Acessibilidade / Reportar erro

Introdução aos métodos para medir a produção primária do fitoplâncton marinho

Resumo

In this review certain basic aspects of techniques established for primary productivity studies are presented. Some emphasis has been given to a critical review of techniques mainly devoted to estuarine and coastal phytoplankton of tropical waters. The contents of this paper have been balanced along the lines of current research in marine primary production but only considering the basic methods needed to determine the primary production and standing-stock of phytoplankton. No attempt has been made to include some sophisticated methods, since the particular aim of the present manual is to become a useful guide for beginners in the field.


Introdução aos métodos para medir a produção primária do fitoplâncton marinho

Clóvis Teixeira

Instituto Oceanográfico da Universidade de São Paulo

SYNOPSIS

In this review certain basic aspects of techniques established for primary productivity studies are presented.

Some emphasis has been given to a critical review of techniques mainly devoted to estuarine and coastal phytoplankton of tropical waters.

The contents of this paper have been balanced along the lines of current research in marine primary production but only considering the basic methods needed to determine the primary production and standing-stock of phytoplankton. No attempt has been made to include some sophisticated methods, since the particular aim of the present manual is to become a useful guide for beginners in the field.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

AGRADECIMENTOS

O autor agradece as sugestões e revisão aos Professores Dr. Plínio Soares Moreira e Dr. Jose G. Tundisi.

BIBLIOGRAFIA

ALLEN, M.B. 1956. Excretion of organic compounds by Chlamydomonas. Arch. Mikrobiol., 24:163.

ANTIA, N.J., McALLISTER, C.D., PARSONS, T.R., STEPHENS, K. & STRICKLAND, J.D.H. 1963. Further measurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr., 8:166-183.

ARNON, D.I., WHATELY, F.R. & ALLEN, M.B. 1958. Assimilatory power in photosynthesis. Science, N.Y., 127:1026.

BROWN, A.H., FAGER, E.W. & GAFFRON, H. 1949. Kinetics of a photochemical intermediate in photosynthesis. In: Franck, J. & Loomis, W.E., eds Photosynthesis in plants. Iowa State College Press, p. 403-422.

______ & WEIS, D. 1959. Relation between respiration and photosynthesis in green alga, Ankistrodesmus braunii - PI. Physiol., 34: 224-234.

BUCHANAN, D.L., MAKAO, A. & EDWARDS, G. 1953. Carbon isotope effects in biological systems. Science, N.Y., 117:541-545.

BUCHBINDER, L., SOLOWEY, M. & PHELPS, E.B. 1941. Studies on microorganisms in simulated room environments. III. The survival rates of Streptococci in the presence of natural daylight and sunlight and artificial illumination. J. Bact., 42:353-366.

CREITZ, G.I. & RICHARDS, F.A. 1955. The estimation and characterization of plankton populations by pigments analysis. III. A note on the use of "Millipore" membrane filters in the estimation of plankton pigments. J. mar. Res., 14(3):211-216.

DOTY, M.S. 1955. Currents status of carbon-fourteen method of assaying productivity of the ocean. Univ. Hawaii Ann. Rep., 55 p. (mimeo).

______ & OGURI, M. 1959. The carbon-14 technique for determining primary plankton productivity. Pubbl. Staz. zool. Napoli, 31(Suppl.): 70-94.

FOGG, G.E. 1958. Extracellular products of phytoplankton and the estimation of primary production. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer, 144:56-60.

FØYN, E. & HANNEBORG, S. 1971. Determination of 14C labelled carbonate in solution. Mar. Biol., 8(1):57-59.

FRANCA, E.P. 1961. Manual de biofísica, fasc. 6. Metodologia de radioisótopos e suas aplicações em biologia e medicina. Rio de Janeiro, Universidade do Brasil, 247 p.

FREY, D.G. & STAHL, J.B. 1958. Measurements of primary production on Southampton Island in the Canadian Arctic. Limnol. Oceanogr., 3(2):215-221.

GAARDER, T. & GRAN, H.H. 1927. Investigations of the production of plankton in the Oslo Fjord. Rapp. P.-v. Reun. Cons. perm. int. Explor. Mer, 42:3-48.

