SciELO - Scientific Electronic Library Online

 
vol.15 issue2Loss of soil determination in Fazenda Canchim - SP (EMBRAPA) using geographic information systems and USLE 2DEvaluation of the income variation impact on household water consumption author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Engenharia Sanitaria e Ambiental

Print version ISSN 1413-4152

Eng. Sanit. Ambient. vol.15 no.2 Rio de Janeiro June 2010

https://doi.org/10.1590/S1413-41522010000200007 

ARTIGO TÉCNICO

 

Influência do tipo de material suporte no desempenho de reatores biológicos de leito móvel na remoção de carbono e nitrificação de esgoto sanitário

 

The influence of material support kind on the biological moving bed reactors performance used for the carbon removal and nitrification of sewage

 

 

Delmira Beatriz WolffI; Etienne PaulII; Rejane Helena Ribeiro da CostaIII

IEngenheira Sanitarista e Ambiental. Doutora em Engenharia Ambiental pela Universidade Federal de Santa Catarina (UFSC). Professora-adjunto do Departamento de Engenharia Sanitária e Ambiental da Universidade Federal de Santa Maria (UFSM)
IIProfessor do Laboratoire d’ Ingenierie des Procédés de L’Environnement du Departement de Génie des Procédés Industriels (LIPE/GPI) do Institut National des Sciences Appliquées de Toulouse, França (INSA)
IIIEngenheira Civil. Mestre em Hidráulica e Saneamento pela Escola de Engenharia de São Carlos da Universidade de São Paulo (ESSC/USP). Doutora pelo INSA/Toulouse, França. Professora Titular do Departamento de Engenharia Sanitária e Ambiental da UFSC. Pesquisadora categoria 1B do CNPq

Endereço para correspondência

 

 


RESUMO

Neste trabalho foi mostrada a influência do tipo de material suporte: P4 (plástico reciclado rugoso, diâmetro médio de 2,31 mm, densidade de 900 kg.m-3, superfície específica potencial de 2.596 m2.m-3sup) e P5 (polietileno, pouco rugoso, forma cilíndrica, diâmetro médio de 10 mm, densidade de 880 kg.m-3, superfície específica potencial de 3.075m2.m-3sup) utilizados em dois reatores biológicos de leito móvel, fluxo contínuo, na remoção de carbono e nitrificação de esgoto sanitário, os quais foram divididos em duas fases, de acordo com a idade do lodo (IL): fase A: IL de 10 dias e fase B: IL de 3 dias. Foram aplicadas cargas orgânicas superficiais médias de 4,0 kgDQO.m-2.d-1 (P4) e de 4,1 kgDQO.m-2.d-1 (P5); e cargas superficiais de nitrogênio de 0,63 kgN.m-2.d-1 (P5) e de 0,66 kgN.m-2.d-1 (P5). Para o material P4, a remoção média foi de 87% de carbono e 83% de nitrogênio (fase A) e 80% de carbono e 77% de nitrogênio (fase B). Para o P5, remoção de 63% de carbono e 55% de nitrogênio (Fase A) e 59% de carbono e de nitrogênio (fase B). Com base nos resultados obtidos, verificou-se que a remoção de carbono e nitrogênio não foi influenciada pela idade do lodo, mas pelo tipo de material suporte (forma ou características de superfície) e superfície disponível para o crescimento da biomassa.

Palavras-chave: carbono, idade de lodo, material suporte, nitrogênio, reator híbrido, tratamento de águas residuárias.


ABSTRACT

This paper presented the influence of material support kind: P4 (rugous recycled plastic, medium diameter of 2.31 mm, density of 900 kg.m-3, specific surface potential of 2,596 m2.m-3sup) and P5 (polietilene, cilindric shape, medium diameter of 10 mm, density of 880 kg.m-3, specific surface potential of 3,075m2.m-3sup) used in two continuous flux biological moving bed reactors using different material support to remove nitrogen and carbon from sewage, which was divided in two phases according to sludge retention time (SRT): phase A: SRT of 10 days and phase B: SRT of 3 days. The organic loading rates applied were 4.0 kgCOD.m-2.d-1 (P4) and 4.1 kgCOD.m-2.d-1 (P5); and the nitrogen loading rates applied were 0.63 kgN.m-2.d-1 and 0.66 kgN.m-2.d-1 for P4 and P5, respectively. The support P4 achieved efficiencies of 87% for total carbon removal and 83% for nitrogen removal during phase A. These efficiencies slightly decreased to 80 and 77% for total carbon and nitrogen, respectively (phase B). The support P5 got removal efficiencies of 63% for total carbon and 55% for nitrogen (phase A) and 59% for total carbon and nitrogen (phase B). These results showed that the total carbon and nitrogen removal efficiencies were not affected by the SRT, but by the kind of support used (carrier geometry or surface characteristics) and available specific surface area for biomass growth.

