disturbance as an indicator of forest patch conditions: An issue in environmental assessments. Ecological Indicators, v. 66, p. 369-381, 2016.), but only considering valid records of birds heard or seen inside each sampled area. We used the cumulative number of contacts (meaning each of the auditory or visual records of distinct individuals) of each species and in each area, which were considered as a measure of abundance ( Bibby et al., 2000BIBBY, C. J.; BURGESS, N. D.; HILL, D. A.; MUSTOE, S. H. Bird Census Techniques. 2nd ed. San Diego: Academic Press Limited, 2000.; Anjos et al., 2004ANJOS, L.; ZANETTE, L.; LOPES, E. V. Effects of fragmentation on the bird guilds ofthe Atlantic Forest in North Paraná, Southern Brazil. Ornitologia Neotropical, v. 15, p. 137–144, 2004.; Vielliard et al., 2010VIELLIARD, J. M. E.; ALMEIDA, M. E. C.; ANJOS, L.; SILVA, W. R. Levantamento quantitativo por pontos de escuta e o índice pontual de abundância (IPA), p 47–60, 2010. In: MATTER, S. V.; STRAUBE, F. C.; ACCORDI, I.; PIACENTINI, V.; CÂNDIDO-JR, J. F. (Eds.) Ornitologia e Conservação. Ciência Aplicada, Técnicas de pesquisa e Levantamento. Rio de Janeiro:Technical Books.; Alexandrino et al., 2016ALEXANDRINO, E. R.; BUECHLEY, E. R.; PIRATELLI, A. J.; FERRAZ, K. M. P. M. B.; MORAL, R. A.; SEKERCIOGLU, Ç. H.; SILVA, W. R.; COUTO, H. T. Z. Bird sensitivity to disturbance as an indicator of forest patch conditions: An issue in environmental assessments. Ecological Indicators, v. 66, p. 369-381, 2016.). The records were obtained using Nikon 8x40 binoculars, and the nomenclature used followed the Brazilian Ornithological Records Committee according to Piacentini et al. (2015PIACENTINI, V. Q.; ALEIXO, A.; AGNE, C. E.; MAURÍCIO, G. N.; PACHECO, J. F.; BRAVO, G. A.; BRITO, G. R. R.; NAKA, L. N.; OLMOS, F.; POSSO, S.; SILVEIRA, L. F.; BETINI, G. S.; CARRANO, E.; FRANS, I.; LEES, A. C.; LIMA, L. M.; PIOLI, D.; SCHUNK, F.; AMARAL, F. R.; BENCKE, G. A.; COHN-HAFT, M.; FIGUEIREDO, L. F. A.; STRAUBE, F. C.; CESARI, E. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee. Revista Brasileira de Ornitologia, v. 23, n. 2, p. 91-298, 2015.), and the food preference of the most viewed species were classified according to Sick (1997SICK, H. Ornitologia brasileira. 2 ed. Rio de Janeiro: Editora NovaFronteira. 1997.).

Data analysis

We first evaluated the species shared between the habitats and unique species of each habitat from the occurrence data and number of species views at each of the sampling points. Next, we performed a Non-Metric Multidimensional Scaling (NMDS) using Bray-Curtis as a distance measure from the number of views as an abundance synthesis. The obtained result was subjected to a Similarity Analysis (ANOSIM) ( Clarke, 1993CLARKE, K. R. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, v. 18, p. 117-143, 1993.) at the 5% significance level to test whether the habitats are home to different bird communities. The Bray-Curtis matrix between sampled areas was further partitioned into the components of “balanced variation of abundance” and “gradient of abundance” ( Baselga, 2013BASELGA, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients.Methods in Ecology and Evolution, v. 4, p. 552-557, 2013.) in order to identify which process is responsible for possible variations in dissimilarity between habitats. Finally, we separated the species which corresponded to 50% of the views of each of the three habitats and evaluated how their representativeness in number of views changes along the vegetation mosaic. All analyzes were performed using the R Studio (2018R. Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018. Available at: https://www.R-project.org/ Accessed in: January 10th 2020.
https://www.R-project.org/...
) software using the vegan ( Oksanen et al., 2018OKSANEN, J.; BLANCHET, F. G.; KINDT, R.; LEGENDRE, P.; MINCHIN, P. R.; O’HARA, R. B.; SIMPSON, G. L.; SOLYMOS, P.; HENRY, M.; STEVENS, H.; SZOECS, E.; WAGNER, H. Vegan: Community Ecology Package. R package version 2.5-2, 2018. Available at: https://CRAN.R-project.org/package=vegan Accessed in: January 10th 2020.
https://CRAN.R-project.org/package=vegan...
) and betapart ( Baselga et al., 2013BASELGA, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients.Methods in Ecology and Evolution, v. 4, p. 552-557, 2013.) packages. In addition, we have described the feeding habits of the five bird species with the highest number of records in each of the four sampled habitats. It is important to note that we did not use preserved and managed EEFs in all analyzes. This only occurred when the objective was to assess the effects of management on the EEF bird community.

RESULTS

Altogether we recorded 1,234 encounters in the studied montane ecosystem, which comprised 100 species of birds belonging to 88 genera and 34 families (Supplementary material). The bird families most represented in number of species were: Thraupidae (18 species), Tyrannidae (16), Trochilidae (9) and Rhynchocyclidae (5). The following exclusive species from the Cerrado domain were recorded: Zenaida auriculata (Des Murs, 1847), Synallaxis spixi Sclater, 1856, Melanopareia torquata (Wied, 1831) and Coryphaspiza melanotis (Temminck, 1822); and exclusive species of the Atlantic Forest: Pyriglena leucoptera (Vieillot, 1818), Conopophaga lineata (Wied, 1831), Chiroxiphia caudata (Shaw and Nodder, 1793), Mionectes rufiventris Cabanis, 1846, Hemitriccus nidipendulus (Wied, 1831), Thamnophilus ruficapillus Vieillot, 1816, Knipolegus nigerrimus (Vieillot, 1818) and Tachyphonus coronatus (Vieillot, 1822) ( Silva 1995SILVA, J. M. C. Birds of the Cerrado region, South America. Steenstrupia, v. 21, p. 69-92, 1995., Silva and Santos 2005SILVA, J. M. C.; SANTOS, M. P. D. A importância relativa dos processos biogeográficos na formação da avifauna do Cerrado e de outros biomas brasileiros, p. 219-233, 2005. In: Scariot A, Sousa-Silva JC, Felfili JM (eds.)Cerrado: ecologia, biodiversidade e conservação. Brasília: Ministério do Meio Ambiente., Lopes et al. 2017 LOPES, L. E.; REIS, J. N.; MOURA, A. S.; CORRÊA, B. S.; CARVALHO, C. M. S.; JOSÉ, H.; PEIXOTO, C.; VASCONCELOS, M. F.; MALDONADO-COELHO, M.; REZENDE, M. A. Aves de três municípios do Alto Rio São Francisco, Minas Gerais, Brasil. Atualidades Ornitolicas, v. 196, p. 49-62, 2017.). Altogether 3% of the registered species (three species) are threatened with extinction ( IUCN 2020IUCN. The IUCN Red List of Threatened Species. Version 2018-2, 2020 Available at: https://www.iucnredlist.org Accessed in: January 10th 2020.
https://www.iucnredlist.org...
, MMA 2014MMA. Ministério do Meio Ambiente. Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção. 2014. Available at: http://www.in.gov.br/autenticidade.html Accessed in: Jan 10th 2020.
http://www.in.gov.br/autenticidade.html...
): Culicivora caudacuta (Vieillot, 1818), Anthus nattereri Sclater, 1878, and Coryphaspiza melanotis (Temminck, 1822).

Cloud forests were the environment with the highest species richness (58 species), followed by the preserved Eremanthus erythropappus forests with 49 species, the rupestrian fields with 45 species, and lastly by the managed Eremanthus erythropappus forests (35 species) with the least richness. Regarding the most registered species in the sampled vegetation types ( Table 1), Zonotrichia capensis (Statius Muller, 1776) was the most represented species and one of the most registered species in three of the four sampled habitats (preserved and managed Eremanthus erythropappus forests, and rupestrian fields). The dominant species in the four sampled habitats mostly corresponded to insectivorous birds.

