Acessibilidade / Reportar erro

Gas exchange and photosynthetic pigments in bell pepper irrigated with saline water

Trocas gasosas e pigmentos fotossintéticos em pimentão irrigado com água salina

ABSTRACT

The tools that evaluate the salinity effects on plants have great relevance as they contribute to understanding of the mechanisms of tolerance. This study aimed to evaluate gas exchanges and the contents of photosynthetic pigments in bell peppers cultivated with saline solutions (0, 1, 3, 5, 7 and 9 dS m-1) prepared using two sources: NaCl and a mixture of Ca, Mg, K, Na and Cl salts, in randomized blocks with a 6 x 2 factorial scheme and 4 replicates, totaling 48 experimental plots. The net photosynthesis (A), stomatal conductance (gs), transpiration (E), internal CO2 concentration (Ci), instantaneous carboxylation efficiency (A/Ci) and water use efficiency (WUE), besides chlorophyll a, b and carotenoids were evaluated. The gas exchange parameters were efficient to indicate the effects of salinity. All photosynthetic pigments decreased with increased electrical conductivity, and the chlorophyll a is the most sensitive to salinity, while the water use efficiency increased with the increment of electrical conductivity.

Key words:
salt stress; photosynthesis; chlorophyll; brazilian semi-arid region

RESUMO

As ferramentas que avaliam os efeitos da salinidade nos vegetais apresentam grande relevância uma vez que contribuem para compreender os mecanismos de tolerância. Objetivou-se avaliar as trocas gasosas e os teores dos pigmentos fotossintéticos em pimentão cultivado com água salina (0, 1, 3, 5, 7 e 9 dS m-1) elaboradas de duas formas: NaCl e uma mistura de sais de Ca, Mg, K, Na e Cl. O delineamento experimental foi em blocos ao acaso com arranjo fatorial 6 x 2, com 4 repetições totalizando 48 parcelas experimentais. Foram avaliadas a fotossíntese líquida (A), a condutância estomática (gs), a transpiração (E), a concentração interna de CO2 (Ci), a eficiência instantânea de carboxilação (A/Ci) e a eficiência do uso da água (EUA) além da clorofila a, clorofila b e carotenoides. Os parâmetros de trocas gasosas foram eficientes para indicar os efeitos da salinidade. Todos os pigmentos fotossintéticos reduziram com o aumento da condutividade elétrica sendo a clorofila a de maior sensibilidade à salinidade enquanto a eficiência do uso da água aumentou com a elevação da condutividade elétrica.

Palavras-chave:
Chamomilla recutita (L.) Rauschert; estresse salino; fotossíntese; clorofila; semiárido brasileiro

Introduction

Bell pepper (Capsicum annumm L.) is one of the ten economically most important vegetables, with national production of 249,000 t year-1 (IBGE, 2006IBGE - Instituto Brasileiro de Geografia e Estatística. Censo agropecuário. Rio de Janeiro: IBGE, 2006. 777p.). It is cultivated mainly by small and medium farmers in the semi-arid region, making the Northeast region the second largest producer, responsible for 31% of the national production (Nascimento et al., 2015Nascimento, I. B.; Medeiros, J. F. de; Alves, S. S. V.; Lima, B. L. C.; Silva, J. L. A. Desenvolvimento inicial da cultura do pimentão influenciado pela salinidade da água de irrigação em dois tipos de solos. Agropecuária Científica do Semiárido, v.11, p.37-43, 2015.).

