Acessibilidade / Reportar erro

Least limiting water range in Spodosol and initial growth of sugarcane under soil bulk densities and salinities

Intervalo Hídrico Ótimo em Espodossolo e crescimento inicial da cana-de-açúcar sob densidades aparentes e salinidade do solo

ABSTRACT

The impacts of agricultural mechanization and soil management on sugarcane activity may compromise the growth of plants. This study aimed to evaluate the initial growth of sugarcane (Saccharum officinarum) at soil densities under two salinity conditions, associated with the least limiting water range (LLWR), and obtain the critical density for the Spodosol. The treatments consisted of the use of five bulk densities (1.40; 1.50; 1.60; 1.70 and 1.80 Mg m-3) and two conditions of soil salinity (ECse = 0.5 and 3.0 dS m-1). Morphological variables and biomass of sugarcane plants were measured and, simultaneously, undisturbed soil samples were collected in the layers of 0.02-0.08 m to determine the water retention curve, soil resistance to penetration and the least limiting water range. In general, it was concluded that sugarcane plants has higher growth between the bulk densities of 1.50 and 1.60 Mg m-3. The salinized soil showed higher LLWR than the non-salinized soil, leading to higher shoot fresh mass at bulk densities between 1.49 and 1.66 Mg m-3. The critical bulk densities observed for the Spodosol were 1.70 Mg m-3 for the non-salinized soil and 1.77 Mg m-3 for the salinized soil.

Key words:
Saccharum officinarum; soil compaction; soil resistance to root penetration; soil physical quality

RESUMO

Os impactos da mecanização agrícola e o manejo do solo na atividade canavieira podem comprometer o crescimento das plantas. O objetivo deste estudo foi avaliar o crescimento inicial da cana-de-açúcar (Saccharum spp.) sob densidades do solo em duas condições de salinidade, associado ao intervalo hídrico ótimo (IHO) e obter a densidade crítica para o Espodossolo. Os tratamentos consistiram da utilização de cinco densidades de solo (1,40; 1,50; 1,60; 1,70 e 1,80 Mg m-3) e duas condições de salinidade do solo (CEes = 0,5 e 3,0 dS m-1). Realizaram-se medições de variáveis morfológicas e massa vegetal das plantas de cana-de-açúcar e paralelamente coletaram-se amostras indeformadas de solo nas camadas de 0,02-0,08 m, para determinação da curva de retenção de água, da resistência do solo à penetração e o intervalo hídrico menos limitante. Concluiu-se de forma geral que houve maior crescimento das plantas entre as densidades de solo de 1,50 e 1,60 Mg m-3. O solo salinizado apresentou maior IHO que o solo não salinizado, refletindo em maior massa fresca da parte aérea para valores de densidades do solo entre 1,49 e 1,66 Mg m-3. As densidades críticas observadas para o Espodossolo foram de 1,70 Mg m-3 para o solo não salinizado e de 1,77 Mg m-3 para o solo salinizado.

Palavras-chave:
Saccharum officinarum; compactação do solo; resistência do solo à penetração de raízes; qualidade física do solo

Introduction

The excess of mechanized operations causes changes in soil physical structure, leading to compaction (Cavichioli et al., 2012Cavichioli, F. A.; Furlani, C. E. A.; Toledo, A. de; Silva, R. P. da; Ribeiro, C. S. Resistência mecânica do solo à penetração na fileira e entrefileira de cana-de-açúcar em função da mecanização. Engenharia na Agricultura, v.20, p.46-51, 2012. https://doi.org/10.13083/1414-3984.v20n01a06
https://doi.org/10.13083/1414-3984.v20n0...
; Souza et al., 2014Souza, G. S. de; Souza, Z. M. de; Silva, R. B. da; Barbosa, R. S.; Araújo, F. S. Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Revista Brasileira de Ciência do Solo , v.38, p.135-146, 2014. https://doi.org/10.1590/S0100-06832014000100013
https://doi.org/10.1590/S0100-0683201400...
), which is indicated as one of the factors of soil physical quality (Betioli Júnior et al., 2012Betioli Júnior, E.; Moreira, W. H.; Tormena, C. A.; Ferreira, C. J. B.; Silva, A. P. da; Giarola, N. F. B. Intervalo hídrico ótimo e grau de compactação de um Latossolo Vermelho após 30 anos sob plantio direto. Revista Brasileira de Ciência do Solo , v.36, p.971-982. 2012. https://doi.org/10.1590/S0100-06832012000300027
https://doi.org/10.1590/S0100-0683201200...
).

Soil physical quality is associated with the capacity of a soil to provide adequate conditions for plant production (Moreira et al., 2014Moreira, W. H.; Tormena, C. A.; Betioli Junior, E.; Figueiredo, G. C.; Silva, A. P. da; Giarola, N. de F. B. Quantificação do intervalo hídrico ótimo de um Latossolo Vermelho utilizando duas estratégias metodológicas. Revista Brasileira de Ciências do Solo , v.38, p.1772-1783, 2014. https://doi.org/10.1590/S0100-06832014000100015
https://doi.org/10.1590/S0100-0683201400...
). Attributes such as bulk density (Bd), porosity, water content (θ) and tensile strength of aggregates are used as indicators in agricultural production systems (Collares et al., 2011Collares, G. L.; Reinert, D. J.; Reichert, J. M.; Kaiser, D. R. Compactação superficial de Latossolos sob integração lavoura-pecuária de leite no noroeste do Rio Grande do Sul. Ciência Rural, v.41, p.246-250, 2011. https://doi.org/10.1590/S0103-84782011000200011
https://doi.org/10.1590/S0103-8478201100...
), besides the compaction index (CI), calculated by the ratio between bulk density (Bd) and maximum density (DMP) determined in the Proctor compaction test (PCT) (Barber et al., 1989Barber, R. G.; Herrera, C.; Diaz, O. Compaction status and compaction susceptibility of alluvial soil in Santa Cruz, Bolivia. Soil & Tillage Research, v.15, p.153-167, 1989. https://doi.org/10.1016/0167-1987(89)90071-8
https://doi.org/10.1016/0167-1987(89)900...
).

Working with artificially compacted Oxisols, Romero et al. (2014Romero, E. M.; Ruiz, H. A.; Fernandes, R. B. A.; da Costa, L. M. Condutividade hidráulica, porosidade, resistência mecânica e intervalo hídrico ótimo em Latossolos artificialmente compactados. Revista Brasileira de Engenharia Agrícola e Ambiental , v.18, p.1003-1009, 2014. https://doi.org/10.1590/1807-1929/agriambi.v18n10p1003-1009
https://doi.org/10.1590/1807-1929/agriam...
) found that CI within the range from 0.70 to 0.85 did not cause restrictions to plant growth.

