Acessibilidade / Reportar erro

Kinetics and thermodynamic properties related to the drying of 'Cabacinha' pepper fruits

Cinética e propriedades termodinâmicas relacionadas à secagem dos frutos de pimenta Cabacinha

ABSTRACT

The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.

Key words:
Capsicum chinense L.; moisture ratio; enthalpy; activation energy

RESUMO

Objetivou-se, neste trabalho, determinar e modelar a cinética de secagem dos frutos de pimenta Cabacinha para diferentes temperaturas do ar de secagem, bem como obter as propriedades termodinâmicas envolvidas no processo de secagem do produto. A secagem foi realizada em condições controladas de temperatura (60, 70, 80, 90 e 100 °C) utilizando-se três amostras de 130 g de frutos, as quais foram pesadas periodicamente até atingirem massa constante. Os dados experimentais foram ajustados a diferentes modelos matemáticos frequentemente utilizados na representação da secagem de frutos. O coeficiente de difusão efetivo, calculado a partir do modelo matemático da difusão líquida, foi utilizado para obtenção da energia de ativação, entalpia, entropia e energia livre de Gibbs. O modelo de Midilli foi o que apresentou os melhores ajustes aos dados experimentais da secagem dos frutos de pimenta Cabacinha. A elevação da temperatura de secagem promoveu: o aumento nos valores da taxa de remoção de água dos frutos, do coeficiente de difusão efetivo e da energia livre de Gibbs além de redução no tempo de secagem dos frutos, nos valores da entalpia e a entropia. A energia de ativação para a secagem dos frutos de pimenta foi de 36,09 kJ mol-1.

Palavras-chave:
Capsicum chinense L.; razão de umidade; entalpia; energia de ativação

Introduction

The varieties of the pepper species Capsicum chinense L. stand out for their great diversity of fruits with different forms, flavors, aromas, pungencies and chemical compositions. These characteristics justify their wide use in human consumption, medicine and cosmetic industries (Dagnoko et al., 2013Dagnoko, S.; Yaro, Diarisso, N.; Sanogo, P. N.; Adetula, O.; Dolo- Nantoumé, A.; Gamby-Touré, K.; Traoré-Théra, A.; Katilé, S.; Diallo-Ba, D. Overview of pepper (Capsicum spp.) breeding in West Africa. Agrican Journal of Agricultural Research, v.8, p.1108-1114, 2013.).

The pepper market is characterized for being very diversified, since the fruits are commercialized fresh and processed, in sauces, picklings and seasonings (Henz & Moretti, 2008Henz, G. P.; Moretti, C. L. Colheita e pós-colheita. In: Ribeiro, C. S. C.; Lopes, C. A.; Carvalho, S. I. C.; Henz, G. P.; Reifschneider, F. J. B. Pimentas Capsicum. Brasília: Embrapa Hortaliças, 2008. p.149-156.). Kaleemullah & Kailappan (2004)Kaleemullah, S.; Kailappan, R. Moisture sorption isotherms of red chillies. Biosystems Engineering, v.88, p.95-104, 2004. http://dx.doi.org/10.1016/j.biosystemseng.2004.01.003
http://dx.doi.org/10.1016/j.biosystemsen...
point out that, for being stored with high water contents, pepper and bell pepper fruits may suffer physico-chemical and biological alterations, thus reducing the commercial value of the product (Henz & Moretti, 2008Henz, G. P.; Moretti, C. L. Colheita e pós-colheita. In: Ribeiro, C. S. C.; Lopes, C. A.; Carvalho, S. I. C.; Henz, G. P.; Reifschneider, F. J. B. Pimentas Capsicum. Brasília: Embrapa Hortaliças, 2008. p.149-156.).

The drying of agricultural and food products has been one of the strategies adopted and successfully used in the conservation of the quality of various products. Drying pepper fruits, for instance, allows reducing the high water contents to levels adequate for storing, which consequently decreases biological activity in the fruits and the problems regarding deterioration and contamination (Srinivasakannan & Balasubramanian, 2009Srinivasakannan, C.; Balasubramanian, N. Estimation of diffusion parameters in fluidized bed drying. Advanced Powder Technology, v.20, p.390-394, 2009. http://dx.doi.org/10.1016/j.apt.2009.06.003
http://dx.doi.org/10.1016/j.apt.2009.06....
).

The knowledge on the thermodynamic properties, which include enthalpy, entropy and Gibbs free energy, related to the process of drying of agricultural products, provides information necessary to project drying devices, study the properties of the absorbed water (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
) and calculate the necessary energy demand in drying processes (Martins et al., 2015Martins, E. A. S.; Lage, E. Z.; Goneli, A. L. D.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.238-244, 2015. http://dx.doi.org/10.1590/1807- 1929/agriambi.v19n3p238-244
http://dx.doi.org/10.1590/1807- 1929/agr...
).

