Acessibilidade / Reportar erro

Efeito do teor de Y2O3 na sinterização do nitreto de alumínio

Effect of Y2O3 content on the sintering of aluminum nitride

Resumos

O Y2O3 é o principal aditivo usado na sinterização de cerâmicas de AlN com elevada condutividade térmica, que são destinadas a produção de dispositivos eletrônicos de alta performance. Neste trabalho, investigou-se o efeito do teor de aditivo na sinterização de AlN com 0,5 a 4% em peso de Y2O3, correlacionado os resultados de densidade, análise microestrutural e a evolução das segundas fases em função da temperatura de sinterização. Os corpos compactados foram sinterizados em atmosfera de nitrogênio usando um forno com elemento resistivo de tungstênio entre 1650 e 2000 ºC por 1 h. Os resultados mostraram que a densificação das amostras de AlN com até 4% de Y2O3 ocorreu por sinterização no estado sólido até 1700 ºC. Acima desta temperatura, a densificação ocorreu por sinterização assistida por fase líquida. A fusão da fase YAG foi responsável pela formação de líquido ao redor de 1725 ºC nas amostras de AlN com até 4% de Y2O3. A quantidade de fase líquida aumentou em função do teor de aditivo nas amostras somente após a densificação total devido à fusão das partículas grandes refratárias de aluminatos de ítrio (YAP e YAM) em altas temperaturas. Assim, o aumento do teor de Y2O3 (0,5 a 4% em peso) não causou variações significativas no comportamento de densificação do AlN porque a quantidade de fase líquida foi próxima na faixa de temperatura em que ocorreu a densificação. A adição de apenas 0,5% em peso de Y2O3 aumentou significativamente a sinterabilidade do AlN. O uso de Y2O3 com larga distribuição granulométrica em relação a do AlN não causou a formação de poros grandes. Os resultados mostraram uma tendência de evaporação de compostos óxidos nas amostras de AlN com Y2O3 sinterizadas principalmente acima de 1850 ºC.

AlN; Y2O3; sinterização; microestrutura; segunda-fase


Y2O3 is the main sintering aid for high thermal conductivity AlN ceramics for the production of electronic devices. The effect of varying the amount of Y2O3 as sintering aid for AlN from 0.5 to 4 wt% was investigated. The effects of different amounts of Y2O3 were correlated with results of density and microstructural analysis, as well as the evolution of second phases, as a function of sintering temperature. Green bodies were sintered in nitrogen atmosphere using a tungsten element furnace, between 1650 and 2000 ºC for 1 h. The results showed the densification of AlN samples with Y2O3 by solid state sintering up to 1700 ºC; above this temperature, densification occurred by liquid-phase sintering. The melting of a YAG phase caused the formation of liquid phase at around 1725 ºC, in samples of AlN with up to 4 wt% Y2O3. The amount of liquid-phase increased with increasing sintering aid content only after the full densification of the samples, due to the melting of large refractory particles of yttrium aluminates (YAP and YAM) at high temperatures. As a result, the increase of the Y2O3 content (0.5 to 4 wt%) did not cause significant variations in the densification behavior of the AlN, as the amount of liquid-phase was similar for all temperatures in the range at which densification occurred. The addition of only 0.5 wt% Y2O3 increased significantly the sinterability of AlN. The use of Y2O3 with large particle size distribution in relation to AlN did not cause the formation of large pores. The results showed a trend towards oxide compounds evaporation in AlN samples with Y2O3, when sintered above 1850 ºC.

AlN; Y2O3; sintering; microstructure; second-phase


Efeito do teor de Y2O3 na sinterização do nitreto de alumínio

Effect of Y2O3 content on the sintering of aluminum nitride

A. L. MolisaniI; H. N. YoshimuraI; H. GoldensteinII

ILaboratório de Tecnologia Cerâmica, Instituto de Pesquisas Tecnológicas do Estado de S. Paulo - IPT; Av. Prof. Almeida Prado 532, S. Paulo, SP 05508-901

IIDepartamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica da Universidade de S. Paulo; Av. Prof. Mello Moraes 2463, S. Paulo, SP 05508-900; molisani@ipt.br

RESUMO

O Y2O3 é o principal aditivo usado na sinterização de cerâmicas de AlN com elevada condutividade térmica, que são destinadas a produção de dispositivos eletrônicos de alta performance. Neste trabalho, investigou-se o efeito do teor de aditivo na sinterização de AlN com 0,5 a 4% em peso de Y2O3, correlacionado os resultados de densidade, análise microestrutural e a evolução das segundas fases em função da temperatura de sinterização. Os corpos compactados foram sinterizados em atmosfera de nitrogênio usando um forno com elemento resistivo de tungstênio entre 1650 e 2000 ºC por 1 h. Os resultados mostraram que a densificação das amostras de AlN com até 4% de Y2O3 ocorreu por sinterização no estado sólido até 1700 ºC. Acima desta temperatura, a densificação ocorreu por sinterização assistida por fase líquida. A fusão da fase YAG foi responsável pela formação de líquido ao redor de 1725 ºC nas amostras de AlN com até 4% de Y2O3. A quantidade de fase líquida aumentou em função do teor de aditivo nas amostras somente após a densificação total devido à fusão das partículas grandes refratárias de aluminatos de ítrio (YAP e YAM) em altas temperaturas. Assim, o aumento do teor de Y2O3 (0,5 a 4% em peso) não causou variações significativas no comportamento de densificação do AlN porque a quantidade de fase líquida foi próxima na faixa de temperatura em que ocorreu a densificação. A adição de apenas 0,5% em peso de Y2O3 aumentou significativamente a sinterabilidade do AlN. O uso de Y2O3 com larga distribuição granulométrica em relação a do AlN não causou a formação de poros grandes. Os resultados mostraram uma tendência de evaporação de compostos óxidos nas amostras de AlN com Y2O3 sinterizadas principalmente acima de 1850 ºC.