Table 1.
Five bird species with the highest number of records in each of the four sampled habitats, with the number of views in parentheses, in a montane ecosystem in the Atlantic Forest-Cerrado ecotone, southeastern Brazil. Legend of food guild abbreviations: insectivore (Ins), nectarivore (Nec), granivore (Gra), frugivore (Fru), according to Sick (1997SICK, H. Ornitologia brasileira. 2 ed. Rio de Janeiro: Editora NovaFronteira. 1997.).

Our analyzes showed that each of the four studied habitats houses a distinct bird community (Anosim <0.0001; R = 0.96) ( Figure 2), which could be seen by the first axis of the NMDS, where the points sampled in each habitat are grouped along the vegetation gradient from the field to the forest. The areas sampled in the preserved and managed Eremanthus erythropappus forests were located between the cloud forests and the rupestrian fields.

Figure 2.
Non-Metric Multidimensional Scaling (NMDS) using Bray-Curtis as a distance measure for vegetations sampled in a montane ecosystem in the Atlantic Forest-Cerrado ecotone, southeastern Brazil.

The numbers of species shared between the preserved Eremanthus erythropappus forests and the rupestrian fields and cloud forests were similar, which in turn shared only two species. Together, the species recorded in the preserved Eremanthus erythropappus forests and the species shared with the other habitats represented 50% of the sampled species pool. The rest of the species were registered exclusively in managed Eremanthus erythropappus forests, or in cloud forests, or in rupestrian fields, or shared among these habitats ( Figure 3).

Figure 3.
Venn diagram for the occurrence of bird species in preserved Eremanthus erythropappus forests, cloud forests and rupestrian fields in a montane ecosystem in the Atlantic Forest-Cerrado ecotone, southeastern Brazil.

Our data showed that the managed Eremanthus erythropappus forests did not have any shared species with the cloud forest, and that they had the largest number of species shared with the rupestrian field ( Figure 4). In addition, the number of species shared between the rupestrian fields and the natural (N = 5) and managed (N = 6) Eremanthus erythropappus forests was greater than the number of species shared between the rupestrian fields and the cloud forests. (N=1).

Figure 4.
Species sharing between bird communities of different habitats, considering the species occurring in only two of the four habitats sampled in a montane ecosystem in the Atlantic Forest-Cerrado ecotone, southeastern Brazil.

Species sharing between the sampled vegetation types is associated with variations in the representativeness of species abundance across habitats, as demonstrated by the preponderance of the balanced variation in species abundance in the formation of Bray-Curtis dissimilarity observed among the sampled vegetation types ( Figure 5).

Figure 5.
Partitioning of Bray-Curtis dissimilarity in the balanced variation and gradient variation components for comparisons of the bird community between the sampled vegetation types in a montane ecosystem in the Atlantic Forest-Cerrado ecotone, southeastern Brazil.

Although changes in the representativeness of bird species occur along the vegetation gradient in the sampled montane ecosystem, the most abundant species in preserved Eremanthus erythropappus forests were also important in other habitats, corresponding to 30% of the number of views in cloud forests and in rupestrian fields, while the dominant species in these habitats (cloud forests and rupestrian fields) are less representative in preserved Eremanthus erythropappus forests. The most representative species (in this case the most abundant) shared between the preserved Eremanthus erythropappus forests and the cloud forests tend to correspond to the most representative species in the montane fields ( Figure 6).

Figure 6.
Representativeness of the most abundant bird species in the sampled vegetation types in a montane ecosystem in the Atlantic Forest-Cerrado ecotone, southeastern Brazil.

DISCUSSION

The present study aimed to evaluate whether monodominant Eremanthus forests have a unique bird community in relation to the adjacent vegetation in a vegetation mosaic located in a montane ecosystem, and also to compare the avifauna of preserved and managed monodominant E. erythropappus forests. Our data showed that these monodominant forests have a distinct bird community in relation to adjacent vegetation due to the replacement of species abundances, and that the bird community varied between managed and preserved E. erythropappus forests, suggesting that forest management may alter the fauna that frequent these forests.

Many of the bird families most represented in our work were well represented in other studies conducted in areas close to our study area ( D’Angelo Neto et al., 1998D’ANGELO NETO, S.; VENTURIM, N.; OLIVEIRA–FILHO, A. T.; COSTA, F. A. F. Avifauna de quatro fisionomias florestais de pequenos tamanhos (58 ha.) no campus da UFLA. Revista Brasileira de Biologia, v. 58, p. 463-472, 1998.; Ribon, 2000RIBON, R. Lista preliminar da avifauna do município de Ijaci, Minas Gerais. Ceres, v. 47, n. 274, p. 665-682, 2000.; Vasconcelos et al., 2002VASCONCELOS, M. F.; D’ANGELO NETO, S.; BRAND, L. F. S.; VENTURIN, N.; OLIVEIRA-FILHO, A. T.; COSTA, F. A. F. Avifauna de Lavras e municípios adjacentes, sul de Minas Gerais, e comentários sobre sua conservação. Unimontes Científica, v. 4, p. 153-165, 2002.; Lopes, 2006LOPES, L. E. As aves da região de Varginha e El Mendes, sul de Minas Gerais, Brasil. Acta Biologica Leopoldensia, v. 28, n. 1, p. 46-54. 2006.; Braga et al., 2010BRAGA, T. V.; ZANZINI, A. C. S.; CERBONCINI, R. A. C.; MIGUEL, M.; MOURA, A. S. Avifauna em praças de Lavras (MG): riqueza, similaridade e influência de variáveis do ambiente urbano. Revista Brasileira de Ornitologia, v. 18, n. 1, p. 26-33, 2010.; Moura et al., 2015MOURA, A. S.; CORRÊA, B. S.; MACHADO, F. S. Riqueza, composição e similaridade da avifauna em remanescente florestal e áreas antropizadas no sul de Minas Gerais. Revista Agrogeoambiental, v. 7, n. 1, p. 41-52, 2015.), and also in studies developed in more distant regions in high altitude areas in Brazil ( Rodrigues et al., 2005RODRIGUES, M.; CARRARA, L. A.; FARIA, L. P.; GOMES, H. B. The birds of Parque Nacional da Serra do Cip the Rio Cipvalley, Minas Gerais, Brazil. Revista Brasileira de Zoologia, v. 22, n. 2, p. 326-338, 2005.; Santos and Silva, 2007SANTOS, M. P. D.; SILVA, J. M. C. As aves das savanas de Roraima. Revista Brasileira de Ornitologia, v. 15, n. 2, p. 189-207, 2007.; Vieira et al., 2013VIEIRA, F. M.; PURIFICAÇÃO, K. N.; DA SILVA CASTILHO, L.; PASCOTTO, M. C. Estrutura trfica da avifauna de quatro fitofisionomias de Cerrado no Parque Estadual da Serra Azul. Ornithologia, v. 5, n. 2, p. 43-57, 2013.). The most representative families in the studied montane ecosystem (Thraupidae, Tyrannidae and Throchilidae) correspond to the bird families of the largest number of species in the Brazilian territory ( Piacentini et al., 2015PIACENTINI, V. Q.; ALEIXO, A.; AGNE, C. E.; MAURÍCIO, G. N.; PACHECO, J. F.; BRAVO, G. A.; BRITO, G. R. R.; NAKA, L. N.; OLMOS, F.; POSSO, S.; SILVEIRA, L. F.; BETINI, G. S.; CARRANO, E.; FRANS, I.; LEES, A. C.; LIMA, L. M.; PIOLI, D.; SCHUNK, F.; AMARAL, F. R.; BENCKE, G. A.; COHN-HAFT, M.; FIGUEIREDO, L. F. A.; STRAUBE, F. C.; CESARI, E. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee. Revista Brasileira de Ornitologia, v. 23, n. 2, p. 91-298, 2015.), and also in South America ( Erize et al., 2006ERIZE, F.; MATA, J. R. R.; RUMBOLL, M. Birds of South America: nonpasserines: rheas to woodpeckers. Canada: Princeton University Press, 2006.; Ridgely and Tudor, 2009RIDGELY, R. S.; TUDOR, G. Field guide to the songbirds of South America, the passerines. Austin: University of Texas Press, 2009.; Van Perlo, 2015VAN PERLO, B. Birds of South America: Passerines. Canada: Princeton University Press. 2015.).