GOLDMAN, C.R. 1968. The use of absolute activity for eliminating serious errors in the measurement of primary productivity with C. J. Cons, perm. int. Explor. Mer, 32(2):172-179.

GUILLARD, R.R.L. & WANGERSKY, P.J. 1958. The production of extra-cellular carbohydrates by some flagellates. Limnol. Oceanogr., 3(4):449-454.

JITTS, H.R. & ROTSCHI, H. 1957. Radioisotopes in Scientific Research. Vol. IV, Proc. 1st UNESCO int. Cong., Paris, 607 p.

JOHNSTONE, J., SCOTT, A. & CHADWICK, H.C. 1924. The marine plankton. Liverpool Univ. Press, 194 p.

JONES, G.E., THOMAS, W.H. & HAXO, F.T. 1958. Preliminary studies of bacterial growth in relation to dark and light fixation of C14O2 during productivity determinations. Spec, scient. Rep. U.S. Fish Wildl. Serv. Fisheries (279):79-86.

JØRGENSEN, E.G. & STEEMANN-NIELSEN, E. 1960. Effect of daylight and artificial illumination on the growth of Staphylococcus aereus and some other bacteria. Physiologia Pl., 13:534-538.

KING, J.E. & HIDA, T.S. 1957. Zooplankton abundance in the Central Pacific. Pt. II. Fishery Bull. Fish Wildl. Serv. U.S., 57:111-144.

LASKER, R. & HOLMES, R.W. 1957. Variability in retention of marine phytoplankton by membrane filters. Nature, Lond., 180:1.295.

MILLER, CP. & SCHAD, D. 1944. Germicidal action of daylight on Meningococci in dried state. J. Bact., 47:79-84.

MITCHELL-INNES, B.A. 1967. Primary production studies in the South-West Indian Ocean. Invest. Rep. Oceanogr. res, Inst. S. Afr., (14):1-20.

MORRIS, I., YENTSCH, M. & YENTSCH, CS. 1971. Relationship between light carbon dioxide fixation and dark carbon dioxide fixation by marine algae. Limnol. Oceanogr., 16(6):854-858.

ODUM, H.T. 1957. Primary production measurements in eleven Florida springs and a marine turtle-grass community. Limnol. Oceanogr., 2(1):85-97.

PARK, K., HOOD. D.W. & ODUM, H.T. 1958. Diurnal pH variation in Texas bays, and its application to primary production estimation. Pubis Inst, mar. Sci. Univ. Texas, 5:47-64.

PATTEN, B.C. 1966. The biocoentic process in an estuarine phytop lank ton community. Oak Ridge, Oak Ridge National Laboratory, 95 p.

PHONLOR, G. 1968. An apparatus for "in situ" primary production studies. Araucariana-Zool., 1:3-6.

PRATT, D.M. & BERKSON, H. 1959. Two sources of error in the oxygen light and dark bottle method. Limnol. Oceanogr., 4(3):328-334.

PRINGSHEIN, E.G. 1949. Pure cultures of algal; their preparation and maintenance. London, Cambridge University Press, 245 p.

PROVASOLI, L. & PINTNER, I.J. 1960. Artificial media for fresh-water algae: problems and suggestions. In: The ecology of algae. The Pymatuning Symposia in Ecology, Spec Publ. 2:84-96.

RABINOWITCH, E.I. 1945. Photosynthesis and related processes. New York, Interscience, vol. 1, 599 p.

______ 1956. Photosynthesis and related processes. New York, Interscience, vol. 2, part 2, p. 1925-1939.

RICHARDS, F.A. & THOMPSON, T.G. 1952. The estimation and characterization of plankton populations by pigment analysis. II. J. mar. Res., 11(2):156-172.

RUSSELL-HUNTER, W.D. 1970. Aquatic productivity: an introduction to some basic aspects of biological oceanography and limnology. New York, Macmillan, 306 p.

RYTHER, J.H. 1956. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr., 1(1):61-70.

SEN, N. & FOGG, G.E. 1966. Effects of glycollate on the growth of a planktonic Chlorella. J. exp. Bot., 17:417-425.