The effects of soil compaction on density, porosity, water retention and mechanical resistance to penetration can be integrated into a single index, the least limiting water range (LLWR) (Silva et al., 1994Silva, A. P. da; Kay, B. D.; Perfect, E. Characterization of the least limiting water range. Soil Science Society of America Journal, v.58, p.1775-1781, 1994. https://doi.org/10.2136/sssaj1994.03615995005800060028x
https://doi.org/10.2136/sssaj1994.036159...
; Tormena et al., 1998Tormena, C. A.; Silva, A. P.; Libardi, P. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto. Revista Brasileira de Ciência do Solo , v.22, p.573-581, 1998. https://doi.org/10.1590/S0100-06831998000400002
https://doi.org/10.1590/S0100-0683199800...
).

According to Collares et al. (2006Collares, G. L.; Reinert, D. J.; Reichert, J. M.; Kaiser, D. R. Qualidade física do solo na produtividade da cultura do feijoeiro num Argissolo. Pesquisa Agropecuária Brasileira , v.41, p.1663-1674, 2006. https://doi.org/10.1590/S0100-204X2006001100013
https://doi.org/10.1590/S0100-204X200600...
), the LLWR provides ideal conditions for development between the lower and upper limits, with limiting conditions below and above these limits, and the critical condition occurs when the LLWR is null. The LLWR does not need to be null to indicate physical degradation (Blainski et al., 2012Blainski, E.; Tormena, C. A.; Guimarães, R. M. L.; Nanni, M. R. Qualidade física de um Latossolo sob plantio direto influenciada pela cobertura do solo. Revista Brasileira de Ciências do Solo, v.36, p.79-87, 2012. https://doi.org/10.1590/S0100-06832012000100009
https://doi.org/10.1590/S0100-0683201200...
).

On the other hand, some researchers have criticized the LLWR regarding its lower limit, since the volumetric water content at the permanent wilting point (θPWP) does not represent the soil water content which is adequate for crop development (Gubiani et al., 2013Gubiani, P. I.; Reichert, J. M.; Reinert, D. J. Indicadores hídrico-mecânicos de compactação do solo e crescimento de plantas. Revista Brasileira de Ciência do Solo , v.37, p.1-10, 2013. https://doi.org/10.1590/S0100-06832013000100001
https://doi.org/10.1590/S0100-0683201300...
).

Soil salinity is another factor influencing crop yield, because of the reduction in the water potential resulting from the contribution of the osmotic potential, leading to reduction of leaf area and, consequently, to lower water consumption by crops (Silva et al., 2013Silva, A. O. da; Klar, A. E.; Silva, E. F. de F. e; Tanaka, A. A.; Silva Junior, J. F. Relações hídricas em cultivares de beterraba em diferentes níveis de salinidade do solo. Revista Brasileira de Engenharia Agrícola e Ambiental , v.17, p.1143-1151, 2013. https://doi.org/10.1590/S1415-43662013001100003
https://doi.org/10.1590/S1415-4366201300...
; Lira et al., 2018Lira, R. M.; Silva, Ê. F. de F. e; Simões Neto, D. E.; Santos Júnior, J. A.; Lima, B. L. de C.; Silva, J. S. da. Growth and yield of sugarcane irrigated with brackish water and leaching fractions. Revista Brasileira de Engenharia Agrícola e Ambiental , v.22, p.170-175, 2018. https://doi.org/10.1590/1807-1929/agriambi.v22n3p170-175
https://doi.org/10.1590/1807-1929/agriam...
).

In this context, the objectives of this study were to evaluate the influence of salinized soil on the least limiting water range (LLWR), to establish the values of critical bulk density (Bdc), and to evaluate the initial growth of sugarcane under different bulk density (Bd) and salinities.

Material and Methods

The experiment was carried out in the period from June to September 2016, in a greenhouse of the Federal Rural University of Pernambuco (UFRPE), Agricultural Engineering Department, located at 8° 01’ 05” S and 34° 56’ 48” W, and altitude of 6.5 m.

The physico-chemical characteristics of the soil used in the experiment are: coarse sand = 640 g kg-1, fine sand = 250 g kg-1, silt = 30 g kg-1 and clay = 80 g kg-1; textural classification = loamy sand; clay dispersed in water = 0%; degree of flocculation = 100%; pH (water) = 5.0; Ca2+ = 0.3 cmolc dm-3, Mg2+ = 0.4 cmolc dm-3 , Na+ = 0.11 cmolc dm-3, K+ = 0.02 cmolc dm-3; SB = 0.83 cmolc dm-3; effective CEC = 1.58 cmolc dm-3; m = 5%; ESP = 6.96%; organic carbon = 11.92 g kg-1; assimilable P = 5 mg dm-3; θ0.1 atm = 16.34%; θ15 atm = 5.03 %; maximum Proctor density (DMP) = 1.92 Mg m-3.

The experimental design was completely randomized in a 5 x 2 factorial scheme. Treatments consisted of the combination of five bulk density, 1.40, 1.50, 1.60, 1.70 and 1.80 kg m-3, which correspond to the compaction indices 0.73, 0.78, 0.83, 0.89 and 0.94, respectively (defined by the relationship between bulk density and the maximum density obtained in the Proctor compaction test) and two levels of soil salinity (S1 = 0.5 and S2 = 3.0 dS m-1), with four repetitions, totaling 40 experimental units.

Each experimental unit consisted of two pots, which were graduated at every 0.05 m and filled with artificially compacted soil layers.

The mass of dry soil (MDS) to be used to fill the pots for each bulk density (Bd) was obtained from the data of pot volume and Bd, according to Eq. 1.

M D S = V t B d (1)

where:

MDS - mass of dry soil, Mg;

Vt - total volume of the pot, which in this case was considered at every 0.05 m, m3; and,

Bd - bulk density, Mg m-3.

With the value of volumetric water content at field capacity (θFC = 30%), the gravimetric water content (U) was calculated for each level of soil density (Eq. 2). Subsequently, for the MDS, the mass of water (Mw) needed to be added to the soil and bring it to field capacity (UFC) was obtained (Eq. 3).

U F C = θ F C B d (2)

M w = U F C M D S 100 (3)

where:

UFC - gravimetric water content at field capacity, %;

θFC - volumetric water content at field capacity, %;

Bd - bulk density, g cm-3;

Mw - mass of water, g; and,

MDS - mass of dry soil, g.