The number of bird species recorded in the evaluated montane ecosystem (100 species) was similar to the values found in other studies carried out in nearby landscapes and with similar elevations ( Vasconcelos, 2003VASCONCELOS, M. F. A avifauna dos campos de altitude da Serra do Capara estados de Minas Gerais e Espírito Santo, Brasil. Cotinga, v. 19, p. 40-48, 2003.; Vasconcelos and D'Angelo-Neto, 2007VASCONCELOS, M. F.; D’ANGELO NETO, S. Padrões de distribuição e conservação da avifauna na região central da Cadeia do Espinhaço e áreas adjacentes, Minas Gerais, Brasil. Cotinga, v. 28, p. 27-44, 2007.; Rodrigues et al., 2016RODRIGUES, M.; FREITAS, G. H.; COSTA, L. M.; DIAS, D. F.; VARELA, M. L.; RODRIGUES, L. C. Avifauna, Alto do Palácio, Serra do CipNational Park, state of Minas Gerais, southeastern Brazil. CheckList, v. 7, n. 2, p. 151-161, 2016.). However, these studies did not evaluate the bird community of monodominant Eremanthus forests, although they occur in the regions studied in these studies. There are monodominant forests in the Neotropical region with a predominance of different species, such as Tabebuia aureus in the biogeographic region of the Pantanal ( Capuzzo et al., 2012CAPUZZO, J. P.; ROSSATTO, D. R.; FRANCO, A. C. Differences in morphological and physiological leaf characteristics between Tabebuia aurea and T. impetiginosa is related to their typical habitats of occurrence. Acta Botanica Brasilica, v. 26, n. 3, p. 519-526, 2012.), Acrocomia aculeata, Mauritia flexuosa, and Syagrus oleracea in the biogeographic Cerrado region ( Ribeiro and Walter 1998RIBEIRO, J. F; WALTER, B. M. T. Fitofisionomias do bioma Cerrado. In: Sano, S. M., Almeida, S. P. (Eds) Cerrado: ambiente e flora. Embrapa-CPAC, Planaltina. p. 89-166, 1998.), Tabebuia cassinoides on the Brazilian coast ( Sebbenn et al., 2001SEBBENN, A. M.; SEOANE, C. E. S.; KAGEYAMA, P. Y.; LACERDA, C. M. B. Estrutura genética em populaçs de Tabebuia cassinoides: implicaçs para o manejo florestal e a conservação genética. Revista do Instituto Florestal, v. 13, n. 2, p. 93-113, 2001.), and Polylepis in the Andes ( Lloyd and Marsden, 2008LLOYD, H.; MARSDEN, S. J. Bird community variation across Polylepis woodland fragments and matrix habitats: implications for biodiversity conservation within a high Andean landscape. Biodiversity and Conservation, v. 17, n. 11, p. 2645-2660, 2008.; Gareca et al., 2010GARECA, E. E., HERMY, M., FJELDSÅ, J., OLIVIER, H. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodiversity and Conservation, v. 19, p. 3327–3346, 2010.). However, to our knowledge there are only studies which investigated whether these monodominant forests in the Neotropical region are home to a distinct bird community in relation to the bird community of adjacent communities, in this case studies carried out in monodominant Polylepis forests in the Andes ( Lloyd and Marsden, 2008LLOYD, H.; MARSDEN, S. J. Bird community variation across Polylepis woodland fragments and matrix habitats: implications for biodiversity conservation within a high Andean landscape. Biodiversity and Conservation, v. 17, n. 11, p. 2645-2660, 2008.; Gareca et al., 2010GARECA, E. E., HERMY, M., FJELDSÅ, J., OLIVIER, H. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodiversity and Conservation, v. 19, p. 3327–3346, 2010.). Thus, the present work contributes to the knowledge of bird communities from monodominant neotropical forests, suggesting that the conservation of such forests may be important for biodiversity, and that they should be taken into consideration in conservation plans.

Cloud forests showed the greatest richness of bird species, probably due to their greater structural complexity and diversity of plant species, as observed by Mota et al. (2012MOTA, J. V. L.; CARVALHO, A. A. F.; TINOCO, M. S. Composição da avifauna e sua relação com áreas manejadas na restinga da Reserva Imbassaí, Litoral Norte da Bahia, Brasil. Ornithologia, v. 5, n. 1, p. 6-18, 2012.) in Atlantic Rain Forest areas compared to managed areas. The second largest bird richness was found in the preserved monodominant E. erythropappus forests (49 species), followed by the rupestrian fields (45 species), while the managed monodominant E. erythropappus forests had the lowest richness (35 species). This suggests that forest management in monodominant Eremanthus forests alters the bird community by reducing species richness. Negative effects of forest management on avifauna have also been recorded in managed restinga areas in the northeast of Brazil ( Mota et al., 2012MOTA, J. V. L.; CARVALHO, A. A. F.; TINOCO, M. S. Composição da avifauna e sua relação com áreas manejadas na restinga da Reserva Imbassaí, Litoral Norte da Bahia, Brasil. Ornithologia, v. 5, n. 1, p. 6-18, 2012.), where there was less use of habitat by species possibly due to reduced presence of shelter and food resources. The richness and uniqueness of the bird community found in monodominant E. erythropappus forests indicates that the impacts of forest management on the fauna of these forests cannot be neglected.

Although our results indicate that the bird community in monodominant E. erythropappus forests is distinct from the communities in the other studied vegetations, this distinction is the result of the combination of bird species from cloud forests and rupestrian fields, with variations in species abundance. Thus, our results suggest that monodominant E. erythropappus forests may correspond to small scale ecotones, harboring ecotonal communities. Transition areas, border regions and system edges where ecological communities (plants and animals) share the elements of the adjacent biomes are considered ecotones ( Kark and Van Rensburg, 2006KARK, S.; VAN RENSBURG, B. J. Ecotones: marginal or central areas of transition? Israel Journal Ecology and Evolution, v. 52, n. 1, p. 29-53, 2006.).

In addition, our data showed that monodominant E. erythropappus forests have few unique species. Furthermore, the exclusive and shared species associated with this vegetation together correspond to half of the total number of species sampled in our study area. On the other hand, the remaining half of the species was exclusively registered in areas of rupestrian fields and cloud forests, or shared by these two vegetation types. A similar result was found in a study carried out in monodominant Polylepis forests in the Peruvian Andes, where species exclusive to this vegetation and shared with the adjacent vegetations corresponded to half of the local species pool ( Lloyd and Maridem, 2008LLOYD, H.; MARSDEN, S. J. Bird community variation across Polylepis woodland fragments and matrix habitats: implications for biodiversity conservation within a high Andean landscape. Biodiversity and Conservation, v. 17, n. 11, p. 2645-2660, 2008.). We emphasize that the avifauna composition found in the Eremanthus erythropappus forests in our study area probably differs from the avifauna of other monodominant Eremanthus forests distributed over the wide range of occurrence of these forests ( Lorenzi 2016LORENZI, H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbeas nativas do Brasil. Volume 3. Nova Odessa: Plantarum, 2016.; Flora do Brasil 2020FLORA DO BRASIL. Jardim Botânico do Rio de Janeiro, 2020. Available at: http://reflora.jbrj.gov.br/reflora/floradobrasil/FB5315. Accessed in: March 18 th 2020.
http://reflora.jbrj.gov.br/reflora/flora...
), which occur both in the Atlantic Forest ( Borges et al., 2019BORGES, E. R.; PRADO-JUNIOR, J.; SANTANA, L. D.; DELGADO, C. N.; RAYMUNDO, D.; RIBEIRO, J. H. C.; ROSSATTO, D. R, CARVALHO, F. A. Trait variation of a generalist tree species (Eremanthus erythroppapus, Asteraceae) in two adjacent mountain habitats: savanna and cloud forest. Australian Journal of Botany, v. 66, n. 8, p. 640-646, 2019.; Flora do Brasil, 2020FLORA DO BRASIL. Jardim Botânico do Rio de Janeiro, 2020. Available at: http://reflora.jbrj.gov.br/reflora/floradobrasil/FB5315. Accessed in: March 18 th 2020.
http://reflora.jbrj.gov.br/reflora/flora...
) and in the Cerrado ( Flora do Brasil, 2020FLORA DO BRASIL. Jardim Botânico do Rio de Janeiro, 2020. Available at: http://reflora.jbrj.gov.br/reflora/floradobrasil/FB5315. Accessed in: March 18 th 2020.
http://reflora.jbrj.gov.br/reflora/flora...
).