Enthalpy provides a measurement of the variation of the binding energy between water molecules and the constituents of the product during the process of sorption (Jideani & Mpotokwana, 2009Jideani, V. A.; Mpotokwana, A, S. M. Modeling of water absorption of Botswanabambara varieties using Peleg's equation. Journal of Food Engineering, v.92, p.182-188, 2009. http://dx.doi.org/10.1016/j.jfoodeng.2008.10.040
http://dx.doi.org/10.1016/j.jfoodeng.200...
). Entropy is related to the degree of disorder (Goneli et al., 2010Goneli, A. L. D.; Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M. Water desorption and thermodynamic properties of okra seeds. Transactions of the ASAE, v.53, p.191-197, 2010. http://dx.doi.org/10.13031/2013.29486
http://dx.doi.org/10.13031/2013.29486...
), i.e., it is associated with the spatial arrangement of the water-product relationship (Jideani & Mpotokwana, 2009Jideani, V. A.; Mpotokwana, A, S. M. Modeling of water absorption of Botswanabambara varieties using Peleg's equation. Journal of Food Engineering, v.92, p.182-188, 2009. http://dx.doi.org/10.1016/j.jfoodeng.2008.10.040
http://dx.doi.org/10.1016/j.jfoodeng.200...
). Gibbs free energy, on the other hand, is a parameter used in the evaluation of spontaneity of water desorption (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
).

Based on the above, this study aimed to determine and model the drying kinetics of 'Cabacinha' pepper fruits and obtain the thermodynamic properties involved in the drying process of the product.

Material and Methods

The study was conducted at the Laboratory of Seed Analysis (LAS) of the Federal Institute of Education, Science and Technology of Goiás - Campus Ceres (IF Goiano - Câmpus Ceres), in the municipality of Ceres-GO, Brazil.

'Cabacinha' pepper fruits (strain IFET 1541) were used in the experiment, which were manually harvested at maturation (Henz & Moretti, 2008Henz, G. P.; Moretti, C. L. Colheita e pós-colheita. In: Ribeiro, C. S. C.; Lopes, C. A.; Carvalho, S. I. C.; Henz, G. P.; Reifschneider, F. J. B. Pimentas Capsicum. Brasília: Embrapa Hortaliças, 2008. p.149-156.), defined by their orange color. The fruits were washed in running water and selected, discarding the ones with injuries; then, they were placed in plastic bags and maintained in a refrigerator (temperature of 4.20 ± 0.72 and 66.2 ± 5.10% of relative air humidity - RH), until the drying process (Reis et al., 2011Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
).

The water content in the fruits was determined by the standard oven method, at 103 ± 1 °C for 24 h, in four replicates (ASABE, 2010ASABE - American Society of Agricultural and Biological Engineers. Moisture measurement - forages: Standard S358.2 DEC1988, R2008. In: American Society of Agricultural and Biological Engineers (ed.). Standards, Engineering Practices, and Data. St. Joseph: ASABE, 2010. p.684-685.).

The fruits were dried in a forced-air oven adjusted to temperatures of 60, 70, 80, 90 and 100 °C, with respective RH values of 10.5, 6.6, 4.5, 2.8 and 2.2%. For the drying temperature, three metallic trays (dimensions: 26.7 cm long, 9.7 cm wide and 7.2 cm high) were filled with 130 g of product, forming a single layer with thickness of approximately 9.5 cm. During the drying process, the water content of the fruits was gravimetrically monitored, by weighing the samples periodically on an analytical scale (resolution of 0.01 g) until they reached the water content at hygroscopic equilibrium, i.e., when the variation in the mass of the containers did not exceed 0.01 g in three consecutive weighings (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
).

Water removal rate (WRR) of 'Cabacinha' pepper fruits was calculated using Eq. 1.

where:

WRR - water removal rate, kg kg-1 h-1;

Mw0 - previous total mass of water, kg;

Mwi - current total mass of water, kg;

Md - mass of dry matter, kg;

t0 - previous total time of drying, h; and

ti - current total time of drying, h.

For the determination of moisture ratios (RX) during the drying process under different conditions of temperature and relative air humidity, the following expression was used (Santos et al., 2012Santos, J. A. B.; Silva, G. F.; Pagani, A. A. C. Estudo da cinética de secagem da pimenta malagueta (Capsicum spp) cultivada no estado de Sergipe. Revista GEINTEC, v.2, p.465-471, 2012. http://dx.doi.org/10.7198/S2237-0722201200050004
http://dx.doi.org/10.7198/S2237-07222012...
; Morais et al., 2013Moraes, I. C. F.; Sobral, P. J. A.; Brano, I. G.; Ré, T. B.; Gomide, C. A. Dehydration of "dedo de moça" pepper: kinetics and phytochemical concentration. Ciência e Tecnologia de Alimentos, v.33, p.134-141, 2013. http://dx.doi.org/10.1590/S0101-20612013000500020
http://dx.doi.org/10.1590/S0101-20612013...
):

where:

X - water content of the product, decimal (d.b.);

Xi - initial water content of the product, decimal (d.b.);

And

Xe - water content at hygroscopic equilibrium of the product, decimal (d.b.).