In the plots with salinized soil (S2), the salts were added at the same time as the water content of the soil in the pots was raised to field capacity, by diluting in the water the quantity of salts required to be added according to Richards (1954Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: United States Salinity Laboratory, 1954. 160p. Agriculture Handbook, 60.) (Eq. 4), using NaCl and CaCl2 at 1:1 molar proportion of Na/Ca in the water from the local supply.

Q S = E C s e 640 V s (4)

where:

QS - quantity of salts applied, mg;

ECse - electrical conductivity of the saturation extract, dS m-1; and,

Vs - water volume at soil saturation, L.

For planting, two setts of sugarcane, RB867515 variety, were used per pot and, after germination, thinning was performed, maintaining one plant per pot.

Irrigation management was carried out by replacing the water volume required to bring soil moisture to field capacity (here assumed as pot capacity), which was obtained by the difference between the volume of water applied and the volume drained, based on the average of ten pots. The water used for irrigation came from the municipal supply system of UFRPE (EC ≈ 0.5 dS m-1).

To determine the soil water retention curve (SWRC), soil resistance to penetration curve (SRPC) and aeration porosity for least limiting water range (LLWR) estimation, six undisturbed soil samples were collected in the 0-0.10 m layer of each pot, using stainless-steel volumetric rings (volume = 100 cm3), in a total of 240 samples (24 per treatment).

The samples were saturated for 24 h and subjected to tensions of 1, 6 and 10 kPa on a tension table (Romano et al., 2002Romano, N.; Hopmans, J. W.; Dane, J. H. Suction table. In: Dane, J. H.; Topp, G. C. (eds.). Methods of soil analysis: Part 4 - Physical methods. Madison: Soil Science Society of America , 2002. Chap.3, p.692-698. Book Series, 5) and 33.3, 80, 300, 500 and 1500 kPa, with pressures applied to porous plates (Dane & Hopmans, 2002Dane, J. H.; Hopmans, J. W. Pressure plate extractor. In: Dane, J. H.; Topp, G. C. (eds.). Methods of soil analysis: Part 4 - Physical methods. Madison: Soil Science Society of America, 2002. Chap.3, p.688-690. Book Series, 5.). After reaching equilibrium, the samples were used to determine soil resistance to root penetration (RP), using an electronic benchtop penetrometer with a metal rod at the end (Tormena et al., 1998Tormena, C. A.; Silva, A. P.; Libardi, P. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto. Revista Brasileira de Ciência do Solo , v.22, p.573-581, 1998. https://doi.org/10.1590/S0100-06831998000400002
https://doi.org/10.1590/S0100-0683199800...
).

Subsequently, the samples were subjected to drying at 105 ºC for 24 h, in order to measure the masses of water and solids of the soil. The Bd was determined by the relationship between the mass of solids and the ring volume, while θ was obtained from the relationship between the volume of water in equilibrium in the sample and the volume of soil.

The soil resistance to penetration curve was fitted according to Busscher (1990Busscher, W. J. Adjustment of flat-tipped penetrometer resistance data to a common water content. Transactions of the American Society of Agricultural Engineers, v.33, p.519-524, 1990. https://doi.org/10.13031/2013.31360
https://doi.org/10.13031/2013.31360...
). Subsequently, it was fitted using the nonlinear model employed by Ross et al. (1991Ross, P. J.; Willians, J.; Bristow, K. L. Equations for extending water-retention curves to dryness. Soil Science Societies American Journal, v.55, p.23-27, 1991. https://doi.org/10.2136/sssaj1991.03615995005500040004x
https://doi.org/10.2136/sssaj1991.036159...
), incorporating Bd into the model.

To determine the LLWR, the following limits were considered: volumetric water content at field capacity (θFC), volumetric water content at permanent wilting point (θPWP), assumed as the water contents retained in the soil at tensions of 10 and 1500 kPa, respectively; the volumetric water content of the soil at which the penetration resistance reaches 2.0 MPa (θRP) and the volumetric water content of the soil at which the aeration porosity is 0.10 m3 m-3AP).

The critical values of the water contents at θFC and at θPWP were calculated according to Eqs. 5 and 6, respectively.

θ F C = exp a + b B d F C c (5)

θ P W P = exp a + b B d P W P c (6)

where:

θFC - volumetric water content at field capacity, m3 m-3;

θPWP - volumetric water content at permanent wilting point, m3 m-3;

Bd - soil bulk density, Mg m-3;

ØFC - matric potential applied at field capacity, kPa;

ØPWP - matric potential applied at permanent wilting point, kPa; and,

a, b, c - fitting parameters of the model proposed by Ross et al. (1991Ross, P. J.; Willians, J.; Bristow, K. L. Equations for extending water-retention curves to dryness. Soil Science Societies American Journal, v.55, p.23-27, 1991. https://doi.org/10.2136/sssaj1991.03615995005500040004x
https://doi.org/10.2136/sssaj1991.036159...
).

The LLWR was calculated by the difference between the upper and lower limits of the water contents at which the physical parameters considered occur. The upper limit is the lowest value of θ considered θFC or aeration porosity (θAP), and the lower limit is the highest value considering penetration resistance (θRP) or θPWP.

The Bdc for crop development was obtained when the upper and lower limits of LLWR were numerically equal, where LLWR is null.

In the period from 30 to 72 days after planting (DAP), culm diameter (CD) and plant height (PH) were weekly evaluated. At 72 DAP, plants were collected to evaluate their shoot fresh and dry masses (SFM), shoot dry mass (SDM) and root dry mass (RDM).

For the variables CD, and PH, the sphericity test was applied to define the type of analysis to be used: univariate with split-plots, or multivariate with repeated measurements in time. The multivariate analysis with repeated measurements in time was used by applying the Wilk’s Lambda, Pillai’s Trace, Hotelling-Lawley Trace and Roy’s Greatest Root tests, considering whether the effect was significant or not, based on the results of the majority. To establish a model that represents the phenomenon under study, the Student's t-test (p < 0.05) was used to test the regression coefficients.

The yield variables SFM, SDM and RDM, the data were submitted to analysis of variance by F test, and when significant (p < 0.05), they were subjected to regression analysis using the Student’s t-test (p < 0.05) to test the regression coefficients.

Results and Discussion

The multivariate analysis applied to the variables culm diameter (CD) and plant height (PH) showed significant effect (p ≤ 0.01) according to the tests of Wilks, Pillai, Hotelling-Lawley and Roy, for the vectors of treatment means, with isolated effect of time on CD and PH, and effects of the interactions Salinity x Time on CD and Bd x Time on PH.