The bird community in the montane fields presented the second smallest number of species, which is probably due to the fact that this phytophysiognomy does not present vertical tree strata, with a predominance of herbaceous-shrub and grass plants ( Vasconcelos, 2011VASCONCELOS, M. F. O que são campos rupestres e campos de altitude nos topos de montanha do leste do Brasil? Revista Brasileira de Botânica, v. 34, n. 2, p. 241-246, 2011.), and scarce amounts of trees. However, even though it presented an avifauna with lesser richness when compared to the preserved cloud forests and the Eremanthus erythropappus forests, this vegetation presented the greatest number of threatened bird species (three species), thus corroborating studies which affirm that birds with closely related ecology fields are among the most endangered species ( Machado et al., 1998MACHADO, A. B. M.; FONSECA, G. A. B.; MACHADO, R. B.; AGUIAR, L. M. S.; LINS, L. V. Livro vermelho das espécies ameaçadas de extinção da fauna de Minas Gerais. Belo Horizonte: Fundação Biodiversitas, 1998.; Lopes et al., 2009LOPES, L. E.; PINHO, J. B.; BERNARDON, B.; OLIVEIRA, F. F.; BERNARDON, G.; FERREIRA, L. P.; VASCONCELOS, M. F.; MALDONADO-COELHO, M.; NOBREGA, P. F. A.; RUBIO, T. C. Aves da chapada dos Guimarães, Mato Grosso, Brasil: uma síntese histica do conhecimento. Papéis Avulsos de Zoologia, v. 49, p. 9-47, 2009.; Bird Life Internacional, 2020BIRDLIFE INTERNATIONAL. Search for species, 2020. Available at: http://www.birdlife.org. Accessed in: August 10th 2020.
http://www.birdlife.org...
). In addition to these three species, another three species threatened with extinction were seen in areas of preserved Eremanthus erythropappus forests during the team’s movements during data collection in the studied montane ecosystem (Chapada das Perdizes), but were not considered for our analysis because they were observed outside the sampling points, with these species being: Urubitinga coronata (Vieillot, 1817), Amazona vinacea (Kuhl, 1820) and Alectrurus tricolor (Vieillot, 1816) ( MMA, 2014MMA. Ministério do Meio Ambiente. Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção. 2014. Available at: http://www.in.gov.br/autenticidade.html Accessed in: Jan 10th 2020.
http://www.in.gov.br/autenticidade.html...
; IUCN, 2020IUCN. The IUCN Red List of Threatened Species. Version 2018-2, 2020 Available at: https://www.iucnredlist.org Accessed in: January 10th 2020.
https://www.iucnredlist.org...
).

Montane ecosystems in ecotonal regions such as Chapada das Perdizes deserve prominence in conservation plans since the protection of these areas ensures the conservation of typical species from neighboring biomes, and also of species exclusive to ecotonal areas ( Souza et al., 2020SOUZA, C. R.; PAULA, G. G. P.; MENDES, C. N.; MAIA, V. A.; AGUIAR-CAMPOS, N.; ARAUJO, F. C.; MARIANO, R. F.; OLIVEIRA, H. F.; MOREL, J. D.; SANTOS, R. M. Local-scale tree community ecotones are distinct vegetation types instead of mixed ones: a case study from the Cerrado-Atlantic forest ecotonal region in Brazil. Australian Journal of Botany, v. 68, p. 153-164, 2020.). Ecotonal regions between biodiversity hotspots, which is the case of our study area (an ecotone Atlantic Forest-Cerrado), are even more important for conservation. The Atlantic Forest and the Cerrado have been recognized as global biodiversity hotspots ( Myers et al., 2000MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. B.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, p. 853-858, 2000.) since they have a high number of species ( Sick, 1997SICK, H. Ornitologia brasileira. 2 ed. Rio de Janeiro: Editora NovaFronteira. 1997.; Castro et al., 1998CASTRO, A. A. J. F.; MARTINS, F. R.; TAMASHIRO, J. Y.; SHEPHERD, G. J. How rich is the flora of Brazilian Cerrados? Annals of the Missouri Botanical Garden, v. 86, p. 192–224, 1998.; Myers et al., 2000MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. B.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, p. 853-858, 2000.; Mittermeier et al., 2005MITTERMEIER, R. A.; FONSECA, G. A. B.; RYLANDS, A. B.; BRANDON, K. A brief history of biodiversity conservation in Brazil. Conservation Biology, v. 19, n. 3, p. 601-611, 2005.), great alpha and beta diversity ( Ratter et al. 2003RATTER, J.; BRIDGEWATER, S.; RIBEIRO, J. F. Analysis of the floristic composition of the Brazilian Cerrito vegetation III: Comparison of the woody vegetation of 376 areas. Edinburgo Journal of Botany, v. 60, n. 1, p. 57-109, 2003.; Bridgewater et al. 2004BRIDGEWATER, S.; RATTER, J. A.; RIBEIRO, J. F. Biogeografic patterns, β-diversity and dominance in the Cerrado biome of Brazil. Biodiversity and Conservation, v. 13, n. 12, p. 2295-2318, 2004.) and high level of endemism ( Silva, 1995SILVA, J. M. C. Birds of the Cerrado region, South America. Steenstrupia, v. 21, p. 69-92, 1995.; Costa et al., 2000COSTA, L. P.; LEITE, Y. L. R.; FONSECA, G. A. B.; FONSECA, M. T. Biogeography of South American forest mammals: endemism and diversity in the Atlantic Forest. Biotropica, v. 32, p. 872-881, 2000.; Klink and Machado, 2005KLINK, C. A.; MACHADO, R. B. A conservação do Cerrado brasileiro. Megadiversidade, v. 1, n. 1, p. 147-155, 2005.). Despite this, Chapada das Perdizes has suffered an increasing loss of areas of native vegetation since the last decade due to changes in land use ( Moura et al., 2021MOURA, A. S.; MACHADO, F. S.; MARIANO, R. F.; LEITE, L. H.; FONTES, M. A. L. Bird Community in Rupestrian Fields from an Atlantic Forest-Cerrado Ecotone: Notes on Habitat Losses and Conservation of the Threatened Species. Biodiversidade Brasileira, v. 1, n. 11, p. 1-13, 2021.).

Although Eremanthus forests are legally exploited (in this case monodominant Eremanthus erythropappus and Eremanthus incanus forests in the state of Minas Gerais, Brazil), studies on the fauna which use this vegetation type are still incipient. Thus, our study creates subsidies for the forest management of these forests. In addition, our results showed that forest management changes the bird community in these forests, decreasing species richness. We suggest that further studies involving communities of different animal taxa should be conducted in these monodominant forests in order to create more solid bases for forest management and conservation policies in these forests, and to enable comparisons with the results presented herein.

CONCLUSION

We conclude that the bird communities of the sampled phytophysiognomies in the studied montane ecosystem are different from each other due to structural and management differences in the studied vegetation types. We highlight that the monodominant Eremanthus erythropappus forests have a unique (their own) and dissimilar bird community, and are characterized as an ecotonal community for sharing species with the adjacent vegetation (i.e. cloud forests and rupestrian fields), pointing out the importance of conserving these monodominant forests for maintaining biodiversity in the studied vegetation mosaic.

