Acessibilidade / Reportar erro

Improved nutrient uptake in three Crotalaria species inoculated with multifunctional microorganisms 1 1 Research developed at Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, Brazil

Melhoria da absorção de nutrientes em três espécies de Crotalaria inoculadas com microorganismos multifuncionais

HIGHLIGHTS

Multifunctional microorganisms promote the nutrient enrichment in Crotalaria plants.

Cover crop residues are vital in managing soil fertility.

Nutritionally improved cover crops increase soil nutrient levels for the subsequent crop.

Key words:
plant growth promotion; biomass; nutrient; gas exchange

ABSTRACT

Cover crops are essential in recovering soil productivity. Crotalaria is one of the most efficient legume species in terms of biomass production and nitrogen fixation. This study aimed to assess the effect of multifunctional microorganisms on the agronomic performance of Crotalaria juncea, C. spectabilis and C. ochroleuca. The experiment was conducted under greenhouse conditions, in a completely randomized design, with four replicates. Treatments consisted of six rhizobacterial isolates (BRM 32109 and BRM 32110 (Bacillus spp.), BRM 32111 and BRM 32112 (Pseudomonas spp.), BRM 32113 (Burkholderia spp.), BRM 32114 (Serratia spp.)), and one fungal isolate (Trichoderma spp. (T-26)), in addition to a control treatment (no microorganism). The main effect of multifunctional microorganisms on the three Crotalaria species was macro and micronutrient concentration increased. Sulfur and zinc concentrations increased in C. juncea roots, calcium and sulfur in C. spectabilis shoots, and C. ochroleuca exhibited higher concentrations of phosphorus and copper in shoots and zinc and copper in roots. In summary, improved nutritional status in Crotalaria directly affects nutrient availability for the subsequent crop.

Key words:
plant growth promotion; biomass; nutrient; gas exchange

RESUMO

Plantas de cobertura são essenciais na recuperação da produtividade do solo. Crotalaria é uma das mais eficientes espécies de leguminosas em termo de produção de biomassa e fixação de nitrogênio. Objetivou-se neste estudo avaliar o efeito de microorganismos multifuncionais no desempenho agronômico de Crotalaria juncea, C. spectabilis e C. ochroleuca. O experimento foi conduzido em casa de vegetação, em delineamento inteiramente casualizado, com quatro repetições. Os tratamentos consistiram em seis isolados de rizobactérias (BRM 32109 e BRM 32110 (Bacillus sp.), BRM 32111 e BRM 32112 (Pseudomonas sp.), BRM 32113 (Burkholderia sp.), BRM 32114 (Serratia sp.)) e um isolado fúngico (Trichoderma sp. (T-26)), além do tratamento controle (sem microrganismo). O principal efeito dos microorganismos multifuncionais sobre as três espécies de Crotalaria foi o aumento da concentração de macro e micronutrientes. Enxofre e zinco aumentaram na raiz de plantas de C. juncea; cálcio e enxofre na parte aérea de plantas de C. spectabilis; e plantas de C. ochroleuca apresentaram maior concentração de fósforo e cobre na parte aérea e de zinco e cobre na raiz. Em resumo, o melhor status nutricional em plantas de Crotalaria afeta diretamente a disponibilidade de nutrientes para a cultura subsequente.

Palavras-chave:
promoção do crescimento vegetal; biomassa; nutrientes; trocas gasosas