There was an increasing quadratic effect on PH as Bd increased, with a maximum value of 24.29 cm corresponding to Bd of 1.61 Mg m-3 and DAP = 72, and an increasing linear effect for time (DAP) (Figure 1).

Figure 1
Response surface for plant height (PH) of sugarcane as a function of bulk density (Bd) and days after planting (DAP)

These results differed from those obtained by Fagundes et al. (2014Fagundes, E. A. A.; Silva, T. J. A. da; Bonfim-Silva, E. M. B. Desenvolvimento inicial de variedades de cana-de-açúcar em Latossolo submetidas a níveis de compactação do solo. Revista Brasileira de Engenharia Agrícola e Ambiental , v.18, p.188-193, 2014. https://doi.org/10.1590/S1415-43662014000200009
https://doi.org/10.1590/S1415-4366201400...
), who evaluated the initial growth of sugarcane cultivars under Bd and observed higher heights with Bd values of 1.28 and 1.30 Mg m-3.

Souza et al. (2014Souza, G. S. de; Souza, Z. M. de; Silva, R. B. da; Barbosa, R. S.; Araújo, F. S. Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Revista Brasileira de Ciência do Solo , v.38, p.135-146, 2014. https://doi.org/10.1590/S0100-06832014000100013
https://doi.org/10.1590/S0100-0683201400...
), evaluating the effect of four Bd values (1.65, 1.69, 1.78 and 1.82 Mg m-3) on culm height, found no significant effect. Probably, in this case, there was no difference because the studied Bd values were high.

For CD, there was an increasing linear effect as a function of DAP under both salinity conditions. For S1, there was an increase of 0.01907 mm in CD, while for S2, this value was 0.0144 mm for every unit increase in DAP (Figure 2).

Figure 2
Culm diameter (CD) of sugarcane as a function of days after planting (DAP), cultivated under different levels of soil salinity

In studies with sugarcane under salinity, Simões et al. (2016Simões, W. L.; Calgaro, M.; Coelho, D. S.; Santos, D. B.; Souza, M. A. de. Growth of sugar cane varieties under salinity. Revista Ceres , v.63, p.265-271, 2016. https://doi.org/10.1590/0034-737X201663020019
https://doi.org/10.1590/0034-737X2016630...
) obtained a reduction of 8% in the CD due to the use of saline water (8 dS m-1), while Toledo et al. (2017Toledo, J. V.; Zolnier, S.; Silva, T. G. F .da; Boehringer, D.; Steidle Neto, A. J. Alterations on the evapotranspiration of sugarane cultivars under distinct salinity levels applied in the fertigation. Engenharia Agrícola, v.37, p.940-952, 2017. https://doi.org/10.1590/1809-4430-eng.agric.v37n5p940-952/2017
https://doi.org/10.1590/1809-4430-eng.ag...
) observed a decreasing linear effect on sugarcane evapotranspiration due to the higher NaCl concentration in the water used for irrigation.

There was a significant effect (p ≤ 0.01) of the interaction between the factors Bd and salinity on the variables shoot fresh mass (SFM) and root dry mass (RDM), as well as effects of Bd on SFM, shoot dry mass (SDM) and RDM, and of salinity on SFM and RDM (Table 1).

Table 1
Analysis of variance for shoot fresh mass (SFM), shoot dry mass (SDM) and root dry mass (RDM) of sugarcane under bulk densities and salinity levels

For S1 = 0.5 dS m-1, a decreasing linear regression model was fitted (Figure 3A), which showed a reduction in SFM of 76.23 g per unit increase in Bd. For S2 = 3.0 dS m-1, with the fitted quadratic model, the maximum point was 100.73 g of SFM with Bd of 1.53 Mg m-3.

These results corroborate those obtained by Guimarães et al. (2013Guimarães, C. V.; Assis, R. L. de; Simon, G. A.; Pires, F. R.; Ferreira, R. L.; Santos, D. C. dos. Desempenho de cultivares e híbridos de milheto em solo submetido à compactação. Revista Brasileira de Engenharia Agrícola e Ambiental , v.17, p.1188-1194, 2013. https://doi.org/10.1590/S1415-43662013001100009
https://doi.org/10.1590/S1415-4366201300...
), Fagundes et al. (2014Fagundes, E. A. A.; Silva, T. J. A. da; Bonfim-Silva, E. M. B. Desenvolvimento inicial de variedades de cana-de-açúcar em Latossolo submetidas a níveis de compactação do solo. Revista Brasileira de Engenharia Agrícola e Ambiental , v.18, p.188-193, 2014. https://doi.org/10.1590/S1415-43662014000200009
https://doi.org/10.1590/S1415-4366201400...
) and Labegalini et al. (2016Labegalini, N. S.; Buchet, A. C.; Andrade, L.; Oliveira, S. C. de; Campos, L. M. Desenvolvimento da cultura do milho sob efeitos de diferentes profundidades de compactação do solo. Revista de Agricultura Neotropical, v.3, p.7-11, 2016. https://doi.org/10.32404/rean.v3i4.1102
https://doi.org/10.32404/rean.v3i4.1102...
) in studies with sugarcane, millet and corn crops, respectively, justified by the reduction of soil porosity, which compromises root development and also soil aeration.

There was a linear reduction in SDM as a function of the increase in Bd, corresponding to 14.176 g per unit increase in Bd (Figure 3B). According to Medeiros et al. (2005Medeiros, R. D.; Soares, A. A.; Guimarães, R. M. Compactação do solo e manejo de água I: Efeitos sobre a absorção de N, P, K, massa seca de raízes e parte aérea de plantas de arroz. Ciência e Agrotecnologia, v.29, p.940-947, 2005. https://doi.org/10.1590/S1413-70542005000500004
https://doi.org/10.1590/S1413-7054200500...
), such reduction occurs due to changes in soil physical and hydraulic properties originated from the compaction, which reduce nutrient absorption and carbon accumulation by photosynthesis, thus affecting the development of the root system and aerial part of plants.