ACKNOWLEDGMENTS

The authors thank the fellowships. ASM received research fellowship from FAPEMIG (ID-11512); FSM received research fellowship from FAPEMIG (ID-11511); RFM research fellowship from CAPES (Code 001).

REFERENCES

  • ALEXANDRINO, E. R.; BUECHLEY, E. R.; PIRATELLI, A. J.; FERRAZ, K. M. P. M. B.; MORAL, R. A.; SEKERCIOGLU, Ç. H.; SILVA, W. R.; COUTO, H. T. Z. Bird sensitivity to disturbance as an indicator of forest patch conditions: An issue in environmental assessments. Ecological Indicators, v. 66, p. 369-381, 2016.
  • ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; DE MORAES, G.; LEONARDO, J.; SPAROVEK, G. Köppen’s climate classificationmap for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013.
  • ANJOS, L.; ZANETTE, L.; LOPES, E. V. Effects of fragmentation on the bird guilds ofthe Atlantic Forest in North Paraná, Southern Brazil. Ornitologia Neotropical, v. 15, p. 137–144, 2004.
  • ARAÚJO, E. J. G. D.; PÉLLICO NETTO, S.; SCOLFORO, J. R. S.; MACHADO, S. D. A.; MORAIS, V. A.; DAVID, H. C. Sustainable Management of Eremanthus erythropappus in Minas Gerais, Brazil–A Review. Floresta e Ambiente, v. 25, n. 3, p. e20160516, 2018.
  • BASELGA, A.; ORME, D.; VILLEGER, S.; BORTOLI, J.; LEPRIEUR, J. Betapart: Partitioning Beta Diversity in to Turnover and Nestedness Components. R package version 1.5.0, 2018. Available at: https://CRAN.R-project.org/package=betapart Accessed in: August 10th 2019.
    » https://CRAN.R-project.org/package=betapart
  • BASELGA, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients.Methods in Ecology and Evolution, v. 4, p. 552-557, 2013.
  • BIBBY, C. J.; BURGESS, N. D.; HILL, D. A.; MUSTOE, S. H. Bird Census Techniques. 2nd ed. San Diego: Academic Press Limited, 2000.
  • BIRDLIFE INTERNATIONAL. Search for species, 2020. Available at: http://www.birdlife.org Accessed in: August 10th 2020.
    » http://www.birdlife.org
  • BRAGA, T. V.; ZANZINI, A. C. S.; CERBONCINI, R. A. C.; MIGUEL, M.; MOURA, A. S. Avifauna em praças de Lavras (MG): riqueza, similaridade e influência de variáveis do ambiente urbano. Revista Brasileira de Ornitologia, v. 18, n. 1, p. 26-33, 2010.
  • BORGES, E. R.; PRADO-JUNIOR, J.; SANTANA, L. D.; DELGADO, C. N.; RAYMUNDO, D.; RIBEIRO, J. H. C.; ROSSATTO, D. R, CARVALHO, F. A. Trait variation of a generalist tree species (Eremanthus erythroppapus, Asteraceae) in two adjacent mountain habitats: savanna and cloud forest. Australian Journal of Botany, v. 66, n. 8, p. 640-646, 2019.
  • BRIDGEWATER, S.; RATTER, J. A.; RIBEIRO, J. F. Biogeografic patterns, β-diversity and dominance in the Cerrado biome of Brazil. Biodiversity and Conservation, v. 13, n. 12, p. 2295-2318, 2004.
  • CAPUZZO, J. P.; ROSSATTO, D. R.; FRANCO, A. C. Differences in morphological and physiological leaf characteristics between Tabebuia aurea and T. impetiginosa is related to their typical habitats of occurrence. Acta Botanica Brasilica, v. 26, n. 3, p. 519-526, 2012.
  • CARRARA, L. A.; FARIA, L. C. P. Aves de floresta montana da Serra do Cip Mata Atlântica da Cadeia do Espinhaço. Cotinga, v. 34, p. 43-56, 2012.
  • CASTRO, A. A. J. F.; MARTINS, F. R.; TAMASHIRO, J. Y.; SHEPHERD, G. J. How rich is the flora of Brazilian Cerrados? Annals of the Missouri Botanical Garden, v. 86, p. 192–224, 1998.
  • CLARKE, K. R. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, v. 18, p. 117-143, 1993.
  • COSTA, L. P.; LEITE, Y. L. R.; FONSECA, G. A. B.; FONSECA, M. T. Biogeography of South American forest mammals: endemism and diversity in the Atlantic Forest. Biotropica, v. 32, p. 872-881, 2000.
  • CRACRAFT, J. Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithological monographs, v. 36, p. 49-84, 1985.
  • D’ANGELO NETO, S.; VENTURIM, N.; OLIVEIRA–FILHO, A. T.; COSTA, F. A. F. Avifauna de quatro fisionomias florestais de pequenos tamanhos (58 ha.) no campus da UFLA. Revista Brasileira de Biologia, v. 58, p. 463-472, 1998.
  • DEVELEY, P. F.; STOUFFER, P. C. Effects of roads on movements by understory birds in mixed-species flocks in central Amazonian Brazil. Conservation Biology, v. 15, p. 1416-1422, 2001.
  • DRUMMOND, G. M.; MARTINS, C. S.; GRECO, M. B.; VIEIRA, F. Biota Minas: Diagnostico do conhecimento sobre a biodiversidade no Estado de Minas Gerais-subsidio ao Programa Biota Minas, 2009. In: Biota Minas: Diagnostico do conhecimento sobre a biodiversidade no Estado de Minas Gerais-Subsidio ao Programa Biota Minas. Belo Horizonte: Fundação Biodiversitas.
  • ERIZE, F.; MATA, J. R. R.; RUMBOLL, M. Birds of South America: nonpasserines: rheas to woodpeckers. Canada: Princeton University Press, 2006.
  • FLORA DO BRASIL. Jardim Botânico do Rio de Janeiro, 2020. Available at: http://reflora.jbrj.gov.br/reflora/floradobrasil/FB5315 Accessed in: March 18 th 2020.
    » http://reflora.jbrj.gov.br/reflora/floradobrasil/FB5315
  • FONTY, E.; MOLINO, J. F.; PRÉVOST, M. F.; SABATIER, D. A new case of neotropicalmonodominant forest: Spirotropis longifolia (Leguminosae -Papilionoideae) in French Guiana. Journal of Tropical Ecology, v. 27, n. 6, p. 641-644, 2011.
  • GARECA, E. E., HERMY, M., FJELDSÅ, J., OLIVIER, H. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodiversity and Conservation, v. 19, p. 3327–3346, 2010.
  • HAFFER, J. On the “river effect” in some forest birds of southern Amazonia. Boletim do Museu Paraense Emilio Goeldi, v. 8, p. 217-245, 1992.
  • HAYES, F. E.; SEWLAL, J. N. The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography, v. 31, p. 1809-1818, 2004.
  • IUCN. The IUCN Red List of Threatened Species. Version 2018-2, 2020 Available at: https://www.iucnredlist.org Accessed in: January 10th 2020.
    » https://www.iucnredlist.org
  • KARK, S.; VAN RENSBURG, B. J. Ecotones: marginal or central areas of transition? Israel Journal Ecology and Evolution, v. 52, n. 1, p. 29-53, 2006.