SESTAK, Z., CATSKY, J. & JARVIS, P.G., ed. 1971. Plant photosynthetic production: manual of methods. The Hague, Junk, 818 p.

SOROKIN, Yu I. 1960. Determination of the isotope effect during labelled carbon dioxide assimilation in photosynthesis and chemosynthesis. Microbiologiyia, 29:204-208.

STEEMANN-NIELSEN, E. 1951. Measurements of the production of organic matter in the sea. Nature, Lond., 167:684.

______ 1952. The use of radioactive carbon (C-14) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer, 18: 117-140.

______ 1954. On organic production in the oceans. J. Cons. perm. int. Explor. Mer, 19(3):309-328.

______ 1955a. The interaction of photosynthesis and respiration and its importance for the determination of C14 discrimination in photosynthesis. Physiologia Pl., 8:945-953.

______ 1955b. Production of organic matter in the oceans. J. mar. Res., 14(4):347-386.

______ 1958. Experimental methods for measuring organic production in the sea. Rapp. P.-v. Reun. Cons. perm. int. Explor. Mer, 144: 38-46.

______ 1964. Recent advances in measuring and understanding marine primary production. J. Ecol., 52(Supp1.):119-130.

______ 1965. On the determination of the activity in C14 - ampoules for measuring primary production. Limnol. Oceanogr. (Suppl.) 10: R247-252.

______ & HANSEN, V.K. 1959. Light adaptation in marine phytoplankton populations and its interrelation with temperature. Physiologia Pl., 12:353-370.

______ & JENSEN, H.K. 1957. Primary oceanic production. The autotrophic production of organic matter in the oceans. Galathea Rep., 1:49-136.

______ & KHOLY, A. 1956. Use of C14 technique in measuring photosynthesis of phosphorus or nitrogen deficient algae. Physiologia Pl., 9 : 144-153.

STRICKLAND, J.D.H. & PARSONS, T.R. 1960. A manual of seawater analysis. Bull. Fish. Res. Bd Can., (125):1-185.

______ & 1965. A manual of sea water analysis. Bull. Fish. Res. Bd Can., (125), 2nd ed. rev., 203 p.

______ & 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can., (167):1-311.

TEIXEIRA, C. 1969. Estudo sobre algumas características do fitoplancton da região de Cananéia e o seu potencial fotossintético. Tese de Doutoramento. Universidade de São Paulo, 82 p. (mimeogr. ).

______, KUTNER, M.B. & TORGO, F.M.S. 1965. Efeito da respiração bacteriana. Revta bras. Biol., 25(3):287-294.

______ & TUNDISI, J, 1967. Primary production and phytoplankton in Equatorial waters. Bull. mar. Sci., 17(4):884-891.

______, ______ & SANTORO, J.Y. 1969. Plankton studies in a mangrove environment. VI. Primary production, zooplankton standing-stock and some environmental factors. Int. Rev. ges. Hydrobiol., 54(2):289-301.

TUNDISI, J. & TEIXEIRA, C. 1968. Plankton studies in a mangrove environment. VII. Size fractionation of the phytoplankton: some studies on methods. Bolm Inst, oceanogr., S Paulo, 17(1):89-94.

VACCARO, R.F. & RYTHER, J.H. 1954. The bactericidal effects of sunlight in relation to "light" and "dark" bottle photosynthesis experiments. J. Cons. perm. Int. Explor. Mer, 20:18-24.

VERDUIN, J. 1951. Photosynthesis in naturally reared aquatic communities. Physiologia Pl., 26:45-49.

______ 1957. Daytime variations in phytoplankton photosynthesis. Limnol. Oceanogr., 2(4):333-336.

VOLLENWEIDER, R.A., ed. 1969. A manual on methods for measuring primary production in aquatic environments. IBP Handbook nº 12. London, International Biological Programme, 213 p.

______ & NAUWERCK, A. 1961. Some observations on the C14 method for measuring primary production. Verh. Int. Ver. Limnol., 14:214-235.

WEIS, D. & BROWN, A.H. 1959. Kinetic relationships between photosynthesis and respiration in the algal flagellate Ochromonas malhamensis. Physiologia Pl., 34:235-239.