Keywords: carbon, sludge retention time, support material, nitrogen, hybrid reactor, wastewater treatment.


 

 

Introdução

A poluição das águas superficiais é um problema que vem se agravando nos últimos anos face à descarga de efluentes sanitários e/ou industriais que contêm matéria orgânica e nutrientes, como o nitrogênio. Para reduzir a concentração desses poluentes, diversas tecnologias de tratamento vêm sendo desenvolvidas, utilizando processos biológicos de biomassa em suspensão ou biomassa imobilizada.

Os sistemas híbridos constituem uma tecnologia relativamente nova no tratamento de efluentes, os quais, utilizando a combinação de culturas livres e fixas no mesmo sistema de tratamento, aumentam assim a concentração de biomassa no reator biológico e otimizam a depuração biológica do esgoto sanitário, sem um significativo acréscimo na produção de excesso de lodo (Ødegaard et al., 2000; Mannina;Viviani, 2009) e de efluentes industriais (Wessman et al., 2004; Ødegaard, 2006; Villamar et al., 2009). Alcançando uma ampla aceitação no mundo, os sistemas híbridos têm sido aplicados tanto para novas instalações como também com o objetivo de reabilitar Estações de Tratamento de Esgotos (ETEs) já existentes. Esse tipo de sistema pode ser constituído por unidades separadas, chamado de sistema combinado ou multiestágio, ou ainda no mesmo reator combinando a biomassa livre e fixa (Wolff et al., 2005). Esse tipo de processo surgiu como uma alternativa ao sistema convencional de lodos ativados, aumentando o desempenho das ETEs, pois em um mesmo reator é possível obter nitrificação, desnitrificação e remoção de fósforo (Ochoa et al., 2002), devido à coexistência da atividade metabólica anóxica e aeróbia dentro do mesmo ecossistema de biomassa, possibilitando assim diferentes reações metabólicas importantes para a degradação de diferentes poluentes encontrados no esgoto. Nesses reatores, tem-se principalmente a biomassa autótrofa localizada sobre o material suporte e a biomassa heterótrofa nos lodos em suspensão. Nessas condições, a matéria orgânica é metabolizada pelos microrganismos em suspensão, enquanto o nitrogênio amoniacal é oxidado pelos organismos nitrificantes que estão no material suporte (Oyanedel et al., 2002; Ochoa et al., 2002).

Os Biofilmes podem ser formados em quase todos os ambientes hidratados que permitam o aporte de nutrientes e podem ser desenvolvidos em diversas superfícies abióticas, hidrofóbicas e hidrofílicas, tais como vidros, metais e plásticos (Fletcher, 1980). Pesquisas recentes têm utilizado polietileno, carvão ativado granular, areia, antracito, zeolita e composto mineral de diatomácea fossilizada (Zhao et al., 2006). A formação do biofilme é um processo dinâmico que envolve uma série de eventos moleculares que incluem mecanismos para adesão, agregação e expansão da comunidade. A adesão é o primeiro passo fundamental na colonização bacteriana em uma superfície. As propriedades de superfície dos materiais suportes, tais como a porosidade, rugosidade e forma, desempenham um papel muito importante com relação à colonização bacteriana. Characklis (1990) e Moreau (1993) apud Liu (1994) observaram uma colonização mais efetiva em suportes mais rugosos. Segundo o primeiro autor, a contribuição da rugosidade da superfície sobre a adesão bacteriana pode ser atribuída às seguintes razões: maior proteção das células às forças de cisalhamento; aumento da superfície colonizável para a adesão bacteriana e o aumento da transferência de matéria por convecção. Liu (1994) observou que em suportes dotados de macrorrugosidades, o biofilme se forma inicialmente nas cavidades, onde são protegidos das forças de cisalhamento. Nessa situação, as bactérias têm a possibilidade de fixar-se firmemente na superfície do suporte, mas formam biofilmes irregulares e não homogêneos. O autor concluiu, então, que a rugosidade da superfície influencia a morfologia do biofilme.

