Acessibilidade / Reportar erro

Caracterização in Situ de Propriedades Mecânicas de Materiais Resistentes ao Desgaste Abrasivo Usando o Método da Indentação

In Situ Determination of Mechanical Properties of Abrasive Wear Resistant Materials Using the Indentation Method

Resumos

O desempenho de materiais polifásicos em sistemas tribológicos envolvendo desgaste abrasivo é função de uma série de fatores, a saber: condições de operação, características de projeto e das propriedades do abrasivo e dos microconstituintes do material utilizado. Neste trabalho são apresentados resultados de ensaios de indentação em diferentes microconstituintes e partículas duras, através dos quais as propriedades mais importantes para o fenômeno abrasivo são determinadas in situ. Dentre essas destacam-se a dureza H, a tenacidade à fratura K IC, o módulo de elasticidade E, a relação trabalho plástico / trabalho elástico Wp / We e a relação de durezas entre o microconstituinte e o agente abrasivo. Em muitas situações práticas esses sistemas encontram-se em temperaturas elevadas. Assim, neste trabalho, é também apresentada a influência da temperatura sobre algumas dessas propriedades. Os resultados obtidos mostram a grande potencialidade dessa técnica no processo de seleção e desenvolvimento de materiais resistentes ao desgaste.


The wear resistance is not an intrinsic property of materials but depends on the operating conditions, design properties, type of abrasive and material properties. In this work the results of microindentation tests in different hard particles of wear resistant alloys and composites, as well as in bulk materials are presented. Continuous monitoring the load and the indenter penetration depth it is possible to obtain in situ important properties in the wear process of the alloy microconstituents. With this technique it was possible to determine the hardness H, the fracture toughness K IC, the Young modulus E and the relationship between the plastic and elastic work of deformation Wp / We. Since in many practical situations the process temperature is an important parameter, its influence on some of these properties is also considered. The results show that this technique may constitute a helpful tool in the process of selecting suitable microconstituents for wear resistant materials.


Caracterização in Situ de Propriedades Mecânicas de Materiais Resistentes ao Desgaste Abrasivo Usando o Método da Indentação

(In Situ Determination of Mechanical Properties of Abrasive Wear Resistant Materials Using the Indentation Method)

Hans Berns

Ruhr-Universität Bochum, Lehrstuhl Werkstofftechnik

Universitätstraße 150, 44780, Bochum, Germany

Sinésio D. Franco

Universidade Federal de Uberlândia, Laboratório de Tribologia e Materiais

Av. Universitária, s/n, Sta. Mônica, 38400-902 - Uberlândia, MG, Brasil

Resumo

O desempenho de materiais polifásicos em sistemas tribológicos envolvendo desgaste abrasivo é função de uma série de fatores, a saber: condições de operação, características de projeto e das propriedades do abrasivo e dos microconstituintes do material utilizado. Neste trabalho são apresentados resultados de ensaios de indentação em diferentes microconstituintes e partículas duras, através dos quais as propriedades mais importantes para o fenômeno abrasivo são determinadas in situ. Dentre essas destacam-se a dureza H, a tenacidade à fratura KIC, o módulo de elasticidade E, a relação trabalho plástico / trabalho elástico Wp / We e a relação de durezas entre o microconstituinte e o agente abrasivo. Em muitas situações práticas esses sistemas encontram-se em temperaturas elevadas. Assim, neste trabalho, é também apresentada a influência da temperatura sobre algumas dessas propriedades. Os resultados obtidos mostram a grande potencialidade dessa técnica no processo de seleção e desenvolvimento de materiais resistentes ao desgaste.

Abstract

The wear resistance is not an intrinsic property of materials but depends on the operating conditions, design properties, type of abrasive and material properties. In this work the results of microindentation tests in different hard particles of wear resistant alloys and composites, as well as in bulk materials are presented. Continuous monitoring the load and the indenter penetration depth it is possible to obtain in situ important properties in the wear process of the alloy microconstituents. With this technique it was possible to determine the hardness H, the fracture toughness KIC, the Young modulus E and the relationship between the plastic and elastic work of deformation Wp / We. Since in many practical situations the process temperature is an important parameter, its influence on some of these properties is also considered. The results show that this technique may constitute a helpful tool in the process of selecting suitable microconstituents for wear resistant materials.

