Acessibilidade / Reportar erro

Physical properties of buckwheat (Fagopyrum esculentum Moench) grains during convective drying

Propriedades físicas de grãos de trigo mourisco (Fagopyrum esculentum Moench) durante a secagem convectiva

ABSTRACT

Buckwheat is a prominent crop in present-day agriculture due to its nutraceutical properties; however, information on this crop regarding the post-harvest process is scarce, as well as the characterization of its physical properties and such information is essential for the development and improvement of machinery used in post-harvest processes. Thus, the objective of this study was to determine the volumetric shrinkage, porosity, bulk density and true density of buckwheat grains throughout the drying process, as well as to fit mathematical models to the experimental values of true and bulk volumetric shrinkages. Buckwheat grains of the cultivar IPR 91 - Baili with an initial moisture content of 0.250 (decimal, dry basis.) were used. The samples used to determine the physical properties were subjected to oven drying with forced air circulation stabilized at 40 ± 1 °C. The mass of the samples was periodically weighed, so that when the product reached predetermined values of moisture content, the samples were removed and their physical properties were determined. It is concluded that the reduction in moisture content during drying causes increase in bulk density, true density and porosity. The reduction of the moisture content influences bulk volumetric shrinkage and true volumetric shrinkage of the grains, causing reductions in their values of approximately 14.47 and 14.70%, respectively, and a linear model can represent both variables satisfactorily.

Key words:
post-harvest; moisture content; volumetric shrinkage

RESUMO

O trigo mourisco é uma cultura de destaque na agricultura atual devido às suas propriedades nutracêuticas; no entanto, informações dessa cultura referente ao processo pós-colheita são escassas, assim como a caracterização de suas propriedades físicas, sendo que tais informações são essenciais para o desenvolvimento e aperfeiçoamento de maquinários utilizados nos processos pós-colheita. Deste modo, objetivou-se com o presente trabalho determinar a contração volumétrica, a porosidade, as massas específicas aparente e unitária dos grãos de trigo mourisco ao longo do processo de secagem, bem como ajustar modelos matemáticos aos valores experimentais da contração unitária e da massa. Foram utilizados grãos de trigo mourisco da cultivar IPR 91 – Baili, com teor de água inicial de 0,250 (decimal, base seca). As amostras utilizadas para determinação das propriedades físicas foram submetidas à secagem em estufa com circulação forçada de ar estabilizada à temperatura de 40 ± 1 °C. A massa das amostras foi pesada periodicamente, de modo que, quando o produto atingisse valores pré-estabelecidos de teor de água, eram retiradas e encaminhadas para determinação de suas propriedades físicas. Conclui-se que, a redução do teor de água durante a secagem causa o aumento da massa específica aparente e unitária e da porosidade. A redução do teor de água influencia a contração volumétrica da massa e contração volumétrica unitária dos grãos, provocando redução em seus valores de aproximadamente 14,47 e 14,70%, respectivamente, em que ambas as variáveis podem ser representadas satisfatoriamente por um modelo linear.

Palavras-chave:
pós-colheita; teor de água; contração volumétrica

Introduction

Buckwheat (Fagopyrum esculentum Moench) is a dicotyledonous plant belonging to the Polygonaceae family, with no kinship with common wheat. Its flour does not contain gluten and is mainly recommended for people with celiac disease; in addition, it positively affects human organism (Wronkowska et al., 2010Wronkowska, M.; Zielińska, D.; Szawara-Nowak, D.; Troszyńska, A.; Soral-Śmietana, M. Antioxidative and reducing capacity, macroelements content and sensorial properties of buckwheat enhanced gluten free bread. International Journal of Food Science & Technology, v.45, p.1993-2000, 2010. https://doi.org/10.1111/j.1365-2621.2010.02375.x
https://doi.org/10.1111/j.1365-2621.2010...
).

Buckwheat protein is of excellent quality and has high content of lysine, an essential amino acid which is deficient in most common cereals (Rodrigues & Oliveira, 2010Rodrigues, C. M.; Oliveira, V. R. Utilização de farinha de trigo sarraceno em associação com farinha de arroz e soja na elaboração de minipizzas. Alimentos e Nutrição, v.21, p.21-24, 2010.). It contains dietary fiber, resistant starch, rutin and mineral salts, besides a high level of essential polyunsaturated fatty acids and several vitamins (Sedej et al., 2011Sedej, I.; Sakač, M.; Mandić, A.; Mišan, A.; Pestorić, M.; Šimurina, O.; Čanadanović-Brunet, J. Quality assessment of gluten-free crackers based on buckwheat flour. Food Science and Technology, v.44, p.694-699, 2011. https://doi.org/10.1016/j.lwt.2010.11.010
https://doi.org/10.1016/j.lwt.2010.11.01...
).