Um estudo realizado por Ødegaard et al (2000), que utilizou suportes Kaldnes com diferentes tamanhos em um moving bed biofilm reactor (MBBR), – reator de leito móvel, mostrou que o tamanho do suporte não tem influência sobre a remoção superficial do suporte, e que a capacidade de tratamento depende da superfície total de suporte disponível para o crescimento do biofilme no reator. Isso indica que uma elevada taxa de preenchimento pode ser utilizada para compensar uma baixa superfície específica do suporte.

No presente trabalho, estudou-se a influência do tipo de material suporte (com relação ao tamanho, forma e rugosidade) no desempenho de reatores biológicos de leito móvel (RBLM) relativo à remoção de carbono (em termos de demanda química de oxigênio – DQO), e na nitrificação, tratando esgoto sanitário urbano, utilizando dois diferentes tipos de material suporte, colocados no tanque de aeração e mantidos em movimento via agitação mecânica e aeração, os quais fornecem aos reatores uma grande superfície específica própria para a fixação e desenvolvimento do biofilme, visando ao aumento da concentração de biomassa no referido tanque. Sendo os reatores de mistura completa, todo seu volume participa dos processos biológicos envolvidos no tratamento.

 

Metodologia

Instalação experimental: o experimento foi conduzido em duas linhas idênticas de instalação experimental, sendo que cada linha era formada por um reator biológico de leito móvel com funcionamento em fluxo contínuo, construído em PVC transparente de diâmetro 30 cm, altura total 63 cm, e volume útil de 22 L (suporte + líquido), dotado de um agitador tipo hélice (detalhe apresentado na Figura 1), preenchido com o material suporte flutuante de baixa densidade; um decantador secundário (volume 2,5 L) de onde uma parte do lodo era recirculada para o reator; três bombas peristálticas utilizadas respectivamente para alimentação do reator, sistema de recirculação e adição de fonte externa de carbono (na fase anóxica), ligadas a um variador de frequência que controlava as vazões. Na parte inferior do reator, era introduzido ar comprimido por meio de um tubo perfurado. A aeração era sequencial, com duração da fase aerada e não-aerada de 45 minutos cada, por meio de um timer, a fim de obter a alternância de fases aeróbias (para remoção carbonácea e nitrificação) e anóxicas (visando à desnitrificação). A temperatura nos reatores foi mantida em 16ºC, utilizando um termostato, visando avaliar o desempenho dos reatores na nitrificação mesmo com temperaturas mais baixas, o que ocorre nos meses mais frios do ano, em regiões de climas frios e temperados. O pH e o oxigênio dissolvido (OD) eram medidos utilizando-se uma sonda ligada a um software de aquisição de dados. O substrato de alimentação dos sistemas era esgoto sanitário, proveniente da rede coletora de esgoto sanitário, o qual era pré-decantado e armazenado em um tanque em aço, dotado de misturador e refrigerado a 4ºC, com uma vazão de alimentação de 45 L.d-1

 

 

Características do esgoto sanitário: o esgoto bruto possuía as seguintes características: (DQO): 407 ± 53 mgDQO.L-1, Nitrogênio Total Kjeldahl (NTK): 63 ± 11 mgNTK.L-1, Sólidos em Suspensão (SS): 120 ± 20 mgSS.L-1

Características da fonte de carbono: a fonte externa de carbono era composta de etanol (3.500 mgDQO.L-1), propionato de sódio (500 mgDQO.L-1), celulose solúvel (250 mgDQO.L-1), extrato de carbono (500 mgDQO.L-1) e peptona (250 mgDQO.L-1).

Material Suporte: foram utilizados dois tipos de material suporte com características diferentes, os quais ficavam em livre suspensão no interior dos reatores: suporte P4 – plástico reciclado rugoso – rugosidade média 16,81 µm, formato irregular, aproximadamente esférico, diâmetro médio de 2,31 mm, densidade de 900 kg.m-3, superfície específica potencial de 2596 m2.m-3sup e superfície específica no reator de 257 m2.m-3reator, para a taxa de preenchimento de 20%, e o suporte P5 – polietileno pouco rugoso – rugosidade média de 2,29 µm, forma cilíndrica, diâmetro médio de 10 mm, profundidade de 6,2 mm, dotado de ranhuras no seu exterior e de uma estrutura em « Y » no interior do suporte, para maximizar o crescimento do biofilme, protegendo-o da abrasão, densidade de 880 kg.m-3, superfície específica potencial de 3075m2.m-3sup e superfície específica no reator de 615 m2.m-3reator, para taxa de preenchimento de 10%.

