Acessibilidade / Reportar erro

Effect of thermal treatment on the synthesis of NiAl 2 O 4 spinel oxide using chitosan as precursor

(Efeito do tratamento térmico na síntese do óxido espinélio NiAl2O4 usando quitosana como precursor)

Abstract

Nickel aluminate oxide (NiAl2O4) was prepared using chitosan as polymeric precursor and ammonia solution as a precipitating agent. In addition, nickel nitrate and aluminum nitrate salts were used as sources of Ni and Al, under stoichiometric amounts (molar ratio Ni:Al = 1:2). NiAl2O4 particles were prepared at different calcination temperatures and their properties were investigated. The synthesized materials were characterized by X-ray diffraction, infrared spectroscopy, atomic force microscopy, thermogravimetric analysis and nitrogen adsorption-desorption isotherms. The results showed that the thermal treatment process strongly influence on the formation of a single-phase structure of NiAl2O4 spinel. Nickel aluminate spinel with a porous structure and high surface area was obtained at temperatures above 700 ºC.

Keywords:
nickel aluminate; synthesis; characterization; chitosan; porous material

Resumo

Aluminato de níquel (NiAl2O4) foi preparado utilizando quitosana como precursor polimérico e uma solução amoniacal como um agente de precipitação. Além disso, sais de nitrato de níquel e de nitrato alumínio foram empregados como fontes de Ni e Al, em quantidades estequiométricas (razão molar Ni:Al = 1:2). Partículas de NiAl2O4 foram preparadas em diferentes temperaturas de calcinação e as suas propriedades foram investigadas. Os sólidos sintetizados foram caracterizados por difração de raios X, espectroscopia de infravermelho, microscopia de força atômica, análise termogravimétrica e isotermas de adsorção-dessorção de nitrogênio. Os resultados mostraram que o processo de tratamento térmico influencia fortemente sobre formação da fase espinélio NiAl2O4. Partículas de aluminato de níquel, com uma estrutura porosa e com alta área superficial, foram obtidas em temperaturas superiores a 700 °C.

Palavras-chave:
aluminato de níquel; síntese,caracterização; quitosana; material poroso

