SciELO - Scientific Electronic Library Online

 
vol.3 número3RENDIMENTO DO FEIJOEIRO IRRIGADO SUBMETIDO A DIFERENTES LÂMINAS DE ÁGUA COM IRRIGAÇÃO POR SULCOUSO DE AREIA GROSSA E MANTA DE POLIÉSTER COMO MATERIAIS-ENVELOPE NUM SISTEMA DE DRENAGEM índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Revista Brasileira de Engenharia Agrícola e Ambiental

versão impressa ISSN 1415-4366versão On-line ISSN 1807-1929

Rev. bras. eng. agríc. ambient. vol.3 no.3 Campina Grande set./dez. 1999

http://dx.doi.org/10.1590/1807-1929/agriambi.v3n3p286-292 

RELAÇÕES ÁGUA-SOLO-PLANTA-ATMOSFERA

INTERVALO ÓTIMO DE POTENCIAL DA ÁGUA NO SOLO: UM CONCEITO PARA AVALIAÇÃO DA QUALIDADE FÍSICA DO SOLO E MANEJO DA ÁGUA NA AGRICULTURA IRRIGADA

LEAST LIMITING POTENTIAL RANGE: A CONCEPT TO EVALUATE THE SOIL PHYSICAL QUALITY AND WATER MANAGEMENT IN IRRIGATED CROPS

Cássio Antônio Tormena1 

Álvaro Pires da Silva2 

Antônio Carlos Andrade Gonçalves2 

Marcos Vinícius Folegatti3 

1Professor do Departamento de Agronomia da Universidade Estadual de Maringá. Av. Colombo 5790, CEP 87020 - 900, Maringá, PR. E-mail:catormen@cca.uem.br

2Professores do Departamento de Ciência do Solo, ESALQ/USP. Bolsista do CNPq

3Professor do Departamento de Engenharia Rural, ESALQ/USP. Bolsista do CNPq


RESUMO

O manejo de irrigação tem sido estabelecido considerando-se apenas o potencial da água no solo, como fator limitante para o crescimento das plantas. O conteúdo de água do solo entre a capacidade de campo e o ponto de murcha permanente, foi definido como água disponível para as plantas; entretanto, a resistência à penetração e a aeração do solo também podem limitar o crescimento de plantas, mesmo com o potencial da água no solo estando dentro do intervalo correspondente à água disponível. O Intervalo Ótimo do Potencial da Água no Solo (IOP) é um conceito que incorpora os potenciais da água do solo associados à água disponível e, também, os potenciais da água do solo, nos quais há uma limitação para o crescimento de plantas associada a resistência à penetração e à aeração do solo. O objetivo deste trabalho foi caracterizar o IOP em um Latossolo Roxo argiloso, em Guaíra, SP, irrigado com um sistema de pivô de central. O IOP foi determinado usando-se a curva de retenção de água e a curva de resistência do solo à penetração, as quais foram obtidas a partir de oitenta e oito amostras indeformadas. O IOP variou de 0 a 1,49 MPa e foi negativamente correlacionado à densidade do solo (Ds). Para Ds > 1,09 Mg m-3, a resistência à penetração foi o limite superior do IOP, enquanto a aeração do solo definiu o limite superior para Db > 1,28 Mg m-3. Os limites de potencial correspondentes à água disponível foram iguais ao IOP, mas somente para Db < 1,09 Mg m-3.

Palavras-chave: água disponível; densidade global; manejo de irrigação; qualidade física do solo

ABSTRACT

Irrigation management has been established taking into account only soil water potential as the limiting factor for plant growth. The range in soil water content between field capacity and permanent wilting point has been defined as plant available water. However, the soil resistance to root penetration and the soil aeration may also limit crop growth inside the range corresponding to plant available water. The least limiting potential range (LLPR) is a concept that incorporates soil water potentials used to define plant available water as well as soil water potentials in which there is a limitation to crop growth associated to soil resistance to penetration and to soil aeration. The objective of this study was to characterize the LLPR for a Typic Hapludox irrigated by a center pivot system at Guaira-SP, Brazil. The LLPR was determined using the soil water retention curve and the soil resistance curve which were obtained using eighty eight undisturbed cores. The LLPR ranged from 0 to 1.49 MPa and it was negatively related to bulk density (Db). For Db > 1.09 Mg m-3, the soil resistance was the LLPR upper limit whereas soil aeration defined the LLWP lower limit for Db > 1.28 Mg m-3. Available water was equal to LLPR only at Db > 1.09 Mg m-3.