Given the economic potential, up to present time some studies have been conducted with the crop, related to yield (Görgen et al., 2016Görgen, A. V.; Cabral Filho, S. L. S.; Leite, G. G.; Spehar, C. R.; Diogo, J. M. S.; Ferreira, D. B. Produtividade e qualidade da forragem de trigo-mourisco (Fagopyrum esculentum Moench) e de milheto (Pennisetum glaucum (L.) R.BR). Revista Brasileira de Saúde e Produção Animal, v.17, p.599-607, 2016. https://doi.org/10.1590/s1519-99402016000400004
https://doi.org/10.1590/s1519-9940201600...
), adaptation (Alves et al., 2016Alves, J. D. C.; Souza, A. P. D.; Pôrto, M. L.; Fontes, R. L.; Arruda, J.; Marques, L. F. Potential of sunflower, castor bean, common buckwheat and vetiver as lead phytoaccumulators. Revista Brasileira de Engenharia Agrícola e Ambiental, v.20, p.243-249, 2016. https://doi.org/10.1590/1807-1929/agriambi.v20n3p243-249
https://doi.org/10.1590/1807-1929/agriam...
), cultivation (Vazhov et al., 2013Vazhov, V. M.; Kozil, V. N.; Odintsev, A. V. General methods of buckwheat cultivation in Altai region. World Applied Sciences Journal, v.9, p.1157-1162, 2013.) and nutritional properties (Zhu, 2016Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chemistry, v.203, p.231-245, 2016. https://doi.org/10.1016/j.foodchem.2016.02.050
https://doi.org/10.1016/j.foodchem.2016....
). However, information on drying and physical properties of this species is very vague. Variations in true density, bulk density, porosity and volumetric shrinkage are observed in several agricultural products along the drying process (Payman et al., 2011Payman, S. H.; Ajdadi, F. R.; Bagheri, I.; Alizadeh, M. R. Effect of moisture content on some engineering properties of peanut varieties. Journal of Food, Agriculture & Environment, v.9, p.326-331, 2011.; Mir et al., 2013Mir, S. A.; Bosco, S. J. D.; Sunooj, K. V. Evaluation of physical properties of rice cultivars grown in the temperate region of India. International Food Research Journal, v.20, p.1521-1527, 2013.; Botelho et al., 2016Botelho, F. M.; Corrêa, P. C.; Botelho, S. D. C. C.; Elías, G. A. V.; Almeida, M. D. S. D.; Oliveira, G. H. H. Propriedades físicas de frutos de café robusta durante a secagem: Determinação e modelagem. Coffee Science, v.11, p.65-75, 2016.; Smaniotto et al., 2016Smaniotto, T. A. de S.; Resende, O.; Oliveira, D. E. C. de; Siqueira, V. C.; Sousa, K. A. Ajuste de modelos matemáticos a contração volumétrica unitária e da massa dos grãos de soja. Revista Agro@mbiente On-line, v.9, p.397-404, 2016.; Sousa et al., 2016Sousa, R. V. de; Mata, M. E. R. C.; Duarte, M. E. M.; Almeida, R. D.; Rosa, M. E. C.; Sousa, A. C. de. Influência do teor de água nas propriedades físicas dos grãos de arroz vermelho em casca. Revista Brasileira de Produtos Agroindustriais, v.18, p.495-502, 2016. https://doi.org/10.15871/1517-8595/rbpa.v18nespp495-502
https://doi.org/10.15871/1517-8595/rbpa....
). These properties are of extreme importance to optimize the post-harvest process because they are necessary in the calculations of the static capacity of the silo, dimensioning of dryers, transporters and fans for drying and aeration systems.

Given the lack of information on the physical properties of buckwheat during drying, the present work aimed to determine the volumetric shrinkage, porosity, bulk density and true density of buckwheat grains along the drying process, as well as to fit mathematical models to the experimental values of true and bulk volumetric shrinkage.

Material and Methods

The study was conducted at the Laboratory of Physical Properties of Agricultural Products of the Faculty of Agrarian Sciences, belonging to the Federal University of Grande Dourados, located in the municipality of Dourados, MS, Brazil.

Grains of the buckwheat cultivar IPR 91 – Baili, mechanically harvested, with initial moisture content of 0.250 (decimal, d.b.) were used in the experiment.

The initial moisture content of the samples was determined using the oven method described by the Rules for Seed Analysis (Brasil, 2009Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: MAPA, 2009.395p.), modified, using a forced ventilation oven at 105 ± 1 ºC for 24 h, in three replicates.