Soil salinity affects the development of the vegetables through the inhibition of water absorption, ionic imbalance and toxicity, causing metabolic alterations and inhibitions (Ahmed et al., 2012Ahmed, C. B.; Magdich, S.; Rouina, B. B.; Boukhris, M.; Abdullah, F. B. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. Journal of Environmental Management, v.113, p.538-544, 2012. http://dx.doi.org/10.1016/j.jenvman.2012.03.016
http://dx.doi.org/10.1016/j.jenvman.2012...
; Souza et al., 2012Souza, E. R.; Freire, M. B. G. S.; Cunha, K. P. V.; Nascimento, C. W. A.; Ruiz, H. A.; Lins, C. M. T. Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline soil under water stress. Environmental and Experimental Botany, v.82, p.20-27, 2012. http://dx.doi.org/10.1016/j.envexpbot.2012.03.007
http://dx.doi.org/10.1016/j.envexpbot.20...
), constituting one of the main abiotic stress factors that limit the development of crops in the semi-arid region. Thus, studies involving bell pepper development under these environmental conditions become necessary (Glenn et al., 2012Glenn, E. P.; Nelson, S. G.; Ambrose, B.; Martinez, R.; Soliz, D.; Pabendinskas, V.; Hultine, K. Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environmental and Experimental Botany, v.83, p.62-72, 2012. http://dx.doi.org/10.1016/j.envexpbot.2012.04.010
http://dx.doi.org/10.1016/j.envexpbot.20...
; Souza et al., 2014Souza, E. R.; Freire, M. B. G. S.; Melo, D. V. M.; Montenegro, A. A. A. Management of Atriplex nummularia Lindl. in a salt affected soil in a semi arid region of Brazil. International Journal of Phytoremediation, v.16, p.73-85, 2014. http://dx.doi.org/10.1080/15226514.2012.759529
http://dx.doi.org/10.1080/15226514.2012....
; Nascimento et al., 2015Nascimento, I. B.; Medeiros, J. F. de; Alves, S. S. V.; Lima, B. L. C.; Silva, J. L. A. Desenvolvimento inicial da cultura do pimentão influenciado pela salinidade da água de irrigação em dois tipos de solos. Agropecuária Científica do Semiárido, v.11, p.37-43, 2015.).

Plants under salt stress initially show reductions in stomatal conductance, photosynthetic rate and in the biosynthesis of chlorophyll (Rhein et al., 2015Rhein, A. F. L.; Cruz, F. J. R.; Ferraz, R. L. S.; Santos, D. M. M. Crescimento radicular e pigmentos clorofilianos em duas forrageiras submetidas a níveis crescentes de NaCl. Científica, v.43, p.330-335, 2015. http://dx.doi.org/10.15361/1984-5529.2015v43n4p330-335
http://dx.doi.org/10.15361/1984-5529.201...
), besides changes in water use efficiency and water status of the plant, leading to the inhibition of growth (Flowers & Colmer, 2008Flowers T. J.; Colmer T. D. Salinity tolerance in halophytes. New Phytologist, v.179, p.945-963, 2008. http://dx.doi.org/10.1111/j.1469-8137.2008.02531.x
http://dx.doi.org/10.1111/j.1469-8137.20...
; Santos et al., 2013Santos, C. M.; Verissimo, V.; Wanderley Filho, H. C. L.; Ferreira, V. M.; Cavalcante, P. G. S.; Rolim, E. V.; Endres, L. Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semihumid and semi-arid areas subject to water stress. Industrial Crops and Products, v.41, p.203-213, 2013. http://dx.doi.org/10.1016/j.indcrop.2012.04.003
http://dx.doi.org/10.1016/j.indcrop.2012...
).

In this context, it is essential to evaluate the effects of solutions with different ionic compositions on the metabolism of plants under salt stress (Duarte & Souza, 2016Duarte, H. H. F.; Souza, E. R. Soil water potentials and Capsicum annuum L. under salinity. Revista Brasileira de Ciência do Solo, v.40, p.1-11, 2016.; Melo et al., 2016Melo, H. F.; Souza, E. R.; Almeida, B. G.; Freire, M. B. G.; Maia, F. E. Growth, biomass production and ions accumulation in Atriplex nummularia Lindl grown under abiotic stress. Revista Brasileira de Engenharia Agrícola e Ambiental, v.20, p.144-151, 2016. http://dx.doi.org/10.1590/1807-1929/agriambi.v20n2p144-151
http://dx.doi.org/10.1590/1807-1929/agri...
), since most studies with this focus are based on solutions using only NaCl (Belkheiri & Mulas, 2013Belkheiri, O.; Mulas, M. Effect of water stress on growth, water use efficiency and gas exchange as related to osmotic adjustment of two halophytes Atriplex spp. Functional Plant Biology, v.40, p.466-474, 2013. http://dx.doi.org/10.1071/FP12245
http://dx.doi.org/10.1071/FP12245...
; Nedjimi, 2014Nedjimi, B. Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochemical Systematics and Ecology, v.52, p.4-13, 2014. http://dx.doi.org/10.1016/j.bse.2013.10.007
http://dx.doi.org/10.1016/j.bse.2013.10....
).