INTRODUCTION

Nickel aluminate (NiAl2O4) is a ternary oxide with AB2O4 spinel structure, where A and B are cations occupying tetrahedral (Ni2+) and octahedral (Al3+) sites, respectively11 Y.S. Han, J.B. Li, X.S. Ning, X.Z. Yang, B. Chi, Mat. Sci. Eng. A 369 (2004) 241.. Due to its high mechanical resistance, as well as its high thermal and chemical stabilities, nickel aluminate has been employed as catalyst support in various chemical reactions such as 1, 2, 4-trichlorobenzene hydrodechlorination22 Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras,Studies Surf. Sci. Catal. 130 (2000) 2069., partial oxidation of methane to syngas33 R. López-Fonseca, C. Jiménez-González, B. Rivas, J.I. Gutiérrez-Ortiz, Appl. Catal. A: Gen. 437-438 (2012) 53., CO2 reforming of methane44 N. Sahli, C. Petit, A.C. Roger, A. Kiennemann, S. Libs, M. M. Bettahar, Catal. Today 113 (2006) 187., chemical-looping combustion55 H. Jin, T. Okamoto, M. Ishida, J. Ind. Eng. Chem. Res. 38 (1999) 126.), (66 H. Zhao, L. Liu, D. Xu, C. Zheng, G. Liu, L. Jiang, J. Fuel Chem. Technol. 36 (2008) 261., acetylene hydrogenation77 J.A. Peña, J.C. Rodríguez, J. Herguido, J. Santamaría, A. Monzón, Studies Surf. Sci. Catal. 88 (1994) 555., steam reforming of methane88 L. Zhou, Y. Guo, Q. Zhang, M. Yagi, J. Hatakeyama, H. Li, J. Chen, M. Sakurai, H. Kameyama, Appl.Catal. A: Gen. 347 (2008) 200.), (99 T. Numaguchi, H. Eida, K. Shoji, Int. J. Hydrogen Energy 22 (1997) 1111., combustion of methane1010 M.M. Yazdanpanah, A. Forret, T. Gauthier, A. Delebarre, Appl. Energy 113 (2014)1933. and steam reforming of glycerol to hydrogen production1111 B. Dou, C. Wang, H. Chen, Y. Song, B. Xie, Int. J. Hydrogen Energy 38 (2013) 11902.. NiAl2O4 particles have been prepared by various routes such as sol-gel1212 C.O. Areán, M. P. Mentruit, A.J.L. López, J.B. Parra, Coll. Surf. A: Physicochem. Eng. Aspects 180 (2001) 253.), (1313 N. Bayal, P. Jeevanandam, J. Alloys Compds. 516 (2012) 27., solid state reaction1414 C.Y. Li, H.J. Zhang, Z.Q. Chen,Appl. Surf. Sci. 266 (2013) 17., microwave1515 M.M. Amini, L. Torkian, Mater. Lett. 57 (2002) 639.), (1616 R.D. Peelamedu, R. Roy, D. K. Agrawal, Mater. Lett. 55 (2002)234., sonochemical1717 P. Jeevanandam, Y. Koltypin, A. Gedanken, Mater. Sci. Eng. B 90 (2002) 125., Pechini method1818 L. Gama, M.A. Ribeiro, B.S. Barros, R.H.A. Kiminami, I. T. Weber, A.C.F.M. Costa, J. Alloys Compds. 483 (2009) 453., thermal decomposition of polynuclear malate complexes1919 C. Suciu, L. Patron, I. Mîndru, O. Carp, Rev. Roumaine Chimie 51 (2006) 385., mechano-chemical synthesis2020 M.K. Nazemi, S. Sheibani, F. Rashchi, V.M.G.D. Cruz, A. Caballero, Adv. Powder Technol. 23 (2012) 833., one-pot process2121 P. Hasin, N. Koonsaeng, A. Laobuthee, Mj. Int. J. Sci. Technol. 2 (2008) 140. and combustion route2222 N.F.P. Ribeiro, R.C.R. Neto, S.F. Moya, M.M.V.M. Souza, M. Schmal, Int. J. Hydrogen Energy 35 (2010) 11725.), (2323 E. Leal, A.C.F.M. Costa , N.L. Freita, H.L. Lira, R. H.G.A. Kiminami, L. Gama , Mater. Res. Bull. 46 (2011) 1409.), (2424 N.M. Deraz, Int. J. Electrochem. Sci. 8 (2013) 5203.. In this work, we proposethe use of an alternative route for the preparation of NiAl2O4 spinel. In this alternative route the combustion of chitosan precursor results in the generation of a material with porous structure and high surface area2525 G.D. B. Nuernberg, E.L. Foletto, L.F.D. Probst, C.E. M. Campos, N.L.V. Carreño, M.A. Moreira, Chem. Eng. J. 193-194 (2012) 211., which are very important properties for catalytic and adsorptive purposes. Although some materials such as the binary oxides magnesia2626 G.I. Almerindo, L.F.D. Probst, C.E.M. Campos, R.M. Almeida, S.M.P. Meneghetti, M.R. Meneghetti, J. Clacens, H. V. Fajardo, J. Power Sources 196 (2011) 8057., ceria2727 A.B. Sifontes, G. Gonzalez, J.L. Ochoa, L. M. Tovar, T. Zoltan, E. Cañizales, Mater. Res. Bull. 46 (2011) 1794., silica2828 T.P. Braga, E.C.C. Gomes, A.F. Sousa, N.L.V. Carreño, E. Longhinotti, A. Valentini, J. Non-Cryst.Solids 355 (2009) 860., and alumina2929 R.M. Almeida, H.V. Fajardo, D.Z. Mezalira, G.B. Nuernberg, L.K. Noda, L.F.D. Probst, N.L.V. Carreño, J. Mol. Catal. A: Chem. 259 (2006) 328. and ternary oxides magnesium aluminate3030 G.D.B. Nuernberg, E.L. Foletto, L.F.D. Probst, N.L.V. Carreño, M.A. Moreira, J. Mol.Catal. A: Chem. 370 (2013) 22.) and zinc aluminate3131 C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. Silva, O. Chiavone-Filho, C.A.O. Nascimento, Ceram. Int. 40 (2014) 4173.), (3232 F.M. Stringhini, E.L. Foletto, D. Sallet, D.A. Bertuol, O. Chiavone-Filho, C.A.O. Nascimento, J. Alloys Compds. 588 (2014) 305. have been synthesized by this route, the preparation of nickel aluminate oxide (NiAl2O4) has not been yet investigated.

