SciELO - Scientific Electronic Library Online

 
vol.2 issue3DISTRIBUTION AND FREQUENCY OF REFERENCE EVAPOTRANSPIRATION OF CRUZ DAS ALMAS, BAEFFECT OF IRRIGATION DEPTH ON THE YIELD AND FIBER QUALITY IN COTTON CULTIVARS (Gossypium hirsutum L. r. latifolium Hutch). author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista Brasileira de Engenharia Agrícola e Ambiental

Print version ISSN 1415-4366On-line version ISSN 1807-1929

Rev. bras. eng. agríc. ambient. vol.2 no.3 Campina Grande Sept./Dec. 1998

http://dx.doi.org/10.1590/1807-1929/agriambi.v2n3p287-294 

Relações Água-Solo-Planta-Atmosfera

DÉFICIT HÍDRICO E OS PROCESSOS MORFOLÓGICO E FISIOLÓGICO DAS PLANTAS

WATER DEFICIT AND MORPHOLOGIC AND PHYSIOLOGIC BEHAVIOR OF THE PLANTS

Reginaldo Ferreira Santos1 

Reimar Carlesso2 

1Engenheiro Agrônomo, M.Sc., Doutorando em Agronomia na Área de Concentração de Irrigação e Drenagem na Faculdade de Ciências Agronômica da UNESP/Botucatu, SP, Bolsista da CAPES, Professor do Departamento de Engenharia da UNIOESTE/PR, E-mail pgirrigacao@fca.unesp.br Fone: (014)821-3883, CP 237, CEP 18603-970, Botucatu, SP

2Engenheiro Agrônomo, Ph.D., bolsista do CNPq, Professor Titular do Departamento de Engenharia Rural, CCR/ UFSM, CEP 97119-900, Santa Maria, RS

RESUMO

Esta breve revisão de literatura tem como objetivo abordar alguns aspectos dos fatores morfológicos e fisiológicos que, direta ou indiretamente, influenciam na habilidade das plantas em adaptar-se a diferentes condições de déficit hídrico durante seu crescimento e desenvolvimento. A sensibilidade do desenvolvimento das folhas ao déficit hídrico pode mudar no transcorrer do dia ou nas diferentes estações do ano, porém a limitação de expansão na área foliar pode ser considerada como uma primeira reação das plantas a esse déficit. Plantas cultivadas sob condições adequadas de suprimento hídrico são, normalmente, menos resistentes ao déficit hídrico e, quando da ocorrência rápida do déficit hídrico, os mecanismos morfofisiológicos são severamente afetados, pois a planta necessitaria adaptar-se rapidamente a esta situação de déficit; entretanto, quando o déficit hídrico ocorre gradualmente e/ou no início do ciclo, mais facilmente ocorre a adaptação das plantas. A tolerância da planta ao déficit hídrico parece ser um importante mecanismo de resistência para manter o processo produtivo em condições de baixa disponibilidade de água às plantas. "Por isso, a importância de se abordar alguns aspectos dos fatores morfológicos e fisiológicos que influenciam a habilidade das plantas na adaptação a situações de déficit hídrico."

Palavras-chave: déficit hídrico; morfologia; fisiologia

ABSTRACT

This brief review of literature has the objective of discussing some aspects of the morphological and physiological factors that directly or indirectly influence the plant's ability to adapt to different soil water deficit conditions during its growth and development. The sensitivity of leaf development to water deficits may change during the daytime or during the season of the year. The reduction of the plant leaf area may be considered as the first plant response to water deficit. Plants cultivated under irrigated conditions are usually less resistant to water deficit. A rapid development of water deficit may accelerate morphologic and physiologic changes in the plants. However, the gradual development of water deficit by plants growing in most field situations allows slow and continual adjustments in physiological processes. The plant adaptation to soil water deficit is important to maintain the production capacity in conditions of restricted water availability to the plants.