Therefore, the present study aimed to evaluate the gas exchanges and contents of photosynthetic pigments in bell pepper irrigated with water of six levels of electrical conductivity, using two sources: sodium chloride and a mixture of calcium, magnesium, sodium, potassium and chloride, similar to the composition observed at field.

Material and Methods

The soil used in the experiment was collected in the municipality of Pesqueira, PE (8° 34’ 11” S; 37° 48’ 54” W; 630m), semi-arid region of Northeast Brazil, in the layer of 0-30cm and classified as Fluvic Neosol (EMBRAPA, 2013EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 3.ed. Brasília: Centro Nacional de Pesquisa de Solos, 2013. 353p.). Then, the soil was air-dried, pounded to break up clods, homogenized and sieved through a 4-mm mesh, thus preserving its microaggregates.

The experiment was carried out in a greenhouse at the Federal Rural University of Pernambuco (UFRPE) during the period of 90 days. Seedlings of bell pepper (Capsicum annuum L.), cv. ‘Itamara’, were cultivated in pots with capacity for 8 L, filled with sieved soil, with one plant each.

Soil chemical characterization (Table 1) was performed using air-dried fine earth (ADFE), which was evaluated for pHH2O using the soil:water ratio of 1:2.5 and the exchangeable cations Ca2+, Mg2+, Na+ and K+, extracted with 1 mol L-1 ammonium acetate (Thomas, 1982Thomas, G. W. Exchangeable cations. In: Page, A. L. (ed.). Methods of soil analysis. Part-2 Chemical methods. Madison: American Society of Agronomy, Salt Lake, 1982. p.159-165.). The saturation paste was prepared (Richards, 1954Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: US Department of Agriculture, 1954. 160p. USDA Agricultural Handbook, 60) to obtain the saturation extract, analyzed for electrical conductivity and pH, with the soluble bases and the chloride ion determined through the method of titration with AgNO3 (EMBRAPA, 1997EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 1997. 212p.).

Table 1
Initial chemical characterization of the Fluvic Neosol used to fill the pots in the greenhouse experiment

The cation exchange capacity (T) was determined through the index cation method (Richards, 1954Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: US Department of Agriculture, 1954. 160p. USDA Agricultural Handbook, 60). The results of the exchange complex were used to calculate the values of sum of bases (SB) and exchangeable sodium percentage (ESP). Based on the chemical characterization, fertilization was performed according to the manual of recommendation of fertilization for the state of Pernambuco (IPA, 2008IPA - Instituto Agronômico de Pernambuco. Recomendações de adução para o Estado de Pernambuco: Segunda aproximação. 2.ed. Recife: IPA, 2008. 212p.).

The physical characterization (Table 2) consisted of analyses of granulometry and clay dispersed in water in the ADFE through the densimeter method, estimating the indices of dispersion and flocculation. Soil bulk density was determined through the graduated cylinder method and soil particle though the volumetric flask method (EMBRAPA, 1997EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 1997. 212p.). Field capacity and permanent wilting point were determined based on the characteristic soil-water retention curve (CSWRC). The total porosity was estimated using the values of soil bulk and particle density.

Table 2
Initial physical characterization of the Fluvic Neosol used to fill the pots in the greenhouse experiment

The seeds were placed to germinate on polystyrene trays and, at 40 days after sowing, the seedlings were transplanted to the pots based on their health, height and vigor, and trained using single trellis.

After transplanting, the plants were subjected to a moisture content equivalent to 80% of field capacity. The moisture content was selected based on the characteristic soil-water retention curve (CSWRC). The saline solutions used for irrigation were prepared in the laboratory using two sources of salts: NaCl and a mixture of NaCl, KCl, CaCl2 and MgCl2 (Table 3), with the following levels of electrical conductivity: 0, 1, 3, 5, 7 and 9 dS m-1. In order to justify the composition and the proportion of salts used to prepare the mixture, a water sample was collected for characterization from an artesian well located inside the area where the soil was collected.

