Acessibilidade / Reportar erro

Identification of 20 species from the Peruvian Amazon tropical forest by the wood macroscopic features

ABSTRACT

Background:

The biodiversity of the Peruvian Amazon tropical forests is one of the most expressive in the world, with 2500 forest species, although restricted to about 250 tree species used commercially. This species diversity indicates the challenge magnitude for research in taxonomy and timber species identification. Likewise, it implies the complexity of biodiversity conservation and restoration measures, which are directly related to the control of deforestation, cutting and transport of illegal wood. With this objective, the present study describes the macroscopic wood anatomical features in order to identify 20 tree species from Peruvian Amazon Forest, “Selva Central”, including an identification key and tree species botanical validation.

Results:

The wood species are included in 12 families commonly found in the tropical forests of Peru, highlighting the Fabaceae (25%), Moraceae (15%), Podocarpaceae and Lauraceae (10%) families and are sold as timber for several uses and applications in the internal market and for export. The wood species presented common anatomical features, such as diffuse porosity, visible axial parenchyma mainly distinct, and, eventually, with ray storied, e. g: A. cearensis, M. balsamum and M. peruiferum.

Conclusion:

The tropical tree species identification is possible by analyzing their wood macroscopic anatomical structure. The results can be also applied in the wood trade traceability by controlling deforestation and illegal wood commerce and in proposing policies for biodiversity conservation and sustainable use of natural resources. They constitute, likewise, a database for the recent wood identification methodologies presented in the specialized literature.

Key words:
Forensic wood identification; wood anatomy identification; Tropical timber species; Peruvian Amazon forests; misidentification; illegal logging

HIGHLIGHTS

Identification by anatomical structure enable wood trade traceability. Tree species identification is essential for controlling deforestation. Machine learning satisfactorily works for wood anatomy. Convolutional neural networks can identify tropical Peruvian Amazon species.

INTRODUCTION

In the context of Neotropical forests, Peru is one of the most important countries of South America, due to its mega diversity of flora and fauna distributed in a vast territory of 1,285,215.9 km2. These areas are characterized by the typologies of mountains, coast and jungle, the latter classified as high, low, and central jungle (Selva Central). The country’s forest area is 72 million ha, with 69 million Amazonian forests, 4 million seasonally dry forests and 200,000 ha of Andean forests (Ministry of Agrarian Development and Irrigation of Peru, 2022MINISTÉRIO DE DESSARROLLO AGRARIO Y RIEGO (MIDAGRI). Ministerio de Desarrollo Agrario y Riego - MIDAGRI. Gobierno del Perú, 2022. ( (https://www.gob.pe/ ) Access: 23 May 2022.
https://www.gob.pe/...
). It is estimated that between 2015-2020 the forest deforestation worldwide was about 10 million hectares per year (FAO, 2020FAO; PNUMA 2020. El estado de los bosques del mundo - Los bosques, la biodiversidad y las personas. Roma. Doi: https://doi.org/10.4060/ca8642es.).

The time series on forest area reduction recommend the implementation of measures and strategic actions for the protection and conservation of natural forest resources, with the support and partnership of institutions such as the International Union for Conservation of Nature (IUCN), as well as the compliance with the Convention on International Trade in Endangered Species (CITES) (SERFOR, 2016SERFOR (2016). “Peru define prioridades de Gobernanza Forestal y Reducción de Tala y comercio Ilegal de madera [Peru defines priorities for Forest Governance and Reduction of Logging and Illegal timber trade],” ( “Peru define prioridades de Gobernanza Forestal y Reducción de Tala y comercio Ilegal de madera [Peru defines priorities for Forest Governance and Reduction of Logging and Illegal timber trade],” (https://www.serfor.gob.pe/portal/noticias/negocios-sostenibles/peru-define-prioridades-de-gobernanza-forestal-y-reduccion-de-tala-y-comercio-ilegal-de-madera ), accessed on 7 January 2021.
https://www.serfor.gob.pe/portal/noticia...
). Likewise, the implementation of initiatives to control illegal logging and the felling, transport and informal trade of tropical wood are necessary and essential, concomitant with the application of sustainable forest management practices (de Lima et al., 2018DE LIMA, L. S.; MERRY, F.; SOARES-FILHO, B.; RODRIGUES, H. O.; DAMASCENO, C.D.S.; BAUCH, M. A. Illegal logging as a disincentive to the establishment of a sustainable forest sector in the Amazon, PloS One 13(12), 1-21, 2018, DOI: 10.1371/journal.pone.0207855
https://doi.org/10.1371/journal.pone.020...
).

The implementation of measures to control illegal wood at SERFOR inspection posts requires the application of wood anatomy applied to species identification, not only in Peru but in other Latin America countries likewise Brazil, country that has, in its territory, most of the tropical Amazon. In this regard, for the conditions of the Peruvian Tropical Amazon “Selva Central” forest, the contribution of Ferreira et al. (2021FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.) stands out, identifying and describing 20 wood species by their macroscopic anatomical structure. This work highlights that wood species originating from the Peruvian Amazon “Selva Central” are, in general, characterized by inappropriate common names and sometimes the same name is applied to different wood species. As an example, the common names “Moena” with different color belongs are different genus of Lauraceae: Aniba Aubl., Ocotea Aubl, Persea Mill. and Pleurothyrium Nees. In Ferreira and Inga (2022)FERREIRA, C. A.; INGA, J. G. Guia de anatomia e identificación de 50 especies maderables comerciales em Selva Central, Perú, Universidad Continental, Huancayo, Peru, 2022, 164P. added 13 more species commercialized as “Roble corriente” or “Moenas” with different colors in the Peruvian Amazon Forest with three more genera in addition to those mentioned: Aiouea Aubl., Licaria Aubl and Nectandra Rol. Ex Rottb., all of the last three with botanical validation. In this work, were found a vulnerable tree species Aniba perutilis Hemsl “comino” according to the IUCN (2023)IUCN 2023. The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org
https://www.iucnredlist.org...
traded as “moena amarilla”. Other studies using forensic anatomy to identify woods worldwide highlight the need for training the anatomist responsible for the identification, reference material indexed in xilotecas associated with an herbarium with botanical identification (Carlquist, 2001CARLQUIST, S. Comparative wood anatomy. Springer Book Archive, Berlin, Heidelberg, 2001. doi.org/10.1007/978-3-662-04578-7; Gasson et al., 2011GASSON, P.; BAAS, P.; WHEELER, E. Wood anatomy of Cites - Listed tree species, IAWA Journal 32(2), 155-198, 2011. DOI: 10.1163/22941932-90000050.
https://doi.org/10.1163/22941932-9000005...
; Dormontt et al.2015DORMONTT, E. E.; BONER, M.; BRAUN, B.; BREULMANN, G.; DEGEN, B.; ESPINOZA, E.; GARDNER, S.; GUILLERY, P.; HERMANSON, J. C.; et al., Forensic timber identification: It’s time to integrate disciplines to combat illegal logging, Biological Conservation 191, 790-798, 2015. DOI: 10.1016/j.biocon.2015.06.038
https://doi.org/10.1016/j.biocon.2015.06...
; Ruffinato et al., 2015RUFFINATTO, F.; CRIVELLARO, A.; WIEDENHOEFT, A. C. Review of macroscopic features for hardwood and softwood identification and a proposal for a new character list. IAWA Journal 36(2), 208-241, 2015. DOI: 10.1163/22941932-00000096
https://doi.org/10.1163/22941932-0000009...
; Nascimento et al., 2017NASCIMENTO, L. B.; BRANDES, A. F. N.; VALENTE, F. D. W.; TAMAIO, N. Anatomical identification of commercialized wood in the state of Rio de Janeiro, Brazil. Brazilian Journal of Botany 40(1): 291-329, 2017.; Duarte et al., 2021DUARTE, P. J.; BORGES, C. C.; FERREIRA, C. A.; CRUZ, T. M.; de SOUZA, W. R. Q., MORI, F. A. Anatomical identification of tropical woods traded in Lavras, Brazil, Journal of Tropical Forest Science 33(1), 95-103, 2021. DOI: 10.26525/jtfs2020.32.4.95
https://doi.org/10.26525/jtfs2020.32.4.9...
; Santini Jr. et al., 2021SANTINI JR, L.; FLORSHEIM, S. M. B.; TOMAZELLO-FILHO, M. Anatomia e Identificação da Madeira de 90 Espécies Tropicais comercializadas em São Paulo, Atena Editora, Ponta Grossa, Brasil, 231p, 2021.; Ferreira et al., 2021FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.; Ferreira and Inga, 2022FERREIRA, C. A.; INGA, J. G. Guia de anatomia e identificación de 50 especies maderables comerciales em Selva Central, Perú, Universidad Continental, Huancayo, Peru, 2022, 164P. ).