The buckwheat samples used to determine physical properties were subjected to drying in forced air circulation oven stabilized at temperature of 40 ± 1 °C, providing relative humidity of 22 ± 2.3%, and this value was obtained by basic principles of psychrometry.

Drying was monitored based on mass difference, by knowing the initial moisture content of the product. As drying began, the mass of the samples was weighed periodically on a semi-analytical scale with 0.01 g resolution. When the product reached preestablished moisture contents (0.250, 0.234, 0.219, 0.204, 0.190, 0.176, 0.162, 0.149 and 0.136, decimal d.b.), the samples were removed and their physical properties were determined.

The true density of the grain mass (ρt) was determined by the direct method, with addition of hexane, in a known mass of grains. This solvent was used because it has low density and is not absorbed by the grains (Donadon et al., 2012Donadon, J. R.; Resende, O.; Castro, C. F. S.; Mendes, U. C.; Gonçalves, D. N. Comparação entre o tolueno e o hexano na determinação da porosidade intergranular de diferentes produtos agrícolas. Revista Brasileira de Armazenamento, v.37, p.37-40, 2012. ). All tests were conducted using a 30-mL flask and a 50-mL burette. By knowing the mass of the grains, mass and volume of the flask and solvent density, it was possible to obtain the total volume of the sample, which was divided by the number of grains to determine the individual volume.

Bulk density (ρb), in kg m-3, for the product was determined using a scale of hectoliter weight, with 1 L volume, with three replicates for each moisture content, as described by Siqueira et al. (2012a)Siqueira, V. C.; Resende, O.; Chaves, T. H. Propriedades físicas dos frutos de pinhão-manso durante a secagem. Global Science and Technology, v.5, p.83-92, 2012a. https://doi.org/10.14688/1984-3801/gst.v5n1p83-92
https://doi.org/10.14688/1984-3801/gst.v...
.

Porosity (ε, in %) of buckwheat seeds was indirectly calculated by Eq. 1 (Mohsenin, 1986Mohsenin, N. N. Physical properties of plant and animal materials. New York: Gordon and Breach Publishers, 1986. 841p.), traditionally used for agricultural products.

ε = 1 - ρ b ρ t × 100 (1)

The experimental data relative to the bulk density, true density and porosity of buckwheat grains were subjected to linear regression analysis. Regression models were fitted using the computer program SigmaPlot 11.0 (Systat Software Inc., 2008Systat Software Inc. SigmaPlot for windows, trial version 14.0. 2016. Available on: <http://www.systat.com>. Access on: Aug. 2017..
http://www.systat.com...
). The criteria to select the models were their significance level by F test, along with the coefficients of determination (R2).

To determine the coefficients of true and bulk volumetric shrinkages of buckwheat grains, the ratio between the product volume at a certain instant and its initial volume was calculated using Eq. 2 (Siqueira et al., 2012bSiqueira, V. C.; Resende, O.; Chaves, T. H. Determination of the volumetric shrinkage in jatropha seeds during drying. Acta Scientiarum. Agronomy. v.34, p.231-238, 2012b. https://doi.org/10.4025/actasciagron.v34i3.14402
https://doi.org/10.4025/actasciagron.v34...
).

ψ = V V 0 (2)

where:

Ѱ - coefficient of volumetric shrinkage, dimensionless;

V - volume (of the mass or grain) at a certain instant, cm3; and,

V0 - initial volume (of the mass or grain), cm3.

Bulk volumetric shrinkage was monitored based on an initial volume of 150 cm3 (150 mL) of buckwheat grains. The reduction of this volume was verified along the drying process by transferring the grain mass to a 150-cm3 cylinder and recording the volume for the predetermined moisture contents during the drying. For each moisture content sampled, three measurements of grain mass volume were taken in the 150-cm3 cylinder, and the grain mass volume was represented by the mean of these three measurements.

Mathematical models (Table 1) were fitted to the experimental data of coefficients of true and bulk volumetric shrinkage of buckwheat grains.

Table 1
Mathematical models used to represent the coefficients of true and bulk volumetric shrinkage of buckwheat grains as a function of moisture content

The experimental data of true volumetric shrinkage and bulk volumetric shrinkage were subjected to nonlinear regression analysis by the Gauss-Newton method. The models were fitted to the experimental data using the computer program Statistica 7.0 (Statistica, 2005Statistica. Statistica 7.0. EUA Software. Tulsa: StatSof, 2005.).

