Acessibilidade / Reportar erro

The annual cycle of satellite derived sea surface temperature on the western South Atlantic shelf

Abstracts

In this article, thirteen years of weekly sea surface temperature (SST) fields derived from NOAA Advanced Very High Resolution Radiometer global area coverage infrared satellite data, from January 1982 to December 1994, are used to investigate spatial and temporal variabilities of SST seasonal cycle in the Southwest Atlantic Oceano This work addresses large scale variations over the eastem South American continental shelf and slope regions limited offshore by the 1000-m isobath, between 42° and 22°S. SST time series are fit with annual and semi-annual harmonics to describe the annual variation of sea surface temperatures. The annual harmonic explains a large proportion of the SST variability. The coefficient of determination is highest (> 90%) on the continental shelf, decreasing offshore. The estimated amplitude of the seasonal cycle ranges between 4° and 13°e throughout the study area, with minima in AugustSeptember and maxima in February-March. After the identification and removal of the dominant annual components ofSST variability, models such as the one presented here are an attractive tool to study interannual SST variability.

AVHRR; SST; Annual variability; South Atlantic


Neste artigo, treze anos de imagens semanais da temperatura da superfície do mar (TSM) obtidas através do sensor infravermelho Advanced Very High Resolution Radiometer a bordo dos satélites NOAA, de janeiro de 1982 a dezembro de 1994, são utlilizadas para investigar as variabilidades espacial e temporal do cicIo sazonal de TSM no Oceano Atlântico Sudoeste. Este trabalho objetiva as variações de larga escala sobre a plataforma continental e o talude leste da América do Sul limitados ao largo pela isóbata de 1000 metros, entre 42°5 e 22°S. As séries temporais de TSM são ajustadas aos .harmônicos anual e sem i-anual para descrever a variação anual das temperaturas da superfície do mar. O harmônico anual explica a maior parte da variabilidade da TSM. O coeficiente de determinação é alto (> 90%) sobre a plataforma continental, decrescendo em direção ao largo. A amplitude estimada do cicIo sazonal varia entre 4° e l30e na região de estudo, atingindo mínimas temperaturas em agosto-setembro e máximas em fevereiro-março. Após identificação e remoção das componentes dominantes da variabilidade da TSM, modelos como o apresentado aqui são uma ferramenta atrativa para o estudo da variabilidade inter-anual da TSM.

AVHRR; TSM; Variabilidade anual; Atlântico Sul


RESEARCH ARTICLES

The annual cycle of satellite derived sea surface temperature on the western South Atlantic shelf

Carlos A. D. LentiniI; Edmo J. D. CamposII; Guillermo G. PodestáI

IRosenstiel School of Marine and Atmospheric Science Division of Meteorology and Physical Oceanography (4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA) Phone: (305) 361-4628 Fax: (305) 361-4696 E-mail: clentini@rsmas.miami.edu

IIInstituto Oceanográfico da Universidade de São Paulo Departamento de Oceanografia Física (Caixa Postal 66149, 05315-970 São Paulo, SP, Brasil)

ABSTRACT

In this article, thirteen years of weekly sea surface temperature (SST) fields derived from NOAA Advanced Very High Resolution Radiometer global area coverage infrared satellite data, from January 1982 to December 1994, are used to investigate spatial and temporal variabilities of SST seasonal cycle in the Southwest Atlantic Oceano This work addresses large scale variations over the eastem South American continental shelf and slope regions limited offshore by the 1000-m isobath, between 42° and 22°S. SST time series are fit with annual and semi-annual harmonics to describe the annual variation of sea surface temperatures. The annual harmonic explains a large proportion of the SST variability. The coefficient of determination is highest (> 90%) on the continental shelf, decreasing offshore. The estimated amplitude of the seasonal cycle ranges between 4° and 13°e throughout the study area, with minima in August­September and maxima in February-March. After the identification and removal of the dominant annual components ofSST variability, models such as the one presented here are an attractive tool to study interannual SST variability.