A superfície específica do suporte (m2.m-3) foi determinada pela razão superfície/volume. Foram, então, calculados os volumes equivalentes e as superfícies dos suportes P4 e P5. Para a obtenção do volume equivalente do suporte P4, este foi comparado a uma esfera. O diâmetro médio de uma partícula do suporte P4, obtido por teste granulométrico, foi de 0,00231 m; então, o volume de P4 é 6,454.10-9 m3. Sendo a superfície de uma esfera calculada por S = 4πr, encontrou-se para o suporte P4 uma superfície de 1,67.10-5 m2.A superfície específica calculada para P4 foi, portanto, de 2597 m2.m-3suporte.

Quanto ao P5, a superfície específica potencial do suporte foi obtida pela soma das medidas de todas as superfícies do suporte, internas e externas (m2), divididas pelo volume (m3). O valor encontrado foi 3.075 ± 4% m2.m-3suporte, em média. Em relação à superfície específica potencial do reator, o suporte P4 tem uma superfície de 257 m2.m-3reator e o P5 tem uma superfície de 615 m2.m-3reator. O volume do reator é a relação entre o volume total dos suportes no reator e o seu volume total.

Na Figura 2 são apresentadas fotos dos materiais suporte utilizados.

 

 

Condições operacionais: inicialmente, os reatores foram inoculados com lodos ativados nitrificantes provenientes de uma estação de tratamento de esgoto. Os reatores funcionaram em duas fases (A e B), definidas em função da idade de lodo: na fase A, a idade de lodo média era de 10 dias e na Fase B de 3 dias. As vazões de alimentação e de recirculação eram de 45 L.d-1. As cargas orgânicas superficiais aplicadas foram de 4,0 kgDQO.m-2.d-1 (P4) e de 4,1 kgDQO.m-2.d-1 (P5) ; e as cargas de nitrogênio foram de 0,63 kgN.m-2.d-1 (P4) e de 0,66 kgN.m-2.d-1 (P5).

Monitoramento: as análises cotidianas realizadas durante o monitoramento dos reatores foram DQO total e filtrada (método do refluxo fechado com dicromato de potássio), nitrogênio NTK e amoniacal (NH4) (digestão e destilação Kjeldahl), nitrito e nitrato (cromatografia iônica – Technicon), todas segundo American Public Health Association (2004).

Cálculo de parâmetros operacionais: A fração de nitrogênio nitrificado (mg.d-1) foi calculada utilizando-se a equação 1:

A carga superficial removida foi determinada pela equação 2 :

Sendo: CSremovida= Carga superficial removida (mgDQO/m2.d); Qentrada= vazão de alimentação (L/d); Ssupreator = Superfície específica de suporte no reator (m2/m3) e V = volume do reator (m3).

A idade do lodo foi calculada com o auxílio da equação 3:

Sendo: IL= idade do lodo (d); VL= volume de líquido (L); XL= sólidos suspenso na fase líquida no interior do reator (mg/L); Xs= sólidos na saída do reator (mg/L); Qd= vazão de descarte do lodo (L/dia) e Qs= vazão na saída do sistema (L/dia).

Análise estatística: utilizando-se o programa Statistica®, foi realizado o teste t de Student, para verificar se havia diferenças estatísticas significativas entre as concentrações de saída, em termos de nitrogênio nitrificado e da carga superficial removida, para as condições de operação dos reatores.

 

Resultados

Durante o monitoramento dos reatores, os materiais suporte foram fotografados utilizando-se uma Lupa. Dessa forma, foi possível verificar que para o P5, a colonização ocorreu principalmente no seu interior, como mostrado na Figura 3.

 

 

Com base nesta observação, estimou-se que a superfície específica calculada para o reator com esse suporte era na realidade 222,4 m2.m-3reator, refazendo-se o cálculo para a superfície efetivamente colonizada. Com isso, foi possível observar que a superfície disponível no reator com suporte P5 era cerca de 2,76 menor que a superfície disponível no reator com o suporte P4.

Remoção de DQO

Os valores da estatística descritiva, entrada e saída dos reatores com suporte P4 e P5, em termos de concentração de DQO total (mg.L-1) são apresentados na Tabela 1.

 

 

Os valores médios de remoção da DQO por superfície efetiva de suporte (P4 e P5) estão apresentados nas Figuras 4 e 5 e Tabela 2, respectivamente.