Despite the traditional use of wood anatomy to tree species identification, in recent years in the specialized bibliography, new methodologies have been introduced for optimizing the process of the tropical wood identification in the trade segments. Among the several techniques are highlighted the traditional recognition of tree species using wood macroscopic images (Yusof et al., 2013YUSOF, R.; KHALID, M.; KHAIRUDDIN, A. S. M. Application of kernel genetic algorithm as nonlinear feature selection in tropical wood species recognition system. Comput Electron Agric 93:68-77, 2013.; Zhao 2013ZHAO, P. Robust wood species recognition using variable color information. Optik - Int J Light Electron Opt 124:2833-2836, 2013.; Zhao et al., 2014ZHAO, P.; DOU, G.; CHEN, G-S Wood species identification using feature-level fusion scheme. Optik - Int J Light Electron Opt 125:1144-1148, 2014.; Paula-Filho et al., 2014PAULA-FILHO, P. L.; de OLIVEIRA, L. E. S.; NISGOSKI, S.; BRITTO JR., A. S. Forest species recognition using macroscopic images. Machine Vision and Application. Springer-Verlag Berlin Heidelberg, 25, 1019-1031, 2014. Doi: 10.1007/s00138-014-0592-7; Ravidran et al., 2018RAVINDRAN, P.; COSTA, A.; SOARES, R.; WIEDENHOEFT, A. C. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods. 14:25, 2018. https://doi.org/10.1186/s13007-018-0292-9
https://doi.org/10.1186/s13007-018-0292-...
; Souza et al., 2020SOUZA, D. V.; SANTOS, J. X.; VIEIRA, H. C.; NAIDE, T. L.; NISGOSKI, S.; OLIVEIRA, E. S. An automatic recognition system of Brazilian flora species based on textural features of macroscopic images of wood. Wood Science and Technology Springer-Verlag GmbH Germany, part of Springer Nature 2020. https://doi.org/10.1007/s00226-020-01196-z
https://doi.org/10.1007/s00226-020-01196...
; Fabijanska et al., 2021FABIJANSKA, A.; MALGORZATA, D.; BARNIAK, J. Wood species automatic identification from wood core images with a residual convolutional neural network,” Computers and Electronics in Agriculture 181, 1-13, 2021. DOI: 10.1016/j.compag.2020.105941
https://doi.org/10.1016/j.compag.2020.10...
; Gonçalves et al., 2022GONCALVES, Y. L.; SIQUEIRA, E. S.; FERREIRA, C. A.; TEIXEIRA, M. da S.; CORREA, P. V.; URBINATI, C. V.; Aplicação de algoritmos de Randon Forest no suporte a identificação das especies de Handroanthus serratifolius (Vahl) S. O. Grose e Handroanthus impetiginosus (Mart. ex. DC.) Mattos (Bignoneaceae) Brazilian Journal of Development, Curitiba, Paraná, Brazil, v. 8, n.5, p. 39721-39735, 2022. DOI:10.34117/bjdv8n5-457.
https://doi.org/10.34117/bjdv8n5-457...
) and microscopic images (Mallik et al., 2011MALLIK, A.; TARRÍO-SAAVEDRA, J.; FRANCISCO-FERNANDEZ, M.; NAYA, S. Classification of wood micrographs by image segmentation. Chemom. Intell. Lab. Syst. 107, Issue 2, 351-362, 2011. Doi: https://doi.org/10.1016/j.chemolab.2011.05.005; Gurau et al., 2013GURAU, L.; TIMAR, M. C.; POROJAN, M. IORAS, F. Image processing method as a supporting tool for wood species identification. Wood Fiber Sci 45:303-313, 2013. ; Guang- Sheng and Peng 2013GUANG-SHENG, C.; PENG, Z. Wood cell recognition using geodesic active contour and principal component analysis. Optik - Int J Light Electron Opt 124:949-952, 2013 https://doi.org/10.1016/j.ijleo.2012.02.032
https://doi.org/10.1016/j.ijleo.2012.02....
). Other methodologies are mentioned, like the molecular markers or DNA Barcoding (Miranda et al., 2014MIRANDA, N. E. de O.; ALMEIDA JUNIOR, E. B.; COLLEVATTI, R. G. A genética contra os crimes ambientais: identificação de madeira ilegal proveniente de unidades de conservação utilizando marcador molecular. Genética na escola, Vol. 9, nº2, 2014. ; Yu et al., 2015YU, M.; LIU, K; ZHOU, L.; ZHAO, L.; SHENGQUAN, L. Testing three proposed DNA barcodes for the wood identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain Holzforschung, vol. 70, no. 2, 2016, pp. 127-136. https://doi.org/10.1515/hf-2014-0234
https://doi.org/10.1515/hf-2014-0234...
; Jiao et al., 2020JIAO, L.; LU, Y.; HE, T.; GUO, J.; YIN, Y.; DNA barcoding for wood identification: global review of the last decade and future perspective, IAWA Journal, 41(4), 620-643, 2020. doi: https://doi.org/10.1163/22941932-bja10041
https://doi.org/https://doi.org/10.1163/...
), NIR spectroscopy (Monteiro et al., 2010MONTEIRO, T. C.; SILVA, R. V.; LIMA, J. T.; HEIN, P. R. G.; NAPOLI, A. Use of near infrared spectroscopy to distinguish carbonization processes and charcoal sources. Cerne, Lavras, v. 16, n. 3, p. 381-390, 2010. ; Soares et al., 2017SOARES, L. F.; DA SILVA, D. C.; BERGO, M. C. J.; CORADIN, V. T. R.; BRAGA, J. W. B.; PASTORE, T. C. M. Avaliação de espectrômetro NIR portátil e PLS-DA para a discriminação de seis espécies similares de madeiras Amazônicas. Química nova, v. 40, n. 4, 418-426, 2017. http://dx.doi.org/10.21577/0100-4042.20170014
http://dx.doi.org/10.21577/0100-4042.201...
); chemometric processing of direct analysis (DART-TOFMS) and mass spectrometry-derived fingerprints (Musah et al., 2015MUSAH, R. A.; ESPINOZA, E. O.; CODY, R. B.; LESIAK, A. D.; CHRISTENSEN, E. D.; MOORE, H. E.; MALEKNIA, S.; DRIJFTHOUT, F. P. A high throughput ambient mass spectrometric approach to species identification and classification from chemical fingerprint signatures. Sci Rep 5, 11520, 2015. https://doi.org/10.1038/srep11520
https://doi.org/10.1038/srep11520...
; Evans et al., 2017EVANS, P. D.; MUNDO, I. A.; WIEMANN, M.C.; CHAVARRIA, G. D.; MCCLERE, P. J.; VOIN, D.; ESPINOZA, E. O. Identification of selected CITES-protected Araucariaceae using DART TOFMS, IAWA Journal, 38(2), 266-S3, 2017 Doi https://doi.org/10.1163/22941932-20170171; Ravindran and Wiedenhoeft, 2020RAVINDRAN, P.; WIEDENHOEFT, A. C. Comparison of two forensic wood identification technologies for ten Meliaceae woods: computer vision versus mass spectrometry. Wood Sci Technol 54, 1139-1150 (2020). https://doi.org/10.1007/s00226-020-01178-1
https://doi.org/10.1007/s00226-020-01178...
; Price et al., 2021PRICE, E. R.; MILES-BUNCH, I. A.; GASSON, P. E.; LANCASTER, C. A. Pterocarpus wood identification by independent and complementary analysis of DART-TOFMS, microscopic anatomy, and fluorescence spectrometry, IAWA Journal, 42(4), 397-418, 2021. doi: https://doi.org/10.1163/22941932-bja10064
https://doi.org/https://doi.org/10.1163/...
; Kitin et al., 2021KITIN, P.; ESPINOZA, E.; BEECKMAN, H.; et al., Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia. Annals of Forest Science 78, 31, 2021. https://doi.org/10.1007/s13595-020-01024-1
https://doi.org/10.1007/s13595-020-01024...
). However, these promising technologies of tree species identification applying wood anatomy with aim to improve the wood trade traceability have the high cost of sample processing, expensive equipments and specialized personal. In addition, they need a previously the tree species wood database demonstrably botanically identified or even using a reliable complete wood collection.

In this way, the present study applies and evaluates the efficiency of the classic methodology of forensic tree species identification, applying the wood anatomy based on 20 relevant wood species from the Peruvian Amazon Selva Central. It included an wood identification key as an efficient and easy-to-use tool at inspection and logging control posts by the Peruvian government.

MATERIAL AND METHODOS

Peruvian amazon and the tropical tree wood species surveyed

The Peruvian Amazon “Selva Central” distinguishes the climate of the “Selva Alta “and the “Selva Baja”, which are both a tropical climate. Located in the high forest are the provinces of Chanchamayo and Satipo (Junín province), which together with Oxapampa (Pasco province) make up the so-called “Selva Central” (Figure 1). The province of Chanchamayo has a tropical climate that is warm, humid, and rainy. The average annual temperature ranges from 18°C to 30°C and the precipitation is 2000 mm per year. Satipo has a tropical climate (classified as Af according to the Koppen system) located at 627 m above sea level, with an annual rainfall of 2446 mm per year and an average temperature of 20.7 °C. Oxapampa is located at 1810m above sea level, with a warm and temperate climate. The climate in Oxapampa is classified as Cfb according to the Koppen system, and the average temperature is 14.6 °C, with an annual rainfall of 3474 mm per year (Ministry of Environment - National Climate Classification Map of Peru, 2022, Ferreira et al., 2021FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.).

Figure 1
Peruvian “Selva Central” in the Satipo, Chanchamayo, and Oxapampa Provinces and the location of the sawmill companies: A) Province of Satipo (Distrito of Satipo: 1. Nematsa, SRL/11°14’17.9”S/74°37’57.2”O; and 2. Corporación Erick, 11°14’35.2”S/74°38’09.5”O; Distrito of Mazamari: 3. Industrias de la Madera SA.C; and 4. Machu Picchu Perú SAC; Distrito of S.M. de Pangoa: 5. Maderas Pangoa, 11°25’02.5”S/74°29’19.7”O; and 6. Maderera Alexis, 11°25’08.3”S/74°29’27.4”O); Province of Chanchamayo (Distrito of Pichanaqui: 7. Forestal Luis Solarzano EIRL, 10°55’59.3”S/74°52’08.6”O; and 8. Industrial Maderera Roble, 10°56’06.5”S/74°51’42.8”O; and Province of Oxapampa (Distrito of Villa Rica: 9. Maderera Rainforest Arbocco, 10°43’27.6”S/75°15’50.5”O; 10. Tulpay y Vidalon, 10°43’20.2”S/75°15’49.4”O; 11. Ind. Forestales Villa Rica SAC, 10°44’6.4”S/75°15’51.9”O; 12. Mavir Forestales EIRL, 10°43’36.4”S/75°15’47.2”O; and 13. Industrias Villa Rica IRL, 10°44’0.9”S/75°15’51.2”O). B) Native communities: Tres Unidos de Matereni 11°45’51.02”S/74°14’18.03”O and Tincabeni 11°51’25.45”S/74°15’21.26”O.

Part of this wood samples were collected in 13 sawmill companies that exploited and processed wood from tropical tree species and in two Native communities Tres Unidos Matereni and Tincabeni in the Peruvian Amazon “Selva Central”. These sawmills and these two native communities were in the 3 Peruvian provinces: Satipo (districts of Satipo, Mazamari, S.M. de Pangoa), Chanchamayo (district Pichanaqui), and Oxapampa (district Villa Rica). In the sawmills, the collected wood samples were in their primary transformation process, being collected woody disks and identified by the vernacular name. In tree species located at forestry areas - concessions authorized by the National Service of Forestry and Wildlife (SERFOR) - wood samples and, also, botanical material were collected from tree species for further botanical identification at the “Herbarium Selva Central Oxapampa (HOXA), Oxapampa, Pasco, Peru.

In Peruvian native forestry communities, non-destructive wood samples were extracted of the tree species pole by a Stihl BT45 motor with a metal drill (3 cutting teeth of 3.0 × 2.5 and 10 cm; external and internal diameter and length) and preventively treating the trunk holes with chromium copper borate (CCB) to avoid contamination by microorganisms and insects. At the same time, the correspondent common names and primary wood applications were collected and stored in plastic bags previously to transportation to the laboratory.