Table 3
Salt concentrations (g L-1) required to obtain the values of electrical conductivity (dS m-1) used in the irrigation water of both salt sources

The plants were initially irrigated with distilled water, for 10 days, and the electrical conductivity was gradually increased, in order to avoid osmotic shock on the recently transplanted plants. Then, daily irrigations were performed using the saline solutions of different levels of electrical conductivity (Table 3).

Along the entire experiment, the moisture content in the pots was maintained gravimetrically. The pots were daily weighed and irrigated with a volume corresponding to the daily evapotranspiration. Weighing and irrigation were performed always at the end of the day to allow an equilibrium of the soil moisture during the night, without losses through evaporation.

The net photosynthesis (A), stomatal conductance (gs), transpiration (E), internal CO2 concentration (Ci), instantaneous carboxylation efficiency (A/Ci) and water use efficiency (A/E) were determined 15 days after induction of salinity from 8 and 11 a.m., using the Infra-Red Gas Analyzer (IRGA - Model LICOR XT 6400).

The photosynthetic pigments (chlorophyll a, b and carotenoids) were extracted according to the procedures described in Arnon (1949)Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, v.24, p.1-15, 1949. http://dx.doi.org/10.1104/pp.24.1.1
http://dx.doi.org/10.1104/pp.24.1.1...
and quantified according to Lichtenthaler & Buschmann (2001)Lichtenthaler, H. K.; Buschmann, C. W. Chlorophylls and carotenoids – Measurement and characterisation by UV-VIS. In: Wrolstad, R. E.; Acree, T. E.; An, H.; Decker, E. A.; Penner, M. H.; Reid, D. S.; Schwartz, S. J.; Shoemaker, C. F.; Sporns, P. (ed.). Current protocols in food analytical chemistry. Madison: John Wiley & Sons, 2001. F4.3.1-F4.3.8., also at 44 days after induction of salinity.

The treatments were arranged in randomized blocks, formed by four blocks in a 2 x 6 factorial scheme, which corresponded to two sources of salts (NaCl and mixture) and six levels of electrical conductivity, totaling 48 plots. The data obtained for the gas exchanges were subjected to descriptive statistical analyses through the mean and standard deviation and the data obtained for the photosynthetic pigments were analyzed through analysis of variance and fit of regression equations using the software SAEG.

Results and Discussion

There were no differences between the solutions of NaCl and mixture of salts for the gas exchanges in bell pepper plants subjected to salinity. However, plants irrigated using water with EC of 1 dS m-1 showed increase in net photosynthesis (48.86%), transpiration (38.10%), stomatal conductance (105.55%), internal CO2 concentration (6.59%) and instantaneous carboxylation efficiency (39.45%), in comparison to the control (Figures 1A, B, C, D, E).

Figure 1
Net photosynthesis (A) [A], transpiration (E) [B], stomatal conductance (gs) [C], internal CO2 concentration (Ci) [D], instantaneous carboxylation efficiency(A/Ci) [E] and water use efficiency (WUE) [F] of leaves of bell pepper (Capsicum annuum L.) at 15 days after induction of salinity

As the irrigation water EC increased, from 3 dS m-1 on, the gas exchange variables decreased and reached values of 6.75 μmol CO2 m-2 s-1 for A, 3.58 mmol H2O m-2 s-1 for E, 0.09 mol H2O m-2 s-1 for gs, 229.80 μmol CO2 mol-1 for Ci and 0.03 for instantaneous carboxylation efficiency (A/Ci) in the treatment with 9 dS m-1 (Figures 1A, B, C, D, E).

WUE showed the opposite response, increasing for all saline treatments, being 37.36% higher in comparison to the control at the EC of 9 dS m-1 (Figure 1F).

