SciELO - Scientific Electronic Library Online

 
vol.22 issue5The implantation of Marapendi Municipal Natural Park, in Rio de JaneiroImpacts of the disordered land occupancy: a study about an urban consolidated area in Campina Grande - PB author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Engenharia Sanitaria e Ambiental

Print version ISSN 1413-4152On-line version ISSN 1809-4457

Eng. Sanit. Ambient. vol.22 no.5 Rio de Janeiro Sept./Oct. 2017

http://dx.doi.org/10.1590/s1413-41522017159448 

Artigo Técnico

Avaliação da geração de resíduos sólidos urbanos no estado de Goiás, Brasil: análise estatística de dados

Municipal solid waste generation assessment in the state of Goiás, Brazil: statistical data analysis

Diogo Appel Colvero1 

Eraldo Henriques de Carvalho2 

Simone Costa Pfeiffer3 

Ana Paula Gomes4 

1Mestre em Engenharia do Meio Ambiente pela Universidade Federal de Goiás (UFG). Engenheiro Mecânico da UFG. Doutorando em Ciências e Engenharia do Ambiente, no Departamento de Ambiente e Ordenamento da Universidade de Aveiro - Portugal. Bolsista de doutorado no exterior pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Processo no 207172/2014-5.

2Doutor em Engenharia Civil na área de hidráulica e saneamento pela Escola de Engenharia de São Carlos da Universidade de São Paulo (EESC/USP). Professor da Escola de Engenharia Civil da Universidade Federal de Goiás (EEC/UFG) e coordenador da pós-graduação Lato Sensu em Tratamento e Disposição Final de Resíduos Sólidos e Líquidos da EEC/UFG - Goiânia (GO), Brasil.

3Doutorado em Engenharia Civil (Hidráulica e Saneamento) pela Universidade de São Paulo. Professora da Escola de Engenharia Civil da Universidade Federal de Goiás (EEC/UFG) e do curso de pós-graduação Lato Sensu em Tratamento e Disposição Final de Resíduos Sólidos e Líquidos da EEC/UFG - Goiânia (GO), Brasil.

4Doutora em Ciências Aplicadas ao Ambiente pela Universidade de Aveiro, Portugal. Professora auxiliar do Departamento de Ambiente e Ordenamento da Universidade de Aveiro (DAO/UA), Aveiro, Portugal.

RESUMO

A definição do sistema de gestão de resíduos sólidos urbanos (RSU) mais adequado para um município passa, obrigatoriamente, pelo quantitativo de RSU gerados. O estado de Goiás enfrentava esse problema, pois alguns de seus municípios possuíam a informação do quantitativo de RSU produzidos, mas o estado não tinha um valor da geração total. Diante dessa questão, foi encaminhado um questionário aos municípios goianos em que se buscou obter informações acerca dos resíduos sólidos, dentre as quais a geração de RSU. O objetivo deste estudo foi realizar uma análise estatística dos quantitativos de RSU que os municípios goianos, via questionário, disseram gerar e compará-los com quantitativos obtidos em estudos realizados em municípios do estado. Os resultados da produção fornecida pelos municípios apontaram que quanto menores os municípios, maior a geração per capita de RSU, o que vai de encontro às pesquisas científicas, que mostram que quanto maior a população, maior a produção por pessoa. Para municípios de até 50 mil habitantes, há diferenças significativas entre a geração dos questionários e a geração teórica; já para municípios com mais de 50 mil habitantes, os valores não são significativamente diferentes. Os dados dos questionários relevaram, ainda, que não há correspondência entre a geração per capita de RSU e o número de habitantes, outro dado contrário ao que define a teoria. De qualquer modo, foi possível mensurar os quantitativos de RSU gerados pelos municípios goianos, o que auxiliará na decisão sobre as tecnologias mais adequadas para gerir os RSU de Goiás.

Palavras-chave: resíduos sólidos urbanos; análise estatística; testes paramétricos e não paramétricos; Goiás

ABSTRACT

The most suitable definition of a city’s municipal solid waste (MSW) management system is mandatorily related to the amount of MSW generated. The state of Goiás faced such problem, since some of its municipalities had their MSW production data, but the state did not have an overall generation number. Considering this scenario, a questionnaire was sent to the municipalities of Goiás requesting information on their solid waste, among which was the MSW generation. The aim of this study was to conduct a statistical analysis of the MSW amount the state’s municipalities have affirmed to generate, according to the questionnaires, and compare it with the quantitative data obtained in studies carried out in municipalities of the state. The results of the production provided by the municipalities have shown that the smaller the cities, the higher the generation of MSW per capita, a finding that goes against scientific research, which has proven that the larger the population, the higher the production per person. For municipalities with up to 50 thousand inhabitants, there are significant differences between the numbers presented in the questionnaires and those in the theoretical generation. On the other hand, municipalities with more than 50 thousand inhabitants don’t have numbers so significantly different. The questionnaire data also revealed that there’s no correspondence between the MSW generated per capita and the number of inhabitants, information contrary to what the theory states. However, it was still possible to measure the amount of MSW generated by Goiás cities, something that should be of great value to help decide the best technologies to the state’s MSW management.

Keywords: municipal solid waste; statistical analysis; nonparametric and parametric tests; Goiás

INTRODUÇÃO

No Brasil, desde a criação da Política Nacional de Resíduos Sólidos (PNRS), através da Lei nº 12.305/2010, o país discute a questão da gestão adequada dos resíduos sólidos urbanos (RSU). Entretanto, para definir a melhor forma de gerir os RSU, é fundamental saber alguns aspectos sobre esses resíduos, como os quantitativos gerados, pois só assim os sistemas mais adequados poderão ser escolhidos.