Wood samples preparation, macroscopic analysis, and tree species identification

The woods specimens belonging to the sampled tree species were previously identified and grouped by common names, were kept in the laboratory to allow for natural drying. Then, the wood specimens were cut (5 cm x 5 cm x 5 cm), oriented in cross and radial-tangential longitudinal sections. The wood samples were polished with paper sheets (80 to 1500 grain) and then cleaned with air spray. Wood macroscopic anatomical analysis were performed with the 10x hand lens (Coradin and Muñiz, 1992CORADIN, V. T. R.; MUÑIZ, G. I. B. Normas de Procedimentos em Estudos de Anatomia de Madeira: Angiospermae e Gymnospermae [Rules of Procedure in Wood Anatomy Studies: Angiospermae and Gymnospermae] (v. 15.), Forest Products Laboratory - Technical Series, Brasília, Brazil, 1992.). Wood sections were observed using a Leica 9Si stereomicroscope (10x) coupled with a digital camera connected to a computer to obtain high quality images of the macroscopic anatomical structure. The tree species identification was based on the “IAWA Standards”, “Macroscopic Identification of Commercial Woods” and specialized literature (Wheeler et al., 1989WHEELE, E.; BAAS, P.; GASSON, P. E. IAWA Committee. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989; 10:219-332.; Coradin and Muñiz 1992CORADIN, V. T. R.; MUÑIZ, G. I. B. Normas de Procedimentos em Estudos de Anatomia de Madeira: Angiospermae e Gymnospermae [Rules of Procedure in Wood Anatomy Studies: Angiospermae and Gymnospermae] (v. 15.), Forest Products Laboratory - Technical Series, Brasília, Brazil, 1992.; Maguiña 2008MAQUIÑA, E. V. G. Identificación organoléptica y macroscópica de maderas comerciales: Serie I: Competencias Básicas para la Producción Industrial de Muebles de Madera [Organoleptic and macroscopic identification of commercial woods: Series I: Basic Competences for the Industrial Production of Wooden Furniture], CITEmadera, Lima, Peru, 2008.; Coradin et al., 2010CORADIN, V. T. R.; CARMAGOS, J. A. A.; PASTORE, T. C. M.; CHRISTO, A. G. Brazilian Commercial Timbers: Interactive Identification Key Based on General and Macroscopic Features (CD-ROM), Brazilian Forest Service, Forest Products Laboratory: Brasília, Brasília, Brazil, 2010.; Zenid and Ceccantini 2012ZENID, G. J.; CECCANTINI, G. C. T. Identificação Macroscópica de Madeiras [Macroscopic Identification of Madeiras], Instituto de Pesquisas Tecnológicas de São Paulo, São Paulo, Brazil, 2012.; Ruffinatto and Crivellaro 2015RUFFINATTO, F.; CRIVELLARO, A.; WIEDENHOEFT, A. C. Review of macroscopic features for hardwood and softwood identification and a proposal for a new character list. IAWA Journal 36(2), 208-241, 2015. DOI: 10.1163/22941932-00000096
https://doi.org/10.1163/22941932-0000009...
; Chavesta 2015CHAVESTA, M. C. Atlas Anatómico de Maderas del Perú [Anatomical Atlas of Maderas del Peru], Universidad Nacional Agraria de la Molina, Distrito de Lima, Peru, 2015.; Ugarte and Mori 2018UGARTE, J. O.; MORI, I. Z. Guía para la identificación de la madera de 50 especies forestales del Perú. Centro de Innovación Productiva y Transferencia Tecnológica de la Madera, CITEmadera, Lima, Perú, 98p., 2018.; Ferreira et al., 2021FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.; Ferreira and Inga 2022FERREIRA, C. A.; INGA, J. G. Guia de anatomia e identificación de 50 especies maderables comerciales em Selva Central, Perú, Universidad Continental, Huancayo, Peru, 2022, 164P. ). The wood samples were deposited at the Wood Collection of the Wood Anatomy Laboratory, Continental University, Campus Huancayo, Huancayo, Peru.

RESULTS

Tree species identified by their wood anatomical structure

A total of 20 tropical tree species were identified, 11 were botanically certified by the HOXA herbarium and 9 were identified according by wood anatomical macroscopic and organoleptic features detailed described in the specialized literature (Table 1) (Acevedo and Kikata, 1994ACEVEDO, M. M.; KIKATA, Y. Atlas de Maderas del Perú [Wood Atlas of Peru], Universidad Nacional Agraria de la Molina, Distrito de Lima, Perú and Nagoya University, Nagoya, Japan, 1994.; Chavesta, 2005CHAVESTA, M. C. Maderas Para Pisos, Universidad Nacional Agraria de la Molina, Distrito de Lima, Peru, 2005. , 2015CHAVESTA, M. C. Atlas Anatómico de Maderas del Perú [Anatomical Atlas of Maderas del Peru], Universidad Nacional Agraria de la Molina, Distrito de Lima, Peru, 2015.; Caceres, 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo II. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.a, 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo I. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.b; Maguiña, 2008MAQUIÑA, E. V. G. Identificación organoléptica y macroscópica de maderas comerciales: Serie I: Competencias Básicas para la Producción Industrial de Muebles de Madera [Organoleptic and macroscopic identification of commercial woods: Series I: Basic Competences for the Industrial Production of Wooden Furniture], CITEmadera, Lima, Peru, 2008.; Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ; Osinfor, 2015OSINFOR. Fichas de Identificación de Especies Forestales Maderables de la Selva Central [Identification Sheets for Timber Forest Species of the Central Jungle], Vistay Publicidad E.I.R.L., Lima, Perú, 2015. ; Ruffinatto and Crivellaro, 2015RUFFINATTO, F.; CRIVELLARO, A.; WIEDENHOEFT, A. C. Review of macroscopic features for hardwood and softwood identification and a proposal for a new character list. IAWA Journal 36(2), 208-241, 2015. DOI: 10.1163/22941932-00000096
https://doi.org/10.1163/22941932-0000009...
; Osinfor, 2017OSINFOR. Fichas De Identificación de Especies Forestales Maderables y Silvicultura Tropical [Identification Sheets of Timber Forest Species and Tropical Silviculture], Vistay Publicidad E.I.R.L., Lima, Perú, 2017.; Ugarte and Mori, 2018UGARTE, J. O.; MORI, I. Z. Guía para la identificación de la madera de 50 especies forestales del Perú. Centro de Innovación Productiva y Transferencia Tecnológica de la Madera, CITEmadera, Lima, Perú, 98p., 2018.; Marcelo-Peña and Tomazello Filho, 2020MARCELO-PEÑA, J. L.; TOMAZELLO-FILHO, M. Dendrologinalmente y anatomia de la madera de árboles de los bosques estaciobnalmente secos del Valle del Marañon, Perú. 1 ed. Universidad Nacional Agraria La Molina, 172p, 2020. ; SERFOR, 2020SERFOR. Manual para la Identificación Botánica de Especies Forestales de la Amazonía Peruana [Manual for the Botanical Identification of Forest Species of the Peruvian Amazon], Servicio Nacional Forestal y da Fauna Silvestre, Lima, Peru, 2020.; Florsheim et al., 2020FLORSHEIM, S. M. B.; RIBEIRO, A. P.; LONGUI, E. L.; DE ANDRADE, I. M.; SONSIN-OLIVEIRA, J.; CHIMELO, J. P.; SOARES, R. K.; GOUVEIA, T. C.; MARQUES, V. N. Macroscopic Identification of Commercial Wood in the State of São Paulo, Instituto Florestal, São Paulo, Brazil, 2020, 394p. ; Santini Jr. et al., 2021SANTINI JR, L.; FLORSHEIM, S. M. B.; TOMAZELLO-FILHO, M. Anatomia e Identificação da Madeira de 90 Espécies Tropicais comercializadas em São Paulo, Atena Editora, Ponta Grossa, Brasil, 231p, 2021.; Ferreira et al., 2021FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.; Tropics, 2022TROPICOS. “Missouri botanical garden”. 2022. ( (http://www.tropicos.org ), Accessed 27 March 2022.
http://www.tropicos.org...
; Ferreira and Inga, 2022FERREIRA, C. A.; INGA, J. G. Guia de anatomia e identificación de 50 especies maderables comerciales em Selva Central, Perú, Universidad Continental, Huancayo, Peru, 2022, 164P. ).

Table 1
Forest tree species identified in the “Selva Central”, Peru.

These tree species are reported in the Peruvian scientific literature and are sold as timber for several uses and applications in the internal market and for export. The tree species are included in 12 families commonly found in the tropical forests of Peru, namely, Fabaceae (25%), Moraceae (15%), Podocarpaceae and Lauraceae (10%) and, also, including families with a 5% of representativeness, like Calophyllaceae, Caryocaraceae, Chrysobalanaceae, Juglandaceae, Meliaceae, Rhizophoraceae, Rubiaceae and Theaceae. The genus Ficus L. (Moraceae) and Myroxylon L. F. (Fabaceae) were represented by 2 species each, Ficus insipida, Ficus sp, Myroxylon balsamum and M. peruiferum.

In the Peruvian forest, the tree species represented by family, scientific and common names, are as follows: (1) Fabaceae: Amburana cearensis - isphingo; Cedrelinga cateniformis - tornillo; Copaifera paupera - copaiba; Myroxylon balsamum - estoraque; Myroxylon peruiferum - quina quina; (2) Moraceae: Brosimum utile - leche caspi; Ficus insipida - ojé; Ficus sp. - matapalo amarillo; (3) Lauraceae: Aiouea montana - moena blanca; Caryodaphnopsis fosteri - palo caramelo; (4) Podocarpaceae: Podocarpus sp. - diablo fuerte; Retrophyllum rospigliosii - ulcumano; (5) Calophyllaceae: Calophyllum brasiliense - palo azufre; (6) Caryocaraceae: Caryocar glabrum - almendro; (7) Chrysobalanaceae: Hymenopus heteromorphus - sachapalta; (8) Juglandaceae: Juglans neotropica - nogal; (9) Meliaceae: Guarea guidonia - requia; (10) Rhizophoraceae: Sterigmapetalum obovatum - palo verde; (11) Rubiaceae: Calycophyllum spruceanum - capirona; (12) Theaceae: Gordonia fruticosa - huamachilca (Table 1).