The observed reductions in net photosynthesis due to the increase in EC levels, above 3 dS m-1, are probably correlated with the increase in toxicity caused by the salts and dehydration of the cell membranes, which reduces the permeability for the inflow of CO2. In addition, the decrease in CO2 assimilation rate along with the decrease in gs and Ci suggests that such reduction of CO2 in the leaves is due to the stomatal closure (Silva et al., 2010Silva, E. N.; Ribeiro, R. V.; Ferreira-Silva, S. L.; Viégas, R. A.; Silveira, J. A. G. Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. Journal of Arid Environments, v.74, p.1130-1137, 2010. http://dx.doi.org/10.1016/j.jaridenv.2010.05.036
http://dx.doi.org/10.1016/j.jaridenv.201...
).

Stomatal closure is one of the first defense mechanism of the plants under stress, reducing leaf transpiration, besides causing reduction in the normal CO2 flow towards the carboxylation site, and gs is one of the main responsible for the reduction of photosynthesis in plants cultivated under saline conditions (Cruz et al., 2003Cruz, J. L.; Pelacani, C. R.; Soares Filho, W. S.; Castro Neto, M. T.; Coelho, E . F.; Dias, A. T.; Paes, R. A. Produção e partição de matéria seca e abertura estomática do limoeiro “cravo” submetidos a estresse salino. Revista Brasileira de Fruticultura, v.25, p.528-531, 2003. http://dx.doi.org/10.1590/S0100-29452003000300042
http://dx.doi.org/10.1590/S0100-29452003...
).

The internal CO2 concentration decreased in plants subjected to EC above 3 dS m-1 (Figure 1D). This behavior, however, does not reflect reductions in the metabolization of the carbon, but instead it reflects stomatal restrictions, since the gs values remained low for the other EC levels (Campos et al., 2014Campos, H.; Trejo, C.; Peña-Valdivia, C. B.; García-Nava, R.; Conde-Martínez, F. V.; Cruz-Ortega, M. R. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environmental and Experimental Botany, v.98, p.56-64, 2014. http://dx.doi.org/10.1016/j.envexpbot.2013.10.015
http://dx.doi.org/10.1016/j.envexpbot.20...
). If the Ci values are very low, the entry of CO2 in the mesophyll cells is limited. Thus, the plant uses CO2 from the respiration to maintain a minimum level of photosynthetic rate, making it limited.

The instantaneous carboxylation efficiency, for having a close relationship with the CO2 assimilation rate and with the intracellular CO2 concentration, showed results similar to those of these two variables and was higher in plants under EC of 1 dS m-1 and lower in plants under EC of 9 dS m-1.

The reduction in stomatal conductance is part of the response of the plants subjected to stresses to reduce the loss of available water of the environment (Chaves et al., 2009Chaves, M. M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, v.103, p.551-560, 2009. http://dx.doi.org/10.1093/aob/mcn125
http://dx.doi.org/10.1093/aob/mcn125...
). As a consequence, the water use efficiency increases with the reduction of gs, since the use of water molecules becomes more efficient (Campos et al., 2014Campos, H.; Trejo, C.; Peña-Valdivia, C. B.; García-Nava, R.; Conde-Martínez, F. V.; Cruz-Ortega, M. R. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environmental and Experimental Botany, v.98, p.56-64, 2014. http://dx.doi.org/10.1016/j.envexpbot.2013.10.015
http://dx.doi.org/10.1016/j.envexpbot.20...
).

Similar to results obtained in the present study, Bosco et al. (2009)Bosco, M. R. O.; Oliveira, A. B.; Hernandez, F. F. F.; Lacerda, C. F. de. Efeito do NaCl sobre o crescimento, fotossíntese e relações hídricas de plantas de berinjela. Revista Ceres, v.56, p.296-302, 2009. found reductions of A, gs, E and Ci due to the increasing level of electrical conductivity caused by NaCl in eggplant. Among the ten salinity levels applied, the treatment with EC of 14 dS m-1 led to the highest damages to the eggplant plants, while the variable stomatal conductance was the most sensitive to this salinity level, with reduction of 57.5%. This result is similar to that found in the present study, in which gs was also the variable most susceptible to the increase in salinity.