  • KLINK, C. A.; MACHADO, R. B. A conservação do Cerrado brasileiro. Megadiversidade, v. 1, n. 1, p. 147-155, 2005.
  • LIMA, L. P. Z.; LOUZADA, J.; CARVALHO, L. M. T.; SCOLFORO, J. R. S. Análise da vulnerabilidade natural para implantação de unidades de conservação na microrregião da Serra de Carrancas, MG. Cerne, v. 17, n. 2, p. 151-159, 2011.
  • LIU, J.; OUYANG, Z; TAYLOR, W. W.; GROOP, R.; TAN, Y.; ZHANG, H. A framework for evaluating the effects of human factors on wildlife habitat: the case of giant pandas. Conservation Biology, v. 13, n. 6, p. 1360-1370, 1999.
  • LLOYD, H.; MARSDEN, S. J. Bird community variation across Polylepis woodland fragments and matrix habitats: implications for biodiversity conservation within a high Andean landscape. Biodiversity and Conservation, v. 17, n. 11, p. 2645-2660, 2008.
  • LOPES, L. E. As aves da região de Varginha e El Mendes, sul de Minas Gerais, Brasil. Acta Biologica Leopoldensia, v. 28, n. 1, p. 46-54. 2006.
  • LOPES, L. E.; PINHO, J. B.; BERNARDON, B.; OLIVEIRA, F. F.; BERNARDON, G.; FERREIRA, L. P.; VASCONCELOS, M. F.; MALDONADO-COELHO, M.; NOBREGA, P. F. A.; RUBIO, T. C. Aves da chapada dos Guimarães, Mato Grosso, Brasil: uma síntese histica do conhecimento. Papéis Avulsos de Zoologia, v. 49, p. 9-47, 2009.
  • LOPES, L. E.; REIS, J. N.; MOURA, A. S.; CORRÊA, B. S.; CARVALHO, C. M. S.; JOSÉ, H.; PEIXOTO, C.; VASCONCELOS, M. F.; MALDONADO-COELHO, M.; REZENDE, M. A. Aves de três municípios do Alto Rio São Francisco, Minas Gerais, Brasil. Atualidades Ornitolicas, v. 196, p. 49-62, 2017.
  • LORENZI, H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbeas nativas do Brasil. Volume 3. Nova Odessa: Plantarum, 2016.
  • MACARTHUR, R. H.; PIANKA, E. R. On optimal use of a patchy environment. The American Naturalist, v. 100, n. 916, p. 603-609, 1966.
  • MACARTHUR, R. H.; WILSON, E. O. The Theory of Island Biogeography. Princeton: Princeton University Press, 1967.
  • MACHADO, A. B. M.; FONSECA, G. A. B.; MACHADO, R. B.; AGUIAR, L. M. S.; LINS, L. V. Livro vermelho das espécies ameaçadas de extinção da fauna de Minas Gerais. Belo Horizonte: Fundação Biodiversitas, 1998.
  • MARIANO, R. F.; FONTES, M. A. L.; SANTOS, R. M.; MENDES, C. N.; MOURA, A. S.; TORRES, D. M.; FREITAS, L. B.; BARBOSA, A. C. M. C.; CARVALHO, W. A. C. Well-sampled regions risk loosing key biological data: a case study in the Atlantic Forest. Biodiversity and Conservation, v. 28, p. 2581-2598, 2019.
  • MARIMON, B. S.; FELFILI, J. M. Seed rain in a monodominant Brosimum rubescens Taub forest and an adjacent mixed forest in the Araguaia River Valley, Mato Grosso State, Brazil. Acta Botanica Brasilica, v. 20, n. 2, p. 423-432, 2006.
  • MARTÍNEZ-MORALES, M. A. Landscape patterns influencing bird assemblages in a fragmented Neotropical cloud forest. Biological Conservation, v. 121, n. 1, p. 117-126, 2005.
  • MILLI, M. S.; PASSAMANI, M. Impacto da Rodovia Josil Espíndula Agostini (ES-259) sobre a mortalidade de animais silvestres (Vertebrata) poratropelamento. Natureza Online, v. 4, n. 2, p. 40-46, 2006.
  • MITTERMEIER, R. A.; FONSECA, G. A. B.; RYLANDS, A. B.; BRANDON, K. A brief history of biodiversity conservation in Brazil. Conservation Biology, v. 19, n. 3, p. 601-611, 2005.
  • MMA. Ministério do Meio Ambiente. Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção. 2014. Available at: http://www.in.gov.br/autenticidade.html Accessed in: Jan 10th 2020.
    » http://www.in.gov.br/autenticidade.html
  • MOURA, A. S.; CORRÊA, B. S.; MACHADO, F. S. Riqueza, composição e similaridade da avifauna em remanescente florestal e áreas antropizadas no sul de Minas Gerais. Revista Agrogeoambiental, v. 7, n. 1, p. 41-52, 2015.
  • MOURA, A. S.; MACHADO, F. S.; MARIANO, R. F.; SOUZA, C. R.; FONTES, M. A. L. Bird community of upper-montane rupestrian fields in south of Minas Gerais state, southeastern Brazil. Acta Scientiarum Biological Sciences, v. 42, p. e48675, 2020.
  • MOURA, A. S.; MACHADO, F. S.; MARIANO, R. F.; LEITE, L. H.; FONTES, M. A. L. Bird Community in Rupestrian Fields from an Atlantic Forest-Cerrado Ecotone: Notes on Habitat Losses and Conservation of the Threatened Species. Biodiversidade Brasileira, v. 1, n. 11, p. 1-13, 2021.
  • MOTA, J. V. L.; CARVALHO, A. A. F.; TINOCO, M. S. Composição da avifauna e sua relação com áreas manejadas na restinga da Reserva Imbassaí, Litoral Norte da Bahia, Brasil. Ornithologia, v. 5, n. 1, p. 6-18, 2012.
  • MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. B.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, p. 853-858, 2000.
  • OKSANEN, J.; BLANCHET, F. G.; KINDT, R.; LEGENDRE, P.; MINCHIN, P. R.; O’HARA, R. B.; SIMPSON, G. L.; SOLYMOS, P.; HENRY, M.; STEVENS, H.; SZOECS, E.; WAGNER, H. Vegan: Community Ecology Package. R package version 2.5-2, 2018. Available at: https://CRAN.R-project.org/package=vegan Accessed in: January 10th 2020.
    » https://CRAN.R-project.org/package=vegan
  • OLIVEIRA-FILHO, A.T.; FONTES, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica, v. 32, n. 4b, p. 793-810, 2000.
  • OLIVEIRA-FILHO, A. T.; CARVALHO, D. A.; FONTES, M. A. L.; DEN BERG, E. V.; CARVALHO, W. A. C. Variaçs estruturais do compartimento arbeo de uma floresta semidecídua alto-montana na chapada das Perdizes, Carrancas, MG. Revista Brasileira de Botânica, 27(2), 291-309, 2004.
  • PEDRALLI, G.; TEIXEIRA, M. C. B.; NUNES, Y. R. Estudos sinecolicos sobre a Candeia (Vanillopsis erythropapa Schult. BIP) na estação ecolica do Tripuí, Ouro Preto (MG, Brasil). Árvore, v. 21, p. 117-118, 1997.
  • PIACENTINI, V. Q.; ALEIXO, A.; AGNE, C. E.; MAURÍCIO, G. N.; PACHECO, J. F.; BRAVO, G. A.; BRITO, G. R. R.; NAKA, L. N.; OLMOS, F.; POSSO, S.; SILVEIRA, L. F.; BETINI, G. S.; CARRANO, E.; FRANS, I.; LEES, A. C.; LIMA, L. M.; PIOLI, D.; SCHUNK, F.; AMARAL, F. R.; BENCKE, G. A.; COHN-HAFT, M.; FIGUEIREDO, L. F. A.; STRAUBE, F. C.; CESARI, E. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee. Revista Brasileira de Ornitologia, v. 23, n. 2, p. 91-298, 2015.