WIESSNER, W. & GAFFRON, H. 1964. Role of photosynthesis in the light-induced assimilation of acetate by Chlamydobotrys. Nature, Lond., 201:725-726.

WILLIAMS, R.B. 1966. Annual phytoplankton production in a system of shallow temperate estuaries. In: Barnes, H., ed. - Some contemporary studies in marine science. London, Allen & Unwin, p. 699-716.

WRIGHT, R.T. 1964. Dynamics of a phytoplankton community in an ice-covered lake. Limnol. Oceanogr., 9(2):163-178.

ZoBELL, C.E. & ANDERSON, D.Q. 1936. Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol. Bull., 71:324-342.

Recebido em 12/agosto/1972

APÊNDICE

Com a finalidade de complementar os estudos sobre a produtividade primaria, inserimos como um apêndice a descrição de uma técnica que possibilita ao pesqui.ador obter uma visio geral do fitoplincton, sob o ponto de vista quantitativo. Por ser a mais precisa, e relativamente simples, e universalmente aceita a determinação da clorofila-a, como sendo o melhor meio de se avaliar quantitativamente o material fotossintetizante do fitoplincton. Dos vários métodos existentes, escolhemos o de maior viabilidade para o nosso meio, dentre os métodos de maior precisio.

DETERMINAÇÃO QUANTITATIVA DE PIGMENTOS POR ESPECTROFOTOMETRIA - A técnica aqui apresentada, segue as recomendações de Creitz & Richards (1955), com a introdução de algumas modificações feitas por Strickland & Parsons (1965).

Em substituição ao método de Richards & Thompson (1952), e mais usado atualmente, para separar-se os organismos da agua, o método de filtração por meio das membranas do tipo "Millipore", ou mais recentemente, com o filtro de lã de vidro (Whatman: GF/C).

Preparação da amostra:

1º) Toma-se uma certa quantidade de amostra (de 0,5 a 5,0, conforme a natureza da água), adicionando-se 1,0 ml de uma suspensão de carbonato de magnésio, de preferência nos últimos 100 ml de amostra que estiver sendo filtrada.

A adição do carbonato é para evitar a acidificação da clorofila, evitando desta maneira a sua transformação em feofitina.

2º) Após a filtração, remove-se a membrana do suporte e, com cuidado, recorta-se o filtro ao redor da area útil de filtração, diminuindo desta maneira o "branco". Quando se usa o filtro de vidro, praticamente não aparece o problema do "branco", além de ser menos dispendioso.

3º) Dobra-se cuidadosamente a membrana, colocando-a imediatamente no interior de um tubo graduado de centrífuga de 15,0 ml. Se usar "M.F.", adicionar aproximadamente 8,0 ml de acetona a 90 %;fechar o tubo e agitar fortemente para dissolver a membrana. Quando usar o filtro de vidro, adicionar 10,0 ml de acetona a 90% e agitar vigorosamente. Introduzir o tubo (recoberto com papel pre-to), num dessecador com vacuo e colocar num "freezer" por cerca de 20 horas. ~urante o período de extraçao, os pigmentos sio muito fotossensíveis, daí os cuidados em se evitar qualquer exposição à luz direta.

4º) Remover o tubo do "freezer", deixa-los em repouso até adquirir a temperatura ambiente, e adicionar icetona a 90%, até completar 10,0 ml por "M.F." e 12,0 ml por filtro de vidro. Centrifugar o conteúdo durant e 5-10 ml.n com 3.000-4.000 rpm.

5º) Decantar a camada superficial do líquido em uma cuba espectrofotométrica de 10 cm de extensao ("path lenght"), com capacidade de 10,0 ml de líquido, ou menos. Se empregar 12,0 ml de acetona com o filtro de vidro, multiplique a extinção do valor por 1,2, a fim de normalizá-lo aos valores esperados de 10,0 ml de extrato.

6º) Sem demora, medir a extinção da solução, usando os seguintes comprimentos de onda: 665, 645, 630 e 480 mµ e 510 mµ, caso sejam aplicadas as equações de Richards para os carotenóides. Em adição aos comprimentos de onda utilizados, uma leitura deve ser feita em 750 mµ e este valor subtraído das densidades ópticas em 665, 645 e 630 mµ. o uso da d. o. 750 mµ serve para corrigir os erros devido a turbidez da água. Esta correçao pode eliminar erros acima de 50%, quando se empregam cubas de 10,0 cm e valores baixos de d.o.