The models to represent the volumetric shrinkage coefficient were selected considering the values of the relative mean error (P), standard error of the estimate (SE), coefficient of determination (R2) and residual distribution. Relative mean error and standard error of the estimate were calculated according to Eqs. 9 and 10 (Siqueira et al., 2012bSiqueira, V. C.; Resende, O.; Chaves, T. H. Determination of the volumetric shrinkage in jatropha seeds during drying. Acta Scientiarum. Agronomy. v.34, p.231-238, 2012b. https://doi.org/10.4025/actasciagron.v34i3.14402
https://doi.org/10.4025/actasciagron.v34...
):

P = 100 n i = 1 n Y - Y ^ Y (9)

S E = i = 1 n Y - Y ^ 2 D F (10)

where:

n - number of experimental observations;

Y - experimental value;

Ŷ - value estimated by the model; and,

DF - degrees of freedom of the model.

Results and Discussion

Bulk density and true density of buckwheat grains increased with the reduction in moisture content (Figure 1). The estimated values of bulk density and true density of buckwheat grains varied from 633.24 to 663.91 kg m-3 and from 1089.28 to 1252.17 kg m-3, respectively, for a variation in product moisture content from 0.250 to 0.136 (decimal, d.b.). Such behavior is similar to those of most agricultural products studied (Firouzi et al., 2009Firouzi, S.; Vishgaei, M. N. S.; Kaviani, B. Some physical properties of groundnut (Arachis hypogaea L.) kernel cv. NC2 as a function of moisture content. American-Eurasian Journal of Agricultural & Environmental Sciences, v.6, p.675-679, 2009.; Payman et al., 2011Payman, S. H.; Ajdadi, F. R.; Bagheri, I.; Alizadeh, M. R. Effect of moisture content on some engineering properties of peanut varieties. Journal of Food, Agriculture & Environment, v.9, p.326-331, 2011.; Oliveira Neto et al., 2012Oliveira Neto, M. C. de; Reis, R. C.; Devilla, I. A. Propriedades físicas de sementes de feijão (Phaseolus vulgaris L.) variedade "Emgopa 201-Ouro". Revista Agrotecnologia, v.1, p.99-110, 2012. https://doi.org/10.12971/2179-5959.v01n01a07
https://doi.org/10.12971/2179-5959.v01n0...
; Jesus et al., 2013Jesus, F. F.; Souza, R. T. G.; Teixeira, G. C. S.; Teixeira, I. R.; Devilla, I. A. Propriedades físicas de sementes de feijão em função de teores de água. Engenharia na Agricultura, v.21, p.9-18, 2013.; Theertha et al., 2014Theertha, D. P.; Sujeetha, J. A. R. P.; Abirami, C. V. K.; Alagusundaram, K. Effect of moisture content on physical and gravimetric properties of black gram (Vigna mungo L.). International Journal of Advancements in Research & Technology, v.3, p.97-104, 2014.).

Figure 1
Experimental and estimated values of bulk density (ρb) (A) and true density (ρt) (B) of buckwheat grains as a function of moisture content (U)

With the reduction in moisture content and consequently in the volume, the grains were more easily arranged within the container, increasing the bulk density, as described by Siqueira et al. (2012a)Siqueira, V. C.; Resende, O.; Chaves, T. H. Propriedades físicas dos frutos de pinhão-manso durante a secagem. Global Science and Technology, v.5, p.83-92, 2012a. https://doi.org/10.14688/1984-3801/gst.v5n1p83-92
https://doi.org/10.14688/1984-3801/gst.v...
. True density tends to increase because the densities of the main compounds of the grain (carbohydrates and proteins) are higher than the density of water (USDA, 1975USDA - United States Department of Agriculture. Handbook of the nutritional contents of foods. New York: Dove Publications, 1975. 190p.), which was removed by the drying process.

It was also observed in Figure 1 (A and B) that the variation in bulk density and true density as a function of the reduction in moisture content can be satisfactorily represented by linear models, which indicates that, with the drying, the densities increased proportionally, as observed by other researchers (Solomon & Zewdu, 2009Solomon, W. K.; Zewdu, A. D. Moisture-dependent physical properties of niger (Guizotia abyssinica Cass.) seed. Industrial Crops and Products, v.29, p.165-170, 2009. https://doi.org/10.1016/j.indcrop.2008.04.018
https://doi.org/10.1016/j.indcrop.2008.0...
; Sousa et al, 2016Sousa, R. V. de; Mata, M. E. R. C.; Duarte, M. E. M.; Almeida, R. D.; Rosa, M. E. C.; Sousa, A. C. de. Influência do teor de água nas propriedades físicas dos grãos de arroz vermelho em casca. Revista Brasileira de Produtos Agroindustriais, v.18, p.495-502, 2016. https://doi.org/10.15871/1517-8595/rbpa.v18nespp495-502
https://doi.org/10.15871/1517-8595/rbpa....
).