Palavras-chave: AlN, Y2O3, sinterização, microestrutura, segunda-fase.

ABSTRACT

Y2O3 is the main sintering aid for high thermal conductivity AlN ceramics for the production of electronic devices. The effect of varying the amount of Y2O3 as sintering aid for AlN from 0.5 to 4 wt% was investigated. The effects of different amounts of Y2O3 were correlated with results of density and microstructural analysis, as well as the evolution of second phases, as a function of sintering temperature. Green bodies were sintered in nitrogen atmosphere using a tungsten element furnace, between 1650 and 2000 ºC for 1 h. The results showed the densification of AlN samples with Y2O3 by solid state sintering up to 1700 ºC; above this temperature, densification occurred by liquid-phase sintering. The melting of a YAG phase caused the formation of liquid phase at around 1725 ºC, in samples of AlN with up to 4 wt% Y2O3. The amount of liquid-phase increased with increasing sintering aid content only after the full densification of the samples, due to the melting of large refractory particles of yttrium aluminates (YAP and YAM) at high temperatures. As a result, the increase of the Y2O3 content (0.5 to 4 wt%) did not cause significant variations in the densification behavior of the AlN, as the amount of liquid-phase was similar for all temperatures in the range at which densification occurred. The addition of only 0.5 wt% Y2O3 increased significantly the sinterability of AlN. The use of Y2O3 with large particle size distribution in relation to AlN did not cause the formation of large pores. The results showed a trend towards oxide compounds evaporation in AlN samples with Y2O3, when sintered above 1850 ºC.

Keywords: AlN, Y2O3, sintering, microstructure, second-phase.

INTRODUÇÃO

O nitreto de alumínio (AlN) apresenta elevada condutividade térmica, além de um conjunto de propriedades físicas, tais como elevada resistência à ruptura dielétrica, baixas perdas de energia em alta freqüência, elevada resistividade elétrica e baixo coeficiente de expansão térmica (4,4 x 10-6/°C entre 20 e 400 °C), próximo ao do silício (3,2 x 10-6/°C entre 20 e 400 °C), que é o principal material usado na fabricação de chips [1, 2]. Este conjunto de propriedades torna AlN um forte candidato para substituir Al2O3 e BeO na fabricação de dispositivos eletrônicos de alta performance, como por exemplo substratos para transistores de potência, material de encapsulamento para circuitos integrados e componentes para laser [1].

O AlN é constituído predominantemente por ligações covalentes e apresenta uma estrutura cristalina 2H similar à da wurstzita [2]. Existem vários trabalhos indicando que o AlN apresenta baixa sinterabilidade devido à sua natureza covalente [3-5]. O pó de AlN em contato com a umidade do meio ambiente reage rapidamente, formando em sua superfície uma camada de hidróxido ou óxido de alumínio [6]. Sakai e Iwata [7] mostraram que o aumento do teor de oxigênio no pó de AlN favorece a densificação a 1800 ºC por prensagem a quente devido ao aumento do seu coeficiente de autodifusão. Existem alguns trabalhos mostrando que é possível obter cerâmicas densas de AlN por sinterização sem pressão a partir de 1900 ºC [8, 9], mas sua condutividade térmica é considerada baixa, ao redor de 80 W/mK [10, 11], quando comparada com a do monocristal com baixo teor de oxigênio (~320 W/mK) [12]. Apesar da condutividade térmica da cerâmica de AlN ser baixa em relação à do monocristal, esta é quatro vezes maior do que a do Al2O3 (20 W/mK) [1]. Na literatura, observou-se a proposição de dois mecanismos de sinterização para o AlN. O primeiro mostra que a camada de óxido amorfo presente na superfície do pó de AlN se transforma em a-Al2O3 ao redor de 1200 °C [13]. Acima de 1650 °C, a-Al2O3 reage com AlN formando a fase ALON, que favorece a densificação. Em altas temperaturas, isto é, acima de 1900 °C, a fase ALON reage com AlN formando a fase politipóide 27R (Al9O3N7), que também favorece a densificação. O segundo mecanismo indica que a densificação do AlN em altas temperaturas (> 1900 ºC) ocorre pela formação de fase líquida [14, 15], que é prevista pelo diagrama de equilíbrio de fases do sistema AlN-Al2O3 a partir de 1850 °C [16].

Komeya et al. [17] sinterizaram AlN com diversos aditivos e observaram que a adição de óxidos de metais alcalinos terrosos e de terras raras possibilitou obter cerâmicas densas por sinterização sem pressão em temperaturas mais baixas do que a do AlN puro. Os resultados das análises microestrutural e de difração de raios X levaram estes autores à conclusão de que a densificação do AlN ocorreu por sinterização assistida por fase líquida. A presença de fase líquida se deve à fusão dos aluminatos do sistema Al2O3 - óxido, que são formados pela reação entre a camada de Al2O3 presente na superfície do pó de AlN e o aditivo [18]. Kuramoto et al. [18] indicaram que os aditivos de sinterização têm sido utilizados por duas razões: i) para favorecer a densificação e ii) para capturar o oxigênio presente na superfície do pó de AlN, de modo que este não permaneça ou entre em solução sólida na sua rede cristalina. Slack [12] mostrou que a presença de oxigênio na rede cristalina do AlN diminui drasticamente a condutividade térmica devido principalmente à formação de lacunas de alumínio, que são geradas na troca do nitrogênio pelo oxigênio na rede cristalina.