Para determinar a concentraçao das clorofilas numa amostra de 1 de volume (v) usando-se extratos de acetona com volume de alguns ml (ν), usamos a seguinte equação:

onde:

C, e o valor obtido das seguintes equações:

R

= Richards;

P.S.

= Parsons & Strickland;

H.J.

= Humphrey & Jeffrey;

E

= valores de extinção nos comprimentos de onda indicados, medidos em uma cuba de 10 cm.

R. C

(clorofila-a) = 15,6 E665 - 2,0 E645 - 0,8 E630

P. S . C

(clorofila-a) = 11,6 E665 - 1,31 E645 - 0,14 E630

H.J. C

(clorofila-a) = 13,7 E665 - 2,16 E645 - 0,19 E630

R. C

(clorofila-b) = 25,4 E665 - 4,4 E665 - 10,3 E630

P. S . C

(clorofila-b) = 20,7 E645 - 4,34 E665 - 4,42 E630

H.J. C

(clorofila-b) = 22,2 E645 - 3,88 E665 - 4,72 E630

R. C

(clorofila-c) = 109 E630 - 12,5 E665 - 28,7 E645

P. S . C

(clorofila-c) = 55 E630 - 4,64 E665 - 16, 3 E645

H. J . C

(clorofila-c) = 54,6 E630 - 6,00 E665 - 13,7 E645 R . C (carotenóides vegetais) = 7,6 (E480 - 1,49 E510)

Aparelhagem e equipamento:

1) Equipamento para filtração: suporte para filtros tipo milipóro (AA - HA) de 47 mm ou Whatman (GF/C) de 45 mm.

2) Frascos de 300 ml para lavagem.

3) Tubos graduados para centrifugação de 15 ml de capacidade, tendo tampas de vidro ou de polietileno.

4) Cubas espectrofotométricas de pequeno volume, de 10,0 cm de "path lenght", mas podendo conter 100 ml de solução, ou menos.

Reagentes especiais:

Destilar acetona, cerca de 1% de seu peso, tanto de carbonato de sódio anídrico quanto de sulfito de sódio anídrico. Retire uma fração fervente à temperatura constante de mais ou menos 55,5ºC.

Pipetar 100,0 ml de agua para um fras co graduado, no qual se adiciona acetona para atingir o volume de 1.000 ml.

A acetona redestilada deve ser conservada fechada hermeticamente em frascos de vidro escuro, e os 90% do reagente preparado em pequenas quantidades para uso (um litro de cada vez). O frasco deste reagente deve ser sempre mantido quase cheio.

Suspensão de carbonato de magnésio:

Adicionar aproximadamente 1,0 g de carbonato de magnésio, finamente pulverizado, para 100 ml de água destilada em um frasco Erlenmeyer bem arrolhado. Agitar vigorosamente o fras co para homogeneizar a suspens ao imediatamente antes de usar.

PROCESSO DO FRACIONAMENTO - Além da técnica da clorofila achamos também de igual necessidade, descrever o método utilizado para se fracionar o fitoplâncton, pois, é fundamental o estudo da distribuição por tamanho das células do fitoplâncton quer sob o ponto de vista estático ("standing-stock" ) ou dinâmico (produção da matéria orgânica). O fitoplâncton, sob o ponto de vista de tamanho,pode ser dividido em dois grandes grupos: o microfitoplâncton, constituído por células maiores que 50 µ, e o nanofitoplâncton, por células menores que 50 µ. Para se fracionar o fitoplâncton (= separar o micro do nanofitoplâncton) basta que se separe as células de diferentes tamanhos através de um meio mecânico, como por exemplo, filtrando-se urna amostra de fitoplâncton através de redes ou filtros, cujos poros apresentem um diâme tro de 50 µ. As duas frações (a retida e a filtrada) poderão, a seguir, ser estimadas em termos do numero de células, ou de pigmentos, ou ainda de impulsos radioativos quando se utilizar um radionuclídeo corno traçador. Para que o leitor possa melhor visualizar a técnica na prática, apresentamos um esquema mostrando as fases do método do fracionamento (Fig. 10).