Tatagiba et al. (2014)Tatagiba, S. D.; Moraes, G. A. B. K.; Nascimento, K. J. T.; Peloso, A. F. Limitações fotossintéticas em folhas de plantas de tomateiro submetidas a crescentes concentrações salinas. Engenharia na Agricultura, v.52, p.138-149, 2014. http://dx.doi.org/10.13083/1414-3984.v22n02a05
http://dx.doi.org/10.13083/1414-3984.v22...
, studying the photosynthetic behavior of tomato plants subjected to four doses of salinity in the cultivation water, observed that, from 50 mmol L-1 of NaCl on, the gas exchanges showed significant reductions, decreasing in the most saline treatment (150 mmol L-1) by 59, 67 and 60% for net photosynthesis, stomatal conductance and transpiration, respectively, compared with the control, without the addition of NaCl. These reductions are similar to those found in the most saline treatment (9 dS m-1) of the present study: 45.41, 76.32 and 60.29%, respectively.

Although they did not differ between the solutions of NaCl and the mixture of salts, the photosynthetic pigments exhibited linear reduction with the increase in irrigation water EC (Figure 2), especially for chlorophyll a, decreasing its content by 50% at the EC of 9 dS m-1 in relation to the control.

Figure 2
Mean contents of chlorophyll a, b and carotenoids at different levels of electrical conductivity (n = 4) evaluated 44 days after the stress

The reduction in the contents of photosynthetic pigments in response to the salinity levels may be associated with the modifications of the metabolic activities, damages on the membrane and reduction in the development and differentiation of tissues in the chloroplasts (Ali et al., 2004Ali, Y.; Aslam, Z.; Ashraf, M. Y.; Tahir, G. R. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science & Technology, v.1, p.221-225, 2004. http://dx.doi.org/10.1007/BF03325836
http://dx.doi.org/10.1007/BF03325836...
). This reduction may also be associated with the decrease in the biosynthesis of chlorophyll a and with the increment in the activity of the chlorophyllase enzyme, and with the instability of the protein complexes caused by the effects of the salt stress (Houimili et al., 2010Houimli, S. I. M.; Denden, M.; Mouhandes, B. D. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsia Journal of BioSciences, v.4, p.96-104, 2010. http://dx.doi.org/10.5053/ejobios.2010.4.0.12
http://dx.doi.org/10.5053/ejobios.2010.4...
).

The lower reduction in the content of carotenoids may be related to its activity as antioxidant, mitigating the oxidative effects and resulting in more constant contents, even with the increase in salinity (Ziaf et al., 2009Ziaf, K.; Amjad, M.; Pervez, M. A.; Iqbal, Q.; Rajwana, I. A.; Ayyub, M. Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pakistan Journal of Botany, v.41, p.1797-1809, 2009.; Ashraf & Harris, 2013Ashraf, M.; Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica, v.51, p.163-190, 2013. http://dx.doi.org/10.1007/s11099-013-0021-6
http://dx.doi.org/10.1007/s11099-013-002...
).

Conclusion

  1. The gas exchange parameters were efficient to indicate the deleterious effects of salinity on bell pepper plants.

  2. The sources of salt did not influence the reductions of gas exchange parameters and the responses were due to the increase in the electrical conductivity.

  3. All photosynthetic pigments decreased with the increase in electrical conductivity, and chlorophyll a was the variable most sensitive to salinity.