INTRODUÇÃO

Os materiais resistentes ao desgaste abrasivo são, normalmente, do tipo polifásicos, contendo uma fase dura HP dispersa numa matriz metálica MM. A fase dura é a responsável direta pela resistência ao desgaste. Para ser efetiva no combate a esse tipo de desgaste, as fases duras devem possuir uma dureza superior à dureza do abrasivo HAB, e apresentar um tamanho médio maior que a largura dos sulcos produzidos pelo abrasivo dentro da matriz. Os materiais usualmente selecionados para esse fim apresentam durezas, que crescem na seguinte ordem: HMM < HAB < HHP. Além disso, a fase dura deve possuir uma boa tenacidade à fratura KIC , de modo que o desgaste abrasivo provocado pelo mecanismo de microlascamento seja evitado [1]. A tenacidade à fratura pode ser determinada através de ensaios de dureza Vickers, desde que cargas suficientemente grandes sejam utilizadas, produzindo-se trincas nas extremidades da impressão de dureza. Conhecendo-se o tamanho dessas trincas, que podem ser do tipo radial ou Palmqvist (figura 1), é possível, então, avaliar essa propriedade. Todavia, a determinação de KICatravés desse método está associada ao prévio conhecimento de outras propriedades, como por exemplo, o módulo de elasticidade E [2, 3]. A caracterização do módulo de elasticidade ou de Young, por sua vez, pode ser efetuada, dentre outras maneiras, através da monitoração e aquisição da carga aplicada e da profundidade de indentação do penetrador em um ensaio de microdureza [4-6]. Além dessas propriedades, H, KIC e E, outras informações dos microconstituintes podem ser obtidas, tais como: a relação entre as energias de deformação plástica e elástica Wp / We relaxação de tensões, trabalho específico de indentação e fluência [7], que também contribuem para a resposta tribológica dos microconstituintes [1]. Como muitos dos microconstituintes utilizados na produção de materiais resistentes ao desgaste abrasivo apresentam tamanho microscópico, a indentação se apresenta como ferramenta importante na caracterização in situ de propriedades mecânicas para a seleção e desenvolvimento de novos materiais.


O presente trabalho tem como objetivo, apresentar a aplicação da técnica de indentação na caracterização in situ de propriedades importantes no desenvolvimento de materiais resistentes ao desgaste abrasivo. Como muitas das aplicações práticas envolvem aumento de temperatura, mostram-se ainda os efeitos deste parâmetro sobre a dureza e os trabalhos para deformação elástica e plástica.

MATERIAIS E MÉTODOS

Para a realização dos ensaios de microdureza foi utilizado um equipamento com aplicação de carga através de um piezo-transladador de alto poder de resolução (10 nm) [7]. O módulo de elasticidade foi determinado usando a equação A [3,7]

(A)

onde: FMax representa a máxima carga aplicada sobre o penetrador durante o ensaio, D a diagonal da impressão de dureza Vickers e ht e hc a penetração total sob a ação da força máxima e após a retirada da carga, respectivamente (figura 2). A tenacidade à fratura, por sua vez, foi determinada usando a equação sugerida por Liang et al. [3], descrita por B


onde: H representa a dureza Vickers, E o módulo de elasticidade, f um fator de constrição (f = H/sy » 3, sy - tensão de escoamento), a a metade da impressão de dureza e c a metade da trinca produzida pelo processo de indentação (figura 2). O parâmetro a é dado através da equação C

(C)

onde n representa o coeficiente de Poisson.

Dentre as várias fases duras presentes em ligas ou compostos de matriz metálica ou de matriz cerâmica resistentes ao desgaste abrasivo foram testados carbetos, boretos e óxidos, tais como: WC/W2C de forma esférica e fragmentada, WC sinterizado, NbC, CrB2, Ni3B, M7C3 , M3C, Al2O3 e SiC. Essas partículas foram embutidas em matrizes metálicas por prensagem isostaticamente a quente (HIP), resultando em Compostos de Matriz Metálica (MMC) ou, utilizando cerâmicas endurecíveis a baixas temperaturas, formando assim, Compostos de Matriz Cerâmica (CMC). Os NbC, M3C e M7C3 foram testados em amostras de superligas de níquel e ferros fundidos brancos. Apresentam-se ainda resultados de indentação obtidos em nitreto cúbico de boro policristalino (PCBN) utilizados na confecção de ferramentas de usinagem de alto rendimento (tabela I).

As superfícies das amostras testadas foram preparadas através de metalografia convencional usando pasta de diamante de até 1 µm e, por fim, pasta de Al2O3 de 0,2 µm. Os valores de KIC foram obtidos através da medição das trincas em pelo menos 10 indentações em microscópio ótico.

