SciELO - Scientific Electronic Library Online

 
vol.43 issue2Nitrate reductase activity in the diatom Biddulphia longicmris: characterization and daily oscillationComparative analysis of surf-zone fishes at São Paulo state, Brazil author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Boletim do Instituto Oceanográfico

Print version ISSN 0373-5524

Bol. Inst. Oceanogr. vol.43 no.2 São Paulo  1995

http://dx.doi.org/10.1590/S0373-55241995000200005 

ARTIGOS

 

Estudo do metabolismo de rotina e excreção de amônia do antípoda antártico Waldeclàa obesa em duas temperaturas distintas

 

Routine metabolism and ammonia excretion of the Antarctic amphipod Waldeckia obesa in two different temperatures

 

 

Vicente Gomes; Phan Van Ngan; Maria José de Arruda Campos Rocha Passos

Instituto Oceanográfico da Universidade de São Paulo (Caixa Postal 66149, 05389-970, São Paulo, SP, Brasil)

 

 


RESUMO

Realizaram-se estimativas, a 0ºC e a 3ºC, do consumo médio e específico de oxigênio e da excreção média e específica de amónia de anfípodas antárticos da espécie Waldeckia obesa, coletados na Baía do Almirantado, Ilha Rei George, Antártica. Os experimentos foram realizados na Estação Antártica Brasileira "Comandante Ferraz" e no Laboratório de Ecologia Polar do Instituto Oceanográfico da Universidade de São Paulo. Foram empregados animais entre 120 mg a 620 mg e entre 40 mg e 690 mg de peso úmido, nos experimentos a 0ºC e a 3ºC, respectivamente. Dentro dessas faixas de peso, o consumo médio de oxigênio, a 0ºC, variou de 2,22µl/h a 10,81µl/h e o específico de 0,011µl/mg/h a 0,018µl/mg/h. A 3ºC, o consumo médio de oxigênio variou de 1,83µl/h a 14,19µl/h e o específico de 0,033µl/mg/h a 0,022µl/mg/h. O Q10, calculado a partir das médias das classes, foi de 6,95. Por sua vez, a excreção média de amónia, a 0ºC, variou de 13,84 ng.at/h a 55,34 ng.at/h e a específica entre 0,090 ng.at/mg/h a 0,042 ng.at/mg/h. A 3ºC, a excreção média de amónia variou de 5,11 ng.at/h a 38,33 ng.at/h e a específica de 0,088 ng.at/mg/h a 0,059 ng.at/mg/h. A relação 0:N indica que uma mistura de proteínas e lipídios é utilizada como substrato para o catabolismo. A 3ºC, entretanto, há uma tendência a aumentar a contribuição dos lipídios nesse substrato. O consumo de oxigênio de Waldeckia obesa é bastante baixo estando de acordo com os valores encontrados, a 0ºC, por outros autores. Esses dados, juntamente com resultados recentes encontrados na literatura, indicam a fragilidade da hipótese de "adaptação metabólica ao frio", que supõe terem os animais marinhos ectotérmicos antárticos taxas metabólicas elevadas, como resposta adaptativa às baixas temperaturas. Os dados de consumo de oxigênio e excreção de amónia fornecem material básico para extrapolação a parâmetros populacionais, fornecendo subsídios para a avaliação do papel ecológico desses animais no ecossistema em que vivem.

Descritores: Anfípodas, Metabolismo, Antártica, Waldeckia obesa, Consumo de oxigênio, Excreção.


ABSTRACT

Mean and specific oxygen consumption and ammonia excretion were measured at 0ºC and 3ºC, in the Antarctic amphipod Waldeckia obesa collected in Admiralty Bay, King George Island, Antarctica. Experiments were carried out at the Brazilian Antarctic Station "Comandante Ferraz" and at the Laboratory of Polar Ecology of the Oceanographic Institute of São Paulo University. Individuals ranging from 120 mg to 620 mg and from 40 mg to 690 mg were employed in experiments at 0ºC and 3ºC, respectively. Within this range of weight, mean oxygen consumption varied from 2.22µ1/h to 10.81µ1/h and specific consumption from 0.011µ 1/mg/h to 0.018µ 1/mg/h, at 0ºC. At 3ºC, mean oxygen consumption varied from 1.83 µ1/h to 14.9µi/h and specific consumption from 0.033µ1/mg/h to 0.022µ1/mg/h. Q10 value calculated from average oxygen consumption was 6.95. Mean ammonia excretion, at 0ºC, varied from 13.84 ng.at/h to 55.34 ng.at/h and specific excretion from 0.090 ng.at/mg/h to 0.042 ng.at/mg/h. At 3ºC, mean ammonia excretion varied from 5.11 ng.at/h to 38.33 ng.at/h and specific excretion from 0.088 ng.at/mg/h to 0.059 ng.at/mg/h. 0:N ratio indicates that a mixture of protein and lipids is utilized for catabolism. At 3ºC, however, there is a tendency to increase the lipid contribution for the substrate. Oxygen consumption of Waldeckia obesa at 0ºC is very low and is in accordance with the values reported by some other authors. These data and others recent results found in the literature indicate the fragility of the "metabolic cold adaptation" hypothesis, that assumes that marine Antarctic ectotherms have high metabolic rates, as an evolutive adaptation to low temperatures. Oxygen consumption and ammonia excretion data could be extrapolated to populational parameters giving support for the studies on the ecological role of these animals in their ecosystem.