Literature Cited

  • Ahmed, C. B.; Magdich, S.; Rouina, B. B.; Boukhris, M.; Abdullah, F. B. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. Journal of Environmental Management, v.113, p.538-544, 2012. http://dx.doi.org/10.1016/j.jenvman.2012.03.016
    » http://dx.doi.org/10.1016/j.jenvman.2012.03.016
  • Ali, Y.; Aslam, Z.; Ashraf, M. Y.; Tahir, G. R. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science & Technology, v.1, p.221-225, 2004. http://dx.doi.org/10.1007/BF03325836
    » http://dx.doi.org/10.1007/BF03325836
  • Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris Plant Physiology, v.24, p.1-15, 1949. http://dx.doi.org/10.1104/pp.24.1.1
    » http://dx.doi.org/10.1104/pp.24.1.1
  • Ashraf, M.; Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica, v.51, p.163-190, 2013. http://dx.doi.org/10.1007/s11099-013-0021-6
    » http://dx.doi.org/10.1007/s11099-013-0021-6
  • Belkheiri, O.; Mulas, M. Effect of water stress on growth, water use efficiency and gas exchange as related to osmotic adjustment of two halophytes Atriplex spp. Functional Plant Biology, v.40, p.466-474, 2013. http://dx.doi.org/10.1071/FP12245
    » http://dx.doi.org/10.1071/FP12245
  • Bosco, M. R. O.; Oliveira, A. B.; Hernandez, F. F. F.; Lacerda, C. F. de. Efeito do NaCl sobre o crescimento, fotossíntese e relações hídricas de plantas de berinjela. Revista Ceres, v.56, p.296-302, 2009.
  • Campos, H.; Trejo, C.; Peña-Valdivia, C. B.; García-Nava, R.; Conde-Martínez, F. V.; Cruz-Ortega, M. R. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environmental and Experimental Botany, v.98, p.56-64, 2014. http://dx.doi.org/10.1016/j.envexpbot.2013.10.015
    » http://dx.doi.org/10.1016/j.envexpbot.2013.10.015
  • Chaves, M. M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, v.103, p.551-560, 2009. http://dx.doi.org/10.1093/aob/mcn125
    » http://dx.doi.org/10.1093/aob/mcn125
  • Cruz, J. L.; Pelacani, C. R.; Soares Filho, W. S.; Castro Neto, M. T.; Coelho, E . F.; Dias, A. T.; Paes, R. A. Produção e partição de matéria seca e abertura estomática do limoeiro “cravo” submetidos a estresse salino. Revista Brasileira de Fruticultura, v.25, p.528-531, 2003. http://dx.doi.org/10.1590/S0100-29452003000300042
    » http://dx.doi.org/10.1590/S0100-29452003000300042
  • Duarte, H. H. F.; Souza, E. R. Soil water potentials and Capsicum annuum L. under salinity. Revista Brasileira de Ciência do Solo, v.40, p.1-11, 2016.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 1997. 212p.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 3.ed. Brasília: Centro Nacional de Pesquisa de Solos, 2013. 353p.
  • Flowers T. J.; Colmer T. D. Salinity tolerance in halophytes. New Phytologist, v.179, p.945-963, 2008. http://dx.doi.org/10.1111/j.1469-8137.2008.02531.x
    » http://dx.doi.org/10.1111/j.1469-8137.2008.02531.x
  • Glenn, E. P.; Nelson, S. G.; Ambrose, B.; Martinez, R.; Soliz, D.; Pabendinskas, V.; Hultine, K. Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environmental and Experimental Botany, v.83, p.62-72, 2012. http://dx.doi.org/10.1016/j.envexpbot.2012.04.010
    » http://dx.doi.org/10.1016/j.envexpbot.2012.04.010
  • Houimli, S. I. M.; Denden, M.; Mouhandes, B. D. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsia Journal of BioSciences, v.4, p.96-104, 2010. http://dx.doi.org/10.5053/ejobios.2010.4.0.12
    » http://dx.doi.org/10.5053/ejobios.2010.4.0.12
  • IBGE - Instituto Brasileiro de Geografia e Estatística. Censo agropecuário. Rio de Janeiro: IBGE, 2006. 777p.
  • IPA - Instituto Agronômico de Pernambuco. Recomendações de adução para o Estado de Pernambuco: Segunda aproximação. 2.ed. Recife: IPA, 2008. 212p.