Introduction

Crotalaria spp. is a legume used as a cover crop in a no-till systems in order to protect the soil against erosion and increase organic matter and nutrient accumulation (Aita & Giacomini, 2006Aita, C.; Giacomini, J. Plantas de cobertura de solo em sistemas agrícolas. In: Alves, B. J. R.; Urquiaga, S.; Aita, C.; Boddey, R. M.; Jantalia, C. P.; Camargo, F. A. O. (ed.). Manejo de sistemas agrícolas. Porto Alegre: Genesis, 2006. p.59-80.; Pereira et al., 2016Pereira, N. S.; Soares, I.; Miranda, F. R. de. Decomposition and nutriente release of leguminous green manure species in the Jaguaribe-Apode region, Ceará, Brasil. Ciência Rural, v.46, p.970-975, 2016. https://doi.org/10.1590/0103-8478cr20140468
https://doi.org/10.1590/0103-8478cr20140...
). Crotalaria species are also used to reduce the incidence of phytonematodes in the soil (Pacheco et al., 2015Pacheco, L. P.; São Miguel, A. S. D. C.; Bonfim-Silva, E. M.; Souza, E. D. de; Silva, F. D. da. Influência da densidade do solo em atributos da parte aérea e sistema radicular de crotalária. Pesquisa Agropecuária Tropical, v.45, p.464-472, 2015. https://doi.org/10.1590/1983-40632015v4538107
https://doi.org/10.1590/1983-40632015v45...
) and break up compacted layers due to their deeper and more branched root system (Bonfim-Silva et al., 2012Bonfim-Silva, E. M.; Valadão Júnior, D. D.; Reis, R. H. P. dos; Campos, J. J.; Scaramuzza, W. L. M. P. Establishment of Xaraés and Marandu grasses under levels of soil compaction. Engenharia Agrícola, v.32, p.727-735, 2012. https://doi.org/10.1590/S0100-69162012000400012
https://doi.org/10.1590/S0100-6916201200...
), in addition to fixing nitrogen (200 to 300 kg ha-1) through a symbiotic relationship with bacteria of the genus Rhizobium (Dourado et al., 2001Dourado, M. C.; Silva, R. R. B. da; Bolonhezi, A. C. Matéria seca e produção de grãos de Crotalaria juncea L. submetida à poda e adubação fosfatada. Scientia Agricola, v.58, p.287-293, 2001. https://doi.org/10.1590/S0103-90162001000200011
https://doi.org/10.1590/S0103-9016200100...
). Rotating cash crops with leguminous cover crops in the off season (March to September) is widespread in Brazilian Cerrado agricultural systems (Boer et al., 2007Boer, C. A.; Assis, R. L. de; Silva, G. P.; Braz, A. J. B. P.; Barroso, A. L. de L.; Cargnelutti Filho, A.; Pires, F. R. Ciclagem de nutrientes por plantas de cobertura na entressafra em um solo de cerrado. Pesquisa Agropecuária Brasileira, v.42, p.1269-1276, 2007. https://doi.org/10.1590/S0100-204X2007000900008
https://doi.org/10.1590/S0100-204X200700...
).

The use of multifunctional microorganisms in symbiosis with the cover crop is essential for sustainable intensification of agricultural systems in the Brazilian Cerrado region. These microorganisms usually inhabit the rhizosphere of plants (Graças et al., 2015Graças, J. P.; Ribeiro, C.; Coelho, F. A. A.; Carvalho, M. E. A.; Castro. P. R. de C. e. Microorganismos estimulantes na agricultura. Piracicaba: ESALQ, 2015. 61p. (Série Produtor Rural, 59). ) and improve crop systems resilience by promoting plant growth through direct and indirect mechanisms, in addition to increasing plant protection against pathogens and insects (Ahemad & Kilbret, 2014Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University, v.26, p.1-20, 2014. https://doi.org/10.1016/j.jksus.2013.05.001
https://doi.org/10.1016/j.jksus.2013.05....
).

Previous studies conducted at Embrapa Rice and Beans research center demonstrated the efficiency of microorganisms, rhizobacteria and fungi in increasing biomass production and disease resistance in upland rice (Filippi et al., 2011Filippi, M. C. C. de; Silva, G. B. da; Silva-Lobo, V. L.; Cortes, M. M. C. B.; Moraes, A. J. G.; Prabhu, A. S. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, v.58, p.160-166, 2011. https://doi.org/10.1016/j.biocontrol.2011.04.016
https://doi.org/10.1016/j.biocontrol.201...
; Silva et al., 2012Silva, J. C. da; Torres, D. B.; Lustosa, D. C.; Filippi, M. C. C. de; Silva, G. B. da. Rice sheath blight biocontrol and growth promotion by Trichoderma isolates from the Amazon. Revista de Ciências Agrárias, v.55, p.243-250, 2012. https://doi.org/10.4322/rca.2012.078
https://doi.org/10.4322/rca.2012.078...
; França et al., 2015França, S. K. S. de; Cardoso, A. F.; Lustosa, D. C.; Ramos, M. L. S.; Filippi, M. C. C. de; Silva, G. B. da. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agronomy for Sustainable Development, v.35, p.317-324, 2015. https://doi.org/10.1007/s13593-014-0244-3
https://doi.org/10.1007/s13593-014-0244-...
; Nascente et al., 2017Nascente, A. S.; Filippi, M. C. C. de; Lanna, A. C.; Souza, A. C. A. de; Lobo, V. L. da S.; Silva, G. B. da. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, v.24, p.2956-2965, 2017. https://doi.org/10.1007/s11356-016-8013-2
https://doi.org/10.1007/s11356-016-8013-...
). In a more recent study, micronutrients, fulvic acid and Ascophyllum promoted total dry matter accumulation and a larger number of pods per plant in the common bean, an important legume crop in Brazil (Frasca et al., 2020Frasca, L. L. de M.; Nascente, A. S.; Lanna, A. C.; Carvalho, M. C. S.; Costa, G. G. Bioestimulantes no crescimento vegetal e desempenho agronômico do feijão comum de ciclo superprecoce. Revista Agrarian, v.13, p.27-41, 2020. https://doi.org/10.30612/agrarian.v13i47.8571
https://doi.org/10.30612/agrarian.v13i47...
). Our hypothesis is that these microorganisms may also significantly increase biomass production in Crolataria. As such, this study aimed to assess the effect of multifunctional microorganisms on the agronomical performance of three Crotalaria species.