Moisture ratio data were used for the adjustment of 10 mathematical models, employed to represent the drying of different types of fruits (Vega et al., 2007Vega, A.; Fito, P.; Andrés, A.; Lemus, R. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo)., Journal of Food Engineering v.79, p.1460-1466, 2007. http://dx.doi.org/10.1016/j.jfoodeng.2006.04.028
http://dx.doi.org/10.1016/j.jfoodeng.200...
; Pontes et al., 2009Pontes, S. F. O.; Santos, C. T.; Bonomo, R. C. F.; Pontes, L. V.; Fontan, R. C. I. Determinação das curvas de secagem em camada delgada de pimenta de cheiro (Capsicum chinense) a diferentes temperaturas. Revista Brasileira de Produtos Agroindustriais, v.11, p.143-148, 2009. http://dx.doi.org/10.15871/1517-8595/rbpa.v11n2p143-148
http://dx.doi.org/10.15871/1517-8595/rbp...
; Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
; Reis et al., 2011Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
; Moraes et al., 2013Moraes, I. C. F.; Sobral, P. J. A.; Brano, I. G.; Ré, T. B.; Gomide, C. A. Dehydration of "dedo de moça" pepper: kinetics and phytochemical concentration. Ciência e Tecnologia de Alimentos, v.33, p.134-141, 2013. http://dx.doi.org/10.1590/S0101-20612013000500020
http://dx.doi.org/10.1590/S0101-20612013...
), according to the expressions in Table 1.

Table 1
Mathematical models used to predict the drying phenomenon

For the adjustment of the mathematical models, a non- linear regression analysis was performed through the Gauss-Newton method. The degree of adjustment of each model was verified considering the magnitude of the adjusted coefficient of determination (R2), standard deviation of estimate (SE), residual sum of squares (RSS) and the tendency of residual distribution (Goneli et al., 2011Goneli, A. L. D.; Corrêa, P. C.; Magalhães, F. E. A.; Baptestini, F. M. Contração volumétrica e forma dos frutos de mamona durante a secagem. Acta Scientiarum. Agronomy, v.33, p.1-8, 2011. http://dx.doi.org/10.4025/actasciagron.v33i1.4629
http://dx.doi.org/10.4025/actasciagron.v...
; Reis et al., 2011Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
; Moraes et al., 2013Moraes, I. C. F.; Sobral, P. J. A.; Brano, I. G.; Ré, T. B.; Gomide, C. A. Dehydration of "dedo de moça" pepper: kinetics and phytochemical concentration. Ciência e Tecnologia de Alimentos, v.33, p.134-141, 2013. http://dx.doi.org/10.1590/S0101-20612013000500020
http://dx.doi.org/10.1590/S0101-20612013...
). SE and RSS were calculated using the following expressions, respectively:

where:

Y - experimental value;

Y - value estimated by the model;

n - number of experimental observations; and

DF - degrees of freedom (number of observations minus the number of parameters of the model).

The mathematical model of liquid diffusion using the analytical solution for the cylindrical geometric form (Brooker et al., 1992Brooker, D. B.; Bakker-Arkema, F. W.; Hall, C. W. Drying and storage of grains and oilseeds. Westport: The AVI Publishing Company, 1992. 450p.), with eight-term approximation (Eq. 15), was adjusted to the experimental data of drying of pepper fruits, disregarding its volumetric contraction (Reis et al., 2011Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
).

where:

D - effective diffusion coefficient, m2 s-1;

λef - roots of the Bessel's equation of zero order;

n - number of terms;

r - equivalent sphere radius, 0.0048 m; and

t - time, s.

For the determination of the initial equivalent radius, defined as the radius of a sphere with volume equivalent to that of 'Cabacinha' pepper fruits (Mohsenin, 1986Mohsenin, N. N. Physical properties of plant and animal materials. New York: Gordon and Breach Publishers. 1986. 841p.), four replicates of 25 fruits were used, which had the orthogonal axes (length, width and thickness) measured using a digital caliper with resolution of 0.01 mm (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
).

In order to evaluate the influence of the drying temperature on the effective diffusion coefficient, the Arrhenius equation was adjusted according to the following expression:

Where:

D - pre-exponential factor, m2 s-1;

E0 - activation energy, kJ mol-1;

Ra - universal gas constant, 8.314 kJ mol-1 K-1; and

Ta - absolute temperature, K.