Key words: water deficit; morphology; physiology

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

REFERÊNCIAS BIBLIOGRÁFICAS

BALL, R.A.; OOSTERHUIS, D.M.; MAUROMOUSTAKOS, A. Growth dynamics of the cotton plant during water-deficit stress. Agronomy Journal, Madison, v.86, p. 788-795, 1994. [ Links ]

BASSETTI, P.; WESTGATE, M.E. Water deficit affects receptivity of maize of silks. Crop Science, Madison, v.33, p.279-282, 1993. [ Links ]

BEGG, J.E.; TURNER, N.C Crop water deficits. Advances in Agronomy, v.28, p.161-217, 1976. [ Links ]

BELAYGUE, C.; WERY, J.; COWAN, A.A.; TARDIEU, F. Contribution of leaf expansion, rates of leaf appearence, and stolon branching to growth of plant leaf area under water deficit in white clover. Crop Science, Madison, v.36, p.1240-1246, 1996. [ Links ]

BERGAMASCHI H. Desenvolvimento de déficit hídrico em culturas. In: BERGAMASCHI, H. Agrometeorologia aplicada à irrigação. Porto Alegre: UFRGS, Ed. Universidade, 1992. p.25-32. [ Links ]

BITTMAN S.; SIMPSON, G.M. Soil water deficit effect on yield, leaf area, and net assimilation rate of three forage grasses: Creasted wheatgrass, Madison smooth bromegrass, and altai wildrye. Agronomy Journal, Madison, v.79, p.768-774, 1987. [ Links ]

BLUM, A.; JOHNSON, J.W.; RAMSEUR, E.L. The effect of a drying top soil and a possible non-hydraulic root signal on wheat growth and yield.Journal of Experimental Botany, Oxon, v.42, n.243, p.1225-1231, 1991. [ Links ]

CARLESSO, R. Influence of soil water deficits on maize growth and leaf area adjustments. East Lansing: Michigan State University. 1993. Ph.D. Thsis [ Links ]

CARLESSO, R. Absorção de água pelas plantas: água disponível versus extríavel e a produtividade das culturas. Revista Ciência Rural, Santa Maria, v.25, n.1, p.183-188, 1995. [ Links ]

CHAVES, M.M. Effects of water deficits on carbon assimilation.Journal of Experimental Botany, v.42, p.1-16, 1991. [ Links ]

CIRILO, A.G.; ANDRADE F.H. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Science, Madison, v.34, p.1039-1043, 1994a. [ Links ]

CIRILO, A.G.; ANDRADE F.H. Sowing date and maize productivity: II. Kernel number determination. Crop Science, Madison, v.34, p.1044-1046, 1994b. [ Links ]

CIRILO, A.G.; ANDRADE, F.H. Sowing date and kernel weight in maize.Crop Science, Madison, v.36, p.325-331, 1996. [ Links ]

CLAASSEN, M.M.; SHAW, R.H. Water deficit effects on corn. II Grain components. Agronomy Journal, Madison, n. 62, p. 652-655, 1970. [ Links ]

CRAFTS-BRANDNER, S.J.; PONELEIT, C.G. Selection for seed growth characteristics: effect on leaf senescence in maize. Crop Science, Madison, v.32, p.127-131, 1992. [ Links ]

DALE, J.E. The Control of Leaf Expansion. Annual Review in Plant Physiolgy, v.39, 267-95, 1988. [ Links ]

DAVIES, W.J.; ZHANG, J. Root signals and the regulation of growth and development of plants in rying soil. Annual Review Plant Physiology Plant Molecular Biology, Palo Alto, p.55-76, 1991. [ Links ]

DENMEAD, O.T.; SHAW, R.H. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agronomy Journal,, Madison, v.52, p. 272-274, 1960. [ Links ]

FAVER, K.L.; GERIK, T.J.; THAXTON, P.M. et al. Late season water stress in cotton: Leaf gas exchange and assimilation capacity. Crop Science, Madison, v.36, p.922-928, 1996. [ Links ]

FERNÁNDEZ, C.J.; McINNES, K.J.; COTHREN, J.T. Water status and leaf area production in water-and nitrogen-stressed cotton. Crop Science, Madison, v.36, p.1224-1233, 1996. [ Links ]

GERIK, T.J.; FAVER, K.L.; THAXTON, P.M. et al. Late season water stress in cotton: I. Plant growth, water uses, and yield. Crop Science, Madison, v.36, p.914-921, 1996. [ Links ]

GOLDMANN, I.L.; CARTER, T.E. Jr., PATTERSON, R.P. A detrimental interaction of subsoil aluminum and drought estress on the leaf water status of soybean. Agronomy Journal, Madison, v.81, n.3, p.461-463, 1989. [ Links ]