Material and Methods

The experiment was conducted in a greenhouse at the Embrapa Rice and Beans research center, Santo Antônio de Goiás, Goiás state (GO), Brazil from February to May 2019. The soil used was from the arable layer (0-0.20 m) of a clay-textured Oxisol (485, 182 and 333 g kg-1 of clay, silt and sand, repectively). The chemical characteristics of the soil were determined according to Donagema et al. (2011Donagema, G. K.; Campos, D. V. B. de; Calderano, S. B.; Teixeira, W. G.; Viana, J. H. M. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro: Embrapa Solos, 2011. 230p.), with the following results: pH (H2O) = 5.5; Ca2+ = 37.9 mmolc dm-³; Mg2+ = 16.5 mmolc dm-³; Al3+ = 1 mmolc dm-³; H+ + Al3+ = 24 mmolc dm-³; P = 30.6 mg dm-³; K+ = 185 mg dm-³; Cu2+ = 1.3 mg dm-³; Zn2+ = 1.9 mg dm-³; Fe3+ = 34.3 mg dm-³; Mn2+ = 30.6 mg dm-³; organic matter (OM) = 29.3 g kg-1; Ctotal = 1.47% and Ntotal = 0.12%. One week before planting, 10 L pots were filled with 8.0 kg of soil fertilized with 10 g of NPK (5-30-15). At planting, 10 mL of diluted liquid inoculant (Bradyrhizobium japonicum), under the commercial name “GRAP NOD” (5 mL diluted in 900 mL of water), was sprayed into the sowing furrow. Soil moisture was maintained near field capacity throughout the experiment.

A completely randomized design was used, with four repetitions for each of the three Crotalaria species: C. juncea, C. spectabilis and C. ochroleuca in individual experiments. Treatments consisted of six rhizobacteria isolates (Bacillus spp. (BRM 32109 and BRM 32110), Pseudomonas spp. (BRM32111), Pseudomona fluorescens (BRM 32112), Burkholderia pyrrocinia (BRM 32113), Serratia spp. (BRM32114)) (Table 1), one fungal isolate (Trichoderma spp. (T-26)) (biochemical characterization and taxonomic classification underway) and a control. The microorganisms were selected from upland rice fields and are currently stored and preserved in the Multifunction Microorganisms and Fungi Collection of Embrapa Rice and Beans. The control treatment consisted solely of water, with no microorganisms applied. The microorganisms were applied at three moments: (1) seed microbiolization, (2) soil drenched with microbial suspension 10 days after sowing (DAS) and (3) plants sprayed with microbial suspension at 21 DAS.

Table 1
Isolate code, origin, biochemical characteristics and taxonomic classification of six rhizobacterial isolates

The rhizoacterial isolates were grown on solid medium 523 (Kado & Heskett, 1970Kado, C. J.; Heskett, M. G. Selective media for isolation ofAgrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, v.60, p.969-976, 1970. https://doi.org/10.1094/Phyto-60-969
https://doi.org/10.1094/Phyto-60-969...
), at 28 oC, for 24 hours. The concentration was set to A540 = 0.5 (108 CFU, colony-forming units), in a spectrophotometer. Trichoderma spp. was grown in a Petri dish containing potato dextrose agar (PDA) for 5 days and suspensions were prepared and bioformulated as described by Silva et al. (2012Silva, J. C. da; Torres, D. B.; Lustosa, D. C.; Filippi, M. C. C. de; Silva, G. B. da. Rice sheath blight biocontrol and growth promotion by Trichoderma isolates from the Amazon. Revista de Ciências Agrárias, v.55, p.243-250, 2012. https://doi.org/10.4322/rca.2012.078
https://doi.org/10.4322/rca.2012.078...
). The concentration of the biological suspension was 108 conidia mL-1.

For microbiolization, Crotalaria seeds were immersed in each microorganism suspensions, and control seeds in water, for 24 hours under constant agitation at 25 oC.

For soil drenching, 100 mL of the suspension of each treatment and water (control treatment) were applied to the soil at 10 DAS.

For plant spraying, 30 mL of the suspension of each treatment and water (control treatment) were sprayed onto leaves at a constant pressure, using a CO2 pressurized manual backpack sprayer equipped with a hollow-cone spray nozzle (TX-VS2), was performed at 21 DAS.

Gas exchange was measured by using a portable gas exchange analyzer in the infrared region (LCpro+, ADC BioScientific, Hoddesdon, England). Photosynthetic rate (A, μmol CO2 m-2 s-1), transpiration rate (E, mmol H2O m-2 s-1), stomatal conductance (gs, mol H2O m-2 s-1), internal CO2 concentration (Ci, μmol mol-1) and leaf temperature (Tleaf, oC) were obtained. Readings were taken between 08:00 and 10:00 a.m., at 65 days after emergence (DAE). Samples were collected from the middle third of the youngest fully expanded leaves on the main stem. The equipment was set to use concentrations of 370-400 mol mol-1 CO2 in the air, which is the reference condition used in the IRGA phothosynthesis chamber. The photon flux density photosynthetic active (PPFD) used was 1200 μmol [quanta] m-2 s-1. The minimum equilibration time set for performing the reading was 2 min.