Key words: available water; bulk density; irrigation management; soil physical quality

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

REFERÊNCIAS BIBLIOGRÁFICAS

ACEVEDO, E.; HSIAO, T.C.; HENDERSON, D.W. Immediate and subsequent growth response of maize leaves to changes in water status. Plant Physiology , Rockville, v. 48, p. 631-636, 1971. [ Links ]

BLAKE, G.R.; HARTGE, K.H. Bulk density. In: Klute, A.(Ed.) Methods of soil analysis: Physical and mineralogical methods . 2. ed. Madison: America Society of Agronomy, 1986. cap. 13, p.363-375. [ Links ]

BOONE, F.R. Weather and other environmental factors influencing crop responses to tillage and traffic. Soil and Tillage Research , Amsterdam, v.11, p. 283-324, 1988. [ Links ]

BOONE, F.R.; VAN DER WERF, H.M.G.; KROESBERGEN, B.; TEN HAAG, B. A. BOERS, A. The effect of compaction of arable layer in a sandy soils on the growth of maize for silage. I. Critical potentials in relation to soil aeration and mechanical impedance. Netherlands Journal of Agricultural Research , Amsterdam, v. 34, p. 155-171, 1986. [ Links ]

BOONE, F.R.; van der WERF, H.M.G.; KROESBERGEN, B.; TEN HAAG, B.A.; BOERS, A. The effect of compaction of the arable layer in sandy soils on the growth of maize for silage. II. Soil conditions and plant growth. Netherlands Journal of Agricultural Research , Amsterdam, v. 35, p. 113-128, 1987. [ Links ]

BOONE, F.R.; VEEN, B.W. Mechanisms of crop responses to soil compaction. In: SOANE, B.D.; OUWERKERK, C. VAN. (Ed.). Soil compaction in crop production . Amsterdam: Elsevier, 1994. cap. 11, p.237-264. [ Links ]

BUSSCHER, W.J. Adjustment of flat-tipped penetrometer resistance data to a common water content. Transactions of ASAE , St. Joseph, v. 33, p. 519-524, 1990. [ Links ]

CAMPBELL, G.S. Soil water potential measurement: an overview. Irrigation Science , New York, v. 9, p. 265-273, 1988. [ Links ]

DENMEAD, O.T. & SHAW, R.H. Availability of soil water to plants as affected by soil moisture content and meteorological conditions. Agronomy Journal , Madison, v. 54, p. 385-390, 1962. [ Links ]

DOORENBOS, J.; PRUITT, W.O. Crop water requirements . Rome: FAO. 1977. 144 p. Irrigation and Drainage Paper 24 [ Links ]

GUPTA, S.C.; SHARMA, P.P.; FRANCHI, S.A. de. Compaction effects on soil structure. Advances in Agronomy , San Diego, v. 42, p. 331-338, 1988. [ Links ]

HENDRICKX, J.M.H.; WIERENGA, P.J. Variability of soil water tension in a trickle irrigated chili pepper field. Irrigation Science , New York, v. 11, p. 23-30, 1990. [ Links ]

HOFFMAN, G.J.; HOWELL, T.A.; SOLOMON, K.H. (editors). Management of farm irrigation systems . St. Joseph, ASAE Monograph. 1990. 1040 p. [ Links ]

JAYAWARDANE, N.S.; CHAN, K.Y. The management of soil physical properties limiting crop production in Australian sodic soils - A Review. Australian Journal of Soil Science , Melbourne, v. 32, p. 13-44, 1994. [ Links ]

JENSEN, C.R.; MOGENSEN, V.O.; POULSEN, H.H.; HENSON, I.E.; AAGOT, S.; HANSEN, E.; ALI, M.; WOLLENWEBER, B. Soil water matric potential rather than water content determines drought responses in field- grown lupin (Lupinus angustifolius). Australian Journal of Plant Physiology , Melbourne, v. 25, p. 353-363, 1998. [ Links ]

KLUTE, A. Water retention: Laboratory Methods. In A. Klute (ed). Methods of Soil Analysis - Physical and Mineralogical Methods . Madison, America Society of Agronomy, cap. 26, p. 635-660. 1986. [ Links ]

KRAMER, P.J.; BOYER, J.S. Water relations of plants and soils . New York: Academic Press. 1995. 495 p. [ Links ]

LETEY, J. Relationship between soil physical properties and crop production. Advances in Soil Science , New York, v. 1, p. 277-294, 1985. [ Links ]