 

 

 

 

 

 

Nas Figuras 4 e 5, observa-se que o potencial de remoção de DQO do reator com suporte P4, em função das cargas aplicadas, foi mais estável e ficou mais próximo da linha dos 100%, que o do suporte P5, durante a fase A. No decorrer da fase B, devido às perturbações operacionais ocorridas no reator híbrido com suporte P4, ocorreu perda de sólidos no decantador; como consequência, as remoções afastaram-se da linha dos 100%.

Na Tabela 2, observa-se que a remoção média das cargas de DQO aplicadas foi maior no reator com suporte P4 do que naquele com suporte P5.

Foi realizado o teste t de Student para as cargas superficiais removidas, em termos de DQO por superfície de suporte – P4 e P5. Inicialmente, verificou-se que as variâncias eram heterogêneas (p variância = 0,0002). Realizando-se o teste t para variâncias separadas com um nível de significação P de 5% (α = 0,05), verificou-se que existe diferença significativa entre as cargas removidas por superfície de suporte – P4 e P5 (p = 0,000).

Ødegaard et al. (2000), trabalhando com três reatores preenchidos com suportes poliméricos cilíndricos de forma semelhante, mas com diferentes superfícies específicas, ajustaram a porcentagem de preenchimento, respectivamente para 22, 36 e 60%, com o objetivo de monitorar seus desempenhos com a mesma superfície específica nos reatores (110 m2.m-3). Com uma carga aplicada de 10 a 120 gDQO.m-2.dia-1 , operando com uma temperatura na faixa de 10 a 15ºC, os três reatores apresentaram uma remoção em torno de 50%, verificando que não existia uma diferença significativa entre os suportes, ao trabalhar com a mesma superfície específica nos reatores.

Nitrificação

Na Tabela 3, são apresentados os valores da estatística descritiva da concentração de NTK e de N-NH4 (mg.L-1), na entrada e saída dos reatores com suporte P4 e P5.

 

 

As concentrações de N-NH4 no efluente do reator com suporte P4, independente da idade do lodo, foram em média inferiores a 5 mg.L-1, o que indica uma remoção mais efetiva nesse reator, quando comparado com o reator com suporte P5, cujas concentrações no efluente ficaram superiores a 10 mg.L-1.

Os resultados obtidos para a nitrificação em função das cargas aplicadas de nitrogênio por superfície de suporte (P4 e P5) estão apresentados nas Figuras 6 e 7, respectivamente,

 

 

 

 

Para o suporte P4, verificou-se que a nitrificação manteve-se estável, mesmo com uma baixa idade de lodo (três dias em média), e próxima de 100%. Observa-se na Figura 7 que o suporte P5 apresentou-se menos estável durante as duas fases operacionais (A e B), afastando-se de 100% de nitrificação. O rendimento médio da nitrificação está apresentado na Tabela 4.

 

 

As cargas superficiais aplicadas para os dois suportes foram próximas, tanto na fase A (P4 = 0,69 kgN.m-2.d-1 e P5 = 0,73 kgN.m-2.d-1), quanto na fase B (P4 = 0,57 kgN.m-2.d-1 e P5 = 0,59 kgN.m-2.d-1). Com base nos resultados mostrados na Tabela 4, comparando-se o rendimento da nitrificação em ambos reatores, com suportes P4 e P5, respectivamente, observou-se que não houve uma grande variação da eficiência ao se trabalhar com idade do lodo de 10 e 3 dias. Foi observada, porém, uma nitrificação superior no P4 em relação ao P5, nas duas fases. O teste tde Student realizado com variáveis independentes, comparando o N-nitrificado por superfície de suporte – P4 e P5, para variâncias separadas (p variâncias = 0,000) mostrou, para nível de significância P de 5%, que existe diferença significativa entre P4 e P5 (p = 0,0002).

O conjunto dos resultados indica a influência do tipo de material suporte sobre a nitrificação. O suporte P4, com uma superfície efetiva maior que o P5 e rugosidade média 7,33 vezes superior, favorece a fixação e o desenvolvimento de organismos do biofilme e pode oferecer melhores condições para o desenvolvimento de organismos de lento crescimento, como os nitrificantes. No entanto, a idade de lodo não apresentou influência sobre esse parâmetro, o que significa, por consequência, que a atividade dos microrganismos autótrofos está ligada principalmente à da biomassa fixa.