Shoot and root dry weight for each plot (one plant per pot) were determined in the full flowering stage. The shoots and roots were washed in water, dried in a forced-air circulation oven at 65 ºC for 72 hours and, then, weighed. After weighing, the dried shoot and root samples were ground and P, K, Ca, Mg, S, Cu, Fe, Mn, Zn and Mo concentrations determined as described by Donagema et al. (2011Donagema, G. K.; Campos, D. V. B. de; Calderano, S. B.; Teixeira, W. G.; Viana, J. H. M. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro: Embrapa Solos, 2011. 230p.). Fe was only quantified in the shoots.

Most of the data showed normal distribution, with exception of shoot Mn (C. juncea), Fe and Mo (C. spectabilis)) and Fe (C. ochroleuca) concentration and root Cu, Mn and Zn (C. juncea), K, Ca, Mg, S and Mn (C. spectabilis)) and P, Ca, Mn, Zn and Mo (C. ochroleuca) concentration. These data were log-transformed (Log10 Y) for statistical analysis. The transformed and non-transformed data were submitted to analysis of variance (ANOVA). Tukey’s test was performed for each Crotalaria species, at p ≤ 0.05. Sisvar software 5.1 was used for statistical analyses (Ferreira, 2011Ferreira, D. F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, v.35, p.1039-1042, 2011. https://doi.org/10.1590/S1413-70542011000600001
https://doi.org/10.1590/S1413-7054201100...
).

Results and Discussion

No significant gas exchange effects caused by microorganisms were observed in Crotalaria plants under the experimental conditions. The respective values obtained for A, E, gs (number and activity of stomata) and Ci ranged from 10.34 to 18.99 μmol CO2 m-2 s-1, 1.61 to 2.14 mmol H2O m-2 s-1, 0.11 to 0.25 mol H2O m-2 s-1 and 156 to 242 μmol mol-1 for C. juncea, 15.74 to 21.46 μmol CO2 m-2 s-1, 2.82 to 4.58 mmol H2O m-2 s-1, 0.19 to 0.26 mol H2O m-2 s-1 and 185 to 235 μmol mol-1 for C. spectabilis, and 13.07 to 25.69 μmol CO2 m-2 s-1, 2.67 to 5.27 mmol H2O m-2 s-1, 0.15 to 0.31 mol H2O m-2 s-1 and 179 to 214 μmol mol-1 for C. ochroleuca. Leaf temperature ranged from 28.0 to 35.3 oC during assessment of the three Crotalaria species. According to Lang et al. (2015Lang, M.; Batisttus, A. G., Guimarães, V. F. Associação entre Azospirillum brasilense e Herbaspirillum seropedicae inoculados via semente e pulverização foliar com a cultura do trigo. In: Encontro Anual de Iniciação Científica, Tecnológica e Inovação, 1, 2015, Cascavel. Anais... Cascavel: Unioeste, 2015. ), it is essential to determine the influence of multifunctional microorganisms on plant physiology. This can be achieved by monitoring plant health and increased photoassimilate, biomass and grain production. The effect of multifunctional microorganisms on plant physiology is particularly evident under stressed conditions (Ahemad & Kilbret, 2014Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University, v.26, p.1-20, 2014. https://doi.org/10.1016/j.jksus.2013.05.001
https://doi.org/10.1016/j.jksus.2013.05....
).