  • R. Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018. Available at: https://www.R-project.org/ Accessed in: January 10th 2020.
    » https://www.R-project.org/
  • RAHBEK, C. The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, v. 149, n. 5, p. 875902, 1997.
  • RATTER, J.; BRIDGEWATER, S.; RIBEIRO, J. F. Analysis of the floristic composition of the Brazilian Cerrito vegetation III: Comparison of the woody vegetation of 376 areas. Edinburgo Journal of Botany, v. 60, n. 1, p. 57-109, 2003.
  • RIBAS, C. C.; MIYAKI, C. Y.; CRACRAFT, J. Phylogenetic relationships, diversification and biogeography in Neotropical Brotogeris parakeets. Journal of Biogeography, v. 36, p. 1712-1729, 2009.
  • RIBEIRO, J. F; WALTER, B. M. T. Fitofisionomias do bioma Cerrado. In: Sano, S. M., Almeida, S. P. (Eds) Cerrado: ambiente e flora. Embrapa-CPAC, Planaltina. p. 89-166, 1998.
  • RIBON, R. Lista preliminar da avifauna do município de Ijaci, Minas Gerais. Ceres, v. 47, n. 274, p. 665-682, 2000.
  • RIDGELY, R. S.; TUDOR, G. Field guide to the songbirds of South America, the passerines. Austin: University of Texas Press, 2009.
  • RICKLEFS, R. E. A economia da natureza. Rio de Janeiro: Guanabara, 2003.
  • RODRIGUES, M.; CARRARA, L. A.; FARIA, L. P.; GOMES, H. B. The birds of Parque Nacional da Serra do Cip the Rio Cipvalley, Minas Gerais, Brazil. Revista Brasileira de Zoologia, v. 22, n. 2, p. 326-338, 2005.
  • RODRIGUES, M.; FREITAS, G. H.; COSTA, L. M.; DIAS, D. F.; VARELA, M. L.; RODRIGUES, L. C. Avifauna, Alto do Palácio, Serra do CipNational Park, state of Minas Gerais, southeastern Brazil. CheckList, v. 7, n. 2, p. 151-161, 2016.
  • SANTOS, M. P. D.; SILVA, J. M. C. As aves das savanas de Roraima. Revista Brasileira de Ornitologia, v. 15, n. 2, p. 189-207, 2007.
  • SCOLFORO, J. R. S.; OLIVEIRA, A. D.; DAVIDE, A. C.; MELLO, J. M, ACERBI JUNIOR, F. W. Manejo sustentado das Candeias Eremanthus erythropappus (DC) McLeisch e Eremanthus incanus (Less.) Less. Lavras: UFLA/FAEPE, 2002.
  • SEBBENN, A. M.; SEOANE, C. E. S.; KAGEYAMA, P. Y.; LACERDA, C. M. B. Estrutura genética em populaçs de Tabebuia cassinoides: implicaçs para o manejo florestal e a conservação genética. Revista do Instituto Florestal, v. 13, n. 2, p. 93-113, 2001.
  • SICK, H. Ornitologia brasileira. 2 ed. Rio de Janeiro: Editora NovaFronteira. 1997.
  • SILVA, J. M. C. Birds of the Cerrado region, South America. Steenstrupia, v. 21, p. 69-92, 1995.
  • SILVA, J. M. C.; SANTOS, M. P. D. A importância relativa dos processos biogeográficos na formação da avifauna do Cerrado e de outros biomas brasileiros, p. 219-233, 2005. In: Scariot A, Sousa-Silva JC, Felfili JM (eds.)Cerrado: ecologia, biodiversidade e conservação. Brasília: Ministério do Meio Ambiente.
  • Silva, J. M. C.; Rylands, A. B.; Fonseca, G. A. B. The fate of the Amazonian areas of endemism. Conservation Biology, v. 19, p. 689-694, 2005.
  • SOUZA, C. R.; PAULA, G. G. P.; MENDES, C. N.; MAIA, V. A.; AGUIAR-CAMPOS, N.; ARAUJO, F. C.; MARIANO, R. F.; OLIVEIRA, H. F.; MOREL, J. D.; SANTOS, R. M. Local-scale tree community ecotones are distinct vegetation types instead of mixed ones: a case study from the Cerrado-Atlantic forest ecotonal region in Brazil. Australian Journal of Botany, v. 68, p. 153-164, 2020.
  • TSOLMON, G.; KIM, J. W. Vegetation of the Khogno Khan Natural Reserve, Mongolia. Korean Journal of Ecology, v. 24, n. 6, p. 365-370, 2001.
  • TONETTI, O. A. O.; DAVIDE, A. C.; SILVA, E. D. Qualidade física e fisiolica de sementes de Eremanthus erythropappus (DC.) Mac. Leish. Revista Brasileira de Sementes, v. 28, n. 1, p. 114-121, 2006.
  • UEZU, A.; METZGER, J. P.; VIELLIARD, J. M. E. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biological Conservation, v. 123 p. 507–519, 2005.
  • VAN PERLO, B. Birds of South America: Passerines. Canada: Princeton University Press. 2015.
  • VASCONCELOS, M. F.; D’ANGELO NETO, S.; BRAND, L. F. S.; VENTURIN, N.; OLIVEIRA-FILHO, A. T.; COSTA, F. A. F. Avifauna de Lavras e municípios adjacentes, sul de Minas Gerais, e comentários sobre sua conservação. Unimontes Científica, v. 4, p. 153-165, 2002.
  • VASCONCELOS, M. F. A avifauna dos campos de altitude da Serra do Capara estados de Minas Gerais e Espírito Santo, Brasil. Cotinga, v. 19, p. 40-48, 2003.
  • VASCONCELOS, M. F.; D’ANGELO NETO, S. Padrões de distribuição e conservação da avifauna na região central da Cadeia do Espinhaço e áreas adjacentes, Minas Gerais, Brasil. Cotinga, v. 28, p. 27-44, 2007.
  • VASCONCELOS, M. F. O que são campos rupestres e campos de altitude nos topos de montanha do leste do Brasil? Revista Brasileira de Botânica, v. 34, n. 2, p. 241-246, 2011.
  • VIEIRA, F. M.; PURIFICAÇÃO, K. N.; DA SILVA CASTILHO, L.; PASCOTTO, M. C. Estrutura trfica da avifauna de quatro fitofisionomias de Cerrado no Parque Estadual da Serra Azul. Ornithologia, v. 5, n. 2, p. 43-57, 2013.
  • VIELLIARD, J. M. E.; ALMEIDA, M. E. C.; ANJOS, L.; SILVA, W. R. Levantamento quantitativo por pontos de escuta e o índice pontual de abundância (IPA), p 47–60, 2010. In: MATTER, S. V.; STRAUBE, F. C.; ACCORDI, I.; PIACENTINI, V.; CÂNDIDO-JR, J. F. (Eds.) Ornitologia e Conservação. Ciência Aplicada, Técnicas de pesquisa e Levantamento. Rio de Janeiro:Technical Books.
  • WEBSTER, G. L. The panorama of neotropical cloud forests. p. 53-77, 1995. In: CHURCHILL, S. P.; BALSLEV, H.; FORERO, E.; LUTEYN, J. L. (Eds.) Biodiversity and conservation of Neotropical montane forests. Proceedings of Neotropical montane forest biodiversity and conservation symposium. New York: The New York Botanical Garden.