GOLLAN, T.; PASSIOURA, J.B., MUNNS, R. Soil water status effects the stomatal conductance of fully turgid wheat and sunflower leaves.Australian Journal Plant Physiology, v.13, p.459-464, 1986. [ Links ]

GRANT, R.F. Interaction between carbon dioxide and water deficits affedting canopy photosynthesis: simulation an testing. Crop Science, Madison, v.32, p.1322-1328, 1992. [ Links ]

GRANT, R.F.; JACKSON, B.S.; KINIRY, J.R.; ARKIN, G.F. Water deficit timing effects on yield components in maize. Agronomy Journal, Madison, v.81, n.1, p.61-65, 1989. [ Links ]

HEITHOLT, J.J.; JOHNSON, R.C.; FERRIS, D.M. Stomatal limitation to carbon dioxide assimilation in nitrogem and drought-stressed wheat. Crop Science, Madison, v.31 , p.133-139, 1991. [ Links ]

HERRERO, M.P.; JOHNSON, R.R. Drought stress and its effects on maize reproductive systems. Agronomy Journal, Madison, v.21, p.105-110, 1981. [ Links ]

HOOGENBOOM, G.; HUCK, M.G.; PETERSON C.M. Root growth rate of soybean as affected by drought stress. Agronomy Journal, Madison, v.79, p.697-614, 1987. [ Links ]

HSIAO, T.C. Plant response to water stress. Annual Review of Plant Physiology, v.24, p.519-570, 1973. [ Links ]

JAMIESON, P.D.; FRANCIS, G.S; WILSON, D.R.; MARTIN, R.J. Effects of water deficits on evapotranspiration from barley. Agricutural and Forest Meteorology, v.76, p.41-58, 1995. [ Links ]

JORDAN, W.R. Whole plant response to water deficits: An overview. In TAYLOR, H.M., JORDAN, W.R., SINCLAIR, T.R. Limitations to efficient water use in crop production, Madison: ASA, CSSA, and SSA, 1983. p.289-317. [ Links ]

KASELE, I.N.; NYIRENDA, F.; SHANAHAN, F.J. et al. Ethephon alters corn growth, water use, and grain yield under drougth stress. Agronomy Journal, Madison, v. 86, p.283-288, 1994. [ Links ]

KAUFFMANN, M.D.; GARDNER, E.H. Segmental liming of soil and its effect on the growth of wheat. Agronomy Journal, Madison, v.70, p.331-336, 1978. [ Links ]

KELLING, C.R.S. Efeito da disponibilidade de água no solo sobre os componentes do balanço hídrico e o rendimento do feijoeiro. Santa Maria: UFSM, 1995. 91p. Dissertação Mestrado [ Links ]

KIEHL, E.J. Manual de edafologia. São Paulo: Ceres, 1979. 191-215p. [ Links ]

KINIRY, J.R.; RITCHIE, J.T. Shade-sensitive interval of kernel number of maize. Agronomy Journal, Madison, v.77, p.711-715, 1985. [ Links ]

KOBATA, T.; PALTA, J.A.; TURNER, N.C. Rate of development of postanthesis water deficits and grain filling of spring wheat. Crop Science, Madison, v.32, p.1238-1242, 1992. [ Links ]

LAFITTE, H.R.; EDMEADES, G.O. Stress tolerance in tropical maize is linked to constitutive changes in ear growth characteristics. Crop Science, Madison, v.35, p.820-826, 1995. [ Links ]

LAWLOR, D.W.; DAY, W.; JOHNSTON, A.E. Growth of spring barley under drought: crop development, photosynthesis, dry-matter accumulation and nutrient content. Journal of Agriculture Science, v.96, p.167-186, 1981. [ Links ]

LEA, P.J.; Al-SULAIT, A.; PALMER, S.; DAVIE, W.J. Absorção e metabolismo de nitrogênio sobre estresse hídrico. In: SIMPÓSIO INTERNACIONAL SOBRE ESTRESSE AMBIENTAL: O MILHO EM PERSPECTIVA, 1995. Belo Horizonte, MG.Anais... EMBRAPA/CNPMS, 1995. v.1, p.163-194, 1995. [ Links ]