In this context, the objective of this work was to investigate the influence of the thermal treatment on thephysical characteristics of nickel aluminate oxide obtained by use of chitosan as precursor. The synthesized samples were characterized by different techniques and so their physical properties were determined.

MATERIALS AND METHODS

NiAl2O4 particles were prepared from aluminum nitrate (analytical grade), nickel nitrate (analytical grade) and chitosan polymer [(C6H11O4N)n] (Purifarma, Brazil). All the chemicals were used as received. Synthesis procedure was carried out based on a previous work2525 G.D. B. Nuernberg, E.L. Foletto, L.F.D. Probst, C.E. M. Campos, N.L.V. Carreño, M.A. Moreira, Chem. Eng. J. 193-194 (2012) 211.. In this procedure, stoichiometric amounts of Ni and Al nitrates (molar ratio Ni:Al = 1:2) were used for the synthesis. Typically, 0.45 g of chitosanwere dissolved in 30 mL acetic acid aqueous solution (5% v/v) (solution A), 2.25 g of aluminum nitrate were dissolved in 5 mL distilled water (solution B) and, 0.87 g of nickel nitrate were dissolvedin 2 mL distilled water (solution C). After, the B and C solutions were added to solution A, under magnetic stirring for 30 min. The resulting solution was slowly added in 100 mL ammonia aqueous solution (50 %, v/v), under magnetic stirring. The particles formed were then separated from the solution and further dried at ambient temperature for 72 h. This material was then treated in an oxidizing atmosphere (air) at temperatures of 500 ºC to 800 ºC, for 4 h to get the NiAl2O4 particles. A conventional furnace was used for the thermal treatment process, at a heating rate of 5 ºCmin-1 up to the desired temperature.

X-ray diffraction (XRD) patterns of the samples were obtained with a Rigaku Miniflex300 diffractometer, in a scan 2θ range between 20º and 70º, with a step size of 2θ = 0.03º and a counting time of 0.9 s per step, with Cukα radiation (λ = 1.5418 Å) and operating at 30 kV and 10 mA. Phase identification was done by comparison with JCPDS data base file (10-0339). The average crystallite size of the samples was determined with the Scherrer equation3333 B.D. Cullity, S. R. Stock, Elements of X-ray diffraction, 3rd Ed., Prentice-Hall Inc., New Jersey, USA (2001).: D = K . λ/(h1/2.cos θ), where D is the average crystallite size, K the Scherrer constant (0.9), λ the wavelength of incident X-ray (0.15418 nm), h1/2 the width at half height of themost intense diffraction peak and θ corresponds to the peak position (in this work, 2θ= 37.01°). Fourier Transform Infrared (FTIR) spectra of samples were recorded with Shimadzu IRPrestige-21spectrophotometer in the range 4000- 400 cm-1, using KBr pellets (10 mg NiAl2O4/300 mg KBr). Nitrogen adsorption/desorption isotherms were obtained with an ASAP 2020 apparatus. Before analysis, the samples were degassed at 200 ºC under vacuum inside the apparatus.The isotherms were measured at liquid nitrogen temperature (77 K), and nitrogen pressures ranging from 0.1 to 0.98 P/ Po. Specific surface areas were calculated according to the Brunauer-Emmett-Teller (BET) method, and the pore size distributions were obtained accordingto the Barret-Joyner- Halenda (BJH) method3434 E. P. Barret, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373. from the adsorption data. The image of particles was obtained by atomic force microscopy (AFM) (Agilent Technologies 5500). AFM images were acquired at room temperature, in non-contact mode using high resolution probes SSS-NCL (Nanosensors, force constant = 48 Nm-1, resonance frequency = 154 kHz). AFM images were analyzed using scanning probe microscopy data analysis software (Gwyddion). Thermogravimetric analysis (TGA) was carried out on TGA-50 Shimadzu analyzer at a heating rate of 10 ºC min-1 under air flow rate of 50 mL/min. For all characterization analyses, except AFM, the particles were comminuted to pass in 200 mesh sieve, before each analysis.