In addition, there was no significant effect on shoot and root phytomass accumulation in C. juncea, C. spectabilis and C. ochroleuca compared to their respective controls (Tables 2 and 3). However, C. spectabilis and C. ochroleuca differed between microorganism treatments. C. spectabilis treated with BRM 32113 exhibited higher SDMB (28.79 g) than that of plants treated with BRM 32110 (14.00 g), BRM 32111 (17.88 g), BRM 32114 (17.21 g) and T-26 (18.85 g) (Table 2), whereas the highest SDMB value for. C. ochroleuca was observed in the BRM 32111 treatment (40.16 g), with values of 24.91, 10.80, 28.28, 22.51 and 17.73 g for BRM 32109, BRM 32110, BRM 32112, BRM 32113 and BRM 32114, respectively. C. ochroleuca treated with BRM 32111 exhibited higher RDMB (26.66 g) than that obtained for the other treatments (Tables 2 and 3). Additionally, BRM 32110, BRM 32113 and BRM 32114 displayed reduced root biomass (5.70, 8.62 and 4.48, respectively), differing from the control treatment. Root and shoot biomass are important in cover crops because they represent better protection against soil erosion, nutrient cycling, breaking compacted soil layers and lower soil temperature when compared to conventional tillage (Nascente et al., 2013Nascente, A. S.; Crusciol, C. A. C.; Cobucci, T. The no-tillage system and cover crops - alternatives to increase upland rice yields. European Journal of Agronomy, v.45, p.124-131, 2013. https://doi.org/10.1016/j.eja.2012.09.004
https://doi.org/10.1016/j.eja.2012.09.00...
). With respect to shoot macro and micronutrient concentration, C. spectabilis plants treated with multifunctional microorganisms exhibited increased S concentration (23%), while those inoculated with BRM 32111 (Pseudomonas spp.) and BRM 32113 (Burkholderia spp.) showed a higher Ca concentration (31%) in relation to the control (Table 2). In C. ochroleuca, shoot concentration of P rose by 83% after inoculation with BRM 32113 and T-26 (Trichoderma spp.) and Cu concentration by 91% when compared to the control treatment. Shoot macro and micronutrient concentrations were similar between treatments for C. juncea.

Table 2
Shoot dry matter biomass (SDMB) and shoot macro/micronutrients concentration of C. juncea, C. spectabilis and C. ochroleuca, grown in soil containing multifunctional microorganisms
Table 3
Root dry matter biomass (RDMB) and root macro/micronutrients concentration of C. juncea, C. spectabilis and C. ochroleuca, grown in soil containing multifunctional microorganisms

According to Baldotto et al. (2010Baldotto, L. E. B.; Baldotto, M. A.; Canellas, L. P.; Bressan-Smith, R.; Olivares, F. L. Growth promotion of pineapple “Vitória” by humic acids and Burkholderia spp. Durint acclimatization. Revista Brasileira de Ciência do Solo, v.34, p.1593-1600, 2010. https://doi.org/10.1590/S0100-06832010000500012
https://doi.org/10.1590/S0100-0683201000...
), fresh and dry matter of the root and shoot systems increased in pineapple plantlets inoculated with Burkholderia, resulting in 115, 112 and 69% higher N, P and K concentrations, respectively, than those obtained in controls. The genus Burhholderia includes phytopathogenic bacteria (Burkholder, 1950Burkholder, W. H. Sour skin, a bacterial rot of onion bulbs. Phytopathology, v.40, p.115-117, 1950. ), endophytic diazotrophic bacteria (Perin et al., 2006Perin, L.; Martinez-Aguilar, L.; Paredes-Valdez, G.; Baldani, J. I.; Estrada de Los Santos, P.; Reis, V. M.; Caballero-Mellado, J. Burkholderia silvatlantica sp. nov, a diazotrophic bacterium associated with sugar cane and maize. International Journal of Systematic and Evolutionary Microbiology, v.56, p.1931-1937, 2006. https://doi.org/10.1099/ijs.0.64362-0
https://doi.org/10.1099/ijs.0.64362-0...
) and symbiotic strains of the beta-rhizobia group that induce the formation of nitrogen-fixing root nodules in host plants (Rasolomampianina et al., 2005Rasolomampianina, R.; Bailly, X.; Fetiarison, R.; Rabevohitra, R.; B´ena, G.; Ramarosen, L.; Raherimandimby, M.; Moulin, L.; Lajudie, P. de; Dreyfus, B.; Avarre, J. C. Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α and β-Proteobacteria. Molecular Ecology, v.14, p.4135-4146, 2005. https://doi.org/10.1111/j.1365-294X.2005.02730.x
https://doi.org/10.1111/j.1365-294X.2005...
). The Burkholderia spp. used in the present study exhibited cellulase activity, in addition to producing IAA (índole-3-acetic acid) and siderophores (Table 1). Nevertheless, other studies have reported additional biochemical characteristics for Burkholderia, including phosphate solubilization (Ghosh et al., 2016Ghosh, R.; Barman, S.; Mukherjee, R.; Mandal, N. C. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiological Research, v.183, p.80-91, 2016. https://doi.org/10.1016/j.micres.2015.11.011
https://doi.org/10.1016/j.micres.2015.11...
), ACC deaminase activation (Onofre-Lemus et al., 2009Onofre-Lemus, J.; Hernández-Lucas, I.; Girard, L.; Caballero-Mellado, J. ACC (1-aminocyclopropane-1carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Applied and Environmental Microbiology, v.75, p.6581-6590, 2009. https://doi.org/10.1128/AEM.01240-09
https://doi.org/10.1128/AEM.01240-09...
) and biocontrol (Esmaeel et al., 2020Esmaeel, Q.; Jacquard, C.; Sanchez, L.; Clément, C.; Barka, E. A. The mode of action of plant associated Burkholderia against grey mould disease in grapevine revealed through traits and genomic analyses. Scientific Reports, v.10, p.1-14, 2020. https://doi.org/10.1038/s41598-020-76483-7
https://doi.org/10.1038/s41598-020-76483...
).