SUPPLEMENTARY MATERIAL

Supplementary material 1. Bird species list of montane phytophysiognomies with abundances (managed candeias = MAC, Field = FIE, preserved candeias = PRC e florestas nebulares= FOR), from Perdizes Plateau, Brazil.

Família/Espécie MAC FIE PRC FOR
Tinamidae
Rhynchotus rufescens (Temminck, 1815) 0 4 0 0
Cracidae
Penelope obscura Temminck, 1815 0 0 2 1
Accipitridae
Geranoaetus melanoleucus (Vieillot, 1819) 0 1 0 0
Buteo brachyurus Vieillot, 1816 0 0 1 0
Columbidae
Patagioenas picazuro (Temminck, 1813) 16 11 11 18
Zenaida auriculata (Des Murs, 1847) 5 7 11 0
Leptotila verreauxi Bonaparte, 1855 0 0 2 0
Cuculidae
Piaya cayana (Linnaeus, 1766) 1 0 0 0
Trochilidae
Phaethornis pretrei (Lesson & Delattre, 1839) 1 1 7 4
Phaethornis eurynome (Lesson, 1832) 0 0 0 4
Eupetomena macroura (Gmelin, 1788) 0 1 1 0
Colibri serrirostris (Vieillot, 1816) 13 31 11 1
Chlorostilbon lucidus (Shaw, 1812) 7 5 17 7
Thalurania glaucopis (Gmelin, 1788) 1 0 0 0
Leucochloris albicollis (Vieillot, 1818) 0 0 0 3
Amazilia fimbriata (Gmelin, 1788) 0 0 0 1
Amazilia láctea (Lesson, 1832) 0 0 3 1
Heliomaster squamosus (Temminck, 1823) 0 1 0 0
Bucconidae
Nystalus chacuru (Vieillot, 1816) 0 0 1 0
Ramphastidae
Ramphastos toco Statius Muller, 1776 2 5 0 3
Ramphastos dicolorus Linnaeus, 1766 0 0 0 1
Picidae
Veniliornispasserinus (Linnaeus, 1766) 1 0 2 1
Colaptes campestris (Vieillot, 1818) 6 15 2 0
Falconidae
Milvago chimachima (Vieillot, 1816) 0 0 0 3
Família/Espécie MAC FIE PRC FOR
Psittacidae
Psittacara leucophthalmus (Statius Muller, 1776) 0 4 0 0
Eupsittula aurea (Gmelin, 1788) 0 6 2 0
Tyrannidae
Hirundinea ferruginea (Gmelin, 1788) 12 8 2 0
Camptostoma obsoletum (Temminck, 1824) 0 0 0 1
Elaenia flavogaster (Thunberg, 1822) 0 1 0 1
Elaenia chiriquensis Lawrence, 1865 0 1 1 0
Elaenia obscura (d’Orbigny & Lafresnaye, 1837) 6 2 22 11
Culicivora caudacuta (Vieillot, 1818) 6 26 0 0
Serpophaga subcristata (Vieillot, 1817) 3 1 5 4
Myiarchus ferox (Gmelin, 1789) 7 1 9 0
Colonia colonus (Vieillot, 1818) 1 0 1 2
Lathrotriccus euleri (Cabanis, 1868) 0 0 0 9
Knipolegus cyanirostris (Vieillot, 1818) 0 0 0 2
Knipolegus lophotes Boie, 1828 10 8 8 0
Knipolegus nigerrimus (Vieillot, 1818) 10 33 17 7
Xolmis cinereus (Vieillot, 1816) 0 1 0 0
Xolmis velatus (Lichtenstein, 1823) 2 10 0 0
Muscipipra vetula (Lichtenstein, 1823) 8 0 16 10
Thamnophilidae
Dysithamnus mentalis (Temminck, 1823) 0 0 0 2
Thamnophilus ruficapillus Vieillot, 1816 0 0 2 0
Thamnophilus caerulescens Vieillot, 1816 4 0 13 21
Pyriglena leucoptera (Vieillot, 1818) 0 0 6 10
Melanopareiidae
Melanopareia torquata (Wied, 1831) 0 13 1 0
Conopophagidae
Conopophaga lineata (Wied, 1831) 0 0 0 7
Rhinocryptidae
Scytalopus petrophilus Whitney, Vasconcelos, Silveira & Pacheco, 2010 0 0 0 7
Dendrocolaptidae
Sittasomus griseicapillus (Vieillot, 1818) 0 0 2 3
Família/Espécie MAC FIE PRC FOR
Xenopidae
Xenops rutilans Temminck, 1821 0 0 0 1
Furnariidae 0 0 0 0
Heliobletus contaminates Pelzeln, 1859 0 0 0 11
Syndactyla rufosuperciliata (Lafresnaye, 1832) 0 0 0 2
Anumbius annumbi (Vieillot, 1817) 0 3 0 0
Synallaxis spixi Sclater, 1856 7 2 5 2
Pipridae
Chiroxiphia caudata (Shaw &Nodder, 1793) 0 0 0 5
Tityridae
Schiffornis virescens (Lafresnaye, 1838) 0 0 0 1
Cotingidae
Phibalura flavirostris Vieillot, 1816 0 0 2 2
Platyrinchidae 0 0 0 0
Platyrinchus mystaceus Vieillot, 1818 0 0 0 19
Rhynchocyclidae
Mionectes rufiventris Cabanis, 1846 0 0 0 3
Phylloscartes ventralis (Temminck, 1824) 0 1 5 1
Tolmomyias sulphurescens (Spix, 1825) 0 0 0 2
Hemitriccus diops (Temminck, 1822) 0 0 0 4
Hemitriccus nidipendulus (Wied, 1831) 0 0 0 1
Hirundinidae
Pygochelidon cyanoleuca (Vieillot, 1817) 0 0 4 0
Troglodytidae
Troglodytes musculus Naumann, 1823 1 1 5 0
Cistothorus platensis (Latham, 1790) 1 13 0 0
Turdidae
Turdus leucomelas Vieillot, 1818 0 0 0 4
Turdus rufiventris Vieillot, 1818 0 0 0 2
Turdus albicollis Vieillot, 1818 0 0 0 8
Motacillidae
Anthus nattereri Sclater, 1878 0 6 0 0
Anthus hellmayri Hartert, 1909 0 15 0 0
Família/Espécie MAC FIE PRC FOR
Parulidae
Setophaga pitiayumi (Vieillot, 1817) 0 1 0 0
Basileuterus culicivorus (Deppe, 1830) 0 0 2 0
Myiothlypis leucoblephara (Vieillot, 1817) 0 0 1 20
Icteridae
Gnorimopsar chopi (Vieillot, 1819) 0 11 0 0
Molothrus bonariensis (Gmelin, 1789) 0 1 0 0
Passerellidae
Zonotrichia capensis (Statius Muller, 1776) 43 28 32 11
Ammodramus humeralis (Bosc, 1792) 19 22 0 0
Thraupidae
Pipraeidea melanonota (Vieillot, 1819) 0 0 2 3
Stephanophorus diadematus (Temminck, 1823) 0 0 0 2
Schistochlamys ruficapillus (Vieillot, 1817) 3 2 8 0
Tangara cyanoventris (Vieillot, 1819) 0 0 18 26
Tangara desmaresti (Vieillot, 1819) 0 0 5 7
Tangara sayaca (Linnaeus, 1766) 0 0 0 12
Tangara cayana (Linnaeus, 1766) 0 0 2 4
Sicalis citrina Pelzeln, 1870 8 25 0 0
Volatinia jacarina (Linnaeus, 1766) 0 0 2 0
Tachyphonus coronatus (Vieillot, 1822) 0 0 0 8
Trichothraupis melanops (Vieillot, 1818) 0 0 0 6
Tersina viridis (Illiger, 1811) 0 6 2 0
Dacnis cayana (Linnaeus, 1766) 0 2 7 2
Coereba flaveola (Linnaeus, 1758) 0 0 0 3
Sporophila caerulescens (Vieillot, 1823) 12 5 5 3
Emberizoides herbicola (Vieillot, 1817) 9 11 0 0
Coryphaspiza melanotis (Temminck, 1822) 0 2 0 0
Saltator similis d’Orbigny&Lafresnaye, 1837 3 0 6 13
Fringillidae
Spinus magellanicus (Vieillot, 1805) 5 3 8 0
Euphonia chlorotica (Linnaeus, 1766) 2 0 2 0
Cardinalidade
Piranga flava (Vieillot, 1822) 0 0 8 0

Data availability

Data citations

FLORA DO BRASIL. Jardim Botânico do Rio de Janeiro, 2020. Available at: http://reflora.jbrj.gov.br/reflora/floradobrasil/FB5315 Accessed in: March 18 th 2020.

IUCN. The IUCN Red List of Threatened Species. Version 2018-2, 2020 Available at: https://www.iucnredlist.org Accessed in: January 10th 2020.

Publication Dates

  • Publication in this collection
    16 Dec 2022
  • Date of issue
    2022

History

  • Received
    15 Oct 2021
  • Accepted
    13 Apr 2022
UFLA - Universidade Federal de Lavras Universidade Federal de Lavras - Departamento de Ciências Florestais - Cx. P. 3037, 37200-000 Lavras - MG Brasil, Tel.: (55 35) 3829-1706, Fax: (55 35) 3829-1411 - Lavras - MG - Brazil
E-mail: cerne@dcf.ufla.br