De acordo com a Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (ABRELPE), só no ano de 2014 o Brasil produziu cerca de 78,6 milhões de toneladas de RSU, o que corresponde a um crescimento de 2,9% em comparação ao ano anterior. Do total gerado, 90,6% foram coletados, o que evidencia que o Brasil caminha para a universalização da coleta. Entretanto, o problema desse sistema está na disposição final, pois, do montante coletado, apenas 58,3% foram destinados adequadamente para os aterros sanitários (ABRELPE, 2015).

Um dos estados que retratam o panorama da má gestão dos RSU no Brasil é Goiás. De acordo com levantamento realizado pela Secretaria do Meio Ambiente, Recursos Hídricos, Infraestrutura, Cidades e Assuntos Metropolitanos (SECIMA/GO), dos 246 municípios do estado, apenas 16 contam com aterros sanitários devidamente licenciados, o que dificulta a disposição final adequada dos resíduos gerados. As demais cidades do estado enviam seus resíduos sólidos para aterros controlados ou lixões (SECIMA/GO, 2015).

Para essa situação mudar, antes de saber qual é a melhor tecnologia para tratar e depositar seus resíduos, os municípios goianos devem resolver outro problema: a falta de informações acerca da produção per capita de RSU e, consequentemente, dos valores enviados para os sistemas de disposição final. Somente após conhecer a quantidade e a composição dos RSU será possível definir qual o método de gestão mais adequado e, consequentemente, quais as tecnologias mais apropriadas para tratar os resíduos sólidos de Goiás (ASSAMOI & LAWRYSHYN, 2012).

Sendo assim, o objetivo deste estudo foi realizar uma análise estatística dos quantitativos dos resíduos urbanos gerados no estado de Goiás. Esses valores, obtidos por meio de um questionário enviado a todos os municípios goianos, foram comparados com quantitativos obtidos a partir de estudos feitos em municípios do estado. Este estudo se justifica pela necessidade de Goiás buscar alternativas para o tratamento adequado de seus resíduos e, consequentemente, mudar o panorama da gestão dos RSU.

ESTATÍSTICA DESCRITIVA E INFERÊNCIA ESTATÍSTICA: UMA BREVE DESCRIÇÃO

A análise descritiva é o primeiro passo em um estudo estatístico, pois permite que a amostra (n) seja caracterizada. Para isso são utilizadas as medidas de tendência central, como a média (), a mediana () e a moda (Mo), que possibilitam a caracterização do valor que ocorre com mais frequência. Também são importantes as medidas de dispersão, como o desvio padrão (s), o mínimo, o máximo e os quartis, que apontam a dispersão em torno das estatísticas de tendência central (MARÔCO, 2014).

Após a análise descritiva, realiza-se a inferência estatística, que testa se a amostra se ajusta devidamente a determinada distribuição teórica. Ela serve para testar a significância de elementos que podem influenciar na resposta da variável mensurada, que é a que se deseja examinar se o tratamento teve ou não um efeito significativo (MARÔCO, 2014). Para este estudo foram utilizadas as metodologias dos testes paramétricos e não paramétricos.

Os testes paramétricos são utilizados quando se conhece a distribuição amostral, em que a normal é a mais usada. De forma geral, são testes superiores aos não paramétricos, pois a probabilidade de corretamente rejeitar ou não a hipótese nula (H 0 ), a partir da afirmação ou negação da hipótese alternativa (H 1 ), é maior nesses testes. Já nos testes não paramétricos, não há exigência de conhecer a distribuição amostral. Entretanto, são testes que só devem ser aplicados quando não há possibilidade de validar as condições de aplicação a partir dos testes paramétricos. Dessa forma, primeiro utilizam-se os testes paramétricos e, caso não se obtenham validações, aplicam-se os não paramétricos (MARÔCO, 2014).

Condições de aplicação dos testes paramétricos

Para realizar uma análise estatística (testes paramétricos), deve-se verificar as condições de aplicações de testes:

  1. Testar a normalidade dos dados utilizando os testes paramétricos de Shapiro-Wilk ou de Kolmogorov-Smirnov, de acordo com a dimensão de cada amostra. Para n<30 utiliza-se o primeiro; para n>30, o segundo.

  2. Para os casos em que há normalidade, realiza-se um teste t de Student (ou outro teste paramétrico). Para os demais, faz-se um teste de Wilcoxon (ou outro teste não paramétrico).

Na Figura 1 está apresentada a estratégia definida para a aplicação de testes estatísticos.

Figura 1: Árvore de decisões para aplicar os testes estatísticos.  

Teste da normalidade dos dados

Para verificar a normalidade dos dados, utilizaram-se os testes de Kolmogorov-Smirnov ou de Shapiro-Wilk.

Segundo Marôco (2014), o teste de Kolmogorov-Smirnov (KS) é empregado para definir se a distribuição da variável dependente F(Y), que está sob análise em uma amostra, decorre de uma população com distribuição específica F0(Y). É um teste utilizado para amostras de grande dimensão, ou seja, com n>30.

Assim como o KS, o teste de Shapiro-Wilk (SW) é uma metodologia utilizada para verificar se a variável do estudo possui ou não distribuição normal. É um teste mais adequado a amostras de pequena dimensão, ou seja, com n<30.