RESULTS AND DISCUSSION

X-ray powder diffraction patterns for all samples thermally treated above 500 ºC during 4 h are shown in Fig. 1. Only for the samples treated at 500 ºC and 600 ºC there is not formation of a single-phase NiAl2O4 spinel structure. Thus NiAl2O4 spinel structure was only obtained when the precursor was treated above 700 ºC. For the samples heated at 700 ºC and 800 ºC, the characteristic peaks of spinel phase can be observed. The main diffraction peaks are in agreement with the JCPDS (10-0339) data of the face-centered cubic structure of NiAl2O4spinel. The peaks at 2θ values of 31.40°, 37.01°, 44.99°, 55.98°, 59.66° and 65.53° correspond to (220), (311), (400), (422), (511) and (440) diffraction planes of the NiAl2O4spinel, respectively. The average crystallite size was calculated from Scherrer equation for NiAl2O4 samples heated at 700 and 800 ºC, and it was 8.50 and 9.95 nm, respectively.

Figure 1
X-ray diffraction patterns of samples treated at different calcination temperatures. (The inset in Fig. 1 shows a reference JCPDS 10-0339). [Figura 1: Difratogramas de raios X das amostras tratadas a diferentes temperaturas de calcinação. (Fig. interna mostra o padrão conforme arquivo JCPDS 10-0339 ) .]

Fig. 2 shows the FTIR spectra of samples prepared at different calcination temperatures. FTIR spectra of samples heated at 700 ºC and 800 ºC s how characteristic vibrational peaks of the spinel phase in the range 500-900 cm-1, which are associated with the vibrations of metal-O, Al-O, and metal-O-Al bonds3535 C. Ragupathi, J. J. Vijaya, L. J. Kennedy, "Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: A comparison between conventional and microwave method", J. Saudi Chem. Soc., in press, DOI: http://dx.doi.org/10.1016/j.jscs.2014.01.006.
http://dx.doi.org/10.1016/j.jscs.2014.01...
. The samples prepared at 500 ºC and 600 ºC do not present peaks in this range. This indicates that there was no formation of single-phasespinelin these temperatures, corroborating the results of X-ray diffraction analysis. The Al-O stretching bands obs erved in the range 500-900 cm-1 can be assigned to different coordination states of Al atoms (AlO6 and AlO4). The stretching frequency found around 550 cm-1 can be assigned to the vibration of Ni-O bond. The broad peak at 3450 cm-1 is assigned to surface adsorbed water. The band at 1630 cm-1is probably due to the deformation vibrations of water molecules3535 C. Ragupathi, J. J. Vijaya, L. J. Kennedy, "Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: A comparison between conventional and microwave method", J. Saudi Chem. Soc., in press, DOI: http://dx.doi.org/10.1016/j.jscs.2014.01.006.
http://dx.doi.org/10.1016/j.jscs.2014.01...
.

Figure 2
FTIR spectra of samples prepared at different calcination temperatures. [Figura 2: Espectros de infravermelho das amostras preparadas em diferentes temperaturas de calcinação.]