Based on these results, microorganisms seem to stimulate greater nutrient availability in the soil solution, leading to accumulation of these nutrientes in the shoots of Crotalaria plants (Pérez-Garcia et al., 2011Pérez-Garcia, A.; Romero, D.; Vicente, A. de. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, v.22, p.187-193, 2011. https://doi.org/10.1016/j.copbio.2010.12.003
https://doi.org/10.1016/j.copbio.2010.12...
; Zhang et al., 2011Zhang, Y. F.; He, L.; Chen, Z. J.; Wang, W. Y.; Qian, M.; Sheng, X. F. Characterization of ACC deaminase producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere, v.83, p.57-62, 2011. https://doi.org/10.1016/j.chemosphere.2011.01.041
https://doi.org/10.1016/j.chemosphere.20...
). Teodoro et al. (2011Teodoro, R. B.; Oliveira, F. L. de; Silva, D. M. N. da; Fávero, C.; Quaresma, M. A. L. Agronomic aspects of leguminous to green fertilization in the Cerrado of the High Jequitinhonha Valley. Revista Brasileira de Ciência do Solo , v.35, p.635-643, 2011. https://doi.org/10.1590/S0100-06832011000200032
https://doi.org/10.1590/S0100-0683201100...
) reported that different herbaceous leguminous species, including Crotalaria spp., demonstrated potential for nutrients recycling and N input (approximately 19.94 kg ha-1 of N) in crop production systems in the Brazilian Cerrado.

With regard to root macro and micronutrient concentration, S concentration rose by 98% and Zn by 135% in C. juncea inoculated with BRM 32109 and BRM 32110, respectively, when compared to the control treatment (Table 3). Concentrations of Cu and Zn rose by 126 and 136% in C. ochroleuca treated with BRM 32110 and BRM 32114, respectively, in relation to the control. In C. spectabilis plants, root macro and micronutrient concentrations were similar between treatments.

Soil with low fertility predominates in tropical areas, making soil fertility management essential in maintaining an economically and environmentally sustainable farming system. The use of green manures and crop residues exerts different conditioning effects on the soil; however, the main objectives of this practice in low-fertility tropical soils are to improve the cation exchange capacity (CEC) and provide nutrients such as N, P, and S. Additionally, the decomposition of residues and OM releases nutrients such as Ca, Mg, K and trace elements (Valadares et al., 2016Valadares, R. V.; Ávila-Silva, L. de; Teixeira, R. S.; Sousa, R. N.; Vergutz, L. Green manures and crop residues as source of nutrientes in tropical environment. In: Larramendy, M. L.; Soloneski, S. Organic fertilizers: From basic concets to applied outcomes. IntechOpen, 2016. Cap.3, p.51-84. https://doi.org/10.5772/62981
https://doi.org/10.5772/62981...
).

Overall, the three Crotalaria species treated with multifunctional microorganisms, showed no significant differences in agronomic performance, except for increasead shoot and root nutrient accumulation. This is essential to ensure greater nutrient availability for subsequent crops in soil that typically exhibits low fertility.

Conclusions

  1. Multifunctional microorganisms, selected from upland rice fields, improved the nutritional status of Crotalaria juncea, C. spectabilis and C. ochroleuca.

  2. In shoots, Ca concentration increased in C. spectabilis inoculated with BRM 32111 and BRM 32113, and those treated with multifunctional microorganisms generally showed higher S concentrations. C. ochoroleuca treated with BRM 32113 and T-26 exhibited higher P concentration and higher Cu concentration when inoculated with BRM 32113.

  3. In roots, S and Zn concentrations were higher in C. juncea treated with BRM 32109 and BRM 32110, respectively; while C. ochroleuca inoculated with BRM 32110 and BRM 32114 showed greater Cu and Zn concentrations, respectively.