Em ambos os testes, o intuito é testar se a distribuição da variável é ou não normal de acordo com os parâmetros µ e σ, independentemente dos valores destes, isto é, deseja-se testar (Equação 1):

H0: Y ~ N (µ,σ)versusH1: Y N (µ,σ), sendo N (0,1). (1)

Para realizar o teste da normalidade e estabelecer o tipo de teste a ser utilizado, foi necessário definir qual valor p deve-se empregar. Esse indicador refere-se à probabilidade de se encontrar, em determinada amostra representativa da população, o valor da estatística a ser testado, ou um valor mais extremo no sentido definido pela H 1 , se H 0 for verdadeira nessa população. Em outras palavras, o valor p é o menor valor de α a partir do qual H 0 é rejeitada (Marôco, 2014). Pode-se dizer também que, quanto menor for o valor p, mais forte será a evidência contra a hipótese nula, ou seja, que os resultados obtidos são distintos daqueles que se esperava obter se a H 0 fosse verdadeira (Fisher, 1973 apudMarôco, 2014).

Esse autor explica que a definição do valor p deve ficar a critério do investigador. Para este estudo, definiu-se que o nível de significância (α) será igual a 0,05. Ou seja, se p<0,05, rejeita-se H 0 ; se p>0,05, não se rejeita H 0 .

Com o valor p obtém-se o intervalo de confiança (IC), que é calculado com a seguinte expressão (Equações 2 e 3):

IC = (1 - α) x 100% (2)

Assim:

IC = (1 - 0,05) x 100% = 95% (3)

Dessa forma, o IC utilizado é igual a 95%. Isso significa que o resultado estará dentro do intervalo definido em 95 dos 100 estudos realizados, ou seja, em 95% das amostras realizadas haverá um resultado dentro do intervalo de confiança (Field, 2013).

Teste t de Student e teste de Wilcoxon

O teste t de Student é um teste de hipótese que utiliza conceitos estatísticos para rejeitar ou não uma hipótese nula quando a estatística de teste mantém uma distribuição normal, mas a variância da população não é conhecida. Dessa forma, usa-se a variância amostral, de forma que a estatística de teste passa a seguir uma distribuição t de Student (Silva, 2014). É um teste aplicado para comparar médias de duas populações (Marôco, 2014).

O teste de Wilcoxon utiliza a mediana populacional (θ) em vez da média. É aplicado para comparar a medida de tendência central da população do estudo com determinado valor teórico (Marôco, 2014).

METODOLOGIA

Área de estudo

O estudo foi realizado no estado de Goiás, situado na região Centro-Oeste do Brasil e que faz divisa com os estados do Tocantins, Minas Gerais, Bahia, Mato Grosso e Mato Grosso do Sul (Governo de Goiás, 2015). Segundo o último censo demográfico oficial do Instituto Brasileiro de Geografia e Estatística (IBGE, 2010), em 2010 o estado possuía 6.003.788 habitantes em 246 municípios, distribuídos em 340.111,376 km², sendo o sétimo estado brasileiro em extensão territorial.

Geração de resíduos urbanos e o número de habitantes dos municípios goianos

Para a obtenção da geração diária de RSU por região do estado de Goiás, foi feita, inicialmente, a análise de dados primários oriundos de um questionário com perguntas abertas e fechadas que foi encaminhado em 2013 aos municípios através da SECIMA/GO. Ressalta-se que 220 municípios (89%) responderam aos questionários, o que significa dizer que a amostra é representativa para a análise em questão.

Assim, com base nas gerações diárias relatadas nos questionários e também na população total informada pelo IBGE (2010), foi possível calcular as gerações per capita de RSU para cada município. Entretanto, primeiramente os municípios foram agrupados pelo número de habitantes, pois pesquisas mostram que quanto maior a população de uma cidade, maior será a geração per capita de resíduos urbanos (IBAM, 2001). Dessa forma, os municípios goianos foram organizados por faixas populacionais (ou categorias), para que fosse possível realizar uma análise estatística da produção de RSU em municípios com populações similares. Essas categorias foram organizadas a partir de dados populacionais do IBGE (2010) e adaptadas do estudo do Núcleo de Resíduos Sólidos e Líquidos da Universidade Federal de Goiás (NURSOL/UFG, 2014).

Verificou-se que 41,4% dos municípios goianos que responderam ao questionário estão na faixa populacional de até 5 mil habitantes (Tabela 1).

Tabela 1: Número de municípios goianos que responderam ao questionário, por faixa populacional. 

Faixa populacional para os municípios de Goiás - habitantes (adaptado de IBGE, 2010; NURSOL/UFG, 2014) Total de municípios goianos Municípios goianos que responderam ao questionário
n % n %
Até 5.000 100 52,5 91 41,4
5.001 a 10.000 55 19,5 51 23,2
10.001 a 20.000 39 12,7 33 15,0
20.001 a 50.000 32 9,0 29 13,2
50.001 a 100.000 11 4,0 10 4,5
Acima de 100.000 9 2,3 6 2,7
Total 246 100,0 220 100,0

Para que fosse possível avaliar as informações fornecidas pelos municípios goianos, foi necessário adotar valores de geração per capita que pudessem ser utilizados como referência. Os dados foram obtidos por meio de revisão de literatura (Tabela 2), com a confiabilidade do emprego de metodologia científica.

Tabela 2: Valores de geração per capita de resíduos sólidos urbanos, por diferentes faixas populacionais. 

Município População (habitantes) Geração per capita de RSU (kg.hab -1 .dia -1 ) Referência
Simolândia 5.378 0,46 Melo (2005)
Hidrolândia 10.470 0,54 Carvalho & Ferreira (2005)
Goianésia 55.560 0,67 Carvalho (2003)
Anápolis 328.755 0,88 NURSOL/UFG, 2014)
Aparecida de Goiânia 455.193 0,83 NURSOL/UFG, 2014)
Goiânia 1.297.076 1,00 NURSOL/UFG, 2014)

RSU: resíduos sólidos urbanos.