The thermodynamic properties (enthalpy, entropy and Gibbs free energy) related to the drying process of pepper fruits were calculated using the method described by the universal gas constant, through the following equations, respectively:

where:

∆H - specific enthalpy, J mol-1;

∆S - specific entropy, J mol-1 K-1;

∆G - Gibbs free energy, J mol-1;

kB - constant of Boltzmann, 1.38 x 10-23 J K-1

hP - constant of Planck, 6.626 x 10-34 J s-1; and

Ta - absolute temperature, K.

Results and Discussion

The initial water content of 'Cabacinha' pepper fruits was approximately 6.038 (decimal, d.b.); on the other hand, the water contents at hygroscopic equilibrium, obtained at the end of the drying process at the temperatures of 60, 70, 80, 90 and 100 °C, were 0.069, 0.066, 0.051, 0.017 and 0.021 (decimal, d.b.), respectively. The reduction in equilibrium water content with the increase in drying air temperature was also observed for fruits of green bell pepper (Silva et al., 2008Silva, A. S.; Almeida, F. de A. C.; Silva, F. L. H. da; Dantas, H. J.; Lima, E. E. de. Desidratação e efeito de pré-tratamentos no extrato seco do pimentão verde., Revista Brasileira de Produtos Agroindustriais v.10, p.27-34, 2008. http://dx.doi.org/10.15871/1517-8595/rbpa.v10n1p27-34
http://dx.doi.org/10.15871/1517-8595/rbp...
), 'Pimenta- de-cheiro' (Pontes et al., 2009Pontes, S. F. O.; Santos, C. T.; Bonomo, R. C. F.; Pontes, L. V.; Fontan, R. C. I. Determinação das curvas de secagem em camada delgada de pimenta de cheiro (Capsicum chinense) a diferentes temperaturas. Revista Brasileira de Produtos Agroindustriais, v.11, p.143-148, 2009. http://dx.doi.org/10.15871/1517-8595/rbpa.v11n2p143-148
http://dx.doi.org/10.15871/1517-8595/rbp...
) and 'Cumari-do-Pará' pepper (Reis et al., 2011Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
).

The statistical parameters used for the comparison between the models adjusted to the experimental data of drying of pepper fruits, under the different drying conditions, are shown in Table 2.

Table 2
Coefficients of determination (R2), standard deviation of estimate (SE, decimal), residual sum of squares (RSS, decimal x 10-2) and behavior with respect to the residual distribution (RD) for the models adjusted to the experimental data of drying the ‘Cabacinha’ pepper fruits

The analyzed models showed coefficients of determination (R2) above 0.9792, standard deviation of estimate (SE) below 0.079 (decimal) and residual sum of squares (RSS) lower than 0.604 (decimal, x 10-2).

According to Draper & Smith (1998)Draper, N. R.; Smith, H. Applied regression analysis. New York: John Wiley & Sons, 1998. 712p., the lower the value of SE, the better will be the quality of the fit in relation to the experimental data. In the present study, this same selection criterion was also adopted for RSS.

Among the adjusted models, Midilli (Eq. 6) showed the highest coefficients of determination (R2 > 0.9990) and the lowest standard deviations of estimate (SE < 0.018) and residual sum of squares (RSS < 0.029 x 10-2), thus proving to be na adequate fit to the experimental data of drying of pepper fruits under the different drying conditions evaluated.

In the analysis of drying kinetics of 'Cumari-do-Pará' pepper (Capsicum chinense Jacquin), at the temperatures of 45, 55 and 65 °C and 'Cambuci' pepper (Capsicum baccatum) at the temperatures of 40, 50 and 60 ºC, Reis et al. (2011)Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
and Derlan et al. (2013)Derlan, J. M.; Silva, F. S.; Porto, A. G.; Leite, A. L. M. P.; Pastro, D. C. Análise da cinética de secagem de pimenta Cambuci em diferentes temperaturas e formas de processamento. Enciclopédia Biosfera, v.9, p.97-107, 2013. also observed that the Midilli model showed the best fit to the experimental data.

As to the residual distribution (Table 2), only the models of Midilli (Eq. 6), modified Midilli (Eq. 7), Page (Eq. 9) and modified Page (Eq. 10) showed random residual distribution for the five temperatures studied.

The residual distribution was considered as random when the values of residues were close to the horizontal line, around zero, and did not form defined figures, indicating that there is no tendency in the results. When the residues showed biased distribution, the model was considered as inadequate to represent the studied phenomenon. However, for having random residual distribution and the best statistical parameters (R2, SE and RSS) for all the studied temperatures (Table 2), the Midilli model (Eq. 6) was selected to represent the drying kinetics of 'Cabacinha' pepper fruits for the temperatures of 60, 70, 80, 90 and 100 °C (Figure 1A).