Literature Cited

  • Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University, v.26, p.1-20, 2014. https://doi.org/10.1016/j.jksus.2013.05.001
    » https://doi.org/10.1016/j.jksus.2013.05.001
  • Aita, C.; Giacomini, J. Plantas de cobertura de solo em sistemas agrícolas. In: Alves, B. J. R.; Urquiaga, S.; Aita, C.; Boddey, R. M.; Jantalia, C. P.; Camargo, F. A. O. (ed.). Manejo de sistemas agrícolas. Porto Alegre: Genesis, 2006. p.59-80.
  • Baldotto, L. E. B.; Baldotto, M. A.; Canellas, L. P.; Bressan-Smith, R.; Olivares, F. L. Growth promotion of pineapple “Vitória” by humic acids and Burkholderia spp. Durint acclimatization. Revista Brasileira de Ciência do Solo, v.34, p.1593-1600, 2010. https://doi.org/10.1590/S0100-06832010000500012
    » https://doi.org/10.1590/S0100-06832010000500012
  • Boer, C. A.; Assis, R. L. de; Silva, G. P.; Braz, A. J. B. P.; Barroso, A. L. de L.; Cargnelutti Filho, A.; Pires, F. R. Ciclagem de nutrientes por plantas de cobertura na entressafra em um solo de cerrado. Pesquisa Agropecuária Brasileira, v.42, p.1269-1276, 2007. https://doi.org/10.1590/S0100-204X2007000900008
    » https://doi.org/10.1590/S0100-204X2007000900008
  • Bonfim-Silva, E. M.; Valadão Júnior, D. D.; Reis, R. H. P. dos; Campos, J. J.; Scaramuzza, W. L. M. P. Establishment of Xaraés and Marandu grasses under levels of soil compaction. Engenharia Agrícola, v.32, p.727-735, 2012. https://doi.org/10.1590/S0100-69162012000400012
    » https://doi.org/10.1590/S0100-69162012000400012
  • Burkholder, W. H. Sour skin, a bacterial rot of onion bulbs. Phytopathology, v.40, p.115-117, 1950.
  • Donagema, G. K.; Campos, D. V. B. de; Calderano, S. B.; Teixeira, W. G.; Viana, J. H. M. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro: Embrapa Solos, 2011. 230p.
  • Dourado, M. C.; Silva, R. R. B. da; Bolonhezi, A. C. Matéria seca e produção de grãos de Crotalaria juncea L. submetida à poda e adubação fosfatada. Scientia Agricola, v.58, p.287-293, 2001. https://doi.org/10.1590/S0103-90162001000200011
    » https://doi.org/10.1590/S0103-90162001000200011
  • Esmaeel, Q.; Jacquard, C.; Sanchez, L.; Clément, C.; Barka, E. A. The mode of action of plant associated Burkholderia against grey mould disease in grapevine revealed through traits and genomic analyses. Scientific Reports, v.10, p.1-14, 2020. https://doi.org/10.1038/s41598-020-76483-7
    » https://doi.org/10.1038/s41598-020-76483-7
  • Ferreira, D. F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, v.35, p.1039-1042, 2011. https://doi.org/10.1590/S1413-70542011000600001
    » https://doi.org/10.1590/S1413-70542011000600001
  • Filippi, M. C. C. de; Silva, G. B. da; Silva-Lobo, V. L.; Cortes, M. M. C. B.; Moraes, A. J. G.; Prabhu, A. S. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, v.58, p.160-166, 2011. https://doi.org/10.1016/j.biocontrol.2011.04.016
    » https://doi.org/10.1016/j.biocontrol.2011.04.016
  • França, S. K. S. de; Cardoso, A. F.; Lustosa, D. C.; Ramos, M. L. S.; Filippi, M. C. C. de; Silva, G. B. da. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agronomy for Sustainable Development, v.35, p.317-324, 2015. https://doi.org/10.1007/s13593-014-0244-3
    » https://doi.org/10.1007/s13593-014-0244-3
  • Frasca, L. L. de M.; Nascente, A. S.; Lanna, A. C.; Carvalho, M. C. S.; Costa, G. G. Bioestimulantes no crescimento vegetal e desempenho agronômico do feijão comum de ciclo superprecoce. Revista Agrarian, v.13, p.27-41, 2020. https://doi.org/10.30612/agrarian.v13i47.8571
    » https://doi.org/10.30612/agrarian.v13i47.8571
  • Ghosh, R.; Barman, S.; Mukherjee, R.; Mandal, N. C. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiological Research, v.183, p.80-91, 2016. https://doi.org/10.1016/j.micres.2015.11.011
    » https://doi.org/10.1016/j.micres.2015.11.011
  • Graças, J. P.; Ribeiro, C.; Coelho, F. A. A.; Carvalho, M. E. A.; Castro. P. R. de C. e. Microorganismos estimulantes na agricultura. Piracicaba: ESALQ, 2015. 61p. (Série Produtor Rural, 59).
  • Kado, C. J.; Heskett, M. G. Selective media for isolation ofAgrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas Phytopathology, v.60, p.969-976, 1970. https://doi.org/10.1094/Phyto-60-969
    » https://doi.org/10.1094/Phyto-60-969
  • Lang, M.; Batisttus, A. G., Guimarães, V. F. Associação entre Azospirillum brasilense e Herbaspirillum seropedicae inoculados via semente e pulverização foliar com a cultura do trigo. In: Encontro Anual de Iniciação Científica, Tecnológica e Inovação, 1, 2015, Cascavel. Anais... Cascavel: Unioeste, 2015.