Similar results have also been verified by Bonfim-Silva et al. (2015Bonfim-Silva, E. M.; Paludo, J. T. S.; Silva, T. J. A. da; Guimarães, S. L. Bulk density in jack bean’s development grown in Cerrado Oxisol. American Journal of Plant Sciences, v.6, p.1349-1360, 2015. https://doi.org/10.4236/ajps.2015.69134
https://doi.org/10.4236/ajps.2015.69134...
), who obtained a reduction in SDM of 79.91% as Bd increased from 1.0 to 1.8 Mg m-3 in tests with jack bean, as well as Bonelli et al. (2011Bonelli, E. A.; Bonfim-Silva, E. M.; Cabral, C. E. A.; Campos, J. J.; Scaramuzza, W. L. P.; Polizel, A. C. Compactação do solo: Efeitos nas características produtivas e morfológicas dos capins Piatã e Mombaça. Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, p.264-269, 2011. https://doi.org/10.1590/S1415-43662011000300007
https://doi.org/10.1590/S1415-4366201100...
) and Fagundes et al. (2014Fagundes, E. A. A.; Silva, T. J. A. da; Bonfim-Silva, E. M. B. Desenvolvimento inicial de variedades de cana-de-açúcar em Latossolo submetidas a níveis de compactação do solo. Revista Brasileira de Engenharia Agrícola e Ambiental , v.18, p.188-193, 2014. https://doi.org/10.1590/S1415-43662014000200009
https://doi.org/10.1590/S1415-4366201400...
), who observed reduction in the SDM of Mombasa grass and sugarcane with the increase of Bd, respectively, the latter with maximum point at Bd of 1.33 Mg m-3.

For RDM, a quadratic model was fitted to the data for S2, with maximum point at Bd of 1.49 Mg m-3 with RDM of 15.81 g (Figure 3C). Similar results regarding the model were observed by Fagundes et al. (2014Fagundes, E. A. A.; Silva, T. J. A. da; Bonfim-Silva, E. M. B. Desenvolvimento inicial de variedades de cana-de-açúcar em Latossolo submetidas a níveis de compactação do solo. Revista Brasileira de Engenharia Agrícola e Ambiental , v.18, p.188-193, 2014. https://doi.org/10.1590/S1415-43662014000200009
https://doi.org/10.1590/S1415-4366201400...
) with sugarcane and Ohland et al. (2014Ohland, T.; Lana, M. do C.; Frandoloso, J. F.; Rampim, L.; Bergmann, J. R.; Cabreira, D. T. Influência da densidade do solo no desenvolvimento inicial do pinhão-manso cultivado em Latossolo Vermelho eutroférrico. Revista Ceres, v.61, p.622-630, 2014. https://doi.org/10.1590/0034-737X201461050004
https://doi.org/10.1590/0034-737X2014610...
) with the jatropha crop.

Figure 3
Shoot fresh mass (A), shoot dry mass (B) and root dry mass (C) of sugarcane as a function of bulk densities (Bd) at each salinity level and at 72 days after planting

The concept of LLWR encompasses a region where limitations to plant development are minimal. Water contents above or below the hatched area indicate limiting conditions to plant growth and critical conditions for development, and when Bd is greater than the critical bulk density (Bdc), LLWR is zero.

Hence, there were different effects due to the soil salinity conditions; in the non-salinized soil (Figure 4A), the aeration porosity (θAP) represented the upper limit in more than 70%, which corresponded to the Bd of up to 1.57 Mg m-3 (when it was replaced by θFC). On the other hand, in the salinized soil, this limit extended to Bd of 1.61 Mg m-3 (Figure 4B), and there was an increase of LLWR in the saline condition that favored greater water retention.

Figure 4
Least limiting water range (LLWR) diagram in non-salinized soil (A) and in salinized soil (B)

Regarding the lower limit, it corresponded to θRP in more than 70% of the samples for the two salinity conditions tested, so that, in the non-salinized soil, the entire lower limit of LLWR was delimited by θRP (Figure 4A). In the salinized soil, however, it was found that θPWP was limiting only in the initial range of LLWR, between the Bd of 1.40 and 1.50 Mg m-3 (corresponding only to 27% of all LLWR), when the θRP started being limiting (Figure 4B). The great influence of the resistance to penetration on LLWR has also been observed by Silva et al. (1994Silva, A. P. da; Kay, B. D.; Perfect, E. Characterization of the least limiting water range. Soil Science Society of America Journal, v.58, p.1775-1781, 1994. https://doi.org/10.2136/sssaj1994.03615995005800060028x
https://doi.org/10.2136/sssaj1994.036159...
) and Tormena et al. (1998Tormena, C. A.; Silva, A. P.; Libardi, P. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto. Revista Brasileira de Ciência do Solo , v.22, p.573-581, 1998. https://doi.org/10.1590/S0100-06831998000400002
https://doi.org/10.1590/S0100-0683199800...
), indicating that the soils are more degraded, with low structural quality, and, in the case under study, soils with more sandy texture.

Despite this, the LLWR obtained with the salinized soil promoted greater plant growth between Bd values of 1.50 and 1.66 Mg m-3, evidenced by the higher SFM within this interval (Figure 3A). These results may be justified, probably, by the fact that the θAP was, over a wider range of Bd, the upper limit of LLWR in the salinized soil compared to the non-salinized soil, which had shorter range of LLWR and, consequently, lower water availability to plants. Regarding this, Araújo et al. (2004Araújo, M. A.; Tormena, C. A.; Inoue, T. T.; Costa, A. C. S. Efeitos da escarificação na qualidade física de um Latossolo Vermelho distroférrico após treze anos de semeadura direta. Revista Brasileira de Ciência do Solo, v.28, p.459-504, 2004. https://doi.org/10.1590/S0100-06832004000300011
https://doi.org/10.1590/S0100-0683200400...
) commented that the reduction of θAP leads to a reduction in the diffusion of oxygen, affecting the vegetative development.

Other studies with LLWR have not observed any relationship between higher LLWR and higher production of biomass (Collares et al., 2006Collares, G. L.; Reinert, D. J.; Reichert, J. M.; Kaiser, D. R. Qualidade física do solo na produtividade da cultura do feijoeiro num Argissolo. Pesquisa Agropecuária Brasileira , v.41, p.1663-1674, 2006. https://doi.org/10.1590/S0100-204X2006001100013
https://doi.org/10.1590/S0100-204X200600...
; Klein & Camara, 2007Klein, V. A.; Camara, R. K. Rendimento da soja e intervalo hídrico ótimo em Latossolo Vermelho sob plantio direto escarificado. Revista Brasileira de Ciência do Solo , v.31, p.221-227, 2007. https://doi.org/10.1590/S0100-06832007000200004
https://doi.org/10.1590/S0100-0683200700...
; Beutler et al., 2008Beutler, A. N.; Centurion, J. F.; Silva, A. P. da; Centurion, M. A. P. da C.; Leonel, C. L.; Freddi, O. da S. Soil compaction by machine traffic and least limiting water range related to soybean yield. Pesquisa Agropecuária Brasileira, v.43, p.1591-1600, 2008. https://doi.org/10.1590/S0100-204X2008001100019
https://doi.org/10.1590/S0100-204X200800...
). However, for the non-salinized soil, it was found that the Bd corresponding to the point of maximum RDM was 1.49 Mg m-3 (15.74 g, Figure 3C), precisely within the range of Bd referring to the region of highest water content (1.4 to 1.5 Mg m-3) (Figure 4A).