Figure 1
Experimental values and values estimated by the Midilli model for the moisture ratio (RX; A) and water removal rate (WRR, B) as a function of the drying time of ‘Caba cinha’ pepper fruits

According to Figure 1A, the times necessary for pepper fruits to reach the water contents at hygroscopic equilibrium were 29, 18, 14.5, 13 and 10.5 h, for the temperatures of 60, 70, 80, 90 and 100 °C, respectively. Similar behaviors were observed by Reis et al. (2011)Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
in studies with 'Cumari-do-Pará' pepper and by Moraes et al. (2013)Moraes, I. C. F.; Sobral, P. J. A.; Brano, I. G.; Ré, T. B.; Gomide, C. A. Dehydration of "dedo de moça" pepper: kinetics and phytochemical concentration. Ciência e Tecnologia de Alimentos, v.33, p.134-141, 2013. http://dx.doi.org/10.1590/S0101-20612013000500020
http://dx.doi.org/10.1590/S0101-20612013...
, studying 'Dedo-de-moça' pepper.

Still in Figure 1B, the maximum values (0.402, 0.728, 0.926, 1.312 and 2.010 kg kg-1 h-1) of water removal rate (WRR) occurred after 5.5, 2.5, 1.5, 1.5 and 0.8 h of drying, respectively for the temperatures of 60, 70, 80, 90 and 100 °C. The increase in drying temperature reduced the time necessary to reach the highest WRR values, evidencing the increment in the water potential gradient existing between the fruits and the drying air. The influence of air temperature on water removal rate was also reported by Corrêa et al. (2001)Corrêa, P. C.; Machado, P. F.; Andrande, E. T. Cinética de secagem e qualidade de grãos de milho-pipoca. Ciência e Agrotecnologia, v.25, p.134-142, 2001..

The parameters of the Midilli model for each drying temperature and the respective equations are shown in Table 3. The equations used to estimate each coefficient as a function of the drying air temperature showed high coefficients of determination (R2 > 0.9342) and regression coefficients significant at 0.01 probability level by t-test. In addition, only the "a" coefficient did not show variation tendency as a function of temperature; thus, its mean value was used (a = 0.979).

Table 3
Midilli model coefficients and adjusted equations as a function of drying air temperature for ‘Cabacinha’ pepper fruits

The values of the effective diffusion coefficient and the Arrhenius representation as a function of the drying temperature of pepper fruits are shown in Figure 2.

Figure 2
Mean experimental values and estimated values of the effective diffusion coefficient (Def; A) and Arrhenius representation for the effective diffusion coefficient (ln(Def); B) as a function of the drying air temperature of ‘Cabacinha’ pepper fruits

In Figure 2, the increase in drying temperature promoted increment in the values of the effective diffusion coefficient and reduction in the Arrhenius representation. According to Goneli et al. (2014)Goneli, A. L. D.; Vieira, M. C.; Vilhasanti, H. C. B.; Gonçalves, A. A. Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesquisa Agropecuária Tropical, v.44, p.56- 64, 2014. http://dx.doi.org/10.1590/S1983-40632014000100005
http://dx.doi.org/10.1590/S1983-40632014...
, when temperature increases, water viscosity decreases and, since viscosity is a measurement of fluid resistance to flowing, variation in this property lead to alterations in water diffusion in the capillaries of pepper fruits.

For the drying of 'Cabacinha' pepper fruits in the temperature range of 60 to 100 ºC, the effective diffusion coefficient ranged from 4.07 x 10-9 to 21.42 x 10-9 m2 s-1, respectively. These values are considered as high compared with those obtained by Srinivasakannan & Balasubramanian (2009)Srinivasakannan, C.; Balasubramanian, N. Estimation of diffusion parameters in fluidized bed drying. Advanced Powder Technology, v.20, p.390-394, 2009. http://dx.doi.org/10.1016/j.apt.2009.06.003
http://dx.doi.org/10.1016/j.apt.2009.06....
for green pepper (1.95 x 10-11 to 7.00 x 10-11 m2 s-1), Reis et al. (2011)Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
for 'Cumari-do-Pará' pepper (2.29 x 10-11 to 2.57 x 10-11 m2 s-1) and Derlan et al. (2013)Derlan, J. M.; Silva, F. S.; Porto, A. G.; Leite, A. L. M. P.; Pastro, D. C. Análise da cinética de secagem de pimenta Cambuci em diferentes temperaturas e formas de processamento. Enciclopédia Biosfera, v.9, p.97-107, 2013. for 'Cumari-do-Pará' (2.39 x 10-10 to 5.08 x 10-10 m2 s-1) in the temperature ranges of 50 to 70, 45 to 65 and 40 to 60 °C, respectively.