 

Conclusões

O reator com suporte P4 apresentou um desempenho, referente à remoção de carbono (DQO) e à nitrificação, maior e mais estável que o reator com suporte P5 para as condições experimentais testadas, em razão das características superficiais, da forma e maior superfície específica.

Em relação à idade do lodo, esse parâmetro não teve um papel importante em relação ao desempenho dos reatores na remoção de nitrogênio, uma vez que o desempenho dos reatores em ambas as fases não apresentou diferença significativa, devido ao fato de a biomassa autótrofa encontrar-se principalmente fixa. Assim, os resultados mostraram que a forma e as características do material suporte são fatores que influenciam no desenvolvimento do biofilme e, consequentemente, no desempenho dos RBLM.

A superfície específica do material suporte nos RBLM constitui, portanto, um parâmetro fundamental para o dimensionamento desse tipo de reator.

 

Agradecimentos

Os autores agradecem à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de estudos, e os técnicos Aldo Moro e Évrard Mengelle do Laboratoire d' Ingenierie des Procédés de L'Environnement du Departement du Institut National des Sciences Appliquées de Toulouse (LIPE/INSA) pela contribuição técnica prestada a este estudo.

 

Referências

AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). American Water Works Association (AWWA). Water Environment Federation. Standard methods for the examination of water and wastewater. 21 ed. Washington DC, USA, 2004.         [ Links ]

FLETCHER, M. Adherence of marine-microorganims to smooth surfaces. In: BEACHEY, E.H. (Ed.). Bacterial Adherence. Londres: Chapman and Hall,, 1980. p. 345-398.         [ Links ]

LIU, Y. Dynamique de croissance de biofilms nitrifiants appliqués aux traitements des eaux. Thèse (Doctorat Ingenierie du Traitement et L'Epuration des Eaux), INSA. Toulouse, France, 1994. 255p.         [ Links ]

MANNINA, G.; VIVIANI, G. Hybrid moving bed biofilm reactors: an effective solution for upgrading a large wastewater treatment plant. Water Science and Technology, v. 60, n. 5, p.1103-1116, 2009.         [ Links ]

OCHOA, J.C.et al. Active heterotrophic and autotrophic biomass distribution between fixed and suspended systems in a hybrid biological reactor. Water Science and Technology, v. 46, n. 1-2, p. 397-404, 2002.         [ Links ]

ØDEGAARD, H. Innovations in wastewater treatment: the moving bed biofilm process. Water Science and Technology, v. 53, n. 9, p. 17-33, 2006.         [ Links ]

ØDEGAARD, H.; GISVOLD, B.; STRICKLAND, J. The influence of carrier size and shape in the moving bed biofilm process. Water Science and Technology, v. 41, n. 4-5 p. 383-391, 2000.         [ Links ]

OYANEDEL, V. et al. Comparison and modelling of the growth of heterotrophs and nitrifiers in biofilm and hybrid airlift reactors. In: International specialized conference on biofilm monitoring. Porto, Portugal, p. 241-244. 2002.         [ Links ]

VILLAMAR, C.A. et al. Aerobic moving bed bioreactor performance: a comparative study of removal efficiences of kraft mill effluents from pinus radiata and Eucalypts globulus as raw material. Water Science and Technology, v. 59, n. 3, p. 507-514, 2009.         [ Links ]

WESSMAN, F.G. et al. Increasing the capacity for treatment of chemical plant wastewater by replacing existing suspended carrier media with Kaldnes Moving BedTM media at a plant in Singapore. Water Science and Technology, v. 49, n. 11-12, p. 199-205, 2004.         [ Links ]

WOLFF, D.B; PAUL, E.; COSTA, R.H. Reatores híbridos: uma nova alternativa para o tratamento de efluentes. Saneamento Ambiental, v. 111, p. 30-33, 2005.         [ Links ]

ZHAO, Y. et al. Municipal wastewater treatment by moving – bed biofilm reactor with Diatomaceous earth as carriers. Water Environment Research, v. 78, n. 4, 2006.         [ Links ]

 

 

Endereço para correspondência:
Universidade Federal de Santa Catarina, Centro Tecnológico, Departamento de Engenharia Sanitária e Ambiental, Campus Universitário – Trindade
88010-970 – Florianópolis (SC), Brasil
Tel.: (48) 3721-7738
E-mail : rejane@ens.ufsc.br/delmirawolff@hotmail.com

Recebido: 3/2/09
Aceito: 22/4/10

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License