DISCUSSION

Tree species general dendrological features

The family Fabaceae with 5 species identified is the most representative in this study and constitutes one of the most representative in the world. Amburana cearensis tree species known as ispingo, cerejeira, cumaru de cheiro, umburana, are abundant in the Pachietea river area, in tropical dry forests, preferably in sandy-clay soils, deep and well drained. The trees can reach up to 40 m of height and 0,65 m trunk, rounded and straight, bark dark brown, 20 mm thickness (Caceres, 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo II. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.a). Cedrelinga caterniformis known as tornillo, cedro tana, cedro ahogado, aguano maldonado, pino peruano and pashaco, occurs in regions with 1200 m altitude, with high and regular rainfall areas common in Amazon region; the trees have cylindrical trunk, 20-40 m height and 0.50-2.0 m diameter; bark grey, brownish to reddish, with fissured rhytidome. C. caterniformis was in 2019 the tree species of Peruvian Selva Central with the largest number of interventions by Serfor (Reynel et al., 2003REYNEL, C.; PENNIMGTON, T D.; PENNINGTON, R. T.; FLORES, C.; DAZA, A. Árboles útiles de la Amazonia Peruana: Un Manual con Apuntes de Identificación, Ecología y Propagación de las Especies [Useful Trees of the Peruvian Amazon: A Manual with Notes on Identification, Ecology and Propagation of Specie], Lima (Perú) Tarea Gráfica Educativa, Lima, Perú, 509p., 2004. ; Caceres, 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo I. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.a; Osinfor, 2017OSINFOR. Fichas De Identificación de Especies Forestales Maderables y Silvicultura Tropical [Identification Sheets of Timber Forest Species and Tropical Silviculture], Vistay Publicidad E.I.R.L., Lima, Perú, 2017.; Serfor, 2020SERFOR. Manual para la Identificación Botánica de Especies Forestales de la Amazonía Peruana [Manual for the Botanical Identification of Forest Species of the Peruvian Amazon], Servicio Nacional Forestal y da Fauna Silvestre, Lima, Peru, 2020.). Copaifera paupera trees known as copaiba presented cylindrical and straight trunk up to 35m of height, 60-120 cm diameter; outer bark light brown grayish with lenticels and rhytidome scales; occurs mainly in high rainfall and continued areas of Amazonian region, usually below 700 m altitude. Relevant species for biosynthesizing an essential oil used in popular medicine and pharmaceutical application (Reynel et al., 2003REYNEL, C.; PENNIMGTON, T D.; PENNINGTON, R. T.; FLORES, C.; DAZA, A. Árboles útiles de la Amazonia Peruana: Un Manual con Apuntes de Identificación, Ecología y Propagación de las Especies [Useful Trees of the Peruvian Amazon: A Manual with Notes on Identification, Ecology and Propagation of Specie], Lima (Perú) Tarea Gráfica Educativa, Lima, Perú, 509p., 2004. ; Osinfor, 2015SERFOR (2016). “Peru define prioridades de Gobernanza Forestal y Reducción de Tala y comercio Ilegal de madera [Peru defines priorities for Forest Governance and Reduction of Logging and Illegal timber trade],” ( “Peru define prioridades de Gobernanza Forestal y Reducción de Tala y comercio Ilegal de madera [Peru defines priorities for Forest Governance and Reduction of Logging and Illegal timber trade],” (https://www.serfor.gob.pe/portal/noticias/negocios-sostenibles/peru-define-prioridades-de-gobernanza-forestal-y-reduccion-de-tala-y-comercio-ilegal-de-madera ), accessed on 7 January 2021.
https://www.serfor.gob.pe/portal/noticia...
). Myroxylon peruiferum and M. balsamum that are popularly known as quina quina y estoraque, respectively; presented trunk cylindrical and straight; 20-35 m height, 50-100 cm diameter; bark smooth, grayish with lenticels; internal bark present very strong smell resin. Occurs in the Amazon forests under 700 m altitude with high and continuous rainfall and well-marked dry season (Reynel et al., 2003REYNEL, C.; PENNIMGTON, T D.; PENNINGTON, R. T.; FLORES, C.; DAZA, A. Árboles útiles de la Amazonia Peruana: Un Manual con Apuntes de Identificación, Ecología y Propagación de las Especies [Useful Trees of the Peruvian Amazon: A Manual with Notes on Identification, Ecology and Propagation of Specie], Lima (Perú) Tarea Gráfica Educativa, Lima, Perú, 509p., 2004. ; Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ; Ugarte and Mori, 2018UGARTE, J. O.; MORI, I. Z. Guía para la identificación de la madera de 50 especies forestales del Perú. Centro de Innovación Productiva y Transferencia Tecnológica de la Madera, CITEmadera, Lima, Perú, 98p., 2018.).

For the Moraceae family, 3 species were identified, 2 of them belonging to the genus Ficus (Ficus sp. and Ficus insipida) and the third, Brosimum utile. The genus Ficus known as matapalo amarillo, ojé, renaco, renaquillo and the Ficus insipida as ojé, dr. ojé, oji (Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ; Acevedo and Kikata, 2008ACEVEDO, M. M.; KIKATA, Y. Atlas de Maderas del Perú [Wood Atlas of Peru], Universidad Nacional Agraria de la Molina, Distrito de Lima, Perú and Nagoya University, Nagoya, Japan, 1994.). Tree species with cylindrical trunk, straight, with 18-40 m of height, 4-200 cm diameter, with tabular roots up to 1.5 m, characteristic of the Amazon forests, with high and constant rainfall, at 1500 m altitude (Reynel et al., 2003REYNEL, C.; PENNIMGTON, T D.; PENNINGTON, R. T.; FLORES, C.; DAZA, A. Árboles útiles de la Amazonia Peruana: Un Manual con Apuntes de Identificación, Ecología y Propagación de las Especies [Useful Trees of the Peruvian Amazon: A Manual with Notes on Identification, Ecology and Propagation of Specie], Lima (Perú) Tarea Gráfica Educativa, Lima, Perú, 509p., 2004. ; Osinfor, 2017OSINFOR. Fichas De Identificación de Especies Forestales Maderables y Silvicultura Tropical [Identification Sheets of Timber Forest Species and Tropical Silviculture], Vistay Publicidad E.I.R.L., Lima, Perú, 2017.). Bark with lentils, grayish to light brown color, arranged in horizontal rows; inner bark, when cut, exudes an abundant white latex with rapid flow. Brosimum utile known as leche caspi and panguana (Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ; Ugarte and Mori, 2018UGARTE, J. O.; MORI, I. Z. Guía para la identificación de la madera de 50 especies forestales del Perú. Centro de Innovación Productiva y Transferencia Tecnológica de la Madera, CITEmadera, Lima, Perú, 98p., 2018.) and the trees occur in flooded environments from Mexico to the Amazon. Tree species with cylindrical trunk, 20-25 m height, the bark exudes of white latex (Caceres 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo II. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.a).

The Lauraceae family is represented by 2 species in the present work. The first, Aiouea montana, moena blanca, tree species with trunk straight, 10-20 m height, genus Aiouea extends from Atlantic to Ocean Pacific coast, between 15-30o S in tropical rainforest; 7 of 19 species occurring in nebulous montane forests and the highest species density is reported Brazilian Amazon forests in Pará and Amapá states (Völtz and Blum, 2020VOLTZ, R. R.; BLUM, C. T. Chave dendrológica e caracterização da morfologia vegetativa da familia Lauraceae em um remanescente de Floresta Ombrófila Mista, Curitiba, PR. Rodriguesia, 71:e03192018, 2020.). The second, Caryodaphnopsis fosteri, palo caramel, trees 50 m height, 100 cm trunk diameter and bark darker, thick, occurring in Peru, Colombia, Ecuador and Bolivia (Bendezú 2018BENDEZÚ, Y. F. Árboles nativos de la Region de Ucayali. Inia - Instituto Nacional de Innovación Agraria. 1ª edición, Pucalpa - Perú, 355p, 2018.).

Juglans neotropica, nogal peruano or cedro negro, represents the Juglandaceae family, one of the most important wood species of the Peruvian Amazon Selva Central Central; trees 15-50 m height of 15-48 m, 30-120 cm diameter, trunk straight and cylindrical; bark darker gray with lenticels. In Peru, it is distributed in Amazonas, Cajamarca, Cusco, Huancavelica, Junín, La Libertad, Lambayeque and Pasco. The range of altitudinal distribution between 500 and 3000 meters, in jungle, premontane and montane rainforest (Manrique et al., 2015MANRIQUE, P. H.; TEIXEIRA, B. J.; LLICA, E. R.; COTOS, M. C. Evaluación de la actividad antioxidante del extracto hidroalcoholico estandarizado de hojas de Juglans neotropica Diels (Nogal peruano). Revista de la Sociedad Quimica del Perú, 81(3), 283-291, 2015.).

Belonging to the Chrysobalanaceae family, Hymenopus heteromophus has trees that reach 21-25m in height and 96-130 cm in diameter. The trees trunk is circular and the base consists of tree buttresses. Rhytidome is crosslinked, gray mall, vertically striated closer to the base, and the lenticels are circular. The bark is reddish and when cut, a pink or transparent exudation can be observed. According with Royal Botanical Garden (2022)ROYAL BOTANIC GARDEN - Kew “Plants of the world online” Hymenopus heteromorphus (Benth.) Sothers & Prance | Plants of the World Online | Kew Science access: 27 March 2022. the species has your distribution in Amazon Forest, above 80-900 meters.

From the Calophylaceae family, Calycophyllum spruceanum trees, capirona, have a straight and regular trunk, can reach 20-35 m in height and 50-120 cm in trunk diameter: smooth, green, homogeneous, shiny bark. The trees occur in regions with high and constant rainfall; may occur, however, it may occur in regions with well-marked seasons (Reynel et al., 2003REYNEL, C.; PENNIMGTON, T D.; PENNINGTON, R. T.; FLORES, C.; DAZA, A. Árboles útiles de la Amazonia Peruana: Un Manual con Apuntes de Identificación, Ecología y Propagación de las Especies [Useful Trees of the Peruvian Amazon: A Manual with Notes on Identification, Ecology and Propagation of Specie], Lima (Perú) Tarea Gráfica Educativa, Lima, Perú, 509p., 2004. ; Osinfor, 2017OSINFOR. Fichas De Identificación de Especies Forestales Maderables y Silvicultura Tropical [Identification Sheets of Timber Forest Species and Tropical Silviculture], Vistay Publicidad E.I.R.L., Lima, Perú, 2017.).

Belonging to the family Theaceae, Gordonia fruticosa trees, huamachilca, occur in Bolivia, Costa Rica, French Guiana, Panama, Brazil and Peru. Evergreen tree, 10-40 m tall; trunk diameter of 70 cm. Bark brown and smooth on young trees, grayish slightly cracked on mature trees. Leaves simple, spirally, spatulate, asymmetric, glabrous on the ventral surface and pubescent on the dorsal surface. Flowers with white to yellowish petals, fragrant, measuring up to 3 cm length (Carvalho, 2006CARVALHO, P. E. R. Circular Técnica 120: Gordonia fruticosa (Schrad.) H. Keng. (Theaceae), Circular Técnico 120, Colombo, Paraná, Brasil, 2006.).