Descriptors: AVHRR, SST, Annual variability, South Atlantic.

RESUMO

Neste artigo, treze anos de imagens semanais da temperatura da superfície do mar (TSM) obtidas através do sensor infravermelho Advanced Very High Resolution Radiometer a bordo dos satélites NOAA, de janeiro de 1982 a dezembro de 1994, são utlilizadas para investigar as variabilidades espacial e temporal do cicIo sazonal de TSM no Oceano Atlântico Sudoeste. Este trabalho objetiva as variações de larga escala sobre a plataforma continental e o talude leste da América do Sul limitados ao largo pela isóbata de 1000 metros, entre 42°5 e 22°S. As séries temporais de TSM são ajustadas aos .harmônicos anual e sem i-anual para descrever a variação anual das temperaturas da superfície do mar. O harmônico anual explica a maior parte da variabilidade da TSM. O coeficiente de determinação é alto (> 90%) sobre a plataforma continental, decrescendo em direção ao largo. A amplitude estimada do cicIo sazonal varia entre 4° e l30e na região de estudo, atingindo mínimas temperaturas em agosto-setembro e máximas em fevereiro-março. Após identificação e remoção das componentes dominantes da variabilidade da TSM, modelos como o apresentado aqui são uma ferramenta atrativa para o estudo da variabilidade inter-anual da TSM.

Descritores: AVHRR, TSM, Variabilidade anual, Atlântico Sul.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

Acknowledgements

This work is a result of efforts supported by the Inter-American Institute for Global Change Research (IAI), through the SACC's CRN and ISP-1 Projects, by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Proc. no. 201443/96-1), and by the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) (Proc. 96/4060-0). The authors express their gratitude to O. Brown and D. Olson, from RSMAS/Univ. of Miami, who provided the data, part of the financial support and guidance for the fust author during a visit to the USA, when a pre-analysis of the A VHRR data set was done. We extend our appreciation to the reviewers for their valuable comments.

(Manuscript received 18 January 2000; revised 03 March 2000; accepted 21 September 2000)