Fig. 10

  • ALLEN, M.B. 1956. Excretion of organic compounds by Chlamydomonas. Arch. Mikrobiol., 24:163.
  • ANTIA, N.J., McALLISTER, C.D., PARSONS, T.R., STEPHENS, K. & STRICKLAND, J.D.H. 1963. Further measurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr., 8:166-183.
  • ARNON, D.I., WHATELY, F.R. & ALLEN, M.B. 1958. Assimilatory power in photosynthesis. Science, N.Y., 127:1026.
  • BROWN, A.H., FAGER, E.W. & GAFFRON, H. 1949. Kinetics of a photochemical intermediate in photosynthesis. In: Franck, J. & Loomis, W.E., eds Photosynthesis in plants. Iowa State College Press, p. 403-422.
  • BUCHANAN, D.L., MAKAO, A. & EDWARDS, G. 1953. Carbon isotope effects in biological systems. Science, N.Y., 117:541-545.
  • BUCHBINDER, L., SOLOWEY, M. & PHELPS, E.B. 1941. Studies on microorganisms in simulated room environments. III. The survival rates of Streptococci in the presence of natural daylight and sunlight and artificial illumination. J. Bact., 42:353-366.
  • CREITZ, G.I. & RICHARDS, F.A. 1955. The estimation and characterization of plankton populations by pigments analysis. III. A note on the use of "Millipore" membrane filters in the estimation of plankton pigments. J. mar. Res., 14(3):211-216.
  • DOTY, M.S. 1955. Currents status of carbon-fourteen method of assaying productivity of the ocean. Univ. Hawaii Ann. Rep., 55 p. (mimeo).
  • ______ & OGURI, M. 1959. The carbon-14 technique for determining primary plankton productivity. Pubbl. Staz. zool. Napoli, 31(Suppl.): 70-94.
  • FOGG, G.E. 1958. Extracellular products of phytoplankton and the estimation of primary production. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer, 144:56-60.
  • FØYN, E. & HANNEBORG, S. 1971. Determination of 14C labelled carbonate in solution. Mar. Biol., 8(1):57-59.
  • FRANCA, E.P. 1961. Manual de biofísica, fasc. 6. Metodologia de radioisótopos e suas aplicações em biologia e medicina. Rio de Janeiro, Universidade do Brasil, 247 p.
  • FREY, D.G. & STAHL, J.B. 1958. Measurements of primary production on Southampton Island in the Canadian Arctic. Limnol. Oceanogr., 3(2):215-221.
  • GAARDER, T. & GRAN, H.H. 1927. Investigations of the production of plankton in the Oslo Fjord. Rapp. P.-v. Reun. Cons. perm. int. Explor. Mer, 42:3-48.
  • GOLDMAN, C.R. 1968. The use of absolute activity for eliminating serious errors in the measurement of primary productivity with C. J. Cons, perm. int. Explor. Mer, 32(2):172-179.
  • GUILLARD, R.R.L. & WANGERSKY, P.J. 1958. The production of extra-cellular carbohydrates by some flagellates. Limnol. Oceanogr., 3(4):449-454.
  • JITTS, H.R. & ROTSCHI, H. 1957. Radioisotopes in Scientific Research. Vol. IV, Proc. 1st UNESCO int. Cong., Paris, 607 p.
  • JOHNSTONE, J., SCOTT, A. & CHADWICK, H.C. 1924. The marine plankton. Liverpool Univ. Press, 194 p.
  • JONES, G.E., THOMAS, W.H. & HAXO, F.T. 1958. Preliminary studies of bacterial growth in relation to dark and light fixation of C14O2 during productivity determinations. Spec, scient. Rep. U.S. Fish Wildl. Serv. Fisheries (279):79-86.
  • JØRGENSEN, E.G. & STEEMANN-NIELSEN, E. 1960. Effect of daylight and artificial illumination on the growth of Staphylococcus aereus and some other bacteria. Physiologia Pl., 13:534-538.
  • KING, J.E. & HIDA, T.S. 1957. Zooplankton abundance in the Central Pacific. Pt. II. Fishery Bull. Fish Wildl. Serv. U.S., 57:111-144.
  • LASKER, R. & HOLMES, R.W. 1957. Variability in retention of marine phytoplankton by membrane filters. Nature, Lond., 180:1.295.