The difference between the values of the effective diffusion coefficient for the different types of pepper is due to physical characteristics (Martins et al., 2015Martins, E. A. S.; Lage, E. Z.; Goneli, A. L. D.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.238-244, 2015. http://dx.doi.org/10.1590/1807- 1929/agriambi.v19n3p238-244
http://dx.doi.org/10.1590/1807- 1929/agr...
), water content and forms of processing of each fruit (Derlan et al., 2013Derlan, J. M.; Silva, F. S.; Porto, A. G.; Leite, A. L. M. P.; Pastro, D. C. Análise da cinética de secagem de pimenta Cambuci em diferentes temperaturas e formas de processamento. Enciclopédia Biosfera, v.9, p.97-107, 2013.). Rizvi (1995)Rizvi, S. S. H. Thermodynamic properties of foods in dehydration. In: Rao, M. A.; Rizvi, S. S. H. Engineering properties of foods. New York: Academic Press, 1995. p.223-309. points out that the diffusion coefficient is also dependent on drying air temperature, variety and composition of the materials, besides other factors.

As observed in Figure 2B, both the effective diffusion coefficient and the Arrhenius representation can be expressed by linear equations, thus agreeing with the results obtained by Kaleemullah & Kailappan (2006Kaleemullah, S.; Kailappan, R. Modelling of thin-layer drying kinetics of red chillies. Journal of Food Engineering, v.76, p.531-537, 2006. http://dx.doi.org/10.1016/j.jfoodeng.2005.05.049
http://dx.doi.org/10.1016/j.jfoodeng.200...
), Reis et al. (2011)Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
http://dx.doi.org/10.1590/S1415-43662011...
, Derlan et al. (2013)Derlan, J. M.; Silva, F. S.; Porto, A. G.; Leite, A. L. M. P.; Pastro, D. C. Análise da cinética de secagem de pimenta Cambuci em diferentes temperaturas e formas de processamento. Enciclopédia Biosfera, v.9, p.97-107, 2013. and Martins et al. (2015)Martins, E. A. S.; Lage, E. Z.; Goneli, A. L. D.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.238-244, 2015. http://dx.doi.org/10.1590/1807- 1929/agriambi.v19n3p238-244
http://dx.doi.org/10.1590/1807- 1929/agr...
.

According to Goneli et al. (2014)Goneli, A. L. D.; Vieira, M. C.; Vilhasanti, H. C. B.; Gonçalves, A. A. Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesquisa Agropecuária Tropical, v.44, p.56- 64, 2014. http://dx.doi.org/10.1590/S1983-40632014000100005
http://dx.doi.org/10.1590/S1983-40632014...
, the slope of the Arrhenius representation provides the E /R relationship, while its intersection with the Y-axis indicatea s the value of D ; thus, the activation energy (Eq. 21) of the water diffusion oof 'Cabacinha' pepper fruits was equal to 36.09 kJ mol-1. This value is consistent with those found by Kaleemullah & Kailappan (2006)Kaleemullah, S.; Kailappan, R. Modelling of thin-layer drying kinetics of red chillies. Journal of Food Engineering, v.76, p.531-537, 2006. http://dx.doi.org/10.1016/j.jfoodeng.2005.05.049
http://dx.doi.org/10.1016/j.jfoodeng.200...
for red pepper (37.76 kJ mol-1) and Vega et al. (2007)Vega, A.; Fito, P.; Andrés, A.; Lemus, R. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo)., Journal of Food Engineering v.79, p.1460-1466, 2007. http://dx.doi.org/10.1016/j.jfoodeng.2006.04.028
http://dx.doi.org/10.1016/j.jfoodeng.200...
for red bell pepper (39.70 kJ mol-1).

The activation energy is related to the amount of energy necessary to trigger the process of water diffusion (Martins et al., 2015Martins, E. A. S.; Lage, E. Z.; Goneli, A. L. D.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.238-244, 2015. http://dx.doi.org/10.1590/1807- 1929/agriambi.v19n3p238-244
http://dx.doi.org/10.1590/1807- 1929/agr...
); thus, the lower the activation energy, the higher will be the water diffusivity of the product, i.e., the lower will be the energy necessary to transform liquid free water into vapor (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
).

The mean values of enthalpy, entropy and Gibbs free energy as a function of drying temperature of pepper fruits are shown in Table 4.

Table 4
Enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG) as a function of drying air temperature of ‘Cabacinha’ pepper fruits

Enthalpy decreased from 333.23 x 102 to 329.91 x 102 J mol-1 with the increase in temperature from 60 to 100 °C (Table 4). Corrêa et al. (2010)Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
obtained similar values for the drying of coffee (Coffea arabica L.) at the temperatures of 35, 45 and 55 ºC, with enthalpy variations of 358.28 x 102, 357.45 x 102 and 356.62 x 102 J mol-1, respectively. These authors concluded that this characteristic is an indication that lower amount of energy is required for the drying process to occur at higher temperatures.