Porosity values increased as moisture content decreased (Figure 2). Kingsly et al. (2006)Kingsly, A. R. P.; Singh, D. B.; Manikantan, M. R.; Jain, R. K. Moisture dependent physical properties of dried pomegranate seeds (Anardana). Journal of Food Engineering, v.75, p.492-496, 2006. https://doi.org/10.1016/j.jfoodeng.2005.04.033
https://doi.org/10.1016/j.jfoodeng.2005....
and Kibar & Öztürk (2008)Kibar, H.; Öztürk, T. Physical and mechanical properties of soybean. International Agrophysics, v.22, p.239-244, 2008. reported a similar increment in the voids of the grain masses of pomegranate and soybean, respectively. This behavior is probably associated with the pyramid shape of the product (Oliveira et al., 2015Oliveira, F. de; Ritto, J. L. A.; Jorge, L. I. F.; Barroso, I. C. E.; Prado, B. W. Microscopia de alimentos: Exames microscópicos de alimentos in natura e tecnologicamente processado. Rio de Janeiro: Editora Atheneu, 2015. 412p.). The linear model satisfactorily represents the experimental values, showing high coefficient of determination (R2). Porosity in the mass of buckwheat grains had estimated values between 41.98 and 47.06% within the studied range of moisture content. Thus, it was found that, in air movement systems, the lower the moisture content, the lower the resistance offered by the grain mass to the passing of the air, since there is formation of more voids.

Figure 2
Experimental and estimated values of porosity (ε) in the mass of buckwheat grains as a function of moisture content (U)

Table 2 shows the regression equations for bulk volumetric shrinkage and true volumetric shrinkage of buckwheat grains as a function of moisture content, with their respective coefficients of determination, relative mean error, standard error of the estimate, and residual distribution. All models fitted had low values of relative mean error, all below 10. According to Mohapatra & Rao (2005)Mohapatra, D.; Rao, P. S. A thin layer drying model of parboiled wheat. Journal of Food Engineering, v.66, p.513-518, 2005. https://doi.org/10.1016/j.jfoodeng.2004.04.023
https://doi.org/10.1016/j.jfoodeng.2004....
, the relative mean error is a parameter that can be used to recommend or not a model. Relative mean error values reflect the deviation of the observed values with respect to the curve estimated by the model (Kashaninejad et al., 2007Kashaninejad, M.; Mortazavi, A.; Safekordi, A.; Tabil, L. G. Thin-Iayer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, v.78, p.98-108, 2007. https://doi.org/10.1016/j.jfoodeng.2005.09.007
https://doi.org/10.1016/j.jfoodeng.2005....
). Thus, in this case, the deviation can be considered as acceptable.

Table 2
Models of bulk volumetric shrinkage and true volumetric shrinkage of buckwheat grains with their respective coefficients of determination (R2, decimal), standard error of the estimate (SE, decimal), relative mean error (P, %), and residual distribution

The standard error of the estimate (SE) demonstrates the capacity of a model to accurately describe a certain physical process, and the lower its value, the better the quality of fit of the model in comparison to the experimental data (Siqueira et al., 2012bSiqueira, V. C.; Resende, O.; Chaves, T. H. Determination of the volumetric shrinkage in jatropha seeds during drying. Acta Scientiarum. Agronomy. v.34, p.231-238, 2012b. https://doi.org/10.4025/actasciagron.v34i3.14402
https://doi.org/10.4025/actasciagron.v34...
). Thus, all models used showed a good fit, for bulk volumetric shrinkage and true volumetric shrinkage, since their values are very low.

The good behavior of the models in comparison to the experimental data can also be observed in the residual distribution, which was random in all cases, indicating good fit (Goneli et al., 2011Goneli, A. L. D.; Corrêa, P. C.; Magalhães, F. E. de A.; Baptestini, F. M. Contração volumétrica e forma dos frutos de mamona durante a secagem. Acta Scientiarum. Agronomy, v.33, p.1-8, 2011. https://doi.org/10.4025/actasciagron.v33i1.4629
https://doi.org/10.4025/actasciagron.v33...
), and in the coefficients of determination, which were above 0.95 for all conditions. Madamba et al. (1996)Madamba, P. S.; Driscoll, R. H.; Buckle, K. A. The thin layer drying characteristic of garlic slices. Journal of Food Engineering, v.29, p.75-97, 1996. https://doi.org/10.1016/0260-8774(95)00062-3
https://doi.org/10.1016/0260-8774(95)000...
claim that it indicates satisfactory representation by the models used.