As rotas de fabricação das cerâmicas de AlN com elevada condutividade térmica estão estabelecidas, sendo os principais aditivos usados Y2O3, CaO e a mistura de ambos. Dentre estes aditivos, Y2O3 é o mais eficiente, sendo observados valores de condutividade térmica variando de 180 a 230 W/mK [19-22]. A condutividade térmica do AlN aumenta consideravelmente em função do teor de Y2O3, sendo observado um teor otimizado de aditivo variando de 3 a 5% em peso [19-22]. Existem poucos estudos sobre a sinterização de AlN com Y2O3 [14, 23-25], os quais elucidam parcialmente os mecanismos envolvidos na sinterização desta cerâmica. Koestler et al. [23] indicaram que a densificação do AlN foi favorecida em baixas temperaturas devido à formação de aluminatos de ítrio por reação no estado sólido. Alguns autores [14, 24, 25], que usaram pós nanométricos, também observaram uma significativa densificação de AlN com Y2O3 em baixas temperaturas, ou seja, abaixo da menor temperatura eutética prevista no diagrama de equilíbrio de fases do sistema Al2O3-Y2O3 (~1760 ºC) [26]. Estes autores indicaram que a densificação do AlN em baixas temperaturas está relacionada com a alta sinterabilidade dos pós nanométricos, mas também indicaram que a formação de aluminatos de ítrio por sinterização no estado sólido pode ter contribuído. Em altas temperaturas, isto é, acima de 1760 ºC, a densificação do AlN com Y2O3 ocorre por sinterização assistida por fase líquida devido à fusão dos aluminatos de ítrio [14, 17, 23-25].

Este trabalho tem como objetivo estudar a influência do teor de Y2O3 na sinterização de AlN através da correlação dos resultados de densidade, análise microestrutural e evolução das segundas fases em função da temperatura de sinterização.

MATERIAIS E MÉTODOS

As matérias-primas usadas foram: i) pó de AlN com 0,85% em peso de oxigênio (Tokuyama Soda, grau F); ii) pó de Y2O3 (Aldrich); iii) polietileno glicol como ligante (Nacalai Tesque); iv) álcool isopropílico PA como meio de mistura; e v) tinta de nitreto de boro (BN) para recobrimento do cadinho. Preparou-se pós granulados de AlN puro e com 0,5%, 2% e 4% em peso de Y2O3. As dispersões de pós foram acondicionadas em jarros de material polimérico com elementos de moagem (bolas) do mesmo material. As misturas foram realizadas em um moinho de bolas (Yamato, UB32) com velocidade de 80 rpm. Após 20 h de mistura, adicionou-se 2% em peso de PEG às dispersões que retornaram ao moinho por mais 2 h. As dispersões foram secas em uma placa aquecedora e granuladas em uma peneira de náilon com tela de 80 mesh. Os corpos compactados foram confeccionados por prensagem uniaxial a 10 MPa por 10 s, seguida de prensagem isostática a 150 MPa por 15 s. As sinterizações foram realizadas em forno com elemento resistivo de tungstênio (Nems, NM-15) entre 1650 e 2000 °C por 1 h e com fluxo de gás nitrogênio. Uma sinterização adicional foi realizada a 1725 ºC por 1 min, seguindo os mesmos parâmetros das demais sinterizações. As taxas de aquecimento e de resfriamento foram 10 e 30 ºC/min, respectivamente. As amostras foram acondicionadas em um cadinho de molibdênio recoberto com tinta de BN e com cama de pó de AlN. As densidades dos corpos compactados foram determinadas pelo método geométrico e as dos corpos sinterizados pelo método de Arquimedes. As densidades relativas foram determinadas pela regra das misturas, usando as densidades teóricas do AlN (3,26 g/cm3) e do Y2O3 (5,01 g/cm3). A análise granulométrica do pó de AlN foi realizada por sedigrafia (Micromeritics, Sedigraph 5100) e do pó de Y2O3 por difração de raios laser (Malvern, Mastersize 2000). As análises por difração de raios X foram realizadas em um difratômetro (Rigaku, Rint 2000), sendo as fases cristalinas identificadas pelos seguintes cartões JCPDS: 25-1133 (AlN), 33-0040 (YAG, 3Y2O3.5Al2O3 ), 34-0368 (YAM, 2Y2O3.Al2O3 ), 33-0041 (YAP, Y2O3.Al2O3 ) e 41-1105 (Y2O3). As análises microestruturais das superfícies de fratura foram realizadas em um microscópio eletrônico de varredura (Jeol 6300) e as microanálises químicas foram realizadas por espectrometria por dispersão de energia (Noran) acoplada ao MEV.

RESULTADOS

As análises morfológicas realizadas por MEV mostraram que as partículas de AlN apresentaram morfologia tendendo à forma isométrica (Fig. 1A), enquanto as de Y2O3 tenderam à forma de placas irregulares (Fig. 1B). O pó de AlN apresentou uma distribuição granulométrica estreita e um tamanho médio de partícula ao redor de 0,6 µm (Fig. 1C), enquanto o pó de Y2O3 apresentou larga distribuição granulométrica e um tamanho médio de partícula ao redor de 5,5 µm.


As densidades dos corpos compactados de AlN puro e com Y2O3 foram ao redor de 55% da densidade teórica (DT). A Fig. 2 mostra os resultados de densidade relativa em função da temperatura de sinterização das amostras de AlN puro e com 0,5, 2 e 4% de Y2O3. Entre 1650 e 1850 ºC, o AlN puro apresentou um aumento de densidade relativamente baixo, chegando a atingir densidade ao redor de 78% DT a 1850 ºC. Acima desta temperatura, o AlN puro apresentou um aumento significativo de densidade em função da temperatura, atingindo densidade ao redor de 98% DT a 1950 ºC (Fig. 2).


A adição de uma pequena quantidade de Y2O3 (0,5% em peso) deslocou a curva de densificação do AlN para menores temperaturas (Fig. 2). As curvas de densificação das amostras de AlN com 0,5 e 4% de Y2O3 foram próximas na faixa de temperatura estudada. Entre 1650 e 1800 ºC, a curva de densificação da amostra com 2% de Y2O3 apresentou-se levemente deslocada para maiores temperaturas em relação às curvas das demais amostras com aditivo (Fig. 2). As amostras de AlN com 0,5 e 4% de Y2O3 atingiram valores de densidade ao redor de 97% DT a 1750 ºC, enquanto a amostra com 2% de aditivo atingiu um valor de densidade ao redor de 92% DT na mesma temperatura. A partir de 1800 ºC, todas as amostras de AlN com Y2O3 apresentaram valores de densidade próximos e praticamente constantes, ficando ao redor de 99% DT.