  • Bakun, A. 1993. The Califomia Current, Benguela Current, and southwestem Atlantic shelf ecosystems: a comparative approach to identifying factors regulating biomass yields. In: Sherman, K.; Alexander, L. M. & gold, B. D. eds Stress migration and preservation of large marine ecosystems. Washington, AAAS. p.199-221.
  • Barton, I. J. 1995. Satellite-derived sea surface temperatures: Current status. J. geophys. Res., 100(C5):8777-8790.
  • Brook, R. J. & Amold, G. C. 1985. Applied regression analysis and experimental design. New York, M. Dekker. 237p.
  • Brown, O. R; Brown, J. W. & Evans, R. H. 1985. Calibration of advanced very high resolution radiometer in&ared observations. J. geophys. Res., 90(C6):11667-11677.
  • Bunker, A F. 1988. Surface energy tluxes of South Atlantic Oceano Mon. weath. Rev., 116(4):809823.
  • Campos, E. J. D.; Lentini, C. A D.; Miller, J. L. & Piola, A R. 1999. lnterannual variability of the sea surface temperature in the South Brazil Bight. Geophys. Res. Letts, 26(14):20612064.
  • Campos, E. J. D.; Ikeda, Y.; Castro Filho, B. M.; Gaeta, S. A; Lorenzzetti, J. A & Stevenson, M. R. 1996. Experiment studies circulation in the western South Atlantic. EOS Trans. Am. geophys. Un.,77(27):253-259.
  • Campos, E. J. D.; Gonçalves, J. E. & lkeda, Y. 1995. Water mass characteristics and geostrophic circulation in the South Brazil BightSummer of 1991. J. geophys. Res., 100(C11):18537-18550.
  • Casey, K. S. & Cornillon, P. 1999. A comparison of satellite and in-situ-based sea  surface temperature climatologies. J. Climate, 12(6): 18481863.
  • Gacic, M.; Marullo, S.; Santoleri, R. & Bergamasco, A. 1997. Analysis of the seasonal and interannual variability  of  the   sea surface temperature field in the Adriatic Sea ITom A VHRR data (1984-1992). J. geophys. Res., 102(C 10):22937-22946.
  • Garzoli, S. L. & Garraffo, Z. 1989. Transports, Frontal Motions, and Eddies at the BrazilMalvinas Currents Contluence. Deep-Sea Res., 36(5A):68 1-703.
  • Gordon, A. L. 1989. Brazil-Malvinas contluence 1984. Deep-Sea Res., 36(3A):359-384.
  • Gordon, A L. & Greengrove, C. L. 1986. Geostrophic circulation of the Brazil-Falkland Contluence. Deep-Sea Res., 33(5A):573-585.
  • Horel, J. D. 1982. On the annual cycle of the tropical Pacific atmosphere and oceano Mon. Weath. Rev., 110(12):1863-1878.
  • Kidwell, K. B. 1991. NOAA Polar Orbiter Data User's Guide (TI ROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10, NOAA-11, and NOAA-12). Washington, NOAAlNESDIS Satellite Data Services Division, De.
  • Castro Filho, B. M. & Miranda, L. B. 1998. Physical oceanography of the western Atlantic continental shelf 10cated between 4°N and 34°S costal segment (4'W). In: Robinson, A R. & Brink, K. H. The Sea. Oxford, John Wiley & Sons. p.209-251.
  • Castro Filho, B. M.; Miranda, L. B. & Miyao, S. Y. 1987. Condições hidrográficas na plataforma continental ao largo de Ubatuba: variações sazonais e em média escala. Bolm Inst. oceanogr., S Paulo, 35(2):135-151.
  • Chelton, D. B. 1983. Effects of sampling errors in statistical estimation. Deep-Sea Res., 30(10): 1083-1103.
  • Cleveland, W. S.; Freeny, A. E. & Graedel, T. E. 1983. The seasonal component of atmospheric CO2 - Information ITom a new approaches to the decomposition of seasonal time series. J. geophys. Res., 88(CI5):10934-10946.
  • Lentini, C. A D.; Podestá, G. P.; Campos, E. J. D. & Olson, D. B. 2001. Sea surface temperature anomalies on the westem South Atlantic ITom 1982 to 1994. Continent. Shelf Res. 21 (1 ):89-112.
  • Lima, I. D. & Castello, J. P. 1995. Distribution and abundance of South-west Atlantic anchovy spawners (Engraulis anchoita) in relation to oceanographic processes in the southern Brazilian shelf. Fish. Oceanogr., 4(1):1-16.
  • Matano, R. P. 1993. On the separation of the Brazil Current ITom the coast. J. phys. Oceanogr., 23(1 ):70-90.
  • Matsuura, Y.; Spach, H. L. & Katsuragawa, M. 1991. Comparison of spawning patterns ofthe Brazilian sardine (Sardinella brasiliensis) and anchoita (Engraulis anchoita) in Ubatuba Region, Southem Brazil during 1985 through 1989. ICES e. M., H22. 25p.