Análise estatística dos dados

Para analisar os dados dos quantitativos de resíduos urbanos dos municípios de Goiás (fornecidos via questionário) no ano de 2013, foram utilizadas técnicas estatísticas como análise descritiva, testes paramétricos e não paramétricos, diagrama de dispersão, coeficiente de correlação linear e regressão linear. A análise estatística foi executada utilizando-se o Pacote Estatístico (SPSS) versão 23.0. O programa possibilitou alcançar os resultados definidos nos objetivos do estudo a partir de: análise descritiva e exploratória, comparação inferencial de grupos com testes paramétricos e não paramétricos, diagrama de dispersão, coeficiente de correlação e análise de regressão linear (Marôco, 2014).

RESULTADOS E DISCUSSÃO

Estimativa dos valores de geração per capita de resíduos sólidos urbanos e estatísticas descritivas

A fim de estabelecer os valores estimados de geração per capita de RSU para todos os municípios (a partir dos dados apresentados na Tabela 2), foi feita no software Office Excel 2010 a identificação da função matemática que melhor os ajustariam. A função com coeficiente de correlação mais próximo da unidade foi a potência (R2=0,9819), representada na Figura 2.

Figura 2: Função de ajuste dos valores de geração per capita de resíduos sólidos urbanos determinados em pesquisas científicas para o estado de Goiás. 

Dessa forma, foi possível estimar a geração per capita de RSU teórica dos 246 municípios goianos. Na Tabela 3 é apresentada a projeção para o estado de Goiás, por faixa populacional, da produção per capita de RSU, assim como as médias e medianas dessas produções para cada categoria, pois são estatísticas mais usadas para obter as medidas de tendência central (Marôco, 2014).

Tabela 3: Estimativa da geração per capita de resíduos sólidos urbanos, por faixa populacional, para Goiás. 

Faixa populacional para os municípios de Goiás (habitantes) Geração per capita de RSU - estimada (kg.hab -1 .dia -1 ) Geração per capita de RSU - questionários (kg.hab -1 .dia -1 )
Média () Mediana () Média () Mediana () Desvio padrão
Até 5.000 (Categoria 1) 0,46 0,46 1,17 0,90 1,353
5.001 a 10.000 (Categoria 2) 0,50 0,50 0,91 0,87 0,291
10.001 a 20.000 (Categoria 3) 0,54 0,54 0,97 0,95 0,387
20.001 a 50.000 (Categoria 4) 0,60 0,60 0,89 0,86 0,304
50.001 a 100.000 (Categoria 5) 0,68 0,69 0,84 0,77 0,251
Acima de 100.000 (Categoria 6) 0,80 0,77 0,80 0,85 0,177

RSU: resíduos sólidos urbanos.

Para melhorar a fluidez do texto, as faixas populacionais apresentadas na Tabela 3 também serão chamadas de categorias: a faixa até 5.000 habitantes será a categoria 1; a faixa de 5.001 a 10.000 habitantes será a categoria 2; e assim sucessivamente, até a categoria 6, para municípios com população acima de 100.000 habitantes.

Os dados da Tabela 3 mostram que, a partir dos dados dos questionários, a categoria 1 tem a maior média de geração per capita (1,17 kg.hab-1.dia-1), assim como o maior desvio padrão (1,352 kg.hab-1.dia-1), o que evidencia uma maior dispersão dos valores em relação à média. Com relação às outras categorias, à medida que a faixa aumenta, a média da geração diminui (exceto da categoria 2 para a 3, em que a média aumenta). Esse resultado vai de encontro à literatura e aos estudos científicos, que mencionam que, quanto maior a população de um município, maior a geração de RSU por habitante (IBAM, 2001). As categorias de 2 a 6 têm também menor desvio padrão, sendo que a última faixa populacional é a que apresenta menor s, ou seja, menor dispersão.

Além disso, com exceção da média da geração per capita das populações acima de 100 mil habitantes, as médias e medianas de todas as categorias são maiores para as respostas dadas aos questionários do que para as estimativas. Do mesmo modo, quanto maior a faixa populacional, mais os valores declarados nos questionários se aproximam dos estimados.

Para complementar a estatística descritiva das médias, medianas e do desvio padrão, utilizaram-se histogramas de frequência. Esse recurso possibilitou uma representação gráfica adequada dos tipos de dados à disposição, na qual a variável é organizada em classes (eixo das abscissas) e a frequência de cada classe é apresentada no eixo das ordenadas. Pode-se ver nos histogramas das categorias 2, 3 e 4 que as distribuições são normais. Entretanto, essa situação oferece apenas uma ideia da normalidade dos dados, fato que será comprovado, ou não, nas análises estatísticas apresentadas a seguir.

Dessa forma, na Figura 3 estão apresentados os histogramas de frequências da geração per capita de RSU, por categoria, dos municípios goianos.

Figura 3: Histogramas da geração per capita de resíduos sólidos urbanos, por faixa populacional. 

Com a geração per capita de RSU para cada faixa populacional definida (tanto a estimada quanto a obtida pelo questionário), é possível quantificar a produção total desses resíduos para cada categoria (Tabela 4). Verifica-se que, tanto pelas respostas do questionário, quanto pelas estimativas, os municípios com mais de 100 mil habitantes (que em Goiás são 9) geram a maior parte dos RSU do estado (48% e 59% do total de RSU, respectivamente). Também se observa que a geração estimada de RSU, calculada com base em referências de estudos já existentes, é cerca de 18% menor do que do que os municípios responderam que geram.