LECOEUR, J.; SINCLAIR, R.T. Field pea transpiration and leaf growth in response to soil water deficits. Crop Science, Madison, v.36, p.331-335, 1996. [ Links ]

LEVITT, J. Response of plants to enviropmental stress. II: Water radiation, salt and other stress. New York: Academic Press, 1980. 606p. [ Links ]

LOPES, B.F.; SETER, T.L.; McDAVID, C.R. Photosynthesis and water vapor exchange of pigeonpea leaves in response to water deficit and recovery.Crop Science, Madison, v.28, p.141-145, 1988. [ Links ]

LUDLOW, M.M. & MUCHOW, R.C. A critical evaluation of trits for improving crop yields in water-limited environments. Advance in Agronomy, São Diego, v.43, p.107-153, 1990. [ Links ]

MAGALHÃES, A.C.N. Fotossíntese. In. FERRI, M.G. Fisiologia vegetal. São Paulo: EDUSP, 1985. 350p. [ Links ]

McCREE, K.J.; FERNÁNDEZ, C.J. Simulation model for studyng physiological water stress responses of whole plants. Crop Science, Madison, v.29, p.353-360, 1989. [ Links ]

MEYER, W.S.; GREEN, G.C. Water use by wheat and plant indicator of available soil water. Agronomy Journal, Madison, v.72, p.253-257, 1980. [ Links ]

MORGAN, J.A.; Le CAIN, D.R. Leaf gas exchange and related leaf traits among 15 winter wheat genotypes. Crop Science, Madison, v.31, p.443-448, 1991. [ Links ]

MOTA, F.S. Meteorologia agrícola, 7. ed. São Paulo: Nobel, 1983. [ Links ]

NeSMITH, D.S.; RITCHIE, J.T. Short- and long-term responses of corn to a pre-anthesis soil water deficit. Agronomy Journal, Madison, v.84, p.107-113, 1992. [ Links ]

NEY, B., DUTHION, C.; TURC, O. Phenological response of pea to water stress during reproductive development. Crop Science, Madison, v.34, p.141-146, 1994. [ Links ]

ORTOLANI, A.A.; CAMARGO, M.B.P. Influência dos fatores climáticos na produção. In: CASTRO, P.R.C.; FERREIRA, S.O.; YAMADA, T. Ecofisiologia da produção agrícola. Piracicaba: Instituto da Potassa e Fosfato, 1987. p.71-100. [ Links ]

PÁEZ, A.; GONZÁLES, M.E.; YRAUSQUÍN, O.X., et al. Water stress and clipping management effects on guineagrass: I. Growth and biomass allocation.Agronomy Journal, Madison, v.87, p.698-706, 1995. [ Links ]

PETRY, C. Adaptação de cultivares de soja a deficiência hídrica no solo. Santa Maria: UFSM, 1991. 106p. Dissertação Mestrado [ Links ]

PIMENTEL, C.; ROSSIELO, R.O.P. Entendimento sobre relações hídricas. In: SIMPÓSIO INTERNACIONAL SOBRE ESTRESSE AMBIENTAL: O MILHO EM PERSPECTIVA, 1995, Belo Horizonte, MG. Anais... EMBRAPA/CNPMS, 1995. v.1. 449p. p.131-146. [ Links ]

QUARTTAR, S.; JONES, R.L.; CROOKSTON, R.K. Effect of water deficit during grain filling on the pattern of maize Kerned growth and development.Crop Science, Madison, v.27, p.726-730, 1987. [ Links ]

RITCHIE, J.T.; BURNETT, E.; HENDERSON, R.C. Dryland evaporative flux in a subhumid climate. 3. Soil water influences. Agronomy Journal, Madison v.64, p.168-173, 1972. [ Links ]

RITCHIE, S.W.; NGUYEN, H.T.; HOLADAY, A.S. Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistence.Crop Science, Madison, v.30, p.105-111, 1990. [ Links ]

ROSENTHAL, W.D.; ARKIN, G.F.; SHOUSE, P.L. et al. Water deficit effects on transpiration and leaf growth. Agronomy Journal, Madison, v.79, p.1019-1026, 1987. [ Links ]

SCHUSSLER, J.R.; WESTGATE, M.E. Maize kernal set at low water potential. I. Sensitivity to reduced assimilates during early kernal growth.Crop Science, Madison,v.31, p.1189-1195, 1991a. [ Links ]