In relation to critical bulk density (Bdc), it varied from 1.70 Mg m-3 for the non-salinized soil to 1.77 Mg m-3 for the salinized soil (Figure 4, dashed vertical lines), which correspond to 0.89 and 0.92 of the maximum proctor density (DMP), respectively. Romero et al. (2014Romero, E. M.; Ruiz, H. A.; Fernandes, R. B. A.; da Costa, L. M. Condutividade hidráulica, porosidade, resistência mecânica e intervalo hídrico ótimo em Latossolos artificialmente compactados. Revista Brasileira de Engenharia Agrícola e Ambiental , v.18, p.1003-1009, 2014. https://doi.org/10.1590/1807-1929/agriambi.v18n10p1003-1009
https://doi.org/10.1590/1807-1929/agriam...
), working with Oxisols obtained Bdc of 1.64 and 1.37 Mg m-3, which corresponded to 0.98 and 1.0 of the DMP, respectively. The Bdc values found in the present study are consistent with those found by Collares et al. (2006Collares, G. L.; Reinert, D. J.; Reichert, J. M.; Kaiser, D. R. Qualidade física do solo na produtividade da cultura do feijoeiro num Argissolo. Pesquisa Agropecuária Brasileira , v.41, p.1663-1674, 2006. https://doi.org/10.1590/S0100-204X2006001100013
https://doi.org/10.1590/S0100-204X200600...
), Bdc of 1.75 Mg m-3, and by Moreira et al. (2014Moreira, W. H.; Tormena, C. A.; Betioli Junior, E.; Figueiredo, G. C.; Silva, A. P. da; Giarola, N. de F. B. Quantificação do intervalo hídrico ótimo de um Latossolo Vermelho utilizando duas estratégias metodológicas. Revista Brasileira de Ciências do Solo , v.38, p.1772-1783, 2014. https://doi.org/10.1590/S0100-06832014000100015
https://doi.org/10.1590/S0100-0683201400...
), Bdc of 1.74 Mg m-3 , working with sandy loam soil. When Bd > Bdc, from this value of Bd, according to the definition of LLWR, the soil will exhibit severe physical degradation, which limits plant growth (Collares et al., 2008Collares, G. L.; Reinert, D. J.; Reichert, J. M.; Kaiser, D. R. Compactação de um Latossolo induzida pelo tráfego de máquinas e sua relação com o crescimento e produtividadede feijão e trigo. Revista Brasileira de Ciência do Solo , v.32, p.933-942, 2008. https://doi.org/10.1590/S0100-06832008000300003
https://doi.org/10.1590/S0100-0683200800...
), requiring the adoption of recovery measures to make it productive.

The results of this study reveal that the increase of salinity in sandy soils (Figure 4B) increased the LLWR due to the reduction in the penetration resistance as soil density increased. Lima & Grismer (1994Lima, L. A.; Grismer, M. E. Application of fracture mechanics to cracking of saline soils. Soil Science, v.158, p.86-96, 1994. https://doi.org/10.1097/00010694-199408000-00002
https://doi.org/10.1097/00010694-1994080...
) and Michelon et al. (2009Michelon, C. J.; Carlesso, R.; Petry, M. T.; Melo, G.; Spohr, R. B.; Andrade, J. G. de. Qualidade física dos solos irrigados de algumas regiões do Brasil Central. Revista Brasileira de Engenharia Agrícola e Ambiental , v.13, p.39-45, 2009. https://doi.org/10.1590/S1415-43662009000100006
https://doi.org/10.1590/S1415-4366200900...
) observed that soils that are sodic or in process of degradation, whose structure had been altered, showed an increase of density, in addition to a reduction of porosity as a consequence of the alteration in the volume resulting from the elimination of pores; with the reduction of macropores, which are very common and in large quantity in these soils, there will be greater availability of water to plants, resulting in greater production.

In addition, according to Medeiros et al. (2010Medeiros, J. F. de; Nascimento, I. B. do; Gheyi, H. R. Manejo do solo-água-planta em áreas afetadas por sais. In: Gheyi, H. R.; Dias, N. da S.; Lacerda, C. F. de (eds.). Manejo da salinidade na agricultura: Estudos básicos e aplicados. Fortaleza: INCTSal, 2010. p.279-299.), the accumulation of soluble salts makes the soil flocculated, soft and well permeable under moist conditions, allowing a lower resistance to root penetration and resulting in higher shoot fresh mass of sugarcane cultivated in the salinized soil. Therefore, the advantage of using LLWR has been highlighted, which is to allow the integration of physical factors directly related to plant growth, as well as to indicate the need for management practices that modify soil structure in order to broaden the LLWR.

Conclusions

  1. From the least limiting water range and from the analyzed variables of the plant height, shoot fresh mass and root dry mass, it was found, in general, that there is a greater plant growth between the bulk densities of 1.50 and 1.60 Mg m-3.

  2. The salinized soil showed wider LLWR than the non-salinized soil, resulting in greater shoot fresh mass between bulk density values of 1.50 and 1.66 Mg m-3.

  3. In the soil with lower salinity, the critical bulk density was 1.70 Mg m-3, lower than that of the salinized soil, 1.77 Mg m-3.

Acknowledgments

The authors express their gratitude to the CAPES for the financial aid for this research.