RESULTADOS E DISCUSSÃO

Os resultados dos ensaios de microdureza em função da temperatura são apresentados na figura 3 para algumas das partículas duras mais comuns em materiais resistentes ao desgaste abrasivo. Observa-se dessa figura, à temperatura ambiente, uma considerável dispersão dos resultados para as diferentes partículas duras. Comparando-se esses resultados com os da literatura, obtidos através de microdurômetro convencional, tem-se uma boa correlação de valores [8]. As pequenas diferenças existentes podem ser atribuídas a variações de composição, uma vez que os ensaios efetuados nesse trabalho foram conduzidos segundo normas de dureza da ASTM. Das partículas duras estudadas, o carbeto fundido de tungstênio (fragmentado) apresenta o maior valor de dureza (2562±312HV0,05), que pode ser atribuído ao fino eutético de WC e W2C. Devido ao maior grau de refino do carbeto fundido de tungstênio esférico, um maior valor de dureza foi verificado nessa partícula dura (2989±167HV0,05). O menor valor de dureza foi encontrado na cementita, que compõe os ferros fundidos brancos empregados com grande freqüência em sistemas sujeitos a desgaste abrasivo. O emprego dessa HP em componentes sujeitos a esse tipo de desgaste se justifica pelo baixo preço dos ferros fundidos brancos não ligados ou de baixo teor em cromo e pelo fato de que, nesses tribosistemas o óxido de silício (flint) se apresenta como um dos principais elementos abrasivos. Como o flint apresenta uma dureza média de 1100HV0,05 já à temperatura ambiente, tem-se, então, uma dureza da partícula dura superior à do abrasivo, ou seja, HHP / HFlint > 1 (figura 4). Dessa forma, a cementita pode atuar de forma efetiva no aumento da resistência ao desgaste abrasivo.



Com o aumento da temperatura, a dureza de todas as partículas duras decresce (observar escala logarítmica no eixo da dureza), podendo ou não apresentar um ponto de inflexão que, usualmente, corresponde à metade da temperatura de fusão [9, 10]. Acima dessa temperatura, a dureza decresce rapidamente, como pode ser verificado nos carbetos de cromo do tipo Cr2C3 . O não aparecimento desse ponto em partículas como NbC se deve ao fato de que a metade da temperatura de fusão, neste caso, se encontra acima da faixa de temperaturas estudadas. O WC representa uma exceção, onde a partir de 600 °C a dureza permanece praticamente constante. Esse comportamento parece, segundo Chatfield [11], estar associado ao tamanho de grão do WC.

Relacionando-se esses valores de dureza das partículas duras com a dureza do flint HHP/HFlint em função da temperatura, nota-se que essa relação cresce continuamente. Portanto, em aplicações a quente, a utilização dessas partículas duras num tribosistema contendo como abrasivo flint, é de se esperar, em princípio, uma redução na agressividade do abrasivo, uma vez que a partícula dura passa a ser bem mais dura do que o abrasivo. Além disso, há um incremento de tenacidade à fratura, que tenderia a reduzir a probabilidade de ocorrência de microlascamento e, portanto, melhorando a resistência ao desgaste com o aumento da temperatura.

Como a dureza representa um importante parâmetro no comportamento tribológico de ferramentas de usinagem são apresentados também, através da figura 5, o efeito da temperatura sobre essa propriedade em nitretos cúbicos de boro policristalinos com diferentes matrizes. Nota-se através dessa figura (escala logarítmica na dureza) um decréscimo linear da dureza em toda a faixa de temperatura estudada. Merece destaque ainda nessa figura os elevados valores de dureza apresentados pelo PCBN2 em altas temperaturas (superior a 2000HV0,05 a 900 ºC), o que torna essa classe de material atraente para fins de usinagem e trabalho a quente.


Os resultados da avaliação da recuperação elástica, substituídos na equação A, permitiram a obtenção de módulos de elasticidade E de partículas duras, cujos desvios padrões foram inferiores a 10%, correspondendo a valores usuais obtidos em outros equipamentos do mesmo gênero [4]. Outros resultados da determinação de propriedades mecânicas, bem como o efeito da temperatura sobre o módulo de elasticidade podem ser obtidos na referência [2].

Conhecido E, determinou-se a tenacidade à fratura, após a medição do comprimento das trincas geradas nos cantos das impressões de dureza (figura 6). A figura 7 apresenta os valores de KIC para partículas duras estudadas à temperatura ambiente. Desses valores pode-se observar, que o carbeto fundido de tungstênio apresenta uma excelente combinação de tenacidade à fratura e dureza, podendo conduzir a enormes reduções da taxa de desgaste abrasivo, principalmente na forma esférica, que corresponde ao eutético mais refinado. Essas expectativas foram posteriormente confirmadas através de ensaios de desgaste abrasivo de compostos de matriz metálica MMCs com diferentes tipos de partículas duras [2, 12]. Valores de tenacidade à fratura relativamente baixos puderam ser observados em abrasivos como Al2O3 e SiC.



