SciELO - Scientific Electronic Library Online

 
vol.28 issue2Growth functions of Santa Inês and Bergamacy lambs considering heteroscedastic varianceGrowth of Bradyrhizobium elkanii strain Br 29 in culture media with different pH values author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Ciência e Agrotecnologia

Print version ISSN 1413-7054

Ciênc. agrotec. vol.28 no.2 Lavras Mar./Apr. 2004

http://dx.doi.org/10.1590/S1413-70542004000200020 

a20

Variâncias do ponto crítico de equações de regressão quadrática

 

Variances of the critical point  of a quadratic regression equation

 

 

Ceile Cristina Ferreira NunesI; Augusto Ramalho de MoraisII; Joel Augusto MunizIII; Thelma SáfadiII

IMestre em Estatística e Experimentação Agropecuária – Universidade Federal de Lavras/UFLA – Caixa Postal 37 – 37200-000 Lavras, MG
IIProfessores Adjunto do Departamento de Ciências Exatas/UFLA
IIIProfessor Titular do Departamento de Ciências Exatas/UFLA

 

 


RESUMO

Com o presente trabalho teve-se por objetivo a determinação de variâncias para o estudo do ponto crítico de uma equação de regressão de segundo grau, em situações experimentais com diferentes variâncias, por meio de simulação Monte Carlo. Em muitos estudos, teóricos ou aplicados, o pesquisador depara-se com o problema que envolve quociente entre variáveis aleatórias e, principalmente, entre variáveis normais. Como exemplo, aquelas que surgem em pesquisas de dose econômica de nutrientes em experimentos de adubação, de compactação de solos e em outros problemas em que há interesse na variável aleatória , estimador do ponto crítico na regressão . Para estudar a distribuição do ponto crítico de uma equação de regressão quadrática, foram utilizados dados de produção de algodão de 536 ensaios, ajustando-se um modelo quadrático. A estimação dos parâmetros foi feita pelo método dos quadrados mínimos ordinários. Com base nessas estimativas, implementou-se por meio do software MATLAB® uma rotina para simulação de duas séries com 5000 erros aleatórios de distribuição normal de média zero relativos a cada uma das variâncias consideradas teóricas: =0,1; 0,5; 1; 5; 10; 15; 20 e 50. As estimativas da variância do ponto crítico foram obtidas por meio de três métodos: (a) fórmula comum do cálculo de variâncias; (b) fórmula obtida pela diferenciação do estimador do ponto crítico e (c) fórmula demonstrada para o cálculo da variância de uma razão, considerando-se a covariância entre  e . Pelos resultados obtidos para as estatísticas médias dos coeficientes de regressão  e , bem como suas respectivas variâncias em função das diversas variâncias teóricas () adotadas, verificou-se que esses valores teóricos estão próximos aos reais. Ainda ocorre uma tendência de que, com o aumento da variância teórica, esses valores aumentem. Pode-se concluir que a variância do ponto crítico calculada usando-se a expressão que leva em consideração a covariância entre  e  apresenta resultados mais satisfatórios e que não segue uma distribuição normal, pois apresenta uma distribuição de freqüência com assimetria positiva e formato leptocúrtico.

Termos para indexação: Regressão quadrática, quociente de variáveis aleatórias, variância do ponto crítico, intervalo de confiança.


ABSTRACT

The aim of this paper is determine variances for the analysis of the critical point of a second-degree regression equation in experimental situations with different variances through Monte Carlo simulation. In many theoretical or applied studies, one finds situations involving ratios of random variables and more frequently normal variables. Examples are provided by variables, which appear in economic dose research of nutrients in fertilization experiments, as well as in other problems in which there are interests in the random variable, estimator of the critic point in the regression . Data of five hundred thirty six trials in cotton yield were utilized to study the distribution of the critical point of a quadratic regression equation by adjusting a quadratic model. The parameters were evaluated using a least square method. From the estimations a MATLAB routine was implemented to simulate two sets with five thousands random errors with normal distribution and zero mean, relative to each of the theoretical variances: = 0.1; 0.5; 1; 5; 10; 15; 20 and 50. The estimation of the variance of the critical point was obtained by three methods: (a) usual formula for the variance; (b) formula obtained by differentiation of the critical point estimator and (c) formula for the computation of the variance of a quotient by taking into consideration the covariance between  and . The results obtained for the  statistic  average  for  the  regression between  e , as well as its respective variances in terms of the several theoretical residual variances () adopted show that those theoretical values are close to real ones. Moreover, there is a trend of increasing  and  with increase of the theoretical variance. It may be concluded that the critical point variance calculated taking into consideration the covariance between  and , gives more satisfactory results and does not follow a normal distribution, presenting a frequency distribution with positive assimetry and leptokurtic shape.

Index terms: quadratic regression, quotient random variables, variance of the critical point, interval of confidence.


 

 

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

 

 

REFERÊNCIAS BIBLIOGRÁFICAS

D'AULISIO, M. B. G. d'. A variância dos pontos de máximo ou de mínimo de equações de regressão de segundo grau. 1976. 61 f. Dissertação (Mestrado em Estatística e Experimentação Agronômica) – Escola Superior de Agricultura de “Luiz de Queiroz”, Piracicaba, 1976.         [ Links ]

FINNEY, D. J. Statistical method in biological assay. London: Charles Griffin, 1964. 668 p.         [ Links ]

FISHER, R. A. The moments of the distribution for normal  samples  of  measures  of  departure  from normality. Journal of the Royal Statistical Society, A, Londres, v. 130, p. 17-28, 1930.         [ Links ]

FREITAS, A. R. A distribuição do ponto de máximo ou de mínimo de uma função usada em experimentos de adubação. 1978. 81 f. Dissertação (Mestrado em Estatística e Experimentação Agronômica) - Escola Superior de Agricultura de “Luiz de Queiroz”, Piracicaba, 1978.         [ Links ]

KAPLAN, W. Cálculo avançado. São Paulo: Edgard Blücher, 1972. v. 2, 750 p.         [ Links ]

KENDALL, M. G.; STUART, A. The advanced theory of statistics. London: Charles Griffin, 1977. v. 1.         [ Links ]

MOOD, A. M.;  GRAYBILL, F. A.;  BOES, D. C. Introduction to the theory of statistics. 3. ed. Tokio: McGraw-Hill, 1974. 564 p.         [ Links ]

NETER, J.; WASSERMAN, W.; KUTNER, M. H. Applied linear statistical models: regression, analysis of  variance,  and  experimental  designs.  3.  ed. Homewood: Richard D. Irwin, 1990. 1181 p.         [ Links ]

SPIEGEL, M. R. Estatística. 3. ed. São Paulo: Makron Books, 1993. 643 p.         [ Links ]

 

 

(Recebido para publicação em 23 de abril de 2002 e aprovado em 8 de agosto de 2002)

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License