Os resultados de DRX da amostra de AlN puro sinterizada a 1850 e 2000 ºC mostraram somente a fase AlN. A Tabela I apresenta os resultados da análise de DRX das amostras de AlN com Y2O3 sinterizadas entre 1650 e 2000 ºC por 1 h. Entre 1650 e 1950 ºC, a amostra de AlN com 0,5% de Y2O3 apresentou a fase YAG e a 2000 ºC a fase Y2O3. A amostra de AlN com 2% de Y2O3 apresentou a fase YAG entre 1650 e 1900 ºC e a fase YAP a 1950 e 2000 ºC. O diagrama de equilíbrio de fases do sistema Al2O3-Y2O3 mostra que a fase YAP é estável somente em altas temperaturas, isto é, entre 1831 e 1858 ºC [26]. A amostra de AlN com 4% de Y2O3 apresentou em ordem de preponderância as fases YAG, YAM e YAP a 1650 ºC. O aumento da temperatura de sinterização causou uma inversão na ordem de preponderância das segundas fases na amostra com 4% de Y2O3 (Tabela I), sendo observada a 1700 e 1750 ºC uma maior quantidade da fase YAP, seguida por YAG e YAM. Entre 1800 e 1900 ºC, esta amostra apresentou em ordem de preponderância as fases YAP e YAG. A 1950 e 2000 ºC observou-se na amostra com 4% de Y2O3 somente a fase YAP.

Os resultados da análise microestrutural da amostra de AlN puro mostraram pouca densificação microestrutural entre 1650 e 1850 ºC (Figs. 3a e 3b), sendo observada somente a formação de pescoços entre as partículas. Acima de 1850 ºC, observou-se que as taxas de densificação microestrutural e de crescimento de grão aumentaram de forma significativa. Porém, a 2000 ºC foi observada uma microestrutura apresentando uma quantidade considerável de poros residuais. Acima de 1900 ºC observaram-se grãos com fraturas do tipo transgranular (Fig. 3c).


As amostras de AlN com Y2O3 apresentaram uma evolução microestrutural mais rápida (Fig. 4) do que a do AlN puro, concordando com os resultados de densidade (Fig. 2). A 1650 e 1700 ºC, observou-se nas amostras de AlN com Y2O3 somente a formação de pescoços entre as partículas dos pós de partida (Fig. 4), sendo este tipo de morfologia microestrutural similar ao da amostra de AlN puro sinterizada a 1850 ºC (Fig. 3b).


Nas amostras de AlN com Y2O3 sinterizadas a 1725 ºC por 1 min, observou-se a formação de aglomerados de partículas relativamente densos (Fig. 5a), cuja quantidade aumentou ligeiramente em função do teor de aditivo. A 1725 ºC, observou-se que o aumento do tempo de sinterização (1 para 60 min) promoveu uma rápida densificação microestrutural das amostras de AlN com Y2O3 (Figs. 5a e 5b). As amostras de AlN com 0,5 e 4% de Y2O3 atingiram elevados valores de densidade (~97% DT) a 1750 ºC, sendo observada uma microestrutura com poucos poros residuais (Fig. 5c). A amostra de AlN com 2% de Y2O3 apresentou uma evolução microestrutural ligeiramente atrasada em relação às demais amostras com Y2O3. Os grãos das amostras de AlN com 2 e 4% de Y2O3 se apresentaram facetados e com tendência a forma equiaxial entre 1750 e 1900 ºC (Fig. 5c-f), enquanto a amostra com 0,5% de Y2O3 apresentou este mesmo tipo de morfologia até 2000 ºC (Fig. 5i). Acima de 1900 ºC, observou-se grãos com morfologia arredondada nas amostras de AlN com 2 e 4% de Y2O3 (Figs. 5g e 5h). Entre 1650 e 1750 ºC, as amostras de AlN com Y2O3 apresentaram grãos com fraturas do tipo transgranular (Figs. 4 e 5c), sendo observado um crescimento de grão significativo a partir de 1725 ºC (Figs. 5b-h). O aumento de temperatura causou uma mudança no tipo de fratura dos grãos, sendo observado um predomínio de fraturas intergranulares acima de 1800 °C em todas as amostras com Y2O3.


A Fig. 6 mostra imagens de elétrons retroespalhados da superfície de fratura das amostras de AlN com Y2O3. Entre 1650 e 1800 ºC observou-se partículas relativamente grandes de segundas fases dispersas pela microestrutura das amostras de AlN com 2 e 4% de Y2O3 (regiões claras, Fig. 6a-c), cuja quantidade apresentou um pequeno aumento em função do teor de aditivo. Os resultados das microanálises químicas por EDS realizadas nas partículas grandes de segunda fase (Fig. 6a-c) mostraram oxigênio, alumínio e ítrio, indicando que estas partículas são de aluminatos de ítrio. Estes resultados estão em acordo com os resultados de DRX (Tabela I). A amostra de AlN com 0,5% de Y2O3 não apresentou partículas grandes de segunda fase dispersas pela microestrutura em toda a faixa de temperatura estudada. Porém, observou-se finas partículas de segunda fase dispersas ao longo dos contornos de grão do AlN (regiões claras, Fig. 6d). A partir de 1850 ºC, as partículas grandes de segunda fase observadas nas amostras com 2 e 4% de Y2O3 fundiram e se espalharam pelos contornos de grão do AlN (Fig. 6e-f).