From Meliaceae family, Guarea guidonia, requia, the trees trunk is 30 m tall, smooth bark, coming to crack with age. It blooms and bears fruit throughout the year (Pennington, 1981; Sánchez-Vindas & Poveda, 1997 apud Bendezú, 2018BENDEZÚ, Y. F. Árboles nativos de la Region de Ucayali. Inia - Instituto Nacional de Innovación Agraria. 1ª edición, Pucalpa - Perú, 355p, 2018.).

The Caryocaraceae family is represented by Caryocar glabrum, almendro; trees 30-40 m tall, cylindrical trunk, dark brown bark, fissured, occurring in Peru, Colombia, Venezuela, Guyana, French Guiana, Suriname, Brazil. Trees grow in Amazonas, Cusco, Huánuco, Junín, Loreto, Pasco, San Martín and Ucayali (Prance & Freitas, 1973; FAO, 1987; Reynel et al., 2003; Dávila et al., 2008; Cardona et al., 2010; IPCC, 2006 apud Bendezú, 2018BENDEZÚ, Y. F. Árboles nativos de la Region de Ucayali. Inia - Instituto Nacional de Innovación Agraria. 1ª edición, Pucalpa - Perú, 355p, 2018.).

Belonging to Callopyllaceae family, Calophyllum brasiliense, palo azufre, occurs in Peru (Yurimaguas, Pucalpa, Iquitos, etc.) in tropical humid forests, alluvial soils and t24 °C temperature, 1000-2000 mm/year. Trees reaches 40 m height, 0.7-1.5 m trunk diameter, cylindric, bark, dark brown, with pale yellow (Caceres, 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo II. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.a).

The Rhizophoraceae is represented by Sterigmapetalum obovatum, palo verde, trees with 40 m of height and 65 cm, trunk diameter. It is distributed in Peru, Brazil, Bolivia, Colombia, Ecuador; in Peru is reported in Loreto, Pasco and Ucayali (Steyermark and Liesner 1983; Prance 2005 apud Bendezú 2018BENDEZÚ, Y. F. Árboles nativos de la Region de Ucayali. Inia - Instituto Nacional de Innovación Agraria. 1ª edición, Pucalpa - Perú, 355p, 2018.).

Gymnosperms are also present and traded in Peruvian forests. Two genus, belong to the family Podocarpaceae, Podocarpus sp., diablo fuerte and Retrophyllum rospigliosii, ulcumano (Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ). Podocarpus sp. is a dominant tree species with straight and cylindrical trunk, 1,0 m trunk diameter and wood volume can exceed 20m3/tree. Found in the Montane High Forests or Ceja Groves, eastern part of the Andes, and natural distribution reaches the pre-montane rainforests and the mist forests at altitudes from 1700 to 2600m (Caceres, 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo II. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.b). Retrophyllum rospigliosii, 30-45m height, 50-180 cm trunk diameter, cylindrical and straight. Bark brown color, grayish with scaly rhytidome. Found in Bolivia, Colombia, Costa Rica, Venezuela and Peru. This country can be found in the Alto Montana forests or Ceja Forest between 1500 and 4000 m altitude, also in the mountains of Piura, Cajamarca, Pasco and Junín (Reynel and Marcelo, 2009REYNEL, C.; MARCELO, J. Árboles de los ecosistemas forestales andinos. Manual de identificación de especies. Serie de Investigación y Sistematización n. 9. Programa Regional ECOBONA - Intercooperation, Lima, Perú, 163p, 2009. ).

Common names and tree species identification via wood anatomical features

Amburana cearensis, isphingo (Figure 2B1, B2), was identified by the axial paratracheal parenchyma winged-aliform, storied rays, brown color and the pleasant characteristic smell that make this species easily recognized. However, Seleme et al. (2015SELEME, E. P.; LEWIS, G. P.; STIRTON, C. H.; SARTORI, A. L. B.; MANSANO, V. F. A. Taxonomic review and a new species of the South American woody genus Amburana (Leguminosae, Papilionoideae). Phytotaxa 212(4)249-263, 2015. ) in a review of Amburana (Fabaceae) in South America described the occurrence of Amburana acreana (Ducke) A. C. Sm and not A. cearensis in Peruvian tropical forests, coincident with Vazquez et al. (2018VAZQUEZ, R.; ROJAS, R. D. P.; MONTEAGUDO, A. L.; VALENZUELA, L.; HUAMANTUPA, I. Catálogo de árboles del Perú. Revista Q´EUÑA, 9(1). Cusco, Perú, 607p. 2018. ). On the other hand, Tropicos (2022) reports this species occurring in the Selva Central of Peru presenting stratified ray as diagnostic feature, not described for A. acreana (Coradin et al., 2010CORADIN, V. T. R.; CARMAGOS, J. A. A.; PASTORE, T. C. M.; CHRISTO, A. G. Brazilian Commercial Timbers: Interactive Identification Key Based on General and Macroscopic Features (CD-ROM), Brazilian Forest Service, Forest Products Laboratory: Brasília, Brasília, Brazil, 2010.).

Figure 2
Wood cross (20) and longitudinal tangential (20) sections of the 20 tree species: Aiouea montana (A1 and A2); Amburana cearensis (B1 and B2); Brosimum utile (C1 and C2); Calophyllum brasiliense (D1 and D2); Calycophyllum spruceanum (E1 and E2); and Caryocar glabrum (F1 and F2) Note: Bar is 1000 µm. Wood cross (20) and longitudinal tangential (20) sections of the 20 tree species: Caryodaphnopsis fosteri (G1 and G2); Cedrelinga cateniformis (H1 and H2); Copaifera paupera (I1 and I2); Ficus insipida (J1 and J2); Ficus sp. (K1 and K2); and Gordonia fruticosa (L1 and L2). Note: Bar is 1000 µm. Wood cross (20) and longitudinal tangential (20) sections of the 20 tree species: Guarea guidonia. (M1 and M2); Hymenopus heteromorphus (N1 and N2); Juglans neotropica (O1 and O2); Myroxylon balsamum (P1 and P2); Myroxylon peruiferum (Q1 and Q2); Podocarpus sp (R1 and R2]); Retrophyllum rospigliosii (S1 and S2); and Sterigmapetalum obovatum (T1 and T2) Note: Bar is 1000 µm.

Cedrelinga cateniformis, tornillo (Figure 2J1, J2), is currently the wood with the highest number of records by the Peruvian “Selva Central” Inspectorate (SERFOR 2020). The wood has larger vessels observed with the naked eye, vasicentric and aliform paratracheal parenchyma, brown color with distinct and dark vascular lines. In the Selva Central forests, tornillo wood due to its pink color and odor, can be confused with Cedrela L. (Meliaceae) wood, despite the characteristic marginal axial parenchyma and semi-porous rings.

Calycophyllum spruceanum, capirona (Figure 2F1, F2), family Rubiaceae family, has an intense yellow wood, indistinct axial parenchyma, numerous vessels of smaller diameter and with differences from the tornillo wood (Cedrelinga cateniformis) by the visible axial paratracheal vasicentric parenchyma.

The Gordonia fruticose wood, huamalchica (Figure. 2C1, C2) (Chavesta, 2015CHAVESTA, M. C. Atlas Anatómico de Maderas del Perú [Anatomical Atlas of Maderas del Peru], Universidad Nacional Agraria de la Molina, Distrito de Lima, Peru, 2015.) can be confused by its yellow color with that of Calycophyllum spruceanum and Caryocar glabrum, but nevertheless has a remarkable anatomical signature, due to the indistinct axial parenchyma and smaller diameter vessels.

The Calophyllum brasilienses wood, achapalta (Figure 2E1, E2) has a distinct anatomical structure compared to Gordonia fruticosa, characterized by not continuous thin bands of axial parenchyma, vessels diagonal disposition and reddish-brown coloration.

Copaifera pauper wood, copaiba (Figure 2J1, J2), an important tree species for the production of oil with anti-inflammatory and antibiotic properties, has brown color wood, solitary vessels and axial marginal parenchyma and oil resin ducts delimiting the tree-rings, which can be confused with Swietenia macrophylla King, Hymenaea oblongifolia Huber and Cedrela spp. L. (Olivia and Zerpa, 2018).

The cellular elements storied - mainly the radial parenchyma - is considered an important parameter in the identification of tropical species. In this sense, the Myroxylon peruiferum wood (Figure 2Q1, Q2) and M. balsamum (Figure 2P1, P2) quina quina and estoraque are confused in the wood trade (Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ). Despite showing similarity in the radial parenchyma, diffuse porosity and axial parenchyma, they are distinct in color, being purplish to M. balsamum and reddish with vessels of large diameter to M. peruiferum.

Ocotea spp., sachapalta (Figure 2N1, N2) is also applied to Ocotea argyrophylla, O. gracilis and Persea caerulea (Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ; SERFOR, 2020SERFOR. Manual para la Identificación Botánica de Especies Forestales de la Amazonía Peruana [Manual for the Botanical Identification of Forest Species of the Peruvian Amazon], Servicio Nacional Forestal y da Fauna Silvestre, Lima, Peru, 2020.). However, Hymenopus heteromorphus or its basonym Licania heteromophus, are known throughout Peru as “true Sachapalta”, although the wood coloring is quite similar, that is, a more reddish the anatomical characteristics as e.g, the abundant presence of diffuse apotracheal axial parenchyma in aggregating forming thin lines is an important characteristic in the identification of this species in relation to Lauraceae that have the same common name and vasicentric axial paratracheal parenchyma (Figure 2N1 and N2).

The genus Ficus is widely marketed with the ojé common name (Caceres 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo II. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.a, 2008b; Gonzales 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ) but there are anatomical and organoleptic differences, like yellow coloration and the axial parenchyma in thick bands in Ficus insipida (Figure 2K1, K2), and thin and non-uniform bands of axial parenchyma in Ficus sp., (Figure 2L1, L2) known as matapalo amarillo.

Sterigmapetalum obovatum, palo verde (Figure 2T1, T2) (Gonzales 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ) has a yellowish color wood, with axial parenchyma in wide bands and also characterized by the included phloem associated with the axial parenchyma.

Guarea guidonia, cedrillo (Figure 2M1, M2) can be confused and marketed as Vochysia vismiifolia, Vochysiaceae, chancaquero (Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ) by the presence of axial aliform parenchyma forming thin lines or even a little thicker.

Brosimum utile, leche caspi (Figure 2B1, B2) wood is darker brown, with a larger vessels diameter and axial aliform parenchyma (Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ; Olivia and Zerpa, 2018) and can be confused as Brosimum alicastrum Sw. (congona) and Simarouba amara Aubl. (marupa) by the parenchyma paratracheal aliform, sometimes confluents.