Tabela 4: Produção total de resíduos sólidos urbanos em Goiás, estimada e fornecida pelos municípios. 

Faixa populacional para os municípios de Goiás (habitantes) Produção total de RSU, por faixa populacional (kg.hab -1 .dia -1 )
Estimada Questionários
Até 5.000 150,74 377,50
5.001 a 10.000 193,30 348,57
10.001 a 20.000 291,53 496,06
20.001 a 50.000 600,75 887,52
50.001 a 100.000 571,22 698,50
Acima de 100.000 2.628,06 2.615,00
Total 4.435,60 5.423,15

RSU: resíduos sólidos urbanos.

Cabe ressaltar que, visando à obtenção do quantitativo total de RSU gerados em Goiás, foram utilizadas, para os 26 municípios que não responderam ao questionário, as medianas da produção de RSU das faixas populacionais a que cada um desses municípios pertence. Optou-se por esse valor, em vez da média, por existirem muitos valores extremos de geração, e a mediana garantir melhor precisão dos dados.

Também foi possível calcular os quantitativos de RSU gerados em cada uma das dez regiões de planejamento de Goiás, definidas pela Secretaria de Estado de Gestão e Planejamento (SEGPLAN, 2013).

Verifica-se que, tanto a partir dos dados de geração fornecidos pelos municípios, quanto pela produção estimada, a Região Metropolitana de Goiânia é a maior geradora de RSU, enquanto a região noroeste do estado apresenta a menor geração desses resíduos. Essa informação auxiliará o estado na definição das tecnologias mais adequadas para a gestão dos RSU em cada região de Goiás (Tabela 5).

Tabela 5: Estimativa da geração diária de resíduos sólidos urbanos para as regiões do estado de Goiás. 

Região Estimativa da geração diária (t.dia -1 ) Geração de RSU - questionários (t.dia -1 )
Norte Goiano 175,70 306,80
Nordeste Goiano 90,11 162,40
Noroeste Goiano 78,57 108,64
Centro Goiano 443,29 568,60
Entorno do Distrito Federal 734,89 729,50
Oeste Goiano 180,87 312,57
Metropolitana de Goiânia 1.975,73 2.086,88
Sudeste Goiano 147,56 250,30
Sudoeste Goiano 363,12 516,50
Sul Goiano 245,76 380,96
Estado de Goiás 4.435,60 5.423,15

RSU: resíduos sólidos urbanos.

Inferência estatística

Neste trabalho, decidiu-se fazer um comparativo entre as médias da geração de RSU fornecidas pelos municípios goianos, por faixa populacional, e a média ou mediana teóricas de cada categoria. Para isso, utilizaram-se as análises estatísticas definidas na árvore de decisões, conforme já apresentado na Figura 1.

Comparativo entre os dados da produção de RSU fornecidos pelos municípios goianos e os valores de referência, por faixa populacional

Sabendo-se o número de amostras de cada faixa populacional e os dados da geração per capita fornecidos pelos questionários, realizou-se o teste da normalidade por meio dos testes Shapiro-Wilk ou Kolmogorov-Smirnov, conforme apresentado na Tabela 6. Os resultados apontaram que, para as categorias 1, 3 e 5, a H 0 deve ser rejeitada, pois p<0,05, ou seja, os dados da geração per capita fornecidos pelos municípios não seguem uma distribuição normal (existem diferenças significativas). Já para as categorias 2, 4 e 6, não se deve rejeitar H 0 (p>0,05), pois há uma distribuição normal (não existem diferenças significativas).

Tabela 6: Teste da normalidade, utilizando-se os testes de Shapiro-Wilk ou de Kolmogorov-Smirnov. 

Faixa populacional (habitantes) Tamanho da amostra (n) Valor p Teste aplicado Resultado
Até 5.000 100 <0,001 KS Rejeita H0, não segue uma distribuição normal
5.001 a 10.000 55 0,200 KS Não rejeita H0, segue uma distribuição normal
10.001 a 20.000 39 0,037 KS Rejeita H0, não segue uma distribuição normal
20.001 a 50.000 32 0,200 KS Não rejeita H0, segue uma distribuição normal
50.001 a 100.000 11 0,015 SW Rejeita H0, não segue uma distribuição normal
Acima de 100.000 9 0,209 SW Não rejeita H0, segue uma distribuição normal

KS: Teste de Kolmogorov-Smirnov; SW: Teste de Shapiro-Wilk.

Dessa forma, a partir dos resultados obtidos no teste da normalidade (Tabela 6), para aquelas situações em que não se rejeita H 0 foi feito teste t de Student; já para aquelas em que a H 0 foi rejeitada realizou-se teste não paramétrico de Wilcoxon.

Os valores das médias, para o teste t de Student, e das medianas, para o teste de Wilcoxon, estão apresentados na Tabela 7.

Tabela 7: Médias e medianas de referência utilizadas para os testes t de Student e de Wilcoxon. 