Fig. 3 shows the nitrogen adsorption-desorption isotherms and pore size distribution curves of NiAl2O4 samples formed at 700 ºC and 800 ºC. The shapes of the isotherms shown in Fig. 3a were similar for the two samples, showing a hysteresis loop at a high relative pressure, which can be classified astype IV according to IUPAC classification3636 Int. Union Pure Appl. Chem.(IUPAC) 57 (1985) 603., indicating presence of predominantly mesoporous materials. The corresponding pore size distribution curves were obtained according to the Barrett-Joyner-Halenda (BJH) method, which are shown in Fig. 3b. Both NiAl2O4 samples display a similar unimodal distribution with peaks centered in the mesoporous region (between 20 and 500 Å). The total pore volumes for NiAl2O4 samples heated at 700 ºC and 800 ºC are 0.384 and 0.352 cm3/g, respectively, whereas the average pore sizes are 88.5 Å and 94.3Å, respectively. In addition, both samples present high surface area, with strong reduction of surface area for the heated sample at 800 ºC (126 m2/g) in comparison with the heated sample at 700 ºC (154m2/g), indicating that the increase of heating temperature causes a decrease of them. For purposes of comparison, some values of surface area can be found in literature for NiAl2O4 powders synthesized by other methods, such as 22-35 m2/g (combustion reaction using glycine as fuel)2323 E. Leal, A.C.F.M. Costa , N.L. Freita, H.L. Lira, R. H.G.A. Kiminami, L. Gama , Mater. Res. Bull. 46 (2011) 1409., 42.3 m2/g (mechanochemical synthesis)2020 M.K. Nazemi, S. Sheibani, F. Rashchi, V.M.G.D. Cruz, A. Caballero, Adv. Powder Technol. 23 (2012) 833., 107 m2/g (microwave combustion)3535 C. Ragupathi, J. J. Vijaya, L. J. Kennedy, "Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: A comparison between conventional and microwave method", J. Saudi Chem. Soc., in press, DOI: http://dx.doi.org/10.1016/j.jscs.2014.01.006.
http://dx.doi.org/10.1016/j.jscs.2014.01...
, 108 m2/g (sonochemical)1717 P. Jeevanandam, Y. Koltypin, A. Gedanken, Mater. Sci. Eng. B 90 (2002) 125., 58-119 m2/g (sol-gel using gelatin as organic precursor)3737 N.A.S. Nogueira, E.B. Silva, P.M. Jardim, J.M. Sasaki, Mater. Letters 61 (2007) 4743., 138 m2/g (sol-gel using propionic acid as solvent)44 N. Sahli, C. Petit, A.C. Roger, A. Kiennemann, S. Libs, M. M. Bettahar, Catal. Today 113 (2006) 187., 186 m2/g (combustion reaction using urea as fuel)2222 N.F.P. Ribeiro, R.C.R. Neto, S.F. Moya, M.M.V.M. Souza, M. Schmal, Int. J. Hydrogen Energy 35 (2010) 11725., and 200-300 m2/g (sol-gel using metal alkoxide precursors)1212 C.O. Areán, M. P. Mentruit, A.J.L. López, J.B. Parra, Coll. Surf. A: Physicochem. Eng. Aspects 180 (2001) 253.. Despite sol-gel method using metal alkoxide precursors1212 C.O. Areán, M. P. Mentruit, A.J.L. López, J.B. Parra, Coll. Surf. A: Physicochem. Eng. Aspects 180 (2001) 253. and combustion route using urea as fuel2222 N.F.P. Ribeiro, R.C.R. Neto, S.F. Moya, M.M.V.M. Souza, M. Schmal, Int. J. Hydrogen Energy 35 (2010) 11725. generate powders with higher surface area, the method proposed in this workalso resulted intoa material containing a high surface area, comparable and superior than the ones obtained by other routes. Besides obtaining a material with high surfacearea, the synthesis route proposed in this work is easier and simpler because it does not need sophisticated procedures and requires inexpensive precursors.

Figure 3
N2 adsorption/desorption isotherms (a), and pore size distribution curves (b) for the NiAl2O4 samples prepared at 700 ºC and 800 ºC. [Figura 3: Isotermas de adsorção/dessorção de N2 (a), distribuições do tamanho de poros (b) para as amostras de NiAl2O4 preparadas a 700 ºC e 800 ºC.]

Fig. 4 shows the thermogravimetric analysis of precursor material (before calcination). As it can be observed, two mass loss stages occur; first, in the temperature range 25- 250 ºC, attributed to the elimination of physically adsorbed molecular water and decomposition of nitrates, and second, between 250 and 500 ºC, related to the decomposition of chitosan. However, no further weight loss was observed above 500 ºC.

Figure 4
TGA curve of the precursor particle (before calcination). [Figura 4: Curva ATG do material precursor (antes da calcinação).]

Fig. 5 shows the morphology of a (a) precursor particle (before calcination) and NiAl2O4 particles prepared at (b) 600 and (c) 800 ºC, as measured by atomic force microscopy (AFM). The average size of precursor particle was around 3 mm. After calcination process, the particles presented a smaller size due to the elimination of water, nitrates and chitosan, as mentioned in the termogravimetric analysis (see Fig. 4). Furthermore, the particles presented crack on its structure, and this occurs mainly due to the burning of organic matter (chitosan), which causes the formation of pores as the volatile substances are eliminated38T. P. Braga, E. Longhinotti, A.N. Pinheiro, A. Valentini, J. Appl. Catal. A: Gen. 362 (2009) 139.. This leads to the formation of a porous structure and an increase in the surface area, which are desirable characteristics for catalytic and adsorptive purposes.