  • Lichtenthaler, H. K.; Buschmann, C. W. Chlorophylls and carotenoids – Measurement and characterisation by UV-VIS. In: Wrolstad, R. E.; Acree, T. E.; An, H.; Decker, E. A.; Penner, M. H.; Reid, D. S.; Schwartz, S. J.; Shoemaker, C. F.; Sporns, P. (ed.). Current protocols in food analytical chemistry. Madison: John Wiley & Sons, 2001. F4.3.1-F4.3.8.
  • Melo, H. F.; Souza, E. R.; Almeida, B. G.; Freire, M. B. G.; Maia, F. E. Growth, biomass production and ions accumulation in Atriplex nummularia Lindl grown under abiotic stress. Revista Brasileira de Engenharia Agrícola e Ambiental, v.20, p.144-151, 2016. http://dx.doi.org/10.1590/1807-1929/agriambi.v20n2p144-151
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v20n2p144-151
  • Nascimento, I. B.; Medeiros, J. F. de; Alves, S. S. V.; Lima, B. L. C.; Silva, J. L. A. Desenvolvimento inicial da cultura do pimentão influenciado pela salinidade da água de irrigação em dois tipos de solos. Agropecuária Científica do Semiárido, v.11, p.37-43, 2015.
  • Nedjimi, B. Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochemical Systematics and Ecology, v.52, p.4-13, 2014. http://dx.doi.org/10.1016/j.bse.2013.10.007
    » http://dx.doi.org/10.1016/j.bse.2013.10.007
  • Rhein, A. F. L.; Cruz, F. J. R.; Ferraz, R. L. S.; Santos, D. M. M. Crescimento radicular e pigmentos clorofilianos em duas forrageiras submetidas a níveis crescentes de NaCl. Científica, v.43, p.330-335, 2015. http://dx.doi.org/10.15361/1984-5529.2015v43n4p330-335
    » http://dx.doi.org/10.15361/1984-5529.2015v43n4p330-335
  • Santos, C. M.; Verissimo, V.; Wanderley Filho, H. C. L.; Ferreira, V. M.; Cavalcante, P. G. S.; Rolim, E. V.; Endres, L. Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semihumid and semi-arid areas subject to water stress. Industrial Crops and Products, v.41, p.203-213, 2013. http://dx.doi.org/10.1016/j.indcrop.2012.04.003
    » http://dx.doi.org/10.1016/j.indcrop.2012.04.003
  • Silva, E. N.; Ribeiro, R. V.; Ferreira-Silva, S. L.; Viégas, R. A.; Silveira, J. A. G. Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. Journal of Arid Environments, v.74, p.1130-1137, 2010. http://dx.doi.org/10.1016/j.jaridenv.2010.05.036
    » http://dx.doi.org/10.1016/j.jaridenv.2010.05.036
  • Souza, E. R.; Freire, M. B. G. S.; Cunha, K. P. V.; Nascimento, C. W. A.; Ruiz, H. A.; Lins, C. M. T. Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline soil under water stress. Environmental and Experimental Botany, v.82, p.20-27, 2012. http://dx.doi.org/10.1016/j.envexpbot.2012.03.007
    » http://dx.doi.org/10.1016/j.envexpbot.2012.03.007
  • Souza, E. R.; Freire, M. B. G. S.; Melo, D. V. M.; Montenegro, A. A. A. Management of Atriplex nummularia Lindl. in a salt affected soil in a semi arid region of Brazil. International Journal of Phytoremediation, v.16, p.73-85, 2014. http://dx.doi.org/10.1080/15226514.2012.759529
    » http://dx.doi.org/10.1080/15226514.2012.759529
  • Tatagiba, S. D.; Moraes, G. A. B. K.; Nascimento, K. J. T.; Peloso, A. F. Limitações fotossintéticas em folhas de plantas de tomateiro submetidas a crescentes concentrações salinas. Engenharia na Agricultura, v.52, p.138-149, 2014. http://dx.doi.org/10.13083/1414-3984.v22n02a05
    » http://dx.doi.org/10.13083/1414-3984.v22n02a05
  • Thomas, G. W. Exchangeable cations. In: Page, A. L. (ed.). Methods of soil analysis. Part-2 Chemical methods. Madison: American Society of Agronomy, Salt Lake, 1982. p.159-165.
  • Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: US Department of Agriculture, 1954. 160p. USDA Agricultural Handbook, 60
  • Ziaf, K.; Amjad, M.; Pervez, M. A.; Iqbal, Q.; Rajwana, I. A.; Ayyub, M. Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pakistan Journal of Botany, v.41, p.1797-1809, 2009.

Publication Dates

  • Publication in this collection
    Jan 2017

History

  • Received
    22 Apr 2016
  • Accepted
    28 Oct 2016
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com