Literature Cited

  • Araújo, M. A.; Tormena, C. A.; Inoue, T. T.; Costa, A. C. S. Efeitos da escarificação na qualidade física de um Latossolo Vermelho distroférrico após treze anos de semeadura direta. Revista Brasileira de Ciência do Solo, v.28, p.459-504, 2004. https://doi.org/10.1590/S0100-06832004000300011
    » https://doi.org/10.1590/S0100-06832004000300011
  • Barber, R. G.; Herrera, C.; Diaz, O. Compaction status and compaction susceptibility of alluvial soil in Santa Cruz, Bolivia. Soil & Tillage Research, v.15, p.153-167, 1989. https://doi.org/10.1016/0167-1987(89)90071-8
    » https://doi.org/10.1016/0167-1987(89)90071-8
  • Betioli Júnior, E.; Moreira, W. H.; Tormena, C. A.; Ferreira, C. J. B.; Silva, A. P. da; Giarola, N. F. B. Intervalo hídrico ótimo e grau de compactação de um Latossolo Vermelho após 30 anos sob plantio direto. Revista Brasileira de Ciência do Solo , v.36, p.971-982. 2012. https://doi.org/10.1590/S0100-06832012000300027
    » https://doi.org/10.1590/S0100-06832012000300027
  • Beutler, A. N.; Centurion, J. F.; Silva, A. P. da; Centurion, M. A. P. da C.; Leonel, C. L.; Freddi, O. da S. Soil compaction by machine traffic and least limiting water range related to soybean yield. Pesquisa Agropecuária Brasileira, v.43, p.1591-1600, 2008. https://doi.org/10.1590/S0100-204X2008001100019
    » https://doi.org/10.1590/S0100-204X2008001100019
  • Blainski, E.; Tormena, C. A.; Guimarães, R. M. L.; Nanni, M. R. Qualidade física de um Latossolo sob plantio direto influenciada pela cobertura do solo. Revista Brasileira de Ciências do Solo, v.36, p.79-87, 2012. https://doi.org/10.1590/S0100-06832012000100009
    » https://doi.org/10.1590/S0100-06832012000100009
  • Bonelli, E. A.; Bonfim-Silva, E. M.; Cabral, C. E. A.; Campos, J. J.; Scaramuzza, W. L. P.; Polizel, A. C. Compactação do solo: Efeitos nas características produtivas e morfológicas dos capins Piatã e Mombaça. Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, p.264-269, 2011. https://doi.org/10.1590/S1415-43662011000300007
    » https://doi.org/10.1590/S1415-43662011000300007
  • Bonfim-Silva, E. M.; Paludo, J. T. S.; Silva, T. J. A. da; Guimarães, S. L. Bulk density in jack bean’s development grown in Cerrado Oxisol. American Journal of Plant Sciences, v.6, p.1349-1360, 2015. https://doi.org/10.4236/ajps.2015.69134
    » https://doi.org/10.4236/ajps.2015.69134
  • Busscher, W. J. Adjustment of flat-tipped penetrometer resistance data to a common water content. Transactions of the American Society of Agricultural Engineers, v.33, p.519-524, 1990. https://doi.org/10.13031/2013.31360
    » https://doi.org/10.13031/2013.31360
  • Cavichioli, F. A.; Furlani, C. E. A.; Toledo, A. de; Silva, R. P. da; Ribeiro, C. S. Resistência mecânica do solo à penetração na fileira e entrefileira de cana-de-açúcar em função da mecanização. Engenharia na Agricultura, v.20, p.46-51, 2012. https://doi.org/10.13083/1414-3984.v20n01a06
    » https://doi.org/10.13083/1414-3984.v20n01a06
  • Collares, G. L.; Reinert, D. J.; Reichert, J. M.; Kaiser, D. R. Qualidade física do solo na produtividade da cultura do feijoeiro num Argissolo. Pesquisa Agropecuária Brasileira , v.41, p.1663-1674, 2006. https://doi.org/10.1590/S0100-204X2006001100013
    » https://doi.org/10.1590/S0100-204X2006001100013
  • Collares, G. L.; Reinert, D. J.; Reichert, J. M.; Kaiser, D. R. Compactação de um Latossolo induzida pelo tráfego de máquinas e sua relação com o crescimento e produtividadede feijão e trigo. Revista Brasileira de Ciência do Solo , v.32, p.933-942, 2008. https://doi.org/10.1590/S0100-06832008000300003
    » https://doi.org/10.1590/S0100-06832008000300003
  • Collares, G. L.; Reinert, D. J.; Reichert, J. M.; Kaiser, D. R. Compactação superficial de Latossolos sob integração lavoura-pecuária de leite no noroeste do Rio Grande do Sul. Ciência Rural, v.41, p.246-250, 2011. https://doi.org/10.1590/S0103-84782011000200011
    » https://doi.org/10.1590/S0103-84782011000200011
  • Dane, J. H.; Hopmans, J. W. Pressure plate extractor. In: Dane, J. H.; Topp, G. C. (eds.). Methods of soil analysis: Part 4 - Physical methods. Madison: Soil Science Society of America, 2002. Chap.3, p.688-690. Book Series, 5.
  • Fagundes, E. A. A.; Silva, T. J. A. da; Bonfim-Silva, E. M. B. Desenvolvimento inicial de variedades de cana-de-açúcar em Latossolo submetidas a níveis de compactação do solo. Revista Brasileira de Engenharia Agrícola e Ambiental , v.18, p.188-193, 2014. https://doi.org/10.1590/S1415-43662014000200009
    » https://doi.org/10.1590/S1415-43662014000200009
  • Gubiani, P. I.; Reichert, J. M.; Reinert, D. J. Indicadores hídrico-mecânicos de compactação do solo e crescimento de plantas. Revista Brasileira de Ciência do Solo , v.37, p.1-10, 2013. https://doi.org/10.1590/S0100-06832013000100001
    » https://doi.org/10.1590/S0100-06832013000100001
  • Guimarães, C. V.; Assis, R. L. de; Simon, G. A.; Pires, F. R.; Ferreira, R. L.; Santos, D. C. dos. Desempenho de cultivares e híbridos de milheto em solo submetido à compactação. Revista Brasileira de Engenharia Agrícola e Ambiental , v.17, p.1188-1194, 2013. https://doi.org/10.1590/S1415-43662013001100009
    » https://doi.org/10.1590/S1415-43662013001100009
  • Klein, V. A.; Camara, R. K. Rendimento da soja e intervalo hídrico ótimo em Latossolo Vermelho sob plantio direto escarificado. Revista Brasileira de Ciência do Solo , v.31, p.221-227, 2007. https://doi.org/10.1590/S0100-06832007000200004
    » https://doi.org/10.1590/S0100-06832007000200004
  • Labegalini, N. S.; Buchet, A. C.; Andrade, L.; Oliveira, S. C. de; Campos, L. M. Desenvolvimento da cultura do milho sob efeitos de diferentes profundidades de compactação do solo. Revista de Agricultura Neotropical, v.3, p.7-11, 2016. https://doi.org/10.32404/rean.v3i4.1102