Faixa populacional (habitantes) Parâmetro Descrição
Média Mediana
Até 5.000 - 0,46 H0: θ = 0,46 versus H1: θ ≠ 0,46
5.001 a 10.000 0,50 - H0: µ = 0,50 versus H1: µ ≠ 0,50
10.001 a 20.000 - 0,54 H0: θ = 0,54 versus H1: θ ≠ 0,54
20.001 a 50.000 0,60 - H0: µ = 0,60 versus H1: µ ≠ 0,60
50.001 a 100.000 - 0,69 H0: θ = 0,69 versus H1: θ ≠ 0,69
Acima de 100.000 0,80 - H0: µ = 0,80 versus H1: µ ≠ 0,80

Com esses valores foi possível realizar os testes, conforme apresentado na Tabela 8. Os resultados mostram que, para as categorias de 1 a 4, deve-se rejeitar H 0 , pois os dados das gerações per capita fornecidos nos questionários são significativamente diferentes das médias e medianas teóricas. Já nas categorias 5 e 6, o teste identificou que H 0 não pode ser rejeitada, pois as médias e medianas fornecidas pelos municípios não são significativamente diferentes das teóricas.

Tabela 8: Resultados dos testes t de Student e de Wilcoxon. 

Faixa populacional (habitantes) Tamanho da amostra (n) Valor p Teste aplicado Resultado
Até 5.000 100 < 0,001 W Rejeita H0, ou seja, a geração per capita mediana é significativamente diferente de 0,46
5.001 a 10.000 55 < 0,001 t-S Rejeita H0, ou seja, a geração per capita média é significativamente diferente de 0,50
10.001 a 20.000 39 < 0,001 W Rejeita H0, ou seja, a geração per capita mediana é significativamente diferente de 0,54
20.001 a 50.000 32 < 0,001 t-S Rejeita H0, ou seja, a geração per capita média é significativamente diferente de 0,60
50.001 a 100.000 11 0,110 W Não rejeita H0, ou seja, a geração per capita mediana não é significativamente diferente de 0,69
Acima de 100.000 9 0,971 t-S Não rejeita H0, ou seja, a geração per capita média não é significativamente diferente de 0,80

t-S: Distribuição t de Student; W: Teste de Wilcoxon.

Isso pode estar relacionado ao fato de 40% dos municípios com população acima de 50 mil habitantes possuírem aterro sanitário, ou seja, contarem com uma balança para pesar os quantitativos que chegam à disposição final. Já entre os municípios com populações menores, apenas 2,7% têm aterro.

Relação entre a geração per capita e o número de habitantes

Outra questão importante acerca dos questionários respondidos pelos municípios é verificar se há relação entre a geração per capita de RSU, por categoria, e o número de habitantes. Para fazer essa verificação, utilizou-se o Diagrama de Dispersão (DD).

O DD é utilizado para ilustrar a relação entre duas variáveis. Nesse diagrama, as observações para cada uma das variáveis são representadas como pares ordenados (Xi, Yi), sendo possível verificar se há tendência linear nos gráficos (MARÔCO, 2014). Para o DD, utilizaram-se as mesmas seis categorias empregadas anteriormente, definidas a partir das faixas populacionais.

Os gráficos apontam que há uma linha de tendência apenas nas categorias 1, 2 e 3. Nas categorias 4, 5 e 6, não há linha de tendência (Figura 4). Isso significa que é possível calcular o coeficiente de correlação para os casos em que há tendência linear.

Figura 4: Diagrama de dispersão e as linhas de tendência da geração per capita de resíduos sólidos urbanos em relação à população. 

Para avaliar a correspondência entre as categorias que apresentam tendência linear, utilizou-se a correlação de Pearson (r). Esse método mede a intensidade e a direção da associação do tipo linear, desde que as duas variáveis sejam quantitativas - o que é o caso, por isso a escolha desse coeficiente, que varia entre -1 e +1 (-1 ≤ r ≥ +1). Se r>0, as variáveis se alteram no mesmo sentido; se r<0, as variáveis se alteram em sentidos opostos (MARÔCO, 2014).

O valor em módulo obtido indica a intensidade da associação. Com base em Marôco (2014), as faixas de classificação das correlações são apresentadas na Tabela 9.

Tabela 9: Classificação de dados em função do coeficiente de correlação de Pearson. 

Coeficiente de correlação de Pearson (r) Classificação da correlação
r < 25% Correlação fraca
25% ≤ r < 50% Correlação moderada
50% ≤ r < 75% Correlação forte
r ≥ 75% Correlação muito forte

Fonte: Adaptado de Marôco, 2014.

Os valores e as respectivas classificações da correlação de Pearson para as três categorias avaliadas são apresentados na Tabela 10. Os resultados apontam que, nas categorias 1 e 2, o declive das retas é negativo e há uma correlação fraca, isto é, não há associação entre a geração per capita de RSU e o número de habitantes. Já na categoria 3, o declive da reta também é negativo, mas a correlação é moderada, ou seja, há correspondência entre a geração de RSU e o porte populacional.

Tabela 10: Coeficiente de Pearson e a correlação entre a geração per capita de resíduos sólidos urbanos e o número de habitantes. 

Faixa populacional (habitantes) Tamanho da amostra (f) Correlação de Pearson (r) Resultado
Até 5.000 100 -0,041 O declive da reta é negativo, correlação fraca
5.001 a 10.000 55 -0,157 O declive da reta é negativo, correlação fraca
10.001 a 20.000 39 -0,435 O declive da reta é negativo, correlação moderada

Para complementar a correlação, decidiu-se realizar uma regressão linear univariada. Com os dados obtidos nos questionários, verificou-se a influência quantitativa que a variável independente número de habitantes (x) tem sobre a variável dependente produção de resíduos (y).

O coeficiente de determinação (representado por R2) é a mensuração da dimensão do efeito da variável y (dependente) sobre a variável x (independente). Na regressão linear, esse coeficiente é uma das estatísticas mais vulgares.