  • Nascente, A. S.; Crusciol, C. A. C.; Cobucci, T. The no-tillage system and cover crops - alternatives to increase upland rice yields. European Journal of Agronomy, v.45, p.124-131, 2013. https://doi.org/10.1016/j.eja.2012.09.004
    » https://doi.org/10.1016/j.eja.2012.09.004
  • Nascente, A. S.; Filippi, M. C. C. de; Lanna, A. C.; Souza, A. C. A. de; Lobo, V. L. da S.; Silva, G. B. da. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, v.24, p.2956-2965, 2017. https://doi.org/10.1007/s11356-016-8013-2
    » https://doi.org/10.1007/s11356-016-8013-2
  • Onofre-Lemus, J.; Hernández-Lucas, I.; Girard, L.; Caballero-Mellado, J. ACC (1-aminocyclopropane-1carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Applied and Environmental Microbiology, v.75, p.6581-6590, 2009. https://doi.org/10.1128/AEM.01240-09
    » https://doi.org/10.1128/AEM.01240-09
  • Pacheco, L. P.; São Miguel, A. S. D. C.; Bonfim-Silva, E. M.; Souza, E. D. de; Silva, F. D. da. Influência da densidade do solo em atributos da parte aérea e sistema radicular de crotalária. Pesquisa Agropecuária Tropical, v.45, p.464-472, 2015. https://doi.org/10.1590/1983-40632015v4538107
    » https://doi.org/10.1590/1983-40632015v4538107
  • Pereira, N. S.; Soares, I.; Miranda, F. R. de. Decomposition and nutriente release of leguminous green manure species in the Jaguaribe-Apode region, Ceará, Brasil. Ciência Rural, v.46, p.970-975, 2016. https://doi.org/10.1590/0103-8478cr20140468
    » https://doi.org/10.1590/0103-8478cr20140468
  • Pérez-Garcia, A.; Romero, D.; Vicente, A. de. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, v.22, p.187-193, 2011. https://doi.org/10.1016/j.copbio.2010.12.003
    » https://doi.org/10.1016/j.copbio.2010.12.003
  • Perin, L.; Martinez-Aguilar, L.; Paredes-Valdez, G.; Baldani, J. I.; Estrada de Los Santos, P.; Reis, V. M.; Caballero-Mellado, J. Burkholderia silvatlantica sp. nov, a diazotrophic bacterium associated with sugar cane and maize. International Journal of Systematic and Evolutionary Microbiology, v.56, p.1931-1937, 2006. https://doi.org/10.1099/ijs.0.64362-0
    » https://doi.org/10.1099/ijs.0.64362-0
  • Rasolomampianina, R.; Bailly, X.; Fetiarison, R.; Rabevohitra, R.; B´ena, G.; Ramarosen, L.; Raherimandimby, M.; Moulin, L.; Lajudie, P. de; Dreyfus, B.; Avarre, J. C. Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α and β-Proteobacteria. Molecular Ecology, v.14, p.4135-4146, 2005. https://doi.org/10.1111/j.1365-294X.2005.02730.x
    » https://doi.org/10.1111/j.1365-294X.2005.02730.x
  • Silva, J. C. da; Torres, D. B.; Lustosa, D. C.; Filippi, M. C. C. de; Silva, G. B. da. Rice sheath blight biocontrol and growth promotion by Trichoderma isolates from the Amazon. Revista de Ciências Agrárias, v.55, p.243-250, 2012. https://doi.org/10.4322/rca.2012.078
    » https://doi.org/10.4322/rca.2012.078
  • Teodoro, R. B.; Oliveira, F. L. de; Silva, D. M. N. da; Fávero, C.; Quaresma, M. A. L. Agronomic aspects of leguminous to green fertilization in the Cerrado of the High Jequitinhonha Valley. Revista Brasileira de Ciência do Solo , v.35, p.635-643, 2011. https://doi.org/10.1590/S0100-06832011000200032
    » https://doi.org/10.1590/S0100-06832011000200032
  • Valadares, R. V.; Ávila-Silva, L. de; Teixeira, R. S.; Sousa, R. N.; Vergutz, L. Green manures and crop residues as source of nutrientes in tropical environment. In: Larramendy, M. L.; Soloneski, S. Organic fertilizers: From basic concets to applied outcomes. IntechOpen, 2016. Cap.3, p.51-84. https://doi.org/10.5772/62981
    » https://doi.org/10.5772/62981
  • Zhang, Y. F.; He, L.; Chen, Z. J.; Wang, W. Y.; Qian, M.; Sheng, X. F. Characterization of ACC deaminase producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus Chemosphere, v.83, p.57-62, 2011. https://doi.org/10.1016/j.chemosphere.2011.01.041
    » https://doi.org/10.1016/j.chemosphere.2011.01.041
  • 1 Research developed at Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, Brazil

Edited by

Edited by: Walter Esfrain Pereira

Publication Dates

  • Publication in this collection
    09 Apr 2021
  • Date of issue
    July 2021

History

  • Received
    17 Oct 2019
  • Accepted
    06 Mar 2021
  • Published
    26 Mar 2021
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com