Descriptors: Amphipods, Metabolism, Antarctica, Waldeckia obesa, Oxygen consumption, Excretion.


 

 

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

 

 

Agradecimentos

Agradecemos ao Programa Antártico Brasileiro, PROANTAR/CNPq, à Comissão Interministerial para os Recursos do Mar, CIRM, e ao Instituto Oceanográfico da Universidade de São Paulo, pela oportunidade, apoio logístico e financeiro para realizar este trabalho. Ao CNPq pelas bolsas de pesquisa concedidas. À Estação Antártica Brasileira "Comandante Ferraz" pela hospitalidade e apoio durante os trabalhos de campo. Ao pessoal de nosso laboratório pelo auxílio nas diversas etapas do trabalho.

 

Referências bibliográficas

AARSET, A. V. & AUNAAS, T. 1990. Metabolic responses of the sympagic amphipods Gammarus wilkitzkii and Onisimus glacialis to acute temperature variations. Mar. Biol., 107:433-438.         [ Links ]

ARMITAGE, K. B. 1962. Temperature and oxygen consumption of Orchomonella chilensis (Heller) (Amphipoda: Gammeroicjea). Biol. Bull., 123(2):225-232.         [ Links ]

ARNAUD, P.M.; JAZDZEWSKI,K.; PRESLER, P.& SICINSKI, J. 1986. Preliminary survey of benthic invertebrates collected by Polish Antarctic Expeditions in Admiralty Bay (King George Island, South Shetlands Islands, Antarctica). Pol. Polar Res., 7(1/2):7-24.         [ Links ]

CHAPELLE, G. & PECK, L. S. 1995. The influence of acclimation and substratum on the metabolism of the Antarctic amphipods Waldeckia obesa (Chevreux, 1905) and Bovallia gigantea (Pfeffer 1888). Polar Biol., 15(3):225-232.         [ Links ]

______; ______ & CLARKE, A. 1994. Effects of feeding and starvation on the metabolic rate of the necrophagous Antarctic amphipod Waldeckia obesa (Chevreux, 1905). J. expl mar. Biol. EcoL, 183:63-76.         [ Links ]

CLARKE, A. 1988. Seasonality in the Antarctic marine environment. Comp. Biochem. Physiol., 90(B):461-473.         [ Links ]

_______ 1991. What is cold adaptation and how should we measure it? Am. Zool., 31:81-92.         [ Links ]

COLEMAN, C. O. 1991. Comparative fore-gut morphology of Antarctic amphipod (Crustacea) adapted to different food sources. Hydrobiol., 223:1-9.         [ Links ]

CONOVER, R. J. & CORNER, E. D. S. 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. mar. biol. Ass. U.K., 48:49-75.         [ Links ]

DE BROYER, C. & KLAGES, M. 1990. Studies on amphipod biology. Polarforschung, 68:113-115.         [ Links ]

ELLIOT, J. M. 1976. Energy losses in the waste products of brown trout (Salmo trutta L.). J. Anim. Ecol, 45(2):561-580.         [ Links ]

EVERSON, I. 1977. Antarctic marine secondary production and the phenomenon of cold adaptation. Phil. Trans. R. Soc, Lond., 279:55-66.         [ Links ]

FOX, H. M. & WINGFIELD, C. A. 1938. A portable apparatus for the determination of oxygen dissolved in a small volume of water. J. expl Biol., 15: 437-445.         [ Links ]

HOLETON, G. F. 1974. Metabolic cold adaptation of polar fish: fact or artefact? Physiol. Zool., 47(3):137-152.         [ Links ]