SCHUSSLER, J.R.; WESTGATE, M.E. Maize kernel set at low water potential: II. Sensitivity to reduced assimilates at pollination. Crop Science, Madison, v.31, p.1196-1203, 1991b. [ Links ]

SHULTZ, H.R.; MATTEWS, M.A. Growth, osmotic adjustment, and cell-wall mechanics of expanding grape leves during water deficits. Crop Science, Madison, v.33, p. 287-294, 1993. [ Links ]

SHUSSLER, J.R.; WESTGATE, M.E. Increasing assimilate reserve does not prevent kernel abortion at low water potencial in maize. Crop Science, Madison, v.34, p.1569-1576, 1994. [ Links ]

SINCLAIR, T.R.; LUDLOW, M.M. Influence of soil water supply on the plant water balance of four tropical grain legumes. Australian Journal Plant Physiolog, v.13, p.329-341, 1986. [ Links ]

SIVAKUMAR, M.V.K.; SHAW, R.H. Relative evaluation of water estress indicators for soybeans. Agronomy Journal, Madison, v.70, p.619-623, 1978. [ Links ]

SMITH, J.R.; NELSON, R.L. Relationship between seed filling period and yield among soybean breeding lines. Crop Science, Madison, v. 26, p.469-472, 1986. [ Links ]

TAIZ, L.; ZEIGER. Plant Physiology. California: The Benjamim/ Cummings Publishing Company, Inc., Redwood City, 1991. [ Links ]

TOLLENAAR, M.; DWYER, L.M.; STEWART, D.W. Ear and kernel formation in maize hibrids representing thee decades of grain yield improvement in Ontario. Crop Science, Madison, v.32, p.432-428, 1992. [ Links ]

TUBEROSA, R.; SANGUINETI, M.C.; LANDI, P. Abscisic acid concentration in leaf and xylem sap, leaf water potential, and stomatal conductance in maize. Crop Science, Madison, v.34, p.1537-1563, 1994. [ Links ]

UHART, S.A.; ANDRADE, F.H. Source-sink relationas in maize grown in a cool-temperature area. Agronomie, v.11, p.863-875, 1991. [ Links ]

WESTGATE, M.E.; BOYER, J.S. Carboidrate reserves and reproductive development at low leaf water potencials in maize. Crop Science, Madison, v.25, p.762-769, 1985. [ Links ]

WOLFE, D.W.; HENDERSON, D.W.; HSIAO, T.C. et al. Interactive water and nitrogen effects on senescence of maize: I. Leaf area duration, nitrogen distribution, and yield. Agronomy Journal, Madison, v.80, p.859-864, 1988. [ Links ]

WRIGHT, G.C.; SMITH, R.G.; McWILLIAM, J.R. Differences between two grain sorghum genotypes in adaptation to drought stress. I. Crop growth rate and yield response. Australian Journal of Agricultural Research, v.34, p.615-626, 1983. [ Links ]

WULLSCHLEGER, S.D.; OOSTERHUIS, D.M. Canopy leaf area development and age-class dynamics in cotton. Crop Science, Madison, v.32, p.451-456, 1992. [ Links ]

WULLSCHLEGER, S.D.; OOSTERHUIS, D.M. Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Science, Madison, v.30, p.1259-1264, 1990. [ Links ]

ZAIFNEJAD, M.; CLARK, R.B.; RITCHEY, K.D.; BALIGAR, V.C.; PARRISH, D.J. Growth, photosynthesis and water relations of wheat grown on acid soil amended with coal combustion by-products. Crop Science, Madison, v.36, p.968-974, 1996. [ Links ]

ZEEVAART, Z.R.; CREELMAN, R.A. Metabolism and physiology of abscisic acid. Annual Review Plant Physiology, v.39, p.439-473, 1988. [ Links ]

ZINSELMEIER, C.; SHUSSLER, J.R.; JONES, R.J et al. Plant carbohydrate status and seed set at low water potentials in maize. Plant Physiology, v.86, p.75, 1988. [ Links ]

Creative Commons License Este é um artigo publicado em acesso aberto (Open Access) sob a licença Creative Commons Attribution, que permite uso, distribuição e reprodução em qualquer meio, sem restrições desde que o trabalho original seja corretamente citado.