Figure 5
Images of the particles before (a), and after the thermal process at 700 ºC (b) and 800 ºC (c). [Figura 5: Imagens das partículas antes (a) e após o processo térmico a 700 ºC (b) e 800 ºC (c).]

CONCLUSIONS

The technique using chitosan as template was very promising for the production of nickel aluminate oxide. Chitosan plays a very important role on the synthesis: production of solid materials with mesoporous structure. From characterization techniques, it is possible to observe that the single-phase structure of NiAl2O4 spinel was only formed when the precursor particles were treated at temperatures above 700 ºC. The synthesized material shows a predominantly mesoporous structure and with high surface area (154 m2/g). Therefore, this method has a great advantage that consists in the production of porous NiAl2O4 oxide for application in the field of catalysis and adsorption. In summary, this route is easy, simple and environmental friendly (surfactant free), and it can be applied as an alternative route to produce other spinel powders.

ACKNOWLEDGEMENTS

The authors would like to thank the agencies FAPERGS and CNPq for their financial support.

REFERENCES

  • 1
    Y.S. Han, J.B. Li, X.S. Ning, X.Z. Yang, B. Chi, Mat. Sci. Eng. A 369 (2004) 241.
  • 2
    Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras,Studies Surf. Sci. Catal. 130 (2000) 2069.
  • 3
    R. López-Fonseca, C. Jiménez-González, B. Rivas, J.I. Gutiérrez-Ortiz, Appl. Catal. A: Gen. 437-438 (2012) 53.
  • 4
    N. Sahli, C. Petit, A.C. Roger, A. Kiennemann, S. Libs, M. M. Bettahar, Catal. Today 113 (2006) 187.
  • 5
    H. Jin, T. Okamoto, M. Ishida, J. Ind. Eng. Chem. Res. 38 (1999) 126.
  • 6
    H. Zhao, L. Liu, D. Xu, C. Zheng, G. Liu, L. Jiang, J. Fuel Chem. Technol. 36 (2008) 261.
  • 7
    J.A. Peña, J.C. Rodríguez, J. Herguido, J. Santamaría, A. Monzón, Studies Surf. Sci. Catal. 88 (1994) 555.
  • 8
    L. Zhou, Y. Guo, Q. Zhang, M. Yagi, J. Hatakeyama, H. Li, J. Chen, M. Sakurai, H. Kameyama, Appl.Catal. A: Gen. 347 (2008) 200.
  • 9
    T. Numaguchi, H. Eida, K. Shoji, Int. J. Hydrogen Energy 22 (1997) 1111.
  • 10
    M.M. Yazdanpanah, A. Forret, T. Gauthier, A. Delebarre, Appl. Energy 113 (2014)1933.
  • 11
    B. Dou, C. Wang, H. Chen, Y. Song, B. Xie, Int. J. Hydrogen Energy 38 (2013) 11902.
  • 12
    C.O. Areán, M. P. Mentruit, A.J.L. López, J.B. Parra, Coll. Surf. A: Physicochem. Eng. Aspects 180 (2001) 253.
  • 13
    N. Bayal, P. Jeevanandam, J. Alloys Compds. 516 (2012) 27.
  • 14
    C.Y. Li, H.J. Zhang, Z.Q. Chen,Appl. Surf. Sci. 266 (2013) 17.
  • 15
    M.M. Amini, L. Torkian, Mater. Lett. 57 (2002) 639.
  • 16
    R.D. Peelamedu, R. Roy, D. K. Agrawal, Mater. Lett. 55 (2002)234.
  • 17
    P. Jeevanandam, Y. Koltypin, A. Gedanken, Mater. Sci. Eng. B 90 (2002) 125.
  • 18
    L. Gama, M.A. Ribeiro, B.S. Barros, R.H.A. Kiminami, I. T. Weber, A.C.F.M. Costa, J. Alloys Compds. 483 (2009) 453.