Caryocar glabrum wood, almendro e piquiá (Figure 2G1, G2), and other species of the same genus, as Caryocar villosum (Aubl.) Pers., C.coccineum Pilg. (Caceres 2008CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo II. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.; Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ; Santini et al., 2021SANTINI JR, L.; FLORSHEIM, S. M. B.; TOMAZELLO-FILHO, M. Anatomia e Identificação da Madeira de 90 Espécies Tropicais comercializadas em São Paulo, Atena Editora, Ponta Grossa, Brasil, 231p, 2021.) are often confused and marketed as being the same. However, C. glabrum has yellowish wood color, growth rings better demarked by the fibrous zone

Juglans neotropica wood, nogal (Figure 2O1, O2) has a dark-black characteristic heartwood and sapwood lighter color, with diffuse apotracheal axial parenchyma useful for correct identification (Gonzales, 2011GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p. ).

Lauraceae, representative family in the central forests of Peru, mainly in the Selva Central, are marketed as moenas and often confused due to similar wood anatomical and organoleptic characteristics. Aiouea montana, moena blanca (Figure 2A1, A2) and Caryodaphnopsis fosteri, palo caramelo (Figure 2H1, H2) present wood with similar characteristics, like paratracheal axial parenchyma and medium texture. Moena blanca has paratracheal parenchyma aliform and palo caramelo has a reddish color and the presence of vessels with smaller diameter compared to moena blanca which has a browner color, vessels with larger diameters

Podocarpaceae has a two species Podocarpus sp, diablo fuerte (Figure 2R1, R2) and Retrophyllum rospigliosii, ulcumano (Figure 2S1, S2). Tropical woods traded in the “Selva Central” Jungle that do not have the presence of conductive vessels, being differentiated by the presence of visible axial parenchyma in ulcumano.

Comparative wood anatomy of tree species

The comparative wood anatomy of the tree species shows relevant taxonomical characteristics such as diffuse porosity, common in trees occurring in a climate characterized by high temperatures and rainfall, such as those recorded in the Selva Central. Furthermore, distinct, and well-demarcated tree-rings were recorded in 50% of the tree species, including the two species of Gymnosperms. In this aspect, Marcelo-Peña et al., (2020)MARCELO-PEÑA, J. L.; ROIG, F. A.; GOODWIN, Z. A.; TOMAZELLO-FILHO, M. Characterizing growth rings of Peru: A wood anatomical overview for potential applications in dendroecological-related fields, Dendrochronology, 62, 1-13, 2020. DOI: https://doi.org/10.1016/j.dendro.2020.125728
https://doi.org/https://doi.org/10.1016/...
, working with 183 species of Peruvian forest trees, noted that 42 species (23%) had growth rings with high distinction, 60 species (33%) had moderately visible rings, 60 species (33%) had poor ring distinction, and 21 species (11%) had absented or indistinct growth rings (Table 2).

Table 2
Main wood macroscopic features used for the tree species identification.

The tree-rings formed in the trunk of tropical tree species are, in general, related to the seasonality of the cambial meristem activity, influenced by the climatic seasons: alternating periods of soil water availability and stress. The trees intrinsic physiological process, associated with climatic factors, influences the phenological phases, from the deciduous leaf in the dry season to the sprouting and restoration of the tree canopy in the rainy season (Ferreira et al., 2021FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.).

An important wood anatomical feature is related to the presence and type of axial parenchyma that are very useful as a taxonomic parameter in the species identification and physiological parameter, in the storage of reserve substances, available to the plants when demanded. In this aspect, Moraceae family is characterized by the visible axial parenchyma commonly in Ficus and Brosimum genus.

It was found that the sparse paratracheal axial parenchyma occurred in 30% of the tree species and the vasicentric paratracheal aliform in bands or lines in 20% of the species. In addition, diffuse aggregated apotracheal parenchyma occurred in 10% of the tree species. According to Duarte et al. (2021DUARTE, P. J.; BORGES, C. C.; FERREIRA, C. A.; CRUZ, T. M.; de SOUZA, W. R. Q., MORI, F. A. Anatomical identification of tropical woods traded in Lavras, Brazil, Journal of Tropical Forest Science 33(1), 95-103, 2021. DOI: 10.26525/jtfs2020.32.4.95
https://doi.org/10.26525/jtfs2020.32.4.9...
) the visibility of the axial parenchyma of the tree trunk allows the segregation of numerous tropical species. Evaluating the wood anatomy of Brazilian tree species, (Alves e Alfonso, 2002ALVES, E. S.; ANGYALOSSY-ALFONSO, V. “Ecological trend in the wood anatomy of some Brazilian species. 2. Axial parenchyma, rays and fibres,” IAWA Journal 23(4), 391-418, 2002. DOI: 10.1163/22941932-90000311
https://doi.org/10.1163/22941932-9000031...
) demonstrated the relationship between the presence of paratracheal parenchyma in warmer climates and apotracheal parenchyma in colder climates. This correlation is of great importance for the trees physiological processes, and temperature is associated with precipitation rates and soil conditions are the main inducers of the proper functioning of vascular functions and, consequently, plant growth and development.

The cambial meristem is responsible for adding new cells to the trees body, producing xylem cells to the inside and the phloem cells to the outside. However, in some species, the cambium can produce cells that will form structures to the standard organization of plant tissue. Likewise, injuries sustained on the trees trunk can also favor the formation of these structures, as included phloem (Santini Jr. et al., 2021SANTINI JR, L.; FLORSHEIM, S. M. B.; TOMAZELLO-FILHO, M. Anatomia e Identificação da Madeira de 90 Espécies Tropicais comercializadas em São Paulo, Atena Editora, Ponta Grossa, Brasil, 231p, 2021.). The presence of this characteristic cambial variation in the species Sterigmapetalum obovatum where the phlegmatic tissue occurs in association with the axial parenchyma in thick bands (Figure 2T1 and T2).

The xylem vessels were predominantly blocked by tyloses, gums and resins, which were detectable in cross section (pore filling) and tangential longitudinal (vascular lines). Extractives, substances from the secondary metabolism of trees and the chemical characteristics of the non-functional xylem region generally confer natural resistance to xylophagous organisms (Ferreira et al., 2021FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.). Biosynthesized in the wood of species, gums, resins and tyloses are considered important characteristics in the chemical composition and are applied in the identification of tropical species, for example. Copaifera L. (Fabaceae) (Figure 2J1 - J2), which has characteristic oil-secreting channels in its anatomical structure.

Identification key of the forest tree species via wood anatomical characteristics

The identification key of the 20 forest tree species was elaborated based on the main and most striking wood anatomical and organoleptic characteristics of the analyzed species and that are part of the primary productive chain in the region called central jungle (Selva Central) of the Peruvian Amazon.

The Amazon rainforests are well known for their diversity of plant and animal species, and for their abundance of tree species. The identification of the wood producing tree species along the production chain is possible by utilizing the wood anatomy, based on the types of cells and tissue diversity (Ferreira et al., 2021FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.; Ferreira and Inga, 2022FERREIRA, C. A.; INGA, J. G. Guia de anatomia e identificación de 50 especies maderables comerciales em Selva Central, Perú, Universidad Continental, Huancayo, Peru, 2022, 164P. ). The description of the wood anatomical structure allows them to be grouped into taxonomic groups with common characteristics, following the identification specific of each species. This principle underlies the constructed identification keys of the tropical tree species using the wood anatomical structure, while some are available in the specialized literature (Florsheim et al., 2020FLORSHEIM, S. M. B.; RIBEIRO, A. P.; LONGUI, E. L.; DE ANDRADE, I. M.; SONSIN-OLIVEIRA, J.; CHIMELO, J. P.; SOARES, R. K.; GOUVEIA, T. C.; MARQUES, V. N. Macroscopic Identification of Commercial Wood in the State of São Paulo, Instituto Florestal, São Paulo, Brazil, 2020, 394p. ; Santini Jr et al., 2021SANTINI JR, L.; FLORSHEIM, S. M. B.; TOMAZELLO-FILHO, M. Anatomia e Identificação da Madeira de 90 Espécies Tropicais comercializadas em São Paulo, Atena Editora, Ponta Grossa, Brasil, 231p, 2021.; Ferreira et al., 2021; Ferreira and Inga, 2022). This identification key will allow the inclusion of new wood species from the Peruvian “Selva Central” and can also be applied as a basis for the development of a new identification method via artificial intelligence (Fabijańska et al., 2021FABIJANSKA, A.; MALGORZATA, D.; BARNIAK, J. Wood species automatic identification from wood core images with a residual convolutional neural network,” Computers and Electronics in Agriculture 181, 1-13, 2021. DOI: 10.1016/j.compag.2020.105941
https://doi.org/10.1016/j.compag.2020.10...
).

Key for wood macroscopic identification

A. Absence of conductive vessels

1a. Absence of vessels, indistinct growth layers, axial parenchyma visible under 10x lens, diffuse ...... Retrophyllum rospigliosii

1b. Absence of vessels, indistinct growth layers, indistinct axial parenchyma under 10x lens ...... Podocarpus sp.

B. Presence of conductive vessels

B.1 Indistinct axial parenchyma

1a. Indistinct axial parenchyma, yellow color, fine texture, and diameter of very small vessels ...... Gordonia fruticosa

1b. Indistinct axial parenchyma, yellow color, fine texture and medium diameter of vessels, with radial disposition ...... Calycophyllum spruceanum

B.2 Distinct axial parenchyma

B.2.1Distinct axial apotracheal parenchyma

1a. Distinct axial apotracheal diffuse aggregate parenchyma, yellow heartwood and radial arrangement of vessels ...... Caryocar glabrum.

1b. Distinct axial apotracheal diffuse aggregate parenchyma and another colors ...... 2

2a. Distinct axial apotracheal diffuse aggregate parenchyma, black heartwood, radially flattened latewood delimitated growth layers ...... Juglans neotropica

2b. Distinct axial apotracheal diffuse aggregate parenchyma, pinkish heartwood, fibrous zones delimiting the growth layers ...... Hymenopus heteromorphus

B.2.2 Axial paratracheal parenchyma

1a. Axial scarce paratracheal parenchyma ...... 2

1b. Axial paratracheal parenchyma others ...... 3

2a.Axial scarce paratracheal parenchyma, medium texture, and brown heartwood ...... Aiouea montana

2b.Axial scarce paratracheal parenchyma, medium texture, and reddish heartwood ...... Caryodaphnopsis fosteri

3a. Axial paratracheal parenchyma vasicentric ...... Cedrelinga cateniformis

3b. Axial paratracheal parenchyma aliform ...... 4

4a. Axial paratracheal parenchyma aliform with linear extension ...... Brosimum utile

4b. Axial paratracheal parenchyma aliform with lozenge extension form confluent ...... Guarea guidonia

B.2.3 Axial marginal or band parenchyma

1a. Axial parenchyma in marginal bands or thin bands ...... 2

1b. Axial parenchyma thin or large bands ...... 3

2a.Axial parenchyma in marginal bands, brown heartwood and axial canals ...... Copaifera paupera.