LIBARDI, P.L.; SAAD, A.M. Balanço hídrico em cultura de feijão irrigado por pivô central em Latossolo Roxo. Revista Brasileira de Ciência do Solo , Campinas, v. 18, p. 529-532, 1994. [ Links ]

LIZASO, J.I.; RITCHIE, J.T. Maize shoot and root response to root zone saturation during vegetative growth. Agronomy Journal , Madison, v. 89, p. 125-134, 1997. [ Links ]

MARCIANO, C.R.; MORAES, S.O.; SAAD, A.M.; LIBARDI, P.L. Variabilidade do potencial matricial e do conteúdo de água num solo em experimento de manejo de irrigação. Revista Brasileira de Ciência do Solo , Viçosa, v. 22, p. 563-571, 1998. [ Links ]

MEYER, W.S.; BARRS, H.D. Roots in irrigated clay soils: Measurement techniques and responses to rootzones conditions. Irrigation Science , New York, 12:125-134, 1991. [ Links ]

RITCHIE, J.T. Soil water availability. Plant and Soil , Dordrecht, v. 58, p. 327-338, 1981. [ Links ]

SAAD, A.M. Apoio tecnológico à agricultura irrigada no município de Guaíra, SP . São Paulo: Instituto de Pesquisas Tecnológicas, 1987. 59p. [ Links ]

SAVAGE, M.J.; RITCHIE, J.T.; BLAND, W.L.; DUGAS, W.A. Lower limit of soil water availability. Agronomy Journal , Madison, v. 88, p. 844-851, 1996. [ Links ]

SILVA, A.P. da; KAY, B.D. Estimating the least limiting water range of soil from properties and management. Soil Science Society of America Journal , Madison, v. 61, p. 877-883, 1997. [ Links ]

SILVA, A.P. da; KAY, B.D.; PERFECT, E. Characterization of the least limiting water range. Soil Science Society of America Journal , Madison, v. 58, p. 1775-1781, 1994. [ Links ]

SMITH, C.W.; JOHNSTON, M.A.; LORENZ, S. The effect of soil compaction and soil physical properties on the mechanical resistance of south African forestry soils. Geoderma , New York, v. 78, p. 93-111, 1997. [ Links ]

STATISTICAL ANALYSIS SYSTEM INSTITUTE. SAS/STAT Procedure guide for personal computers . Version 5, Cary, SAS Institute, 1991. [ Links ]

STEELE, D.D.; SCHERER, T.F.; PRUNTY, L.D.; STEGMAN, E.C. Water balance irrigation scheduling: comparing crop curve accuracies and determining the frequency of corrections to soil moisture estimates. Applied Engineering in Agriculture , New York, v. 13, p. 593-599, 1997. [ Links ]

STIRZAKER, R.J. Processing tomato response to soil compaction and fumigation. Australian Journal of Experimental Agriculture , Canberra, v. 37, p. 477-483, 1997. [ Links ]

TAYLOR, H.M.; ROBERSON, G.M.; PARKER JR, J.J. Soil strength-root penetration relations to medium to coarse-textured soil materials. Soil Science , Baltimore, v. 102, p. 18-22, 1966. [ Links ]

TAYLOR, S.A. Managing irrigation water on the farm. Transactions of the ASAE , St. Joseph, v. 8, p. 433-436, 1965. [ Links ]

TOPP, G.C.; GALGANOV, Y.T.; WIRES, K.C.; CULLEY, J.L.B. Non limiting water range (NLWR): an approach for assessing soil structure . Technical report nº 2 - Soil Quality Evaluation Program. Agriculture and Agri-Food Canada. 36p, 1994. [ Links ]

TOPP, G.C.; ZEBTCHUK, W. The determination of soil water desorption curves for soil cores. Canadian Journal of Soil Science , Ottawa, v. 59, p. 19-26, 1979. [ Links ]

TORMENA, C.A.; SILVA, A.P. & LIBARDI, P.L. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto. Revista Brasileira de Ciência do Solo , Viçosa, v. 22, p. 573-581, 1998. [ Links ]

WEAICH, K.; BRISTOW, K.L.; CASS, A. Preemergent shoot growth of maize under different drying conditions. Soil Science Society of America Journal , v. 56, p. 1272-1278, 1992. [ Links ]

Creative Commons License Este é um artigo publicado em acesso aberto (Open Access) sob a licença Creative Commons Attribution, que permite uso, distribuição e reprodução em qualquer meio, sem restrições desde que o trabalho original seja corretamente citado.