  • MILLER, CP. & SCHAD, D. 1944. Germicidal action of daylight on Meningococci in dried state. J. Bact., 47:79-84.
  • MITCHELL-INNES, B.A. 1967. Primary production studies in the South-West Indian Ocean. Invest. Rep. Oceanogr. res, Inst. S. Afr., (14):1-20.
  • MORRIS, I., YENTSCH, M. & YENTSCH, CS. 1971. Relationship between light carbon dioxide fixation and dark carbon dioxide fixation by marine algae. Limnol. Oceanogr., 16(6):854-858.
  • ODUM, H.T. 1957. Primary production measurements in eleven Florida springs and a marine turtle-grass community. Limnol. Oceanogr., 2(1):85-97.
  • PARK, K., HOOD. D.W. & ODUM, H.T. 1958. Diurnal pH variation in Texas bays, and its application to primary production estimation. Pubis Inst, mar. Sci. Univ. Texas, 5:47-64.
  • PATTEN, B.C. 1966. The biocoentic process in an estuarine phytop lank ton community. Oak Ridge, Oak Ridge National Laboratory, 95 p.
  • PHONLOR, G. 1968. An apparatus for "in situ" primary production studies. Araucariana-Zool., 1:3-6.
  • PRATT, D.M. & BERKSON, H. 1959. Two sources of error in the oxygen light and dark bottle method. Limnol. Oceanogr., 4(3):328-334.
  • PRINGSHEIN, E.G. 1949. Pure cultures of algal; their preparation and maintenance. London, Cambridge University Press, 245 p.
  • PROVASOLI, L. & PINTNER, I.J. 1960. Artificial media for fresh-water algae: problems and suggestions. In: The ecology of algae. The Pymatuning Symposia in Ecology, Spec Publ. 2:84-96.
  • RABINOWITCH, E.I. 1945. Photosynthesis and related processes. New York, Interscience, vol. 1, 599 p.
  • ______ 1956. Photosynthesis and related processes. New York, Interscience, vol. 2, part 2, p. 1925-1939.
  • RICHARDS, F.A. & THOMPSON, T.G. 1952. The estimation and characterization of plankton populations by pigment analysis. II. J. mar. Res., 11(2):156-172.
  • RUSSELL-HUNTER, W.D. 1970. Aquatic productivity: an introduction to some basic aspects of biological oceanography and limnology. New York, Macmillan, 306 p.
  • RYTHER, J.H. 1956. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr., 1(1):61-70.
  • SEN, N. & FOGG, G.E. 1966. Effects of glycollate on the growth of a planktonic Chlorella. J. exp. Bot., 17:417-425.
  • SESTAK, Z., CATSKY, J. & JARVIS, P.G., ed. 1971. Plant photosynthetic production: manual of methods. The Hague, Junk, 818 p.
  • SOROKIN, Yu I. 1960. Determination of the isotope effect during labelled carbon dioxide assimilation in photosynthesis and chemosynthesis. Microbiologiyia, 29:204-208.
  • STEEMANN-NIELSEN, E. 1951. Measurements of the production of organic matter in the sea. Nature, Lond., 167:684.
  • ______ 1952. The use of radioactive carbon (C-14) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer, 18: 117-140.
  • ______ 1954. On organic production in the oceans. J. Cons. perm. int. Explor. Mer, 19(3):309-328.
  • ______ 1955a The interaction of photosynthesis and respiration and its importance for the determination of C14 discrimination in photosynthesis. Physiologia Pl., 8:945-953.
  • ______ 1955b Production of organic matter in the oceans. J. mar. Res., 14(4):347-386.
  • ______ 1958. Experimental methods for measuring organic production in the sea. Rapp. P.-v. Reun. Cons. perm. int. Explor. Mer, 144: 38-46.
  • ______ 1964. Recent advances in measuring and understanding marine primary production. J. Ecol., 52(Supp1.):119-130.