O valor de R2 varia de 0≤R2≤1: quando R2=0, o modelo não se ajusta aos dados; quando R2=1, o ajustamento é perfeito. Nas ciências exatas, quando R2>0,9, os indicadores são considerados com bom ajustamento (MARÔCO, 2014). De acordo com os resultados da regressão linear apresentados na Tabela 11, a relação entre os dados não é aceitável, ou seja, os modelos não estão ajustados aos dados. Para a categoria 3, que possui o maior valor de R2, o resultado significa que 19% da produção de resíduos é explicada pelo número de habitantes.

Tabela 11: Regressão linear. 

Faixa populacional (habitantes) Tamanho da amostra (n) Coeficiente de determinação (R 2 ) Resultado
Até 5.000 100 0,002 Modelo não ajustado aos dados, relação não aceitável
5.001 a 10.000 55 0,025 Modelo não ajustado aos dados, relação não aceitável
10.001 a 20.000 39 0,190 Modelo não ajustado aos dados, relação não aceitável

Além dos testes já realizados, decidiu-se fazer outras análises estatísticas para ajudar na compreensão dos RSU que são enviados aos sistemas de disposição final dos municípios goianos.

CONCLUSÕES

A geração per capita de RSU em Goiás varia de acordo com a faixa populacional. Para os dados estimados, que foram obtidos através do estudo da bibliografia sobre o tema, quanto maior a população de um município, maior a produção de RSU. Já de acordo com os questionários respondidos pelos municípios, aqueles de menor porte populacional têm a maior produção de resíduos por habitante.

A produção total de resíduos urbanos em Goiás é de, no mínimo, 4.435,6 t.dia-1 (valor estimado), sendo que a geração obtida pelos questionários é 18% maior. Os responsáveis por cerca de 50% da produção de RSU são os municípios com mais de 100 mil habitantes. Se esses quantitativos forem transpostos para as 10 regiões de planejamento do estado, conclui-se que as Regiões Metropolitana de Goiânia e do Entorno do Distrito Federal, que têm os maiores adensamentos populacionais, são as maiores produtoras de RSU.

A partir dos testes estatísticos, verificou-se que a geração per capita das categorias populacionais 2, 4 e 6 segue uma distribuição normal, ou seja, a hipótese nula não é rejeitada. Nas demais categorias, os valores não seguem uma distribuição normal.

Com esses resultados, realizaram-se testes t de Student para situações em que a H 0 não foi rejeitada. Já para as situações em que a H 0 foi rejeitada, realizou-se o teste não paramétrico de Wilcoxon. Os resultados desses testes apontaram que, nas categorias de 1 a 4, os dados da geração per capita fornecidos nos questionários são significativamente diferentes das médias e medianas teóricas. Já nas categorias 5 e 6, os testes identificaram que as médias e medianas fornecidas pelos municípios não são significativamente diferentes das teóricas.

Essa situação pode estar relacionada ao fato de 40% dos municípios com mais de 50 mil habitantes possuírem aterro sanitário, locais com balança para pesar os RSU dispostos em seus sistemas. Já em relação aos municípios com menos de 50 mil habitantes, apenas 2,7% deles possuem aterro, ou seja, a maioria não tem balança para pesar os RSU depositados em seus sistemas de disposição final.

Outra questão importante analisada estatisticamente foi a relação entre a geração per capita de RSU informada nos questionários, por categoria, e o número de habitantes. A partir de um DD, identificou-se uma linha de tendência apenas nas categorias 1, 2 e 3. Nas categorias 4, 5 e 6, não há linha de tendência.

Para os casos em que há uma linha de tendência da geração de RSU, fez-se uma correlação de Pearson. Os resultados apontaram que não há associação entre a geração per capita e o número de habitantes nas categorias 1 e 2. Já na categoria 3, identificou-se correspondência moderada entre a geração de RSU e o porte da população. Ainda para as três categorias que seguem uma linha de tendência, realizou-se uma regressão linear para verificar a influência quantitativa da variável número de habitantes sobre a produção de resíduos informada nos questionários. Os resultados mostraram que a relação entre os dados não é aceitável, ou seja, a produção de RSU não é explicada pelo número de habitantes.

Em suma, este estudo possibilitou uma análise dos quantitativos de RSU gerados pelos municípios goianos. Observou-se que quanto maior o número de habitantes, maior a proximidade entre os dados dos questionários e os parâmetros dos estudos, evidenciando a importância do cuidado com a fiabilidade dos dados de municípios de baixa população, que eventualmente apresentam lacunas técnicas.

REFERÊNCIAS

ANDRADE, H.F.; PRADO, M.L.; PASQUALETTO, A.; PINA, G.P.R. (2004) Caracterização física dos resíduos sólidos domésticos do município de Caldas Novas - GO. Goiânia/GO. Universidade Católica de Goiás - Departamento de Engenharia - Engenharia Ambiental. Disponível em: <Disponível em: http://www.ucg.br/ucg/prope/cpgss/arquivosupload/36/file/continua/caracteriza%c3%87%c3%83o%20f%c3%8dsica%20dos%20res%c3%8dduos%20s%c3%93lidos%20urbanos%20do%20muni%e2%80%a6.pdf >. Acesso em: 12 nov. 2015. [ Links ]

ASSAMOI, B., & LAWRYSHYN, Y. (2012) The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Management, v. 32, n. 5, p. 1019-30. [ Links ]

ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS - ABRELPE. (2015) Panorama dos resíduos sólidos no Brasil 2014. ABRELPE, São Paulo/SP. Disponível em: <Disponível em: http://www.abrelpe.org.br/Panorama/panorama2014.pdf >. Acesso em: 23 out. 2015. [ Links ]