DISCUSSÃO

Os resultados da análise microestrutural por MEV do AlN puro não mostraram evidências da formação de fase líquida em toda a faixa de temperatura estudada, apesar da indicação que em altas temperaturas (> 1900 ºC) a densificação do AlN pode ser favorecida pela formação de fase líquida [14, 15]. As fases ALON e 27R, que também podem favorecer a densificação do AlN, não foram identificadas por DRX na amostra de AlN puro sinterizada a 1850 e 2000 ºC. O teor de oxigênio no pó de AlN foi baixo (0,85% em peso) e, portanto, a quantidade de segundas fases formadas durante a sinterização deve ter ficado abaixo do limite de detecção da análise de DRX. A análise microestrutural por MEV não mostrou grãos alongados, que são característicos da fase politipóide 27R [16], indicando que esta fase não foi formada ou se apresentou em pequena quantidade ao longo dos contornos de grão. A formação de pescoços entre as partículas até 1850 ºC (Fig. 3a-b) e o rápido engrossamento microestrutural (coarsening) acima desta temperatura (Fig. 3c) indicaram que a densificação do AlN puro ocorreu por sinterização no estado sólido na faixa de temperatura estudada.

Os resultados da análise microestrutural por MEV das amostras de AlN com Y2O3 mostraram somente a formação de pescoços entre as partículas até 1700 ºC (Fig. 4), indicando que até esta temperatura a densificação destas amostras ocorreu por sinterização no estado sólido. Em relação ao corpo compactado, as amostras de AlN com Y2O3 sinterizadas a 1700 ºC apresentaram um aumento médio de densidade ao redor de 20% (Fig. 2), o que corresponde a uma densificação ao redor de 45% por sinterização no estado sólido. Sakai e Iwata [7] observaram que o aumento do teor de oxigênio presente no pó de AlN favorece a sua densificação por sinterização no estado sólido devido ao aumento do seu coeficiente de autodifusão. No presente trabalho, observou-se que a adição de Y2O3 aumentou significativamente o coeficiente de autodifusão do AlN, pois promoveu um aumento médio de densidade ao redor de 11% em relação ao AlN puro a 1700 ºC (Fig. 2). O AlN puro apresentou uma densificação na mesma proporção somente a 1850 ºC.

Entre 1650 e 1800 ºC, as amostras de AlN com 2 e 4% de Y2O3 apresentaram partículas relativamente grandes de segunda fase dispersas pela microestrutura (Figs. 6a-c). Na literatura, observou-se que as amostras de AlN com Y2O3 e com terras raras sinterizadas ao redor de 1800 ºC apresentaram microestruturas similares às observadas nas Figs. 6b-c [27-29]. As análises de amostras de AlN com Y2O3 por microscopia eletrônica de transmissão indicaram que as partículas de Y2O3 reagem com o óxido presente na superfície do pó de AlN, transformando-se em partículas de aluminatos de ítrio a partir de 1150 ºC [23]. Estes autores indicaram que a composição dos aluminatos varia em função do teor de oxigênio no pó de AlN e do teor de aditivo usado. Outros trabalhos também observaram a formação de fases de aluminatos de ítrio em baixas temperaturas, isto é, entre 1200 e 1600 ºC [14, 24, 30]. No presente trabalho, o tamanho médio das partículas grandes de segunda fase (Figs. 6b-c) foi próximo ao tamanho médio das partículas iniciais de Y2O3 (Figs. 1b-c). Os resultados da microanálise química por EDS e de DRX (Tabela I) mostraram que estas partículas são de aluminatos de ítrio. Estes resultados reforçam a idéia de que as partículas de Y2O3 se transformaram em partículas de aluminatos de ítrio durante o aquecimento até a temperatura de sinterização.

De certo modo, a presença de partículas de aluminatos de ítrio abaixo de 1725 ºC era esperada (Fig. 6a), já que a temperatura eutética mais baixa do sistema ternário AlN-Al2O3-Y2O3 é ao redor de 1720 ºC [31]. No entanto, estas partículas persistiram na microestrutura das amostras de AlN com 2 e 4% de Y2O3 até 1800 ºC (Fig. 6c). Estas partículas não apresentaram aspecto de material fundido, pois sua morfologia permaneceu praticamente a mesma entre 1650 e 1800 ºC (Figs. 6a-c). A partir de 1850 ºC, observou-se que estas partículas grandes fundiram e o líquido formado se espalhou e molhou os contornos de grão do AlN (Figs. 6e-f). Estes resultados indicaram que estas partículas de aluminatos de ítrio apresentam composições químicas com temperaturas eutéticas superiores a 1800 ºC. Os resultados da análise de DRX mostraram que a amostra de AlN com 4% de Y2O3 apresentou fases mais refratárias (YAP e YAM, Tabela I) entre 1650 e 1800 ºC, o que reforçou a idéia de que as partículas grandes de segunda fase não fundiram nesta faixa de temperatura porque apresentam temperaturas eutéticas superiores. Apesar da amostra de AlN com 2% de Y2O3 ter apresentado partículas grandes de aluminatos de ítrio entre 1650 e 1800 ºC (Fig. 6b), os resultados da análise de DRX mostraram somente a presença da fase YAG nesta faixa de temperatura (Tabela I). A fase YAG apresenta um ponto eutético (L®YAG+a-Al2O3) a 1720 ºC [31] ou a 1760 ºC [26], indicando que esta fase deveria ter fundido acima destas temperaturas. A fase YAM pode se decompor nas fases YAG e Y2O3 ou em uma fase de composição não conhecida e Y2O3 durante o resfriamento [32]. Este resultado reforça a idéia de que as partículas grandes observadas na amostra de AlN com 2% de Y2O3 são de aluminatos de ítrio mais refratários, os quais se transformaram provavelmente em YAG e Y2O3 durante o resfriamento. Analogamente, a fase YAG pode se decompor nas fases YAP (metaestável) e a-Al2O3 [33, 34], o que justifica a presença da fase YAP à temperatura ambiente nas amostras de AlN com 2 e 4% de Y2O3. Provavelmente, as fases Y2O3 e a-Al2O3 não foram identificadas por DRX porque a quantidade destas fases ficou abaixo do limite de detecção da análise.