Based on a joint analysis of the statistical parameters, it is possible to state that all models used to represent bulk volumetric shrinkage and true volumetric shrinkage of buckwheat grains can be recommended with high reliability, since all models evaluated showed low SE values, P values below 10% and R2 values above 95% (Draper & Smith, 1998Draper, N. R.; Smith, H. Applied regression analysis. 3.ed. New York: Wiley, 1998. 736p.; Goneli et al., 2011Goneli, A. L. D.; Corrêa, P. C.; Magalhães, F. E. de A.; Baptestini, F. M. Contração volumétrica e forma dos frutos de mamona durante a secagem. Acta Scientiarum. Agronomy, v.33, p.1-8, 2011. https://doi.org/10.4025/actasciagron.v33i1.4629
https://doi.org/10.4025/actasciagron.v33...
; Siqueira et al., 2012bSiqueira, V. C.; Resende, O.; Chaves, T. H. Determination of the volumetric shrinkage in jatropha seeds during drying. Acta Scientiarum. Agronomy. v.34, p.231-238, 2012b. https://doi.org/10.4025/actasciagron.v34i3.14402
https://doi.org/10.4025/actasciagron.v34...
).

Among all models fitted to the experimental data, the linear model is the simplest one and was therefore used to describe the phenomenon of shrinkage. In addition, it has been recommended to represent the volumetric shrinkage of other agricultural products, such as soybean (Smaniotto et al., 2016Smaniotto, T. A. de S.; Resende, O.; Oliveira, D. E. C. de; Siqueira, V. C.; Sousa, K. A. Ajuste de modelos matemáticos a contração volumétrica unitária e da massa dos grãos de soja. Revista Agro@mbiente On-line, v.9, p.397-404, 2016.), common beans (Oliveira Neto et al., 2012Oliveira Neto, M. C. de; Reis, R. C.; Devilla, I. A. Propriedades físicas de sementes de feijão (Phaseolus vulgaris L.) variedade "Emgopa 201-Ouro". Revista Agrotecnologia, v.1, p.99-110, 2012. https://doi.org/10.12971/2179-5959.v01n01a07
https://doi.org/10.12971/2179-5959.v01n0...
) and peanut (Payman et al., 2011Payman, S. H.; Ajdadi, F. R.; Bagheri, I.; Alizadeh, M. R. Effect of moisture content on some engineering properties of peanut varieties. Journal of Food, Agriculture & Environment, v.9, p.326-331, 2011.). The excellent fit of the model, reliably representing the behavior of bulk and true volumetric shrinkage of buckwheat grains, can be seen in Figure 3.

Figure 3
Coefficients of bulk volumetric shrinkage (A) and true volumetric shrinkage (B) of buckwheat grains, experimental and estimated by the linear model as a function of moisture content

According to the results, the estimated values of the mass of buckwheat grains showed a reduction in the initial volume of about 14.47% and in the true volumetric shrinkage, following the same behavior, was 14.70% for the moisture content range from 0.250 to 0.136 (decimal, d.b.). If the linear model is adopted to represent the shrinkage, for every 0.01 variation (decimal, d.b.) in the moisture content, there was a 0.0128% variation in the true volumetric shrinkage. For bulk volumetric shrinkage, there was a variation of 0.0129%. These data are of extreme importance to optimize the use of dryers, because they can be used to calculate the volume necessary to refill the dryer’s drying chamber, so that it works always full, ensuring maximum productivity.

Conclusions

  1. Reduction in moisture content during drying causes increase in bulk density, true density and porosity.

  2. Reduction in moisture content influences bulk volumetric shrinkage and true volumetric shrinkage of buckwheat grains, causing reductions in their values of approximately 14.47 and 14.70%, respectively, and both variables can be satisfactorily represented by the linear model of shrinkage.