BARBOZA, M.S.M.; CAIXETA, C.K.; OLIVEIRA, C.A.; COLARES, C.J.G. (2013) Gestão de resíduos sólidos do lixão da cidade de Pirenópolis. Revista Científica ANAP Brasil, v. 6, n. 7, p. 167-194. [ Links ]

CARVALHO, E.H. (2003) Plano de gerenciamento de resíduos sólidos para o município de Goianésia/GO. 2003. Universidade Federal de Goiás. Goiânia/GO. 158p. [ Links ]

CARVALHO, P.L. & FERREIRA, O.M. (2005) Caracterização física dos resíduos sólidos domiciliares do município de Hidrolândia-GO. 24 p. Disponível em: <Disponível em: http://www.ucg.br/ucg/prope/cpgss/arquivosupload/36/file/continua/caracteriza%c3%87%c3%83o%20f%c3%8dsica%20dos%20res%c3%8dduos%20s%c3%93lidos%20domiciliares%20%20d%e2%80%a6.pdf >. Acesso em: 12 nov. 2015. [ Links ]

FIELD, A. (2013) Discovering statistics using IBM SPSS Statistics. 4th ed. London: SAGE. 952p. [ Links ]

GOVERNO DE GOIÁS. (2014) Goiás turismo - Agência Estadual de Turismo. Goiânia/GO. Disponível em: <Disponível em: http://www.goiasturismo.go.gov.br/destinos/ >. Acesso em: 17 nov. 2015. [ Links ]

GOVERNO DE GOIÁS. (2015) Conheça Goiás: localização. Goiânia/GO. Disponível em: <Disponível em: http://www.goias.gov.br/paginas/conheca-goias/localizacao >. Acesso em: 17 nov. 2015. [ Links ]

INSTITUTO BRASILEIRO DE ADMINISTRAÇÃO MUNICIPAL - IBAM. (2001) Manual de gerenciamento integrado de resíduos sólidos. IBAM: Rio de Janeiro. 200 p. Disponível em: <Disponível em: http://www.web-resol.org/cartilha4/manual.pdf >. Acesso em: 23 out. 2015. [ Links ]

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. (2010) Censo demográfico brasileiro 2010. Brasília/DF. Disponível em: <Disponível em: http://cod.ibge.gov.br/23266 >. Acesso em: 12 nov. 2015. [ Links ]

MAIA, O.F.; MILANEZ, P.O.; CARVALHO, E.H. (2014) Avaliação do gerenciamento de resíduos sólidos no município de Nerópolis - GO. Trabalho de conclusão de curso apresentado à especialização em Tratamento e Disposição Final de Resíduos Sólidos e Líquidos da Escola de Engenharia Civil, Universidade Federal de Goiás. Goiânia/GO. 11p. [ Links ]

MARÔCO, J. (2014) Análise estatística com o SPSS Statistics. 6a ed. Gráfica Manuel, Barbosa & Filhos: Pêro Pinheiro/Portugal. 990p. [ Links ]

MELO, D.A. (2005) Diagnóstico da situação atual dos resíduos sólidos domésticos do município de Simolândia/GO. 125 f. Trabalho de conclusão de curso apresentado à Especialização em Tratamento e Disposição Final de Resíduos Sólido e Líquidos da Escola de Engenharia Civil, Universidade Federal de Goiás. Goiânia/GO. [ Links ]

NÚCLEO DE RESÍDUOS SÓLIDOS E LÍQUIDOS DA UNIVERSIDADE FEDERAL DE GOIÁS - NURSOL/UFG. (2014) Plano de resíduos sólidos do estado de Goiás. Elaboração do panorama geral dos resíduos sólidos - 1ª parte (produto 3). Goiânia/GO,. [ Links ]

RIBEIRO, R.G.M.; PINHEIRO, R.V.N.; MELO, D.A. (2012) Composição gravimétrica dos resíduos sólidos domiciliares encaminhados ao aterro sanitário do município de Goiânia (GO). Congresso Brasileiro de Gestão Ambiental Goiânia/GO,. [ Links ]

SANEAMENTO DE CHAPADÃO DO CÉU - SANEACEU. (2011) Projeto da central de tratamento dos resíduos de Chapadão do Céu/GO. [ Links ]

SECRETARIA DE GESTÃO E PLANEJAMENTO DO ESTADO DE GOIÁS - SEGPLAN. (2013) Regiões de Planejamento do Estado de Goiás, 2013. Goiânia/GO. 236p. [ Links ]

SECRETARIA DE MEIO AMBIENTE, RECURSOS HÍDRICOS, INFRAESTRUTURA, CIDADES E ASSUNTOS METROPOLITANOS - SECIMA/GO. (2015) Nota técnica - aterros sanitários. Goiânia/GO. [ Links ]

SILVA, T.M. (2014) Test t-Student: teste igualdade de variâncias. Universidade Federal do Pará. Instituto de Ciências Exatas e Naturais - Faculdade de Estatística. Belém/PA. Disponível em: <Disponível em: http://www.ufpa.br/heliton/arquivos/aplicada/seminarios/M1_01_Teste_t_Tais.pdf >. Acesso em: 09 nov. 2015. [ Links ]

Recebido: 15 de Março de 2016; Aceito: 23 de Agosto de 2016

Endereço para correspondência: Diogo Appel Colvero - Rua Dom Manuel Barbuda e Vasconcelos, 19, 3º AH - Aradas - 3810-498 - Aveiro, Portugal - E-mail: diogocolvero@yahoo.com.br

Creative Commons License Este é um artigo publicado em acesso aberto sob uma licença Creative Commons