Os resultados da análise microestrutural mostraram evidências da formação de fase líquida nas amostras de AlN com Y2O3 sinterizadas a 1725 ºC por 1 min. Neste caso, observou-se a presença de aglomerados de partículas relativamente densos dispersos pela microestrutura (Fig. 5a), cuja quantidade apresentou um pequeno aumentou em função do teor de aditivo. A 1725 ºC observou-se que o aumento do tempo de sinterização de 1 para 60 min promoveu um aumento na quantidade e no tamanho dos aglomerados de partículas (Figs. 5a-b), indicando que o estágio de rearranjo de partículas da sinterização assistida por fase líquida foi ativado. A partir de 1725 ºC, observou-se que as taxas de densificação e de crescimento de grão aumentaram significativamente (Figs. 5b-d), indicando que acima desta temperatura o estágio de solução-reprecipitação da sinterização assistida por fase líquida foi ativado. Estes resultados mostraram que a partir de 1725 ºC a densificação das amostras de AlN com Y2O3 ocorreu por sinterização assistida por fase líquida.

A amostra de AlN com 0,5% de Y2O3 não apresentou partículas grandes de aluminatos de ítrio dispersas pela microestrutura em toda a faixa de temperatura estudada. Nesta amostra, observou-se somente a fase YAG na faixa de temperatura em que ocorreu a densificação (1650 a 1800 ºC, Fig. 2 e Tabela I). Estes resultados sugeriram que as partículas de YAG na amostra com 0,5% de Y2O3 fundiram ao redor de 1725 ºC, ativando os mecanismos de densificação por sinterização assistida por fase líquida. Durante o resfriamento, a fase líquida, que promoveu a densificação total da amostra ao redor de 1800 ºC, precipitou na forma de finas partículas ao longo dos contornos de grão do AlN (Fig. 6e). Entre 1725 e 1800 ºC as amostras de AlN com 2 e 4% de Y2O3 também apresentaram a fase YAG junta ou não com as fases YAP e YAM (Tabela I), indicando que nesta faixa de temperatura também ocorreu a formação de fase líquida devido à fusão da fase YAG. Acima de 1800 ºC a quantidade de fase líquida durante a sinterização das amostras de AlN com Y2O3 aumentou em função do teor de aditivo devido à fusão das partículas grandes de aluminatos de ítrio (Figs. 6e-f). Na literatura, observou-se que o aumento da fração de líquido acelera de forma significativa a densificação [35, 36]. Porém, no presente trabalho, observou-se que as curvas de densificação das amostras de AlN com Y2O3 foram relativamente próximas (Fig. 2), indicando que o aumento do teor de aditivo (0,5 a 4% em peso) não causou variações significativas no comportamento de densificação. Estes resultados indicaram que a quantidade de líquido presente durante a densificação das amostras de AlN com até 4% de Y2O3 foi próxima, já que a quantidade de fase líquida aumentou em função do teor de aditivo após a densificação, isto é, acima de 1800 ºC. Existem relatos mostrando que adições acima de 5% em peso de Y2O3 causaram atrasos significativos na densificação em relação às amostras de AlN com menor teor de aditivo [37, 38]. Isto deve estar relacionado com a composição das segundas fases formadas durante a sinterização, que se tornam mais refratárias à medida que se aumenta o teor de Y2O3. Assim, a formação de líquido, que acelera a densificação, ocorreu somente em mais altas temperaturas, o que causou um atraso significativo na sinterização do AlN com mais de 4% de Y2O3. No presente trabalho, a formação da fase YAG nas amostras de AlN com até 4% de Y2O3 promoveu a formação de fase líquida ao redor de 1725 ºC, aumentando a taxa de densificação e, conseqüentemente, promovendo uma diminuição média ao redor de 180 ºC na temperatura de sinterização do AlN (Fig. 2). Apesar da literatura indicar o uso de 3 a 5% em peso de Y2O3 para se obter cerâmicas de AlN com elevada condutividade térmica [19-22], observou-se no presente trabalho que uma pequena adição deste aditivo (0,5% em peso) foi suficiente para promover a densificação do AlN em menores temperaturas. Assim, estes resultados mostraram que o aumento do teor de Y2O3 tem como finalidade aumentar a condutividade térmica do AlN e não favorecer a sua densificação.

Supondo que todo oxigênio (0,85% em peso) esteja presente somente na superfície do pó de AlN, o teor de Al2O3 presente na superfície do pó é ao redor de 2% em peso. Assim, para 0,5% em peso de Y2O3, a composição estequiométrica inicial prevista no diagrama de equilíbrio de fases do sistema Al2O3-Y2O3 [26] está localizada no campo das fases a-Al2O3 e YAG (3Al2O3.5Y2O3 ), porém próxima do campo a-Al2O3. Analogamente, para 2% de Y2O3, a composição estequiométrica também está localizada no campo das fases a-Al2O3 e YAG, porém próxima da composição da fase YAG. Para 4% de Y2O3, a composição estequiométrica está localizada no campo das fases YAG e YAM (2Al2O3.Y2O3 ). Neste caso, em altas temperaturas, esta composição está localizada no campo das fases YAP (Al2O3.Y2O3 ) e YAM. Os resultados da análise de DRX da amostra de AlN com 0,5% de Y2O3 mostraram que ocorreu evaporação de Al2O3 em altas temperaturas (Tabela I), pois foi observado que a fase YAG presente em quase toda a faixa de temperatura estudada foi reduzida para a fase Y2O3 a 2000 ºC. Existem vários trabalhos mostrando que o aumento da temperatura e do tempo de sinterização causa a evaporação de compostos óxidos, sendo observada uma tendência de redução das fases de aluminatos de ítrio para a fase Y2O3 [39-42]. No caso das amostras de AlN com 2 e 4% de Y2O3, observou-se que as fases YAG e YAM podem se transformar em fases com composições químicas distintas durante o resfriamento, o que gerou dúvidas quanto a evaporação de compostos óxidos em altas temperaturas. Porém, observou-se uma leve tendência de evaporação de segundas fases em função do aumento da temperatura de sinterização nestas amostras.