Literature Cited

  • Alves, J. D. C.; Souza, A. P. D.; Pôrto, M. L.; Fontes, R. L.; Arruda, J.; Marques, L. F. Potential of sunflower, castor bean, common buckwheat and vetiver as lead phytoaccumulators. Revista Brasileira de Engenharia Agrícola e Ambiental, v.20, p.243-249, 2016. https://doi.org/10.1590/1807-1929/agriambi.v20n3p243-249
    » https://doi.org/10.1590/1807-1929/agriambi.v20n3p243-249
  • Bala, B. K.; Woods, J. L. Simulation of deep bed malt drying. Journal Agricultural Engineering Research, v.30, p.235-244, 1984. https://doi.org/10.1016/S0021-8634(84)80024-4
    » https://doi.org/10.1016/S0021-8634(84)80024-4
  • Botelho, F. M.; Corrêa, P. C.; Botelho, S. D. C. C.; Elías, G. A. V.; Almeida, M. D. S. D.; Oliveira, G. H. H. Propriedades físicas de frutos de café robusta durante a secagem: Determinação e modelagem. Coffee Science, v.11, p.65-75, 2016.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: MAPA, 2009.395p.
  • Corrêa, P. C.; Ribeiro, D. M.; Resende, O.; Afonso Júnior, P. C.; Goneli, A. L. D. Mathematical modelling for representation of coffee berry volumetric shrinkage. In: International Drying Symposium, 14, 2004, São Paulo. Proceedings... São Paulo: IDS, 2004. p.742-747.
  • Donadon, J. R.; Resende, O.; Castro, C. F. S.; Mendes, U. C.; Gonçalves, D. N. Comparação entre o tolueno e o hexano na determinação da porosidade intergranular de diferentes produtos agrícolas. Revista Brasileira de Armazenamento, v.37, p.37-40, 2012.
  • Draper, N. R.; Smith, H. Applied regression analysis. 3.ed. New York: Wiley, 1998. 736p.
  • Firouzi, S.; Vishgaei, M. N. S.; Kaviani, B. Some physical properties of groundnut (Arachis hypogaea L.) kernel cv. NC2 as a function of moisture content. American-Eurasian Journal of Agricultural & Environmental Sciences, v.6, p.675-679, 2009.
  • Goneli, A. L. D.; Corrêa, P. C.; Magalhães, F. E. de A.; Baptestini, F. M. Contração volumétrica e forma dos frutos de mamona durante a secagem. Acta Scientiarum. Agronomy, v.33, p.1-8, 2011. https://doi.org/10.4025/actasciagron.v33i1.4629
    » https://doi.org/10.4025/actasciagron.v33i1.4629
  • Görgen, A. V.; Cabral Filho, S. L. S.; Leite, G. G.; Spehar, C. R.; Diogo, J. M. S.; Ferreira, D. B. Produtividade e qualidade da forragem de trigo-mourisco (Fagopyrum esculentum Moench) e de milheto (Pennisetum glaucum (L.) R.BR). Revista Brasileira de Saúde e Produção Animal, v.17, p.599-607, 2016. https://doi.org/10.1590/s1519-99402016000400004
    » https://doi.org/10.1590/s1519-99402016000400004
  • Jesus, F. F.; Souza, R. T. G.; Teixeira, G. C. S.; Teixeira, I. R.; Devilla, I. A. Propriedades físicas de sementes de feijão em função de teores de água. Engenharia na Agricultura, v.21, p.9-18, 2013.
  • Kashaninejad, M.; Mortazavi, A.; Safekordi, A.; Tabil, L. G. Thin-Iayer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, v.78, p.98-108, 2007. https://doi.org/10.1016/j.jfoodeng.2005.09.007
    » https://doi.org/10.1016/j.jfoodeng.2005.09.007
  • Kibar, H.; Öztürk, T. Physical and mechanical properties of soybean. International Agrophysics, v.22, p.239-244, 2008.
  • Kingsly, A. R. P.; Singh, D. B.; Manikantan, M. R.; Jain, R. K. Moisture dependent physical properties of dried pomegranate seeds (Anardana). Journal of Food Engineering, v.75, p.492-496, 2006. https://doi.org/10.1016/j.jfoodeng.2005.04.033
    » https://doi.org/10.1016/j.jfoodeng.2005.04.033
  • Madamba, P. S.; Driscoll, R. H.; Buckle, K. A. The thin layer drying characteristic of garlic slices. Journal of Food Engineering, v.29, p.75-97, 1996. https://doi.org/10.1016/0260-8774(95)00062-3
    » https://doi.org/10.1016/0260-8774(95)00062-3
  • Mir, S. A.; Bosco, S. J. D.; Sunooj, K. V. Evaluation of physical properties of rice cultivars grown in the temperate region of India. International Food Research Journal, v.20, p.1521-1527, 2013.
  • Mohapatra, D.; Rao, P. S. A thin layer drying model of parboiled wheat. Journal of Food Engineering, v.66, p.513-518, 2005. https://doi.org/10.1016/j.jfoodeng.2004.04.023
    » https://doi.org/10.1016/j.jfoodeng.2004.04.023
  • Mohsenin, N. N. Physical properties of plant and animal materials. New York: Gordon and Breach Publishers, 1986. 841p.