2b.Axial parenchyma in thin bands, diagonal arrangement of vessel and reddish heart ...... Calophyllum brasiliensis

3a. Axial parenchyma in thin bands and yellow heartwood ...... Ficus sp.

3b. Axial parenchyma in wide bands ...... 4

4a. Axial parenchyma in Large bands and yellow heartwood ...... Ficus insipida.

4b.Axial parenchyma in large bands, yellow heartwood and include phloem ...... Sterigmapetalum obovatum

C. Storied rays

1a. Storied rays and aliform axial parenchyma ...... Amburana cearensis

1b. Storied rays and scarce axial parenchyma ...... 2

2a. Storied rays and scarce axial parenchyma, heartwood reddish and indistinct growth layer ...... Myroxylon balsamum

2b. Storied rays and scarce axial parenchyma, heartwood purple and distinct growth layer ...... Myroxylon peruiferum

CONCLUSION

The main conclusions of the work are (i) the 20 tree species of the Peruvian Amazon, Selva Central, can be identified through the wood anatomical structure; (ii) 11 of these species have botanical identification, confirming the forensic identification; (iii) the wood species presented common anatomical features, such as diffuse porosity, visible axial parenchyma mainly distinct, and, eventually, with storied, e.g.: A. cearensis, M. balsamum and M. peruiferum (Fabaceae); (iv) two species presented specific anatomical characteristics, axial gum resin canals and diffuse included phloem; (v) the tree species identification by the wood macroscopic anatomy allows an efficient tool for inspection and control of illegal wood logging and transport; (vi) the results constitute an effective database for the implementation of convolutional neural networks methodology for tropical Peruvian Amazon species identification by their wood anatomy.

AUTHORSHIP CONTRIBUTION

Project Idea: JGIG

Funding: CONCYTEC, FONDECYT, The World Bank, Continental University.

Database: CAF, JGIG, RHB, ODVA, DCRA, WGC, BSAM, SMMM, TCU, AVE, MTF.

Processing: CAF, JGIG, RHB, ODVA, DCRA, WGC, BSAM, SMMM, TCU, AVE, MTF.

Analysis: CAF, JGIG, RHB, ODVA, DCRA, WGC, BSAM, SMMM, TCU, AVE, MTF.

Writing: CAF, MTF.

Review: CAF, JGIG, MTF.

ACKNOWLEDGMENTS

This research was supported by the Project Concytec - Banco Mundial, through its executing unit is the Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT) (Project No. 043-2019-FONDECYT-BMINC.INV). A special thanks to the entire team of the research project “MaderApp: Un aplicativo móvil para el reconocimiento automático y en tiempo real de especies maderables comerciales para combatir la tala ilegal en Selva Central, Perú”.