Existem alguns trabalhos mostrando que o uso de aditivos de sinterização com larga distribuição granulométrica em relação ao material base (matriz) geram poros grandes que atrasam de forma significativa a densificação [43-46]. Estes autores observaram que as partículas grandes de aditivo fundem durante o aquecimento até a temperatura de sinterização. O líquido formado pela fusão destas partículas grandes migra por efeito de capilaridade entre os grãos mais finos, deixando os sítios antes ocupados por estas partículas vazios. Nas amostras de AlN com 2 e 4% de Y2O3, observou-se que o líquido formado pela fusão das partículas grandes de aluminatos de ítrio se espalhou pela microestrutura (Fig. 6e), promovendo um aumento na espessura dos contornos de grão do AlN. Estes resultados mostraram que o líquido formado em altas temperaturas (> 1800 ºC) causou um novo rearranjo dos grãos na microestrutura, redistribuindo-os de forma a ocupar todos os espaços vazios, o que evitou a formação de poros grandes. Acima de 1850 ºC, as amostras com contornos de grão mais espessos apresentaram poros entre os grãos (Figs. 5g-h e 6f). Estes resultados indicaram que as segundas fases presentes nos contornos de grão evaporaram em altas temperaturas, o que deixou espaços vazios (poros) entre os grãos. A amostra de AlN com 0,5% de Y2O3 não apresentou este tipo de poro na mesma faixa de temperatura porque a espessura do seu contorno de grão foi mais fina (Figs. 5i e 6d). O crescimento de grão e a evaporação de segundas fases promoveram o deslocamento do restante das segundas fases para a região do ponto triplo (Fig. 6f). O aumento da temperatura de sinterização até 2000 ºC não foi o suficiente para eliminar estes poros devido às baixas taxas de difusão na região porosa. Neste caso, as ausências de fase líquida e de contato entre os grãos foram as responsáveis pela diminuição da taxa de difusão na região porosa, o que restringiu o crescimento de grão por acomodação de forma nestas regiões. Apesar dos resultados da análise de DRX não esclarecerem a ocorrência de evaporação de segundas fases nas amostras de AlN com 2 e 4% de Y2O3 (Tabela I), os resultados da análise microestrutural indicaram que pode ter ocorrido a evaporação de segundas fases em altas temperaturas nestas amostras.

CONCLUSÃO

Os resultados mostraram que a densificação das amostras de AlN com até 4% de Y2O3 ocorreu por sinterização no estado sólido até 1700 ºC. Acima desta temperatura, a sinterização destas amostras ocorreu por sinterização assistida por fase líquida. A fase YAG foi a responsável pela formação de líquido ao redor de 1725 ºC nas amostras de AlN com até 4% de Y2O3, o que aumentou significativamente a taxa de densificação destas amostras em relação ao AlN puro. A quantidade de fase líquida, que favorece a densificação, aumentou em função do teor de aditivo somente após a densificação total das amostras, devido à fusão das partículas grandes refratárias de aluminatos de ítrio (YAP e YAM) em altas temperaturas (>1800 ºC). Assim, o aumento do teor de Y2O3 (0,5 a 4% em peso) não causou variações significativas no comportamento de densificação do AlN porque a quantidade de fase líquida foi próxima na faixa de temperatura em que ocorreu a densificação. A adição de apenas 0,5% em peso de Y2O3 aumentou significativamente a sinterabilidade do AlN, abaixando sua temperatura de sinterização em média 180 ºC. O uso de Y2O3 com larga distribuição granulométrica em relação à do AlN não causou a formação de poros grandes. Os resultados mostraram uma tendência de evaporação de compostos óxidos nas amostras de AlN com Y2O3 sinterizadas em altas temperaturas, isto é, acima de 1850 ºC.

AGRADECIMENTOS

Os autores agradecem a Fundação de Amparo à Pesquisa do Estado de S. Paulo (FAPESP) pelo suporte financeiro (Projetos 01/03968-9 e 02/02035-1). Um dos autores agradece o apoio do CNPq.

(Rec. 02/06/2005, Ac. 30/09/2005)