Entropy, which is related to the degree of excitation and spatial arrangement of water molecules in relation to the product (Jideane & Mptokawana, 2009Jideani, V. A.; Mpotokwana, A, S. M. Modeling of water absorption of Botswanabambara varieties using Peleg's equation. Journal of Food Engineering, v.92, p.182-188, 2009. http://dx.doi.org/10.1016/j.jfoodeng.2008.10.040
http://dx.doi.org/10.1016/j.jfoodeng.200...
; Goneli et al., 2010Goneli, A. L. D.; Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M. Water desorption and thermodynamic properties of okra seeds. Transactions of the ASAE, v.53, p.191-197, 2010. http://dx.doi.org/10.13031/2013.29486
http://dx.doi.org/10.13031/2013.29486...
), ranged from -295.75 to -296.69 J mol-1 K-1 for the temperature range of 60 to 100 ºC (Table 4). Thus, the lowest values of entropy for the highest temperatures indicate that, under this condition, there is lower excitation of water molecules, i.e., there is a higher degree of order between water molecules and the pepper fruits. In addition, the negative values of entropy can be attributed to the existence of chemical alteration or modifications in the structure of the product during the drying process (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
).

Gibbs free energy increased from 131.85 x 103 to 143.70 x 103 J mol-1, with the increase in temperature from 60 to 100 °C (Table 4); positive values indicate that drying is a non-spontaneous process, i.e., it requires an additional energy from the environment surrounding the product for the reaction to occur (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
http://dx.doi.org/10.1590/S0034-737X2010...
).

Conclusions

  1. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits and was selected to represent this phenomenon.

  2. The increase in drying temperature promoted a reduction in the time necessary for the fruits to reach the water content at hygroscopic equilibrium.

  3. With the increase in drying temperature, there was an increase in effective diffusion coefficient and Gibbs free energy and a reduction in the values of enthalpy and entropy.

  4. The activation energy for the drying of pepper fruits at the temperatures of 60, 70, 80, 90 and 100 °C was 36.09 kJ mol-1.