  • ______ 1965. On the determination of the activity in C14 - ampoules for measuring primary production. Limnol. Oceanogr. (Suppl.) 10: R247-252.
  • ______ & HANSEN, V.K. 1959. Light adaptation in marine phytoplankton populations and its interrelation with temperature. Physiologia Pl., 12:353-370.
  • ______ & JENSEN, H.K. 1957. Primary oceanic production. The autotrophic production of organic matter in the oceans. Galathea Rep., 1:49-136.
  • ______ & KHOLY, A. 1956. Use of C14 technique in measuring photosynthesis of phosphorus or nitrogen deficient algae. Physiologia Pl., 9 : 144-153.
  • STRICKLAND, J.D.H. & PARSONS, T.R. 1960. A manual of seawater analysis. Bull. Fish. Res. Bd Can., (125):1-185.
  • ______ & 1965. A manual of sea water analysis. Bull. Fish. Res. Bd Can., (125), 2nd ed. rev., 203 p.
  • ______ & 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can., (167):1-311.
  • TEIXEIRA, C. 1969. Estudo sobre algumas características do fitoplancton da região de Cananéia e o seu potencial fotossintético. Tese de Doutoramento. Universidade de São Paulo, 82 p. (mimeogr.
  • ______, KUTNER, M.B. & TORGO, F.M.S. 1965. Efeito da respiração bacteriana. Revta bras. Biol., 25(3):287-294.
  • ______ & TUNDISI, J, 1967. Primary production and phytoplankton in Equatorial waters. Bull. mar. Sci., 17(4):884-891.
  • ______, ______ & SANTORO, J.Y. 1969. Plankton studies in a mangrove environment. VI. Primary production, zooplankton standing-stock and some environmental factors. Int. Rev. ges. Hydrobiol., 54(2):289-301.
  • TUNDISI, J. & TEIXEIRA, C. 1968. Plankton studies in a mangrove environment. VII. Size fractionation of the phytoplankton: some studies on methods. Bolm Inst, oceanogr., S Paulo, 17(1):89-94.
  • VACCARO, R.F. & RYTHER, J.H. 1954. The bactericidal effects of sunlight in relation to "light" and "dark" bottle photosynthesis experiments. J. Cons. perm. Int. Explor. Mer, 20:18-24.
  • VERDUIN, J. 1951. Photosynthesis in naturally reared aquatic communities. Physiologia Pl., 26:45-49.
  • ______ 1957. Daytime variations in phytoplankton photosynthesis. Limnol. Oceanogr., 2(4):333-336.
  • VOLLENWEIDER, R.A., ed. 1969. A manual on methods for measuring primary production in aquatic environments. IBP Handbook nş 12. London, International Biological Programme, 213 p.
  • ______ & NAUWERCK, A. 1961. Some observations on the C14 method for measuring primary production. Verh. Int. Ver. Limnol., 14:214-235.
  • WEIS, D. & BROWN, A.H. 1959. Kinetic relationships between photosynthesis and respiration in the algal flagellate Ochromonas malhamensis. Physiologia Pl., 34:235-239.
  • WIESSNER, W. & GAFFRON, H. 1964. Role of photosynthesis in the light-induced assimilation of acetate by Chlamydobotrys. Nature, Lond., 201:725-726.
  • WILLIAMS, R.B. 1966. Annual phytoplankton production in a system of shallow temperate estuaries. In: Barnes, H., ed. - Some contemporary studies in marine science. London, Allen & Unwin, p. 699-716.
  • WRIGHT, R.T. 1964. Dynamics of a phytoplankton community in an ice-covered lake. Limnol. Oceanogr., 9(2):163-178.
  • ZoBELL, C.E. & ANDERSON, D.Q. 1936. Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol. Bull., 71:324-342.

Datas de Publicação

  • Publicação nesta coleção
    11 Jun 2012
  • Data do Fascículo
    1973

Histórico

  • Recebido
    12 Ago 1972
Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico, 191, 05508-120 São Paulo SP Brasil, Tel.: (55 11) 3091 6513, Fax: (55 11) 3032 3092 - São Paulo - SP - Brazil
E-mail: amspires@usp.br