REFERENCES

  • ACEVEDO, M. M.; KIKATA, Y. Atlas de Maderas del Perú [Wood Atlas of Peru], Universidad Nacional Agraria de la Molina, Distrito de Lima, Perú and Nagoya University, Nagoya, Japan, 1994.
  • ALVES, E. S.; ANGYALOSSY-ALFONSO, V. “Ecological trend in the wood anatomy of some Brazilian species. 2. Axial parenchyma, rays and fibres,” IAWA Journal 23(4), 391-418, 2002. DOI: 10.1163/22941932-90000311
  • BENDEZÚ, Y. F. Árboles nativos de la Region de Ucayali. Inia - Instituto Nacional de Innovación Agraria. 1ª edición, Pucalpa - Perú, 355p, 2018.
  • CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo I. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.
  • CACERES, N. Compenido de información tecnica de 32 especies forestales. Tomo II. 2ª edición, CiteMadera, Lima, Perú, 74p., 2008.
  • CARLQUIST, S. Comparative wood anatomy. Springer Book Archive, Berlin, Heidelberg, 2001. doi.org/10.1007/978-3-662-04578-7
  • CARVALHO, P. E. R. Circular Técnica 120: Gordonia fruticosa (Schrad.) H. Keng. (Theaceae), Circular Técnico 120, Colombo, Paraná, Brasil, 2006.
  • CORADIN, V. T. R.; MUÑIZ, G. I. B. Normas de Procedimentos em Estudos de Anatomia de Madeira: Angiospermae e Gymnospermae [Rules of Procedure in Wood Anatomy Studies: Angiospermae and Gymnospermae] (v. 15.), Forest Products Laboratory - Technical Series, Brasília, Brazil, 1992.
  • CORADIN, V. T. R.; CARMAGOS, J. A. A.; PASTORE, T. C. M.; CHRISTO, A. G. Brazilian Commercial Timbers: Interactive Identification Key Based on General and Macroscopic Features (CD-ROM), Brazilian Forest Service, Forest Products Laboratory: Brasília, Brasília, Brazil, 2010.
  • CHAVESTA, M. C. Maderas Para Pisos, Universidad Nacional Agraria de la Molina, Distrito de Lima, Peru, 2005.
  • CHAVESTA, M. C. Atlas Anatómico de Maderas del Perú [Anatomical Atlas of Maderas del Peru], Universidad Nacional Agraria de la Molina, Distrito de Lima, Peru, 2015.
  • DE LIMA, L. S.; MERRY, F.; SOARES-FILHO, B.; RODRIGUES, H. O.; DAMASCENO, C.D.S.; BAUCH, M. A. Illegal logging as a disincentive to the establishment of a sustainable forest sector in the Amazon, PloS One 13(12), 1-21, 2018, DOI: 10.1371/journal.pone.0207855
  • DORMONTT, E. E.; BONER, M.; BRAUN, B.; BREULMANN, G.; DEGEN, B.; ESPINOZA, E.; GARDNER, S.; GUILLERY, P.; HERMANSON, J. C.; et al., Forensic timber identification: It’s time to integrate disciplines to combat illegal logging, Biological Conservation 191, 790-798, 2015. DOI: 10.1016/j.biocon.2015.06.038
  • DUARTE, P. J.; BORGES, C. C.; FERREIRA, C. A.; CRUZ, T. M.; de SOUZA, W. R. Q., MORI, F. A. Anatomical identification of tropical woods traded in Lavras, Brazil, Journal of Tropical Forest Science 33(1), 95-103, 2021. DOI: 10.26525/jtfs2020.32.4.95
  • EVANS, P. D.; MUNDO, I. A.; WIEMANN, M.C.; CHAVARRIA, G. D.; MCCLERE, P. J.; VOIN, D.; ESPINOZA, E. O. Identification of selected CITES-protected Araucariaceae using DART TOFMS, IAWA Journal, 38(2), 266-S3, 2017 Doi https://doi.org/10.1163/22941932-20170171
  • FABIJANSKA, A.; MALGORZATA, D.; BARNIAK, J. Wood species automatic identification from wood core images with a residual convolutional neural network,” Computers and Electronics in Agriculture 181, 1-13, 2021. DOI: 10.1016/j.compag.2020.105941
  • FAO; PNUMA 2020. El estado de los bosques del mundo - Los bosques, la biodiversidad y las personas. Roma. Doi: https://doi.org/10.4060/ca8642es.
  • FERREIRA, C. A.; INGA, J. G.; VIDAL, O. D.; GOYTENDIA, W. E.; MOYA, S. M.; CENTENO, T. B., VELÉZ, A.; TOMAZELLO-FILHO, M. Identification of tree species from the Peruvian Tropical Amazon “Selva Central” forest according to wood anatomy. Bioresources 16(4), 7161-7179, 2021.
  • FERREIRA, C. A.; INGA, J. G. Guia de anatomia e identificación de 50 especies maderables comerciales em Selva Central, Perú, Universidad Continental, Huancayo, Peru, 2022, 164P.
  • FLORSHEIM, S. M. B.; RIBEIRO, A. P.; LONGUI, E. L.; DE ANDRADE, I. M.; SONSIN-OLIVEIRA, J.; CHIMELO, J. P.; SOARES, R. K.; GOUVEIA, T. C.; MARQUES, V. N. Macroscopic Identification of Commercial Wood in the State of São Paulo, Instituto Florestal, São Paulo, Brazil, 2020, 394p.
  • GASSON, P.; BAAS, P.; WHEELER, E. Wood anatomy of Cites - Listed tree species, IAWA Journal 32(2), 155-198, 2011. DOI: 10.1163/22941932-90000050.
  • GONCALVES, Y. L.; SIQUEIRA, E. S.; FERREIRA, C. A.; TEIXEIRA, M. da S.; CORREA, P. V.; URBINATI, C. V.; Aplicação de algoritmos de Randon Forest no suporte a identificação das especies de Handroanthus serratifolius (Vahl) S. O. Grose e Handroanthus impetiginosus (Mart. ex. DC.) Mattos (Bignoneaceae) Brazilian Journal of Development, Curitiba, Paraná, Brazil, v. 8, n.5, p. 39721-39735, 2022. DOI:10.34117/bjdv8n5-457.
  • GONZALES, I. Atlas de Maderas Selva Central, National University of the Center of Peru, Huancayo, Peru, 2011, 168p.
  • GUANG-SHENG, C.; PENG, Z. Wood cell recognition using geodesic active contour and principal component analysis. Optik - Int J Light Electron Opt 124:949-952, 2013 https://doi.org/10.1016/j.ijleo.2012.02.032
  • GURAU, L.; TIMAR, M. C.; POROJAN, M. IORAS, F. Image processing method as a supporting tool for wood species identification. Wood Fiber Sci 45:303-313, 2013.
  • IUCN 2023. The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org
    » https://www.iucnredlist.org
  • JIAO, L.; LU, Y.; HE, T.; GUO, J.; YIN, Y.; DNA barcoding for wood identification: global review of the last decade and future perspective, IAWA Journal, 41(4), 620-643, 2020. doi: https://doi.org/10.1163/22941932-bja10041
  • KITIN, P.; ESPINOZA, E.; BEECKMAN, H.; et al., Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia Annals of Forest Science 78, 31, 2021. https://doi.org/10.1007/s13595-020-01024-1
  • MAQUIÑA, E. V. G. Identificación organoléptica y macroscópica de maderas comerciales: Serie I: Competencias Básicas para la Producción Industrial de Muebles de Madera [Organoleptic and macroscopic identification of commercial woods: Series I: Basic Competences for the Industrial Production of Wooden Furniture], CITEmadera, Lima, Peru, 2008.
  • MALLIK, A.; TARRÍO-SAAVEDRA, J.; FRANCISCO-FERNANDEZ, M.; NAYA, S. Classification of wood micrographs by image segmentation. Chemom. Intell. Lab. Syst. 107, Issue 2, 351-362, 2011. Doi: https://doi.org/10.1016/j.chemolab.2011.05.005
  • MANRIQUE, P. H.; TEIXEIRA, B. J.; LLICA, E. R.; COTOS, M. C. Evaluación de la actividad antioxidante del extracto hidroalcoholico estandarizado de hojas de Juglans neotropica Diels (Nogal peruano). Revista de la Sociedad Quimica del Perú, 81(3), 283-291, 2015.
  • MARCELO-PEÑA, J. L.; ROIG, F. A.; GOODWIN, Z. A.; TOMAZELLO-FILHO, M. Characterizing growth rings of Peru: A wood anatomical overview for potential applications in dendroecological-related fields, Dendrochronology, 62, 1-13, 2020. DOI: https://doi.org/10.1016/j.dendro.2020.125728
  • MARCELO-PEÑA, J. L.; TOMAZELLO-FILHO, M. Dendrologinalmente y anatomia de la madera de árboles de los bosques estaciobnalmente secos del Valle del Marañon, Perú. 1 ed. Universidad Nacional Agraria La Molina, 172p, 2020.
  • MIRANDA, N. E. de O.; ALMEIDA JUNIOR, E. B.; COLLEVATTI, R. G. A genética contra os crimes ambientais: identificação de madeira ilegal proveniente de unidades de conservação utilizando marcador molecular. Genética na escola, Vol. 9, nº2, 2014.
  • MINISTÉRIO DE DESSARROLLO AGRARIO Y RIEGO (MIDAGRI). Ministerio de Desarrollo Agrario y Riego - MIDAGRI. Gobierno del Perú, 2022. ( (https://www.gob.pe/ ) Access: 23 May 2022.
    » https://www.gob.pe/
  • MONTEIRO, T. C.; SILVA, R. V.; LIMA, J. T.; HEIN, P. R. G.; NAPOLI, A. Use of near infrared spectroscopy to distinguish carbonization processes and charcoal sources. Cerne, Lavras, v. 16, n. 3, p. 381-390, 2010.
  • MUSAH, R. A.; ESPINOZA, E. O.; CODY, R. B.; LESIAK, A. D.; CHRISTENSEN, E. D.; MOORE, H. E.; MALEKNIA, S.; DRIJFTHOUT, F. P. A high throughput ambient mass spectrometric approach to species identification and classification from chemical fingerprint signatures. Sci Rep 5, 11520, 2015. https://doi.org/10.1038/srep11520
  • NASCIMENTO, L. B.; BRANDES, A. F. N.; VALENTE, F. D. W.; TAMAIO, N. Anatomical identification of commercialized wood in the state of Rio de Janeiro, Brazil. Brazilian Journal of Botany 40(1): 291-329, 2017.
  • OSINFOR. Fichas de Identificación de Especies Forestales Maderables de la Selva Central [Identification Sheets for Timber Forest Species of the Central Jungle], Vistay Publicidad E.I.R.L., Lima, Perú, 2015.
  • OSINFOR. Fichas De Identificación de Especies Forestales Maderables y Silvicultura Tropical [Identification Sheets of Timber Forest Species and Tropical Silviculture], Vistay Publicidad E.I.R.L., Lima, Perú, 2017.
  • PAULA-FILHO, P. L.; de OLIVEIRA, L. E. S.; NISGOSKI, S.; BRITTO JR., A. S. Forest species recognition using macroscopic images. Machine Vision and Application. Springer-Verlag Berlin Heidelberg, 25, 1019-1031, 2014. Doi: 10.1007/s00138-014-0592-7
  • PRICE, E. R.; MILES-BUNCH, I. A.; GASSON, P. E.; LANCASTER, C. A. Pterocarpus wood identification by independent and complementary analysis of DART-TOFMS, microscopic anatomy, and fluorescence spectrometry, IAWA Journal, 42(4), 397-418, 2021. doi: https://doi.org/10.1163/22941932-bja10064
  • RAVINDRAN, P.; COSTA, A.; SOARES, R.; WIEDENHOEFT, A. C. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods. 14:25, 2018. https://doi.org/10.1186/s13007-018-0292-9
  • RAVINDRAN, P.; WIEDENHOEFT, A. C. Comparison of two forensic wood identification technologies for ten Meliaceae woods: computer vision versus mass spectrometry. Wood Sci Technol 54, 1139-1150 (2020). https://doi.org/10.1007/s00226-020-01178-1
  • REYNEL, C.; PENNIMGTON, T D.; PENNINGTON, R. T.; FLORES, C.; DAZA, A. Árboles útiles de la Amazonia Peruana: Un Manual con Apuntes de Identificación, Ecología y Propagación de las Especies [Useful Trees of the Peruvian Amazon: A Manual with Notes on Identification, Ecology and Propagation of Specie], Lima (Perú) Tarea Gráfica Educativa, Lima, Perú, 509p., 2004.
  • REYNEL, C.; MARCELO, J. Árboles de los ecosistemas forestales andinos. Manual de identificación de especies. Serie de Investigación y Sistematización n. 9. Programa Regional ECOBONA - Intercooperation, Lima, Perú, 163p, 2009.
  • RUFFINATTO, F.; CRIVELLARO, A.; WIEDENHOEFT, A. C. Review of macroscopic features for hardwood and softwood identification and a proposal for a new character list. IAWA Journal 36(2), 208-241, 2015. DOI: 10.1163/22941932-00000096
  • SANTINI JR, L.; FLORSHEIM, S. M. B.; TOMAZELLO-FILHO, M. Anatomia e Identificação da Madeira de 90 Espécies Tropicais comercializadas em São Paulo, Atena Editora, Ponta Grossa, Brasil, 231p, 2021.
  • SELEME, E. P.; LEWIS, G. P.; STIRTON, C. H.; SARTORI, A. L. B.; MANSANO, V. F. A. Taxonomic review and a new species of the South American woody genus Amburana (Leguminosae, Papilionoideae). Phytotaxa 212(4)249-263, 2015.
  • SERFOR (2016). “Peru define prioridades de Gobernanza Forestal y Reducción de Tala y comercio Ilegal de madera [Peru defines priorities for Forest Governance and Reduction of Logging and Illegal timber trade],” ( “Peru define prioridades de Gobernanza Forestal y Reducción de Tala y comercio Ilegal de madera [Peru defines priorities for Forest Governance and Reduction of Logging and Illegal timber trade],” (https://www.serfor.gob.pe/portal/noticias/negocios-sostenibles/peru-define-prioridades-de-gobernanza-forestal-y-reduccion-de-tala-y-comercio-ilegal-de-madera ), accessed on 7 January 2021.
    » https://www.serfor.gob.pe/portal/noticias/negocios-sostenibles/peru-define-prioridades-de-gobernanza-forestal-y-reduccion-de-tala-y-comercio-ilegal-de-madera
  • SERFOR. Manual para la Identificación Botánica de Especies Forestales de la Amazonía Peruana [Manual for the Botanical Identification of Forest Species of the Peruvian Amazon], Servicio Nacional Forestal y da Fauna Silvestre, Lima, Peru, 2020.
  • SOARES, L. F.; DA SILVA, D. C.; BERGO, M. C. J.; CORADIN, V. T. R.; BRAGA, J. W. B.; PASTORE, T. C. M. Avaliação de espectrômetro NIR portátil e PLS-DA para a discriminação de seis espécies similares de madeiras Amazônicas. Química nova, v. 40, n. 4, 418-426, 2017. http://dx.doi.org/10.21577/0100-4042.20170014
  • SOUZA, D. V.; SANTOS, J. X.; VIEIRA, H. C.; NAIDE, T. L.; NISGOSKI, S.; OLIVEIRA, E. S. An automatic recognition system of Brazilian flora species based on textural features of macroscopic images of wood. Wood Science and Technology Springer-Verlag GmbH Germany, part of Springer Nature 2020. https://doi.org/10.1007/s00226-020-01196-z
  • ROYAL BOTANIC GARDEN - Kew “Plants of the world online” Hymenopus heteromorphus (Benth.) Sothers & Prance | Plants of the World Online | Kew Science access: 27 March 2022.
  • TROPICOS. “Missouri botanical garden”. 2022. ( (http://www.tropicos.org ), Accessed 27 March 2022.
    » http://www.tropicos.org
  • UGARTE, J. O.; MORI, I. Z. Guía para la identificación de la madera de 50 especies forestales del Perú. Centro de Innovación Productiva y Transferencia Tecnológica de la Madera, CITEmadera, Lima, Perú, 98p., 2018.
  • VAZQUEZ, R.; ROJAS, R. D. P.; MONTEAGUDO, A. L.; VALENZUELA, L.; HUAMANTUPA, I. Catálogo de árboles del Perú. Revista Q´EUÑA, 9(1). Cusco, Perú, 607p. 2018.
  • VOLTZ, R. R.; BLUM, C. T. Chave dendrológica e caracterização da morfologia vegetativa da familia Lauraceae em um remanescente de Floresta Ombrófila Mista, Curitiba, PR. Rodriguesia, 71:e03192018, 2020.
  • WHEELE, E.; BAAS, P.; GASSON, P. E. IAWA Committee. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989; 10:219-332.
  • YU, M.; LIU, K; ZHOU, L.; ZHAO, L.; SHENGQUAN, L. Testing three proposed DNA barcodes for the wood identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain Holzforschung, vol. 70, no. 2, 2016, pp. 127-136. https://doi.org/10.1515/hf-2014-0234
  • YUSOF, R.; KHALID, M.; KHAIRUDDIN, A. S. M. Application of kernel genetic algorithm as nonlinear feature selection in tropical wood species recognition system. Comput Electron Agric 93:68-77, 2013.
  • ZHAO, P. Robust wood species recognition using variable color information. Optik - Int J Light Electron Opt 124:2833-2836, 2013.
  • ZHAO, P.; DOU, G.; CHEN, G-S Wood species identification using feature-level fusion scheme. Optik - Int J Light Electron Opt 125:1144-1148, 2014.
  • ZENID, G. J.; CECCANTINI, G. C. T. Identificação Macroscópica de Madeiras [Macroscopic Identification of Madeiras], Instituto de Pesquisas Tecnológicas de São Paulo, São Paulo, Brazil, 2012.

Publication Dates

  • Publication in this collection
    17 July 2023
  • Date of issue
    2023

History

  • Received
    08 May 2022
  • Accepted
    05 May 2023
UFLA - Universidade Federal de Lavras Universidade Federal de Lavras - Departamento de Ciências Florestais - Cx. P. 3037, 37200-000 Lavras - MG Brasil, Tel.: (55 35) 3829-1706, Fax: (55 35) 3829-1411 - Lavras - MG - Brazil
E-mail: cerne@dcf.ufla.br