  • Diaz, A. F., Studzinski, e. D. & Mechoso, C. R. 1998. Relationships between precipitation anomalies in Uruguay and Southern Brazil and sea surface temperature in the Pacific and Atlantic Oceans. J. Climate, 11 (2):251-271.
  • Emílsson, I. 1961. The shelf and coastal waters off southem Brazil. Bolm Inst. oceanogr., S Paulo, 11:101-112.
  • McClain, E. P.; Pichei, W. G. & Walton, C. C. 1985. Comparative performance of A VHRR-based multichannel sea surface temperatures. J. geophys. Res., 90(C6):1 1587-1 1601.
  • Merle, J.; Fieux, M. & Hisard, P. 1980. Annual signal and interannual anomalies of sea surface temperature in the Eastem Equatorial Atlantic Oceano Deep-Sea Res. 11, Part A, 26(2):77-101.
  • Olson, D. B.; Podestá, G. P.; Evans, R. H. & Brown, O. B. 1988. Temporal variations in the separation of Brazil and Malvinas Currents. Deep-Sea Res., 35(12): 1971-1990.
  • Peterson, R. G. 1992. The boundary currents in the western Argentine Basin. Deep-Sea Res., 39(34A):623-644.
  • Peterson, R. G. & Stramma, L. 1991. Upper-level circulation in the South Atlantic. Ocean Prog. Oceanogr.,26(1):1-73.
  • Piola, A. R.; Campos, E. J. D.; Mõller, O. O.; Charro, M. & Martinez, C. 2000. The subtropical shelf &ont off eastern South America. J. geophys. Res., 105(C3):6565-6578.
  • Podestá, G. P.; O. B. Brown & Evans, R. H. 1991. The annual cycle of satellite-derived sea surface temperature in the Southwestern Atlantic Oceano J. Climate, 4(4):457-467.
  • Podestá, G. P. 1990. Migratory pattern of Argentine hake (Merluccius hubbisi) and oceanic processes in the southwestern Atlantic Oceano Fish. Bull., 88(1): 167-177.
  • Provost, c.; Garcia, O. & Garçon, V. 1992. Analysis of satellite sea surface temperature time series in the Brazil-Malvinas Current Confluence region: dominance of the annual and semiannual periods. J. geophys. Res., 97(C 11):17841-17858.
  • Saccardo, S. A. & Rossi-Wongtschowski, C. L. D. 8. 1991. Biologia e avaliação do estoque de sardinha Sardinella brasiliensis: uma compilação. Atlântica, Rio Grande, 13( 1 ):29-43.
  • Schwalb, A. 1978. The TIROS-N/NOAA A-G satellite series. NOAA Tech. Memo. NESS 95, p.75.
  • Seckel, G. R. & Beaudry, F. H. 1973. The radiation from sun and sky over the North Pacific Oceano Trans. Am. geophys. Un., 54(11):1114.
  • Stevenson, M. R.; Dias-Brito, D. D.; Stech, J. L. & Kampel, M. 1998. How cold water biota arrive in tropical bay near Rio de Janeiro, Brazil? Continent. Shelf Res., 18(13): 1595-1612.
  • Strong, A. E. 1989. Greater global warming revealed by satellite-derived sea surface temperature trends. Nature,338(6217):642-645.
  • Strub, P. T.; Allen, J. S.; Huyer, A.; Smith, R. L. & Beardsley, R. C. 1987. Seasonal cycles of currents, temperatures, winds, and sea levei over the northeast Pacific continental shelf: 35oN to 48oN. J. geophys. Res., 92(C2):1507-1526.
  • Sunye, P. S. & Servain, J. 1998. Effects of seasonal variations in meteorology and oceanography on the Brazilian sardine fi shery. Fish. Oceanogr., 7(2):89-100.
  • Valentin, J. L.; Andre, D. L. & Jacobs, S. A. 1987. Hydrobiology in the Cabo Frio (Brazil) upwelling: two-dimensional structure and variability during a wind cycle. Continent. Shelf Res., 7(1 ):77-88.
  • Walton, C. c.; Pichei, W. G.; Sapper, J. F. & May, D. A. 1998. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. geophys. Res., 103(C12):27999-28012.
  • Wyrtki, K. 1965. The annual and semiannual variation of sea surface temperature in the North Pacific Oceano Limnol. Oceanogr., 10(3):307313.

Publication Dates

  • Publication in this collection
    23 Apr 2013
  • Date of issue
    2000

History

  • Reviewed
    03 Mar 2000
  • Received
    18 Jan 2000
  • Accepted
    21 Sept 2000
Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico, 191, 05508-120 São Paulo SP Brasil, Tel: (55 11) 3091-6513, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: amspires@usp.br