Literature Cited

  • ASABE - American Society of Agricultural and Biological Engineers. Moisture measurement - forages: Standard S358.2 DEC1988, R2008. In: American Society of Agricultural and Biological Engineers (ed.). Standards, Engineering Practices, and Data. St. Joseph: ASABE, 2010. p.684-685.
  • Brooker, D. B.; Bakker-Arkema, F. W.; Hall, C. W. Drying and storage of grains and oilseeds. Westport: The AVI Publishing Company, 1992. 450p.
  • Corrêa, P. C.; Machado, P. F.; Andrande, E. T. Cinética de secagem e qualidade de grãos de milho-pipoca. Ciência e Agrotecnologia, v.25, p.134-142, 2001.
  • Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. http://dx.doi.org/10.1590/S0034-737X2010000500005
    » http://dx.doi.org/10.1590/S0034-737X2010000500005
  • Dagnoko, S.; Yaro, Diarisso, N.; Sanogo, P. N.; Adetula, O.; Dolo- Nantoumé, A.; Gamby-Touré, K.; Traoré-Théra, A.; Katilé, S.; Diallo-Ba, D. Overview of pepper (Capsicum spp.) breeding in West Africa. Agrican Journal of Agricultural Research, v.8, p.1108-1114, 2013.
  • Draper, N. R.; Smith, H. Applied regression analysis. New York: John Wiley & Sons, 1998. 712p.
  • Derlan, J. M.; Silva, F. S.; Porto, A. G.; Leite, A. L. M. P.; Pastro, D. C. Análise da cinética de secagem de pimenta Cambuci em diferentes temperaturas e formas de processamento. Enciclopédia Biosfera, v.9, p.97-107, 2013.
  • Goneli, A. L. D.; Corrêa, P. C.; Magalhães, F. E. A.; Baptestini, F. M. Contração volumétrica e forma dos frutos de mamona durante a secagem. Acta Scientiarum. Agronomy, v.33, p.1-8, 2011. http://dx.doi.org/10.4025/actasciagron.v33i1.4629
    » http://dx.doi.org/10.4025/actasciagron.v33i1.4629
  • Goneli, A. L. D.; Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M. Water desorption and thermodynamic properties of okra seeds. Transactions of the ASAE, v.53, p.191-197, 2010. http://dx.doi.org/10.13031/2013.29486
    » http://dx.doi.org/10.13031/2013.29486
  • Goneli, A. L. D.; Vieira, M. C.; Vilhasanti, H. C. B.; Gonçalves, A. A. Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesquisa Agropecuária Tropical, v.44, p.56- 64, 2014. http://dx.doi.org/10.1590/S1983-40632014000100005
    » http://dx.doi.org/10.1590/S1983-40632014000100005
  • Henz, G. P.; Moretti, C. L. Colheita e pós-colheita. In: Ribeiro, C. S. C.; Lopes, C. A.; Carvalho, S. I. C.; Henz, G. P.; Reifschneider, F. J. B. Pimentas Capsicum Brasília: Embrapa Hortaliças, 2008. p.149-156.
  • Jideani, V. A.; Mpotokwana, A, S. M. Modeling of water absorption of Botswanabambara varieties using Peleg's equation. Journal of Food Engineering, v.92, p.182-188, 2009. http://dx.doi.org/10.1016/j.jfoodeng.2008.10.040
    » http://dx.doi.org/10.1016/j.jfoodeng.2008.10.040
  • Kaleemullah, S.; Kailappan, R. Moisture sorption isotherms of red chillies. Biosystems Engineering, v.88, p.95-104, 2004. http://dx.doi.org/10.1016/j.biosystemseng.2004.01.003
    » http://dx.doi.org/10.1016/j.biosystemseng.2004.01.003
  • Kaleemullah, S.; Kailappan, R. Modelling of thin-layer drying kinetics of red chillies. Journal of Food Engineering, v.76, p.531-537, 2006. http://dx.doi.org/10.1016/j.jfoodeng.2005.05.049
    » http://dx.doi.org/10.1016/j.jfoodeng.2005.05.049
  • Martins, E. A. S.; Lage, E. Z.; Goneli, A. L. D.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.238-244, 2015. http://dx.doi.org/10.1590/1807- 1929/agriambi.v19n3p238-244
    » http://dx.doi.org/10.1590/1807- 1929/agriambi.v19n3p238-244
  • Mohsenin, N. N. Physical properties of plant and animal materials. New York: Gordon and Breach Publishers. 1986. 841p.
  • Moraes, I. C. F.; Sobral, P. J. A.; Brano, I. G.; Ré, T. B.; Gomide, C. A. Dehydration of "dedo de moça" pepper: kinetics and phytochemical concentration. Ciência e Tecnologia de Alimentos, v.33, p.134-141, 2013. http://dx.doi.org/10.1590/S0101-20612013000500020
    » http://dx.doi.org/10.1590/S0101-20612013000500020
  • Pontes, S. F. O.; Santos, C. T.; Bonomo, R. C. F.; Pontes, L. V.; Fontan, R. C. I. Determinação das curvas de secagem em camada delgada de pimenta de cheiro (Capsicum chinense) a diferentes temperaturas. Revista Brasileira de Produtos Agroindustriais, v.11, p.143-148, 2009. http://dx.doi.org/10.15871/1517-8595/rbpa.v11n2p143-148
    » http://dx.doi.org/10.15871/1517-8595/rbpa.v11n2p143-148
  • Reis, R. C.; Barbosa, L. S.; Lima, M. L.; Reis, J. S.; Devilla, I. A.; Ascheri, D. P. R. Modelagem matemática da secagem da pimenta Cumari do Pará., Revista Brasileira de Engenharia Agrícola e Ambiental v.15, p.347-353, 2011. http://dx.doi.org/10.1590/S1415-43662011000400003
    » http://dx.doi.org/10.1590/S1415-43662011000400003
  • Rizvi, S. S. H. Thermodynamic properties of foods in dehydration. In: Rao, M. A.; Rizvi, S. S. H. Engineering properties of foods. New York: Academic Press, 1995. p.223-309.
  • Santos, J. A. B.; Silva, G. F.; Pagani, A. A. C. Estudo da cinética de secagem da pimenta malagueta (Capsicum spp) cultivada no estado de Sergipe. Revista GEINTEC, v.2, p.465-471, 2012. http://dx.doi.org/10.7198/S2237-0722201200050004
    » http://dx.doi.org/10.7198/S2237-0722201200050004
  • Silva, A. S.; Almeida, F. de A. C.; Silva, F. L. H. da; Dantas, H. J.; Lima, E. E. de. Desidratação e efeito de pré-tratamentos no extrato seco do pimentão verde., Revista Brasileira de Produtos Agroindustriais v.10, p.27-34, 2008. http://dx.doi.org/10.15871/1517-8595/rbpa.v10n1p27-34
    » http://dx.doi.org/10.15871/1517-8595/rbpa.v10n1p27-34
  • Srinivasakannan, C.; Balasubramanian, N. Estimation of diffusion parameters in fluidized bed drying. Advanced Powder Technology, v.20, p.390-394, 2009. http://dx.doi.org/10.1016/j.apt.2009.06.003
    » http://dx.doi.org/10.1016/j.apt.2009.06.003
  • Vega, A.; Fito, P.; Andrés, A.; Lemus, R. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo)., Journal of Food Engineering v.79, p.1460-1466, 2007. http://dx.doi.org/10.1016/j.jfoodeng.2006.04.028
    » http://dx.doi.org/10.1016/j.jfoodeng.2006.04.028

Publication Dates

  • Publication in this collection
    Feb 2016

History

  • Received
    04 Dec 2015
  • Accepted
    29 Dec 2015
Departamento de Engenharia Agrícola - UFCG Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com