  • 19
    C. Suciu, L. Patron, I. Mîndru, O. Carp, Rev. Roumaine Chimie 51 (2006) 385.
  • 20
    M.K. Nazemi, S. Sheibani, F. Rashchi, V.M.G.D. Cruz, A. Caballero, Adv. Powder Technol. 23 (2012) 833.
  • 21
    P. Hasin, N. Koonsaeng, A. Laobuthee, Mj. Int. J. Sci. Technol. 2 (2008) 140.
  • 22
    N.F.P. Ribeiro, R.C.R. Neto, S.F. Moya, M.M.V.M. Souza, M. Schmal, Int. J. Hydrogen Energy 35 (2010) 11725.
  • 23
    E. Leal, A.C.F.M. Costa , N.L. Freita, H.L. Lira, R. H.G.A. Kiminami, L. Gama , Mater. Res. Bull. 46 (2011) 1409.
  • 24
    N.M. Deraz, Int. J. Electrochem. Sci. 8 (2013) 5203.
  • 25
    G.D. B. Nuernberg, E.L. Foletto, L.F.D. Probst, C.E. M. Campos, N.L.V. Carreño, M.A. Moreira, Chem. Eng. J. 193-194 (2012) 211.
  • 26
    G.I. Almerindo, L.F.D. Probst, C.E.M. Campos, R.M. Almeida, S.M.P. Meneghetti, M.R. Meneghetti, J. Clacens, H. V. Fajardo, J. Power Sources 196 (2011) 8057.
  • 27
    A.B. Sifontes, G. Gonzalez, J.L. Ochoa, L. M. Tovar, T. Zoltan, E. Cañizales, Mater. Res. Bull. 46 (2011) 1794.
  • 28
    T.P. Braga, E.C.C. Gomes, A.F. Sousa, N.L.V. Carreño, E. Longhinotti, A. Valentini, J. Non-Cryst.Solids 355 (2009) 860.
  • 29
    R.M. Almeida, H.V. Fajardo, D.Z. Mezalira, G.B. Nuernberg, L.K. Noda, L.F.D. Probst, N.L.V. Carreño, J. Mol. Catal. A: Chem. 259 (2006) 328.
  • 30
    G.D.B. Nuernberg, E.L. Foletto, L.F.D. Probst, N.L.V. Carreño, M.A. Moreira, J. Mol.Catal. A: Chem. 370 (2013) 22.
  • 31
    C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. Silva, O. Chiavone-Filho, C.A.O. Nascimento, Ceram. Int. 40 (2014) 4173.
  • 32
    F.M. Stringhini, E.L. Foletto, D. Sallet, D.A. Bertuol, O. Chiavone-Filho, C.A.O. Nascimento, J. Alloys Compds. 588 (2014) 305.
  • 33
    B.D. Cullity, S. R. Stock, Elements of X-ray diffraction, 3rd Ed., Prentice-Hall Inc., New Jersey, USA (2001).
  • 34
    E. P. Barret, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.
  • 35
    C. Ragupathi, J. J. Vijaya, L. J. Kennedy, "Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: A comparison between conventional and microwave method", J. Saudi Chem. Soc., in press, DOI: http://dx.doi.org/10.1016/j.jscs.2014.01.006
    » http://dx.doi.org/10.1016/j.jscs.2014.01.006
  • 36
    Int. Union Pure Appl. Chem.(IUPAC) 57 (1985) 603.
  • 37
    N.A.S. Nogueira, E.B. Silva, P.M. Jardim, J.M. Sasaki, Mater. Letters 61 (2007) 4743.
  • T. P. Braga, E. Longhinotti, A.N. Pinheiro, A. Valentini, J. Appl. Catal. A: Gen. 362 (2009) 139.

Publication Dates

  • Publication in this collection
    Oct-Dec 2015

History

  • Received
    15 Apr 2015
  • Reviewed
    08 July 2015
  • Accepted
    27 Aug 2015
Associação Brasileira de Cerâmica Av. Prof. Almeida Prado, 532 - IPT - Prédio 36 - 2º Andar - Sala 03 , Cidade Universitária - 05508-901 - São Paulo/SP -Brazil, Tel./Fax: +55 (11) 3768-7101 / +55 (11) 3768-4284 - São Paulo - SP - Brazil
E-mail: ceram.abc@gmail.com