  • [1]  Y. Baik, R. A. L. Drew, Key Eng. Mater. 122-124 (1996) 553.
  • [2]  L. M. Sheppard, Am. Ceram. Soc. Bull. 69, 11 (1990) 1801.
  • [3]  C. Greskovich, J. H. Rosolowski, J. Am. Ceram. Soc. 59, 7-8 (1976) 336.
  • [4]  S. Prochazka, C. F. Bobik. Proc. Fifth Int. Conf. on Sintering and Related Phenomena, Eds.: G. C. Kuczynski, Mater. Sci. Res., Indiana, 13 (1979) 321.
  • [5]  M. -C. Wang, C. -C. Yang, N. -C Wu, J. Ceram. Soc. Jpn. 10, 108 (2000) 869.
  • [6]  P. Bowen, J. G. Highfield, A. Mocellin, T. A. Ring, J. Am. Ceram. Soc. 73, 3 (1990) 724.
  • [7]  T. Sakai, M. Iwata, J. Mater. Sci. 12 (1977) 1659.
  • [8]  H. Tanigushi, S. Kikutani, N. Kuramoto, Proc. 4th Int. Symp. Sci. and Techn. of Sintering, Eds.: S. Somiya, M. Shimada, M. Yoshimura, Elsevier Science Publishers Ltd., Tokyo, 2 (1988) 956.
  • [9]  Y. -W. Park, S. -C. Choi, Third Euro-Ceramic, Eds.: P. Duran, J. F. Fernandes, Faenza Editrice Ibérica, Spain, 1 (1993) 955.
  • [10] Y. Kurokawa, K. Utsumi, H. Takamizawa, J. Am. Ceram. Soc. 71, 7 (1988) 588.
  • [11] K. Watari, J. Ceram. Soc. Jpn. 109, 1 (2001) S7.
  • [12] G. A. Slack, J. Phys. Chem. Solids 34 (1973) 321.
  • [13] T. Sakai, M. Kuriyama, T. Inukai, T. Kizima, Yogyo-Kyokai-Shi. 86, 4 (1978) 174.
  • [14] N. Hashimoto, H. Yoden, S. Deki, J. Am. Ceram. Soc. 75, 8 (1992) 2098.
  • [15] R. A. L Drew, Y. Baik, M. Entezarian, Mater. Sci. Forum. 325-26 (2000) 249.
  • [16] J. W. Mccauley, N. D. Corbin, J. Am. Ceram. Soc. 62, 9-10 (1979) 476.
  • [17] K. Komeya, H. Inoue, A. Tsuge, Yogyo-KyoKai-Shi. 89, 6 (1981) 330.
  • [18] N. Kuramoto, H. Taniguchi, I. Aso, Am. Ceram. Soc. Bull. 68, 4 (1989) 883.
  • [19] A.V. Virkar, J. Am. Ceram. Soc. 72, 11 (1989) 2031.
  • [20] H. Buhr, G. Müller, H. Wiggers. J. Am. Ceram. Soc. 74, 4 (1991) 718.
  • [21] P. S. de Baranda, A. K. Knudsen, E. Ruh. J. Am. Ceram. Soc. 77, 7 (1994) 1846.
  • [22] A. M. Hundere, M. -A. Einarsrud, J. Eur. Ceram. Soc. 16 (1996) 899.
  • [23] C. Koestler, H. Bestgen, A. Roosen, W. Boecker, Third Euro-Ceramic, Eds.: P. Duran, J.F. Fernandes, Faenza Editrice Ibérica, Spain, 1 (1993) 913.
  • [24] K. Watari, M. E. Brito, M. Yasuoka, M. C. Valecillos, S. Kanzaki, J. Ceram. Soc. Jpn 103, 9 (1995) 891.
  • [25] M. Tajika, W. Rafaniello, K. Niihara, Mater. Lett. 46 (2000) 98.
  • [26] E. M. Levin, C. R. Robbins, H. F. Mcmurdie, Phase Diagram for Ceramists. Am. Ceram. Soc. (1964) Fig. 2344.
  • [27] P. S. de Baranda, A. K. Knudsen, E. Ruh, J. Am. Ceram. Soc. 77, 7 (1994) 1846.
  • [28] M. Kasori, F. Ueno, J. Eur. Ceram. Soc. 15 (1995) 435.
  • [29] T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie Jr, R. A. Cutler, J. Am. Ceram. Soc. 80, 6 (1997) 1421.
  • [30]  L. Qiao, H. Zhou, H. Xue, S. Wang, J. Eur. Ceram. Soc. 23 (2003) 61.
  • [31] K. Shinozaki, Y. Sawada, N. Mizutani, Ceram. Trans. 71 (1996) 307.
  • [32] H. Yamane, M. Omori, A. Okubo, T. Hirai, J. Am. Ceram. Soc. 76, 9 (1993) 2382.
  • [33] J. L. Caslavsky, D. J. Viechinicki, J. Mat. Sci. 15 (1980) 1709.
  • [34] S. Wang, T. Akatsu, Y. Tanabe, E. Yasuda. J. Eur. Ceram. Soc. 20 (2000) 39.
  • [35] W. D. Kingery, J. Appl. Phys. 30, 3 (1959) 301.
  • [36] O. -H. Kwon, G. L. Messing, J. Am. Ceram. Soc. 73, 2 (1990) 275.
  • [37] J. Jarrige, K. Bouzouita, C. Doradoux, M. Billy, J. Eur. Ceram. Soc. 12 (1993) 279.
  • [38] N. H. Kim, Q. D. Fun, K. Komeya, T. Meguro, J. Am. Ceram. Soc. 79, 10 (1996) 2645.
  • [39] A. M. Hundere, M. -A. Einarsrud, J. Eur. Ceram. Soc. 16 (1996) 899.
  • [40] J. Jarrige, J. P. Lecompte, J. Mullot, G. Müller, J. Eur. Ceram. Soc. 17 (1997) 1891.
  • [41] C. -F. Chen, M. E. Perisse, A. F. Ramirez, N. P. Padture, H. M. Chan, J. Mater. Sci. 29 (1994) 1595.
  • [42] Y. -D. Yu, A. M. Hundere, R. Hoier, R. E. Dunin-Borkowski, M. -A. Einarsrud, J. Eur. Ceram. Soc. 22 (2002) 247.
  • [43] A. L. Molisani, "Sinterização de nitreto de alumínio com compostos contendo cálcio", Dissertação de Mestrado, Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica da Universidade de S. Paulo (2004).
  • [44] R. M. German, Liquid Phase Sintering, Plenum Press, New York (1985) 65.
  • [45] J. -J. Kim, B. -K. Kim, B. -M. Song, D. -Y. Kim, D. N. Yoon, J. Am. Ceram. Soc. 70, 10 (1987) 734.
  • [46] S. -M. Lee, S. -J. L. Kang, Acta Mater. 46, 9 (1998) 3191.
  • Datas de Publicação

    • Publicação nesta coleção
      15 Ago 2006
    • Data do Fascículo
      Jun 2006

    Histórico

    • Recebido
      02 Jun 2005
    • Aceito
      30 Set 2005
  • Associação Brasileira de Cerâmica Av. Prof. Almeida Prado, 532 - IPT - Prédio 36 - 2º Andar - Sala 03 , Cidade Universitária - 05508-901 - São Paulo/SP -Brazil, Tel./Fax: +55 (11) 3768-7101 / +55 (11) 3768-4284 - São Paulo - SP - Brazil
    E-mail: ceram.abc@gmail.com