HOSS, D. E. 1968. Rates of respiration of estuarine fish. In: ANNUAL CONFERENCE OF THE SOUTHEASTERN ASSOCIATION OF GAME AND FISH COMMISIONERS, 21st, New Orleans, 1967. Proceedings. New Orleans, SAGFC. p.416-423.         [ Links ]

HUREAU, J. C. 1994. The significance of fish in the marine Antarctic ecosystems. Polar Biol., 14(5):307-313.         [ Links ]

IKEDA, T. 1977. The effect of laboratory conditions on the extrapolation of experimental measurements to the ecology of marine zooplankton. IV. Changes in respiration and excretion rates of boreal zooplankton species maintained under fed and starved conditions. Mar. Biol., 41:241-252.         [ Links ]

JAZDZEWSKI, K. 1993. Amphipoda. In: Rakusa-Suszczewski, S., ed. The maritime antarctic coastal ecosystem of Admiralty Bay. Warsaw, Polish Academy of Sciences, p.108-116.         [ Links ]

KLEKOWSKI, R. Z.; OPALINSKI, K. W. & RAKUSA-SUSZCZEWSKI, S. 1973. Respiration of mtarctic Amphipoda Paramoera walked Stebbing during the winter season. Pol. Archs Hydrobiol., 20(2):301-308.         [ Links ]

KOROLEFF, F. 1970. Direct determination of ammonia in natural waters as indophenol blue. Cons. Int. Explor. Mer., Information on techniques and methods for sea water analysis (and laboratory report), (3):19-22.         [ Links ]

LEHTONEN, K. K. 1994. Metabolic effects of short-term starvation on the benthic amphipod Pontoporeia affinis Lindstrom from the northern Baltic Sea. J. expl mar. Biol. Ecol, 176:269-283.         [ Links ]

MAYZAUD, P. 1976. Respiration and nitrogen excretion of zooplankton. IV. The influence of starvation on the metabolism and the biochemical composition of some species. Mar. Biol., 37:47-58.         [ Links ]

_____ & CONOVER, R. J. 1988. O:N atomic ratio as a tool to describe zooplankton metabolism. Mar. Ecol.-Prog. Ser., 45: 289- 302.         [ Links ]

OPALINSKI, K. W. 1979. Metabolic cold adaptation in antarctic amphipods. Ekol. pol, 27(2):323-331.         [ Links ]

____ & JAZDZEWSKI, K. 1978. Respiration of some antarctic amphipods. Pol. Archs Hydrobiol., 25(3):643-655.         [ Links ]

QUETIN, L. B.; ROSS, R. M. & UCHIO, K. 1980. Metabolic characteristics of midwater zooplankton: ammonia excretion, O:N ratio and the effects of starvation. Mar. Biol., 59:201-209.         [ Links ]

RAKUSA-SUSZCZEWSKI, S. 1975. Respiration and osmoregulation as the expression of the invertebrates and fishes to life under hypostenothermic conditions. Pol. Archs Hydrobiol, 22(4) :521-552.         [ Links ]

_____ 1982. The biology and metabolism of Orchomene plebs (Hurley, 1965) (Amphipoda: Gammaridea) from McMurdo Sound Ross Sea, Antarctica. Polar Biol., 1(1):47-54.         [ Links ]

_____ & KLEKOWSKI, R. Z. 1973. Biology and respiration of the Antarctic Amphipoda (Paramoera walkeri Stebbing) in the summer. Pol. Archs Hydrobiol., 20(3):475-488.         [ Links ]

RAKUSA-SUSZCZEWSKI, S. & LACH, A. 1991. Respiration of Orchomene plebs (Hurley, 1965) and Waldeckia obesa (Chevreux, 1905) from Admiralty Bay (South Shetlands Islands, Antarctica). Hydrobiol., 223:177-180.         [ Links ]

SCHOLANDER, P. F.; FLAGG, W.; WALTERS, V. & IRVING, L. 1953. Climatic adaptation in arctic and tropical poikilotherms. Physiol. Zool., 26:67-69.         [ Links ]

WINBERG, G. G. 1956. Rate of metabolism and food requirements of fishes. Fish. Res. Bd Can. Transl. ser., (194):1-253.         [ Links ]

WOHLSCHLAG, D. E. 1960. Metabolism of an Antarctic fish and the phenomenon of cold adaptation. Ecol., 41(2):287-292.         [ Links ]

_____ 1964. Respiratory metabolism and ecological characteristics of some fishes in McMurdo Sound, Antarctica. Antarct. Res. Ser., 1:33-62.         [ Links ]

 

 

(Manuscrito recebido 28 agosto 1995; revisto 26 outubro 1995; aceito 29 novembro 1995)

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License