  • Oliveira, F. de; Ritto, J. L. A.; Jorge, L. I. F.; Barroso, I. C. E.; Prado, B. W. Microscopia de alimentos: Exames microscópicos de alimentos in natura e tecnologicamente processado. Rio de Janeiro: Editora Atheneu, 2015. 412p.
  • Oliveira Neto, M. C. de; Reis, R. C.; Devilla, I. A. Propriedades físicas de sementes de feijão (Phaseolus vulgaris L.) variedade "Emgopa 201-Ouro". Revista Agrotecnologia, v.1, p.99-110, 2012. https://doi.org/10.12971/2179-5959.v01n01a07
    » https://doi.org/10.12971/2179-5959.v01n01a07
  • Payman, S. H.; Ajdadi, F. R.; Bagheri, I.; Alizadeh, M. R. Effect of moisture content on some engineering properties of peanut varieties. Journal of Food, Agriculture & Environment, v.9, p.326-331, 2011.
  • Rahman, S. Physical properties of foods. Boca Raton: CRC Press LLC, 1995. 500p.
  • Rodrigues, C. M.; Oliveira, V. R. Utilização de farinha de trigo sarraceno em associação com farinha de arroz e soja na elaboração de minipizzas. Alimentos e Nutrição, v.21, p.21-24, 2010.
  • Sedej, I.; Sakač, M.; Mandić, A.; Mišan, A.; Pestorić, M.; Šimurina, O.; Čanadanović-Brunet, J. Quality assessment of gluten-free crackers based on buckwheat flour. Food Science and Technology, v.44, p.694-699, 2011. https://doi.org/10.1016/j.lwt.2010.11.010
    » https://doi.org/10.1016/j.lwt.2010.11.010
  • Siqueira, V. C.; Resende, O.; Chaves, T. H. Propriedades físicas dos frutos de pinhão-manso durante a secagem. Global Science and Technology, v.5, p.83-92, 2012a. https://doi.org/10.14688/1984-3801/gst.v5n1p83-92
    » https://doi.org/10.14688/1984-3801/gst.v5n1p83-92
  • Siqueira, V. C.; Resende, O.; Chaves, T. H. Determination of the volumetric shrinkage in jatropha seeds during drying. Acta Scientiarum. Agronomy. v.34, p.231-238, 2012b. https://doi.org/10.4025/actasciagron.v34i3.14402
    » https://doi.org/10.4025/actasciagron.v34i3.14402
  • Smaniotto, T. A. de S.; Resende, O.; Oliveira, D. E. C. de; Siqueira, V. C.; Sousa, K. A. Ajuste de modelos matemáticos a contração volumétrica unitária e da massa dos grãos de soja. Revista Agro@mbiente On-line, v.9, p.397-404, 2016.
  • Sousa, R. V. de; Mata, M. E. R. C.; Duarte, M. E. M.; Almeida, R. D.; Rosa, M. E. C.; Sousa, A. C. de. Influência do teor de água nas propriedades físicas dos grãos de arroz vermelho em casca. Revista Brasileira de Produtos Agroindustriais, v.18, p.495-502, 2016. https://doi.org/10.15871/1517-8595/rbpa.v18nespp495-502
    » https://doi.org/10.15871/1517-8595/rbpa.v18nespp495-502
  • Solomon, W. K.; Zewdu, A. D. Moisture-dependent physical properties of niger (Guizotia abyssinica Cass.) seed. Industrial Crops and Products, v.29, p.165-170, 2009. https://doi.org/10.1016/j.indcrop.2008.04.018
    » https://doi.org/10.1016/j.indcrop.2008.04.018
  • Statistica. Statistica 7.0. EUA Software. Tulsa: StatSof, 2005.
  • Systat Software Inc. SigmaPlot for windows, trial version 14.0. 2016. Available on: <http://www.systat.com>. Access on: Aug. 2017..
    » http://www.systat.com
  • Theertha, D. P.; Sujeetha, J. A. R. P.; Abirami, C. V. K.; Alagusundaram, K. Effect of moisture content on physical and gravimetric properties of black gram (Vigna mungo L.). International Journal of Advancements in Research & Technology, v.3, p.97-104, 2014.
  • USDA - United States Department of Agriculture. Handbook of the nutritional contents of foods. New York: Dove Publications, 1975. 190p.
  • Vazhov, V. M.; Kozil, V. N.; Odintsev, A. V. General methods of buckwheat cultivation in Altai region. World Applied Sciences Journal, v.9, p.1157-1162, 2013.
  • Wronkowska, M.; Zielińska, D.; Szawara-Nowak, D.; Troszyńska, A.; Soral-Śmietana, M. Antioxidative and reducing capacity, macroelements content and sensorial properties of buckwheat enhanced gluten free bread. International Journal of Food Science & Technology, v.45, p.1993-2000, 2010. https://doi.org/10.1111/j.1365-2621.2010.02375.x
    » https://doi.org/10.1111/j.1365-2621.2010.02375.x
  • Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chemistry, v.203, p.231-245, 2016. https://doi.org/10.1016/j.foodchem.2016.02.050
    » https://doi.org/10.1016/j.foodchem.2016.02.050

Publication Dates

  • Publication in this collection
    Nov 2018

History

  • Received
    09 Nov 2017
  • Accepted
    03 July 2018
  • Published
    14 Sept 2018
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com