Além das propriedades descritas acima, o controle do processo de indentação e a aquisição da curva de força em função da profundidade permite o cálculo de outros parâmetros, a saber: trabalhos elástico e plástico de deformação e o trabalho específico no processo em função da temperatura, como mostrado na tabela II. Colocando-se os resultados Wp / We em uma escala log x log (figura 8), nota-se que os diversos materiais testados através dessa técnica, fornecem uma relação de Wp / We em função da temperatura ou microdureza do tipo linear. Isso se deve, basicamente, ao aumento de ductilidade dos materiais com a temperatura. Aumenta-se assim, a deformação plástica durante o processo de indentação.


CONCLUSÕES

A precisão e resolução do equipamento utilizado para testes em temperaturas de até 1000 °C permitem a determinação in situ da dureza, do módulo de elasticidade, da tenacidade à fratura, dos trabalhos elástico e plástico no processo de indentação, bem como o trabalho específico dos diversos microconstituintes em materiais polifásicos. A técnica mostrou ser uma ferramenta muito importante no processo de seleção e desenvolvimento de materiais resistentes ao desgaste, inclusive quando a temperatura tiver de ser considerada.

(Rec. 9/97, Ac. 12/97)

  • [1] K.H. Zum Gahr; "Microstructure and wear of materials", Amsterdam, Elsevier, 1987.
  • [2] H. Berns e S.D. Franco; "Properties of hard particles at room and elevated temperature", III Seminário Brasileiro de Materiais Resistentes ao Desgaste, Fortaleza, 1994, p.131-146.
  • [3] K.M. Liang, G. Orange e G. Fantozzi; "Evaluation by indentation of fracture toughness of ceramic materials", J. Mater. Sci., 25(1990)207-214.
  • [4] B.N. Lucas, W.C. Oliver, R.K. Williams, J. Brynestad e M.E. O'Hern; "The hardness and Young's modulus of bulk YBa2Cu3O7-x (1:2:3) and YBa2Cu4O8 (1:2:4) as determined by ultra low load indentation", J. Mater. Res., 6(1991)2519-2522.
  • [5] M.L. Emiliani; "Debond coating requirements for brittle matrix composites", J. Mater. Sci., 28(1993)5280-5296.
  • [6] R. Nowak e M. Sakai; "Energy principle of indentation contact: The application to sapphire", J. Mater. Res., 8(1993)1068-1078.
  • [7] M. Lührig; "Temperaturabhängigkeit der Mikrohärte von Mischkristallen in Phasengemischen", Dr. Ing. Thesis, Ruhr-Universität Bochum, 1992.
  • [8] G.V. Samsonov; "High-temperature materials", Band 2, Plenum Press, New York, 1964.
  • [9] A. Kagawa, T. Okamoto, K. Saito e M. Ohta; "Hot hardness of (Fe,Cr)3C and (Fe,Cr)7C3 carbides", J. Mater. Sci., 19 (1984) 2546-2554.
  • [10] Y. Kumashiro, Y. Nagai e H. Kato; "The Vickers micro-hardness of NbC, ZrC and TaC single crystals up to 1500 °C", J. Mater. Sci. Lett., 1(1982)49-52.
  • [11] Ch. Chatfield; "The influence of carbide grain size on the hot hardness of polycrystalline tungsten carbide and WC-Co cemented carbides", Powder Met. Int., 17(1985)113-115.
  • [12] S.D. Franco; "Wechselwirkung zwischen Matrix und Hartphasen beim Warmverschleiß", Dr.Ing. Thesis Ruhr-Univ. Bochum, 1995.

Datas de Publicação

  • Publicação nesta coleção
    23 Ago 2001
  • Data do Fascículo
    Ago 1997

Histórico

  • Aceito
    Dez 1997
  • Recebido
    Set 1997
Associação Brasileira de Cerâmica Av. Prof. Almeida Prado, 532 - IPT - Prédio 36 - 2º Andar - Sala 03 , Cidade Universitária - 05508-901 - São Paulo/SP -Brazil, Tel./Fax: +55 (11) 3768-7101 / +55 (11) 3768-4284 - São Paulo - SP - Brazil
E-mail: ceram.abc@gmail.com