    » https://doi.org/10.32404/rean.v3i4.1102
  • Lima, L. A.; Grismer, M. E. Application of fracture mechanics to cracking of saline soils. Soil Science, v.158, p.86-96, 1994. https://doi.org/10.1097/00010694-199408000-00002
    » https://doi.org/10.1097/00010694-199408000-00002
  • Lira, R. M.; Silva, Ê. F. de F. e; Simões Neto, D. E.; Santos Júnior, J. A.; Lima, B. L. de C.; Silva, J. S. da. Growth and yield of sugarcane irrigated with brackish water and leaching fractions. Revista Brasileira de Engenharia Agrícola e Ambiental , v.22, p.170-175, 2018. https://doi.org/10.1590/1807-1929/agriambi.v22n3p170-175
    » https://doi.org/10.1590/1807-1929/agriambi.v22n3p170-175
  • Medeiros, J. F. de; Nascimento, I. B. do; Gheyi, H. R. Manejo do solo-água-planta em áreas afetadas por sais. In: Gheyi, H. R.; Dias, N. da S.; Lacerda, C. F. de (eds.). Manejo da salinidade na agricultura: Estudos básicos e aplicados. Fortaleza: INCTSal, 2010. p.279-299.
  • Medeiros, R. D.; Soares, A. A.; Guimarães, R. M. Compactação do solo e manejo de água I: Efeitos sobre a absorção de N, P, K, massa seca de raízes e parte aérea de plantas de arroz. Ciência e Agrotecnologia, v.29, p.940-947, 2005. https://doi.org/10.1590/S1413-70542005000500004
    » https://doi.org/10.1590/S1413-70542005000500004
  • Michelon, C. J.; Carlesso, R.; Petry, M. T.; Melo, G.; Spohr, R. B.; Andrade, J. G. de. Qualidade física dos solos irrigados de algumas regiões do Brasil Central. Revista Brasileira de Engenharia Agrícola e Ambiental , v.13, p.39-45, 2009. https://doi.org/10.1590/S1415-43662009000100006
    » https://doi.org/10.1590/S1415-43662009000100006
  • Moreira, W. H.; Tormena, C. A.; Betioli Junior, E.; Figueiredo, G. C.; Silva, A. P. da; Giarola, N. de F. B. Quantificação do intervalo hídrico ótimo de um Latossolo Vermelho utilizando duas estratégias metodológicas. Revista Brasileira de Ciências do Solo , v.38, p.1772-1783, 2014. https://doi.org/10.1590/S0100-06832014000100015
    » https://doi.org/10.1590/S0100-06832014000100015
  • Ohland, T.; Lana, M. do C.; Frandoloso, J. F.; Rampim, L.; Bergmann, J. R.; Cabreira, D. T. Influência da densidade do solo no desenvolvimento inicial do pinhão-manso cultivado em Latossolo Vermelho eutroférrico. Revista Ceres, v.61, p.622-630, 2014. https://doi.org/10.1590/0034-737X201461050004
    » https://doi.org/10.1590/0034-737X201461050004
  • Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: United States Salinity Laboratory, 1954. 160p. Agriculture Handbook, 60.
  • Romero, E. M.; Ruiz, H. A.; Fernandes, R. B. A.; da Costa, L. M. Condutividade hidráulica, porosidade, resistência mecânica e intervalo hídrico ótimo em Latossolos artificialmente compactados. Revista Brasileira de Engenharia Agrícola e Ambiental , v.18, p.1003-1009, 2014. https://doi.org/10.1590/1807-1929/agriambi.v18n10p1003-1009
    » https://doi.org/10.1590/1807-1929/agriambi.v18n10p1003-1009
  • Romano, N.; Hopmans, J. W.; Dane, J. H. Suction table. In: Dane, J. H.; Topp, G. C. (eds.). Methods of soil analysis: Part 4 - Physical methods. Madison: Soil Science Society of America , 2002. Chap.3, p.692-698. Book Series, 5
  • Ross, P. J.; Willians, J.; Bristow, K. L. Equations for extending water-retention curves to dryness. Soil Science Societies American Journal, v.55, p.23-27, 1991. https://doi.org/10.2136/sssaj1991.03615995005500040004x
    » https://doi.org/10.2136/sssaj1991.03615995005500040004x
  • Silva, A. O. da; Klar, A. E.; Silva, E. F. de F. e; Tanaka, A. A.; Silva Junior, J. F. Relações hídricas em cultivares de beterraba em diferentes níveis de salinidade do solo. Revista Brasileira de Engenharia Agrícola e Ambiental , v.17, p.1143-1151, 2013. https://doi.org/10.1590/S1415-43662013001100003
    » https://doi.org/10.1590/S1415-43662013001100003
  • Silva, A. P. da; Kay, B. D.; Perfect, E. Characterization of the least limiting water range. Soil Science Society of America Journal, v.58, p.1775-1781, 1994. https://doi.org/10.2136/sssaj1994.03615995005800060028x
    » https://doi.org/10.2136/sssaj1994.03615995005800060028x
  • Simões, W. L.; Calgaro, M.; Coelho, D. S.; Santos, D. B.; Souza, M. A. de. Growth of sugar cane varieties under salinity. Revista Ceres , v.63, p.265-271, 2016. https://doi.org/10.1590/0034-737X201663020019
    » https://doi.org/10.1590/0034-737X201663020019
  • Souza, G. S. de; Souza, Z. M. de; Silva, R. B. da; Barbosa, R. S.; Araújo, F. S. Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Revista Brasileira de Ciência do Solo , v.38, p.135-146, 2014. https://doi.org/10.1590/S0100-06832014000100013
    » https://doi.org/10.1590/S0100-06832014000100013
  • Toledo, J. V.; Zolnier, S.; Silva, T. G. F .da; Boehringer, D.; Steidle Neto, A. J. Alterations on the evapotranspiration of sugarane cultivars under distinct salinity levels applied in the fertigation. Engenharia Agrícola, v.37, p.940-952, 2017. https://doi.org/10.1590/1809-4430-eng.agric.v37n5p940-952/2017
    » https://doi.org/10.1590/1809-4430-eng.agric.v37n5p940-952/2017
  • Tormena, C. A.; Silva, A. P.; Libardi, P. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto. Revista Brasileira de Ciência do Solo , v.22, p.573-581, 1998. https://doi.org/10.1590/S0100-06831998000400002
    » https://doi.org/10.1590/S0100-06831998000400002

Publication Dates

  • Publication in this collection
    14 Oct 2019
  • Date of issue
    Nov 2019

History

  • Received
    26 June 2018
  • Accepted
    23 Aug 2019
